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Abstract. We study two classes of non-weight modules �(λ, α, β) ⊗ Ind(M) and
M(

V,�(λ, α, β)
)
over the twisted Heisenberg–Virasoro algebra in this paper. We present

conditions underwhich thesemodules are irreducible, the necessary and sufficient conditions
underwhichmodules in each class are isomorphic, and also show that the irreduciblemodules
in these two classes are new. Finally, we construct non-weight modules Indy,λ(CRS) and
Indz,λ(CP Q) over the twisted Heisenberg–Virasoro algebra and then apply the established
results to give irreducible conditions for these modules.

1. Introduction

The well-known twisted Heisenberg–Virasoro algebra H, initially studied by
Arbarello et al. in [1], is the universal central extension of the Lie algebra L of
differential operators on a circle of order at most one:

L :=
{

f (t)
d

dt
+ g(t)

∣
∣∣ f (t), g(t) ∈ C[t, t−1]

}
.

To be more precise, H is an infinite dimensional complex Lie algebra with basis
{Lm, Im, Ci | m ∈ Z, i = 1, 2, 3} subject to the following Lie brackets:

[H, C1] = [H, C2] = [H, C3] = 0,

[Lm, Ln] = (n − m)Lm+n + δm+n,0
m3 − m

12
C1,

[Lm, In] = nIm+n + δm+n,0(m
2 + m)C2,

[Im, In] = nδm+n,0C3 for m, n ∈ Z.

Clearly, the subspaces spanned by {Im, C3 | 0 �= m ∈ Z} and by {Lm, C1 | m ∈ Z}
are respectively the Heisenberg algebra and the Virasoro algebra. Notice that the
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center of H is spanned by {C0 := I0, Ci | i = 1, 2, 3}. Moreover, the twisted
Heisenberg–Virasoro algebra has a triangular decomposition:

H = H− ⊕ h ⊕ H+,

where h = spanC{L0, Ci | i = 0, 1, 2, 3} is a Cartan subalgebra ofH and

H− = spanC{L−m, I−m | m ∈ N}, H+ = spanC{Lm, Im | m ∈ N}.
The twisted Heisenberg–Virasoro algebra is one of the most important Lie algebras
both in mathematics and in mathematical physics, whose structure theory has been
extensively studied (see, e.g., [7,10,20]).

A fundamental problem in the representation theory of the twisted Heisenberg–
Virasoro algebra is to classify all its irreducible modules. In fact, the theory of
weightmoduleswith allweight subspaces beingfinite dimensional (namely,Harish-
Chandra modules) has been well developed. Irreducible weight modules over H
with a nontrivial finite dimensional weight subspace were proved to be Harish-
Chandra modules [22]. And irreducible Harish-Chandra H-modules were classi-
fied in [15], each of which was shown to be either the highest (or lowest) weight
module, or the module of the intermediate series, which is consistent with the well-
known result for the Virasoro algebra [16]. While weight modules with an infinite
dimensional weight subspace were also studied (see [6,19]).

Non-weight modules constitute the other important ingredients of the represen-
tation theory of H, the study of which is definitely necessary and became popular
in the last few years. A large class of new non-weight irreducibleH-modules were
constructed in [3], which includes the highest weight modules and Whittaker mod-
ules. Non-weightH-modules whose restriction to the universal enveloping algebra
of the degree-0 part (modulo center) are free of rank 1 were studied in [4] (see
also [8]). And by twisting the weight modules, we obtained a family of new non-
weight irreducibleH-modules [6]. However, the theory of non-weightH-modules
is far more from being well developed.

As a continuation of [6], we still study the representation theory of H in this
paper. But we shall be concerned with non-weightH-modules. It is well known that
an important way of constructing modules is to consider the linear tensor product
of two modules, see for instance, [5,23–25] for such modules over the Virasoro
algebra. All non-weight H-modules studied in the present paper are obtained in
this way, which can be divided into two classes: one class consists of tensor product
modules and the other class consists of modules constructed from the linear tensor
product of two modules.

We briefly give a summary of the paper below. In Sect. 2, we recall some known
modules and construct a class of non-weight modulesM(

V,�(λ, α, β)
)
over the

twistedHeisenberg–Virasoro algebraH, whereV is amodule over someLie algebra
which is a subquotient ofH. Section 3 is devoted to studying the irreducibilities of
tensor product modules �(λ, α, β) ⊗ Ind(M) and the reducibilities ofH-modules
M(

V,�(λ, α, β)
)
, where Ind(M) is anH-module induced from some subalgebra

of H. We prove that �(λ, α, β) ⊗ Ind(M) is irreducible if both �(λ, α, β) and
Ind(M) are irreducible (in fact, here we use some sufficient conditions for the irre-
ducibility of Ind(M)) and that M(

V,�(λ, α, β)
)
is reducible if and only if V is
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a certain one-dimensional module. In Sect. 4, we give the necessary and sufficient
conditions under which two irreducibleH-modules �(λ1, α1, β1) ⊗ Ind(M1) and
�(λ2, α2, β2)⊗ Ind(M2) are isomorphic. And we also determine the isomorphism
classes of themodulesM(

V,�(λ, α, β)
)
. In Sect. 5, we prove irreduciblemodules

in the two classes are new by showing they are not isomorphic to any other known
irreducible non-weightH-module. In Sect. 6, some non-weightH-modules are con-
structed and usingTheorem3.1wepresent irreducible conditions for thesemodules.
Themain results of this paper are summarized in Theorems 3.1, 3.3, 4.1, 4.6, 6.2, 6.3
and Proposition 5.2.

Throughout this paper, we respectively denote by C, C
∗, Z, Z+ and N the sets

of complex numbers, nonzero complex numbers, integers, nonnegative integers and
positive integers, and use U(a) to denote the universal enveloping algebra of a Lie
algebra a. All vector spaces are assumed to be over C.

2. Preliminaries

In this section, we shall first recall some known H-modules and then introduce a
functor from the category ofH-modules to some of its subcategory, and finally we
present some non-weight modules which will be studied in this paper.

2.1. Some H-modules

Definition 2.1. AnH-moduleV is called aweightmodule ifV has thedecomposition:
V = ⊕λ∈h∗ Vλ, where Vλ = {v ∈ V | xv = λ(x)v, ∀x ∈ h} for each λ ∈ h∗ (the
dual space of h); and called a non-weight module otherwise.

Remark 2.2. More generally, we call anH-module V a weight module with respect
to L0 if V = ⊕λ∈CVλ with Vλ = {v ∈ V | L0v = λv} for any λ ∈ C.

For later use, we are going to recall some weight and non-weight H-modules.
For λ, α, β ∈ C, the (weight) H-module A(λ, α, β) of the intermediate series has
a basis {vi | i ∈ Z} with trivial central actions and

Lmvn = (
λ + n + mα

)
vm+n, Imvn = βvm+n for m, n ∈ Z.

Note that A(λ, α, β) is reducible if and only if λ ∈ Z, α ∈ {0, 1} and β = 0
(see [9,11]).

For λ ∈ C
∗, α, β ∈ C, we recall the non-weight module

�(λ, α, β) := C[t],
with the action of H defined, for i = 1, 2, 3, f (t) ∈ C[t] and m ∈ Z, by

Lm f (t) = λm(t − mα) f (t − m), Im f (t) = λmβ f (t − m), Ci f (t) = 0.

Then �(λ, α, β) is irreducible if and only if α ∈ C
∗ or β ∈ C

∗ (see [4]). Notice
that this module reduces to a Virasoro module if β = 0 (see [13]).
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Now let us recall a class of irreducible modules for the twisted Heisenberg–
Virasoro algebra, which includes the known irreducible modules such as highest
weight modules and Whittaker modules. For any e ∈ Z+, denote byHe the subal-
gebra ofH:

∑

m∈Z+
(CLm ⊕ CIm−e) ⊕ CC1 ⊕ CC2 ⊕ CC3.

Take M(c0, c1, c2, c3) to be an irreducible He-module such that I0, C1, C2 and
C3 act as scalars c0, c1, c2, c3 respectively. For convenience, we briefly denote
M(c0, c1, c2, c3) by M . Form the induced H-module

Ind(M) := U(H) ⊗U(He) M. (2.1)

The following theorem was obtained in [3].

Theorem 2.3. Let e ∈ Z+ and M be an irreducible He-module with c3 = 0.
Suppose that there exists k ∈ Z+ such that

(1)

{
the action of Ik on M is injective if k �= 0,
c0 + (n − 1)c2 �= 0 for all n ∈ Z\{0} if k = 0,

(2) In M = Lm M = 0 for all n > k and m > k + e.

Then

(i) Ind(M) is an irreducible H-module;
(ii) the actions of In, Lm on Ind(M) for all n > k and m > k + e are locally

nilpotent.

2.2. The functor W

Inspired by [18] (see also [14]) we define a functor W from the category of H-
modules to the category of weightH-modules with respect to L0 (see Remark 2.2)
in this subsection.

For any c ∈ C, denote Ic by the (maximal) ideal of C[L0] generated by L0 − c.
For an H-module V and n ∈ Z, set

Vn = V/In V, W(V ) = ⊕n∈ZVn .

Then the vector space W(V ) carries the structure of a weight H-module with
respect to L0 under the following given actions:

Lm(v + In V ) = Lmv + Im+n V,

Im(v + In V ) = Imv + Im+n V,

Ci (v + In V ) = 0 for i = 1, 2, 3, m, n ∈ Z and v ∈ V .

Given any H-module homomorphism f : V → W we define W( f ) : W(V ) →
W(W ) by sending v + In V to f (v) + InW for any v ∈ V and n ∈ Z. Then it
is easy to check that W becomes a functor from the category of H-modules to the
category of weight H-modules with respect to L0.
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2.3. Construction of M(
V,�(λ, α, β)

)

Based on the non-weight H-modules �(λ, α, β) (see Sect. 2.1) we shall consider
two classes of non-weight H-modules. Objects in one class consist of the tensor
product modules �(λ, α, β)⊗ Ind(M) (see (2.1)) and objects in the other class are
constructed in this subsection.

For d ∈ {0, 1}, r ∈ Z+, denote by Hr,d the ideal of H+,d = spanC{Li , I j |
i ≥ 0, j ≥ d} generated by Li , I j for all i > r, j > r + d. Now we write H̄r,d

the quotient algebra H+,d/Hr,d , and L̄i , Īi+d the respective images of Li , Ii+d in
H̄r,d . Let V be an H̄r,d -module. For any λ, α, β ∈ C, define an H-action on the
vector space M(

V,�(λ, α, β)
) := V ⊗ C[t] as follows (see [14]):

Lm
(
v ⊗ f (t)

) = v ⊗ λm(t − mα) f (t − m)

+
r∑

i=0

(
mi+1

(i + 1)! L̄i

)
v ⊗ λm f (t − m), (2.2)

Im
(
v ⊗ f (t)

) =
r∑

i=0

(
mi+d

(i + d)! Īi+d

)
v ⊗ λmβ f (t − m), (2.3)

Ci
(
v ⊗ f (t)

) = 0 for i = 1, 2, 3, m ∈ Z, v ∈ V, f (t) ∈ C[t]. (2.4)

Proposition 2.4. Let d ∈ {0, 1}, r ∈ Z+ and V be an H̄r,d -module. Then
M(

V,�(λ, α, β)
)

is a non-weight H-module under the actions given in (2.2)–
(2.4).

Proof. Define a series of operators xm on C[t] as follows:
xm f (t) = λm f (t − m) for m ∈ Z and f (t) ∈ C[t].

Then In xm f (t) = xm In f (t) = Im+n f (t) for any m, n ∈ Z. It follows
from [14, Section 3] that the relation Lm Ln − Ln Lm = (n − m)Lm+n holds on
M(

V,�(λ, α, β)
)
. By (2.2)–(2.4), we have

(Lm In − In Lm)
(
v ⊗ f (t)

)

=
r∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ (

Lm In f (t)
)

+
r∑

i=0

(
mi+1

(i + 1)! L̄i

) r∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ (

xm In f (t)
)

−
r∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ (

In Lm f (t)
)

−
r∑

i=0

(
ni+d

(i + d)! Īi+d

) r∑

i=0

(
mi+1

(i + 1)! L̄i

)
v ⊗ (

In xm f (t)
)

= n
r∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ (

Im+n f (t)
)
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+
r∑

i=0

(
mi+1

(i + 1)! L̄i

) r∑

j=0

(
n j+d

( j + d)! Ī j+d

)
v ⊗ (

Im+n f (t)
)

−
r∑

j=0

(
n j+d

( j + d)! Ī j+d

) r∑

i=0

(
mi+1

(i + 1)! L̄i

)
v ⊗ (

Im+n f (t)
)

= n
r∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ (

Im+n f (t)
)

+
r∑

i, j=0

(
mi+1n j+d

(i + 1)!( j + d)!
(
L̄i Ī j+d − Ī j+d L̄i

)
)

v ⊗ (
Im+n f (t)

)

= n
r∑

i=0

i+1∑

j=δd,0

(
mi+1− j n j+d−1

(i + 1 − j)!( j + d − 1)! Īi+d

)
v ⊗ (

Im+n f (t)
)

= n
r∑

i=0

(
(m + n)i+d

(i + d)! Īi+d

)
v ⊗ (

Im+n f (t)
) = nIm+n

(
v ⊗ f (t)

)
.

That is, Lm In − In Lm = nIn+m holds on M(
V,�(λ, α, β)

)
. Finally, the relation

Im In − In Im = 0 on M(
V,�(λ, α, β)

)
is trivial. Thus, the actions (2.2)–(2.4)

make M(
V,�(λ, α, β)

)
into a non-weight H-module. 
�

Remark 2.5. Let d ∈ {0, 1}, r ∈ Z+ and V be an irreducible H̄r,d -module.

(1) V must be infinite dimensional if dimV > 1, since any irreducible finite dimen-
sional module over the solvable Lie algebra H̄r,d is one-dimensional by Lie’s
Theorem.

(2) Consider now V = Cv is one-dimensional. Then L̄iv = Īiv = 0 for any i ∈ N,

L̄0v = σv, Ī0v = τv for some σ, τ ∈ C. In this case V is denoted by Vσ,τ and
it is clear that

M(
Vσ,τ ,�(λ, α, β)

) ∼= �(λ, α − σ, δd,0βτ) for any λ ∈ C
∗ and α, β ∈ C,

where δd,0 is the Kronecker delta.
(3) Note that if Ī j+d V = 0 for all 0 ≤ j ≤ r, then M(

V,�(λ, α, β)
)
reduces to

a module over the Virasoro algebra. So until further notice we always assume
that Ī j+d V �= 0 for some 0 ≤ j ≤ r . Choose such r ′ to be maximal such that
Īr ′+d V �= 0. Then Īr ′+d is a linear isomorphism of V by [6, Lemma 3.1] if V
is irreducible.

3. Irreducibilities

Theorem 3.1. Let (λ, α) ∈ (C∗)2 or (λ, β) ∈ (C∗)2. Suppose that Ind(M) is an
H-module defined by (2.1) for which M satisfies the conditions in Theorem 2.3.
Then the tensor product module �(λ, α, β) ⊗ Ind(M) of H-modules �(λ, α, β)

and Ind(M) is an irreducible H-module.
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Proof. For any v ∈ Ind(M), there exists K (v) ∈ Z+ such that Imv = Lmv = 0
for all m ≥ K (v) by Theorem 2.3. Suppose that P is a nonzero submodule of
�(λ, α, β) ⊗ Ind(M). Choose a nonzero

w =
n∑

i=0

t i ⊗ vi ∈ P with 0 �= vn ∈ Ind(M) and n ∈ Z+ minimal.

The case for α ∈ C
∗ was proved in [23, Theorem 1], thus we only need to consider

the case for β ∈ C
∗. 
�

Claim 1. n = 0.

Let K = max{K (vi ) | i = 0, 1, . . . , n}. Then we have

λ−m Imw =
n∑

i=0

β(t − m)i ⊗ vi ∈ P for m ≥ K .

Note that the right-hand side of the above can also be written as

n∑

i=0

miwi ∈ P

for some wi ∈ �(λ, α, β) ⊗ Ind(M) (independent of the choice of m) with wn =
β(−1)n ⊗ vn �= 0. It follows from that wn ∈ P . Thus, n must be zero by its
minimality, proving the claim.

To complete the proof, it suffices to show the following claim.

Claim 2. P = �(λ, α, β) ⊗ Ind(M).

By Claim 1, we have 1 ⊗ v0 ∈ P for some nonzero v0 ∈ Ind(M). Using

Lm(tk ⊗ v0) = (λm(t − mα)(t − m)k) ⊗ v0

= λm(t − m)k+1 ⊗ v0 − λmm(α − 1)(t − m)k ⊗ v0

for m ≥ K (v0), k ∈ Z+ and by induction on k, we deduce that tk ⊗ v0 ∈ P for
k ∈ Z+, i.e.,�(λ, α, β)⊗v0 ⊆ P . It follows that�(λ, α, β)⊗U(H)v0 ⊆ P.Thus,
P = �(λ, α, β) ⊗ Ind(M), since the nonzero H-submodule U(H)v0 of Ind(M)

generated by v0 is equal to Ind(M) by the irreducibility of Ind(M). 
�
Now we describe the following two examples of the modules in Theorem 3.1,

which will be discussed in detail in Sect. 6.

Example 3.2. (i) Let h ∈ C, d = (d0, d1, d2, d3) ∈ C
4 with d3 = 0. Let J1 be

the left ideal of U(h ⊕ H+) generated by Lm, Im, L0 − h and Ci − di for
i = 0, 1, 2, 3, m ∈ Z+. Denote M̄ := U(h⊕H+)/J1. Then V = Ind(M̄) is the
classical Vermamodule (see, e.g., [2,21]). By Theorem 2.3 (cf. [2, Theorem 1]),
we obtain that if d0+(n−1)d2 �= 0 for n ∈ Z\{0}, then V is both an irreducible
H-module and a locally nilpotent module over H+. From Theorem 3.1, we
obtain that �(λ, α, β) ⊗ V is an irreducible H-module if d0 + (n − 1)d2 �= 0
for n ∈ Z\{0} and either (λ, α) ∈ (C∗)2 or (λ, β) ∈ (C∗)2.
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(ii) Let (λ1, λ2, μ1) ∈ C
3, e = (e0, e1, e2, e3) ∈ C

4 with e3 = 0. Let J2 be the
left ideal of U(H+) generated by

{L1 − λ1, L2 − λ2, Li , I1 − μ1, I j , Ck − ek | i ≥ 3, j ≥ 2, k = 0, 1, 2, 3}.

Denote M̃ := U(H+)/J2. Then V = Ind(M̃) is the classical Whittaker module
(see, e.g., [3,12]). By Theorem 2.3 (cf. [3, Example 10]), we obtain that if
e0 + (n − 1)e2 �= 0 for all n ∈ Z\{0} and μ1 �= 0, then V is both an irreducible
H-module and a locally nilpotentmodule overH(2)

+ = spanC{Lm, Im | m > 2}.
From Theorem 3.1, we obtain that �(λ, α, β) ⊗ V is an irreducibleH-module
if e0 + (n − 1)e2 �= 0 for all n ∈ Z\{0} and either (λ, α, μ1) ∈ (C∗)3 or
(λ, β, μ1) ∈ (C∗)3.

Next we are going to characterise the reducibility of M(
V,�(λ, α, β)

)
. For

any m ∈ Z+, n ∈ Z, denote

J 0
n = 1 and J m

n =
n+m∏

j=n+1

(t − j) for m > 0.

Note that {J m
n | m ∈ Z+} forms a basis of �(λ, α, β) for any n ∈ Z. By the action

of H on �(λ, α, β), it is easy to check that

Lm J k
n = λm(t − mα)J k

m+n

and Im J k
n = λmβ J k

m+n for m, n ∈ Z, k ∈ Z+. (3.1)

Now we are ready to state the other main result of this section.

Theorem 3.3. Let λ ∈ C
∗ and V be an irreducible H̄r,d-module.

Then M(
V,�(λ, α, β)

)
is reducible if and only if V ∼= Vα,δd,0τ for some τ ∈ C

such that δd,0βτ = 0.

Proof. Consider first thatV is finite dimensional. ThenV ∼= Vσ,τ for someσ, τ ∈ C

andM(
Vσ,τ ,�(λ, α, β)

) ∼= �(λ, α −σ, δd,0βτ) by Remark 2.5(2). But we know
that �(λ, α − σ, δd,0βτ) is reducible if and only if α = σ and δd,0βτ = 0. So in
this case the statement is true.

Assume that V is infinite dimensional. To complete the proof, it suffices to show
that M(

V,�(λ, α, β)
)
is irreducible. For this, let M be a nonzero submodule of

M(
V,�(λ, α, β)

)
. Without loss of generality, we may assume that λ = 1. If

β = 0, then M(
V,�(λ, α, β)

)
reduces to a module over the Virasoro algebra,

which is irreducible by [14, Theorem 3.2].
Consider now the case β �= 0. Let r ′ be the nonnegative integer as in

Remark 2.5(3) and u = ∑p
m=0 vm ⊗ J m

0 a nonzero element in M with vp �= 0. It
follows from (2.3) and the second relation in (3.1) that

In(vm ⊗ J m
0 ) =

r ′∑

i=0

(
ni+d

(i + d)! Īi+d

)
vm ⊗ β J m

n for n ∈ Z, m ∈ Z+.
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Then one can check that

Ik In−k(vm ⊗ J m
0 )

=
r ′∑

i=0

(
ki+d

(i + d)! Īi+d

) r ′∑

i=0

(
(n − k)i+d

(i + d)! Īi+d

)
vm ⊗ β2 J m

n

for k, n ∈ Z, m ∈ Z+.

Since k is arbitrary, we can view k as a variable. Observe that the coefficient of
k2r ′+2d in Ik In−ku is

β2

((r ′ + d)!)2
p∑

m=0

Ī 2r ′+dvm ⊗ J m
n ∈ M for n ∈ Z.

Similarly, viewing n as a variable we get Ī 2r ′+dvp ⊗ 1 ∈ M . Set v = Ī 2r ′+dvp. Now

by Ln
0

(
v ⊗ 1

) = v ⊗ tn for n ∈ Z and the injectivity of Īr ′+d (see Remark 2.5(3)),
v ⊗ �(λ, α, β) is nonzero subspace of M . It follows from

M � Ln(v ⊗ J m
k−n) = v ⊗ (t − nα)J m

k +
r∑

i=0

(
ni+1

(i + 1)! L̄i

)
v ⊗ J m

k

and M � In(v ⊗ J m
k−n) =

r ′∑

i=0

(
ni+d

(i + d)! Īi+d

)
v ⊗ β J m

k

that both
∑r

i=0

( ni+1

(i+1)! L̄i
)
v⊗ J m

k and
∑r ′

i=0

( ni+d

(i+d)! Īi+d
)
v⊗ J m

k lie in M for k, m ∈
Z, n ∈ Z+. In particular, L̄iv ⊗ �(λ, α, β) ∈ M and Ī j+dv ⊗ �(λ, α, β) ∈ M
for i = 0, 1, . . . , r and j = 0, 1, . . . , r ′. Then by the irreducibility of V we have
M = M(

V,�(λ, α, β)
)
, proving the irreducibility of M(

V,�(λ, α, β)
)
. 
�

4. Isomorphism classes

Theorem 4.1. Let α1, β1 ∈ C, (λ1, λ2, α2) ∈ (C∗)3 or (λ1, λ2, β2) ∈ (C∗)3.
Suppose that Ind(M1) and Ind(M2) are H-modules for which M1 and M2 satisfy
the conditions in Theorem 2.3. Then �(λ1, α1, β1)⊗ Ind(M1) and �(λ2, α2, β2)⊗
Ind(M2) are isomorphic as H-modules if and only if (λ1, α1, β1) = (λ2, α2, β2)

and Ind(M1) ∼= Ind(M2) as H-modules.

Proof. The “if” part is trivial. Now we prove the “only if” part. Let ψ be an H-
module isomorphism from �(λ1, α1, β1) ⊗ Ind(M1) to �(λ2, α2, β2) ⊗ Ind(M2).

Choose a nonzero element 1 ⊗ v ∈ �(λ1, α1, β1) ⊗ Ind(M1). Assume

ψ(1 ⊗ v) =
n∑

i=0

t i ⊗ vi , where vi ∈ Ind(M2)with vn �= 0. (4.1)

There exists a positive integer K such that Imv = Imvi = Lmv = Lmvi = 0 for
all integers m ≥ K and 0 ≤ i ≤ n by the condition (2) of Theorem 2.3.

Now we consider the following two cases.
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Case 1. β2 ∈ C
∗.

For any m1, m2 ≥ K , it follows from (λ
−m1
1 Im1 − λ

−m2
1 Im2)(1 ⊗ v) = 0 that

0 = (
λ

−m1
1 Im1 − λ

−m2
1 Im2

)
ψ(1 ⊗ v)

= (
λ

−m1
1 Im1 − λ

−m2
1 Im2

) n∑

i=0

t i ⊗ vi

=
n∑

i=0

β2

((
λ2

λ1

)m1

(t − m1)
i ⊗ vi −

(
λ2

λ1

)m2

(t − m2)
i ⊗ vi

)
. (4.2)

In particular, we have
((

λ2

λ1

)m1

−
(

λ2

λ1

)m2
)

(tn ⊗ vn) = 0 for all m1, m2 ≥ K ,

which forces λ1 = λ2. Whence (4.2) can be rewritten as

n∑

i=0

(
(t − m1)

i ⊗ vi − (t − m2)
i ⊗ vi

)
= 0 for all m1, m2 ≥ K .

Note from the above formula that n = 0, since otherwise the coefficient (−1)n(1⊗
vn) of mn

1 would be zero, yielding a contradiction vn = 0. Thus, by (4.1) there
exists a linear isomorphism τ : Ind(M1) → Ind(M2) such that

ψ(1 ⊗ v) = 1 ⊗ τ(v) for all v ∈ Ind(M1). (4.3)

From λ1 = λ2 and ψ
(
Im(1 ⊗ v)

) = Imψ(1 ⊗ v) for all m ≥ K , it is easy to
get β1ψ(1 ⊗ v) = β2(1 ⊗ τ(v)) and therefore β1 = β2. Since ψ

(
Im(1 ⊗ v)

) =
Imψ(1 ⊗ v) for all m ∈ Z, we have ψ

(
1 ⊗ (Imv)

) = 1 ⊗ (
Imτ(v)

)
. Clearly,

τ(Imv) = Imτ(v) for all m ∈ Z, v ∈ Ind(M1). (4.4)

For any m1, m2 ≥ K and m1 �= m2, we can deduce from

ψ
(
(λ

−m1
1 Lm1 − λ

−m2
1 Lm2)(1 ⊗ v)

) = (λ
−m1
1 Lm1 − λ

−m2
1 Lm2)ψ(1 ⊗ v)

that (m2 − m1)α1ψ(1 ⊗ v) = (m2 − m1)α2(1 ⊗ τ(v)), which implies α1 = α2.
Using ψ

(
Lm(1 ⊗ v)

) = Lmψ(1 ⊗ v) for all m ≥ K , we can conclude that
ψ(t ⊗v) = t ⊗τ(v) for v ∈ Ind(M1). Combining this with (2.3) gives immediately
ψ

(
(Lm1) ⊗ v

) = (Lm1) ⊗ τ(v) for all m ∈ Z and v ∈ Ind(M1). Now it follows
from ψ

(
Lm(1 ⊗ v)

) = Lmψ(1 ⊗ v) that ψ
(
1 ⊗ (Lmv)

) = 1 ⊗ (
Lmτ(v)

)
, which

and (4.3) force

τ(Lmv) = Lmτ(v) for all m ∈ Z, v ∈ Ind(M1). (4.5)

It is clear that ψ
(
Ci (1 ⊗ v)

) = Ciψ(1 ⊗ v), which implies τ(Civ) = Ciτ(v) for
i = 1, 2, 3, v ∈ Ind(M1). These together with (4.4) and (4.5) show that τ is an
H-module isomorphism if β2 ∈ C

∗.
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Case 2. α2 ∈ C
∗.

By the similar arguments as in the proof of [23, Theorem 2], we obtain that
λ1 = λ2, α1 = α2 and there exists a linear bijection τ : Ind(M1) → Ind(M2) such
that ψ(1 ⊗ v) = 1 ⊗ τ(v) for all v ∈ Ind(M1). Meanwhile we get that τ(Lmv) =
Lmτ(v) for all m ∈ Z, v ∈ Ind(M1). Since ψ

(
Im(1 ⊗ v)

) = Imψ(1 ⊗ v) for all
m ≥ K , it is easy to see that β1 = β2. Then from ψ

(
Im(1⊗ v)

) = Imψ(1⊗ v) and
ψ

(
Ci (1⊗ v)

) = Ciψ(1⊗ v) we see that τ(Imv) = Imτ(v) and τ(Civ) = Ciτ(v)

for i = 1, 2, 3, m ∈ Z, respectively. Thus, Ind(M1) ∼= Ind(M2) as H-modules for
α2 ∈ C

∗.
To sum up, in either case we obtain (λ1, α1, β1) = (λ2, α2, β2) and Ind(M1) ∼=

Ind(M2) asH-modules. 
�
The rest of this section is to establish isomorphisms among the modules

M(V,�(λ, α, β)). We need to make some preparations first, for this case is more
complicated than the former one.

Definition 4.2. Let d ∈ {0, 1}, r ∈ Z+, α ∈ C and V, W be two H̄r,d -modules.
Denote by V α the H̄r,d -module obtained from V by modifying the L̄0-action as
L̄0 − αidV . A linear isomorphism ψ : V → W is called an α-isomorphism if
ψ(L̄iv) = L̄iψ(v) and ψ( Īi+dv) = α Īi+dψ(v) for any v ∈ V and i ∈ Z.

It follows from the similar proof of [6, Theorem 4.1] that we have the following
result.

Theorem 4.3. Let di ∈ {0, 1}, ri ∈ Z+, λi , αi , 0 �= βi ∈ C and Vi be
an irreducible H̄ri ,di -module for i = 1, 2. Then M(

V1, A(λ1, α1, β1)
)

and
M(

V2, A(λ2, α2, β2)
)

are isomorphic as H-modules if and only if λ1 − λ2 ∈
Z, d1 = d2 and V α1

1
∼= V α2

2 are β−1
1 β2-isomorphic as H̄max{r1,r2},d1 -modules.

Next we are going to make use of the functor W introduced in Sect. 2.2 to
derive some useful results.

Lemma 4.4. As H-modules, W(
�(λ, α, β)

) ∼= A(0, 1 − α, β).

Proof. By the definition of In , dim
(
�(λ, α, β)/In�(λ, α, β)

) = 1 for any n ∈ Z.
Take wn = 1 + In(�(λ, α, β)) ∈ �(λ, α, β)/In(�(λ, α, β)). Then

Lmwn = λm(t − mα) + Im+n(�(λ, α, β)) = λm(n + m(1 − α))wm+n,

and Imwn = λmβ + Im+n(�(λ, α, β)) = λmβwm+n for any m, n ∈ Z.

That is, Lmvn = (n + m(1 − α))vm+n and Imwn = βvm+n , where vn = λnwn .
This completes the proof of this lemma. 
�

Let d ∈ {0, 1}, r ∈ Z+ and V be an H̄r,d -module. Define the action of H on
V ⊗ A(λ, α, β) as follows

Lm
(
u ⊗ vn

) =
(

n + λ + αm +
r∑

i=0

(
mi+1

(i + 1)! L̄i

))
u ⊗ vm+n,
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Im
(
u ⊗ vn

) =
r∑

i=0

(
βmi+d

(i + d)! Īi+d

)
u ⊗ vm+n,

C1
(
u ⊗ vn

) = C2
(
u ⊗ vn

) = C3
(
u ⊗ vn

) = 0,

where m, n ∈ Z and u ∈ V . Then one can check that under the given actions
as above, M(

V, A(λ, α, β)
)
becomes a weight H-module, which is denoted by

M(
V, A(λ, α, β)

)
.

Proposition 4.5. We have the following isomorphism of H-modules

W
(
M(V,�(λ, α, β))

)
∼= M(

V, A(0, 1 − α, β)
)
.

Proof. Using (2.2), we have

In

(
M(V,�(λ, α, β))

)
= In

(
V ⊗ �(λ, α, β)

)

= V ⊗ In(�(λ, α, β)) for n ∈ Z.

Then it follows from this and Lemma 4.4 that

W
(
M(V,�(λ, α, β))

)
=

⊕

n∈Z
M(V,�(λ, α, β))n

=
⊕

n∈Z

(
M(V,�(λ, α, β))/In

(M(V,�(λ, α, β))
))

=
⊕

n∈Z

(
V ⊗ �(λ, α, β)/V ⊗ In

(
�(λ, α, β)

))
(by (2.2))

∼= V ⊗
⊕

n∈Z

(
�(λ, α, β)/In

(
�(λ, α, β)

)) = V ⊗ W(
�(λ, α, β)

)

∼= V ⊗ A(0, 1 − α, β) = M(
V, A(0, 1 − α, β)

)
.


�
SinceW is a functor, anH-module isomorphismbetweenM(

V1,�(λ1, α1, β1)
)

andM(
V2,�(λ2, α2, β2)

)
would induce an isomorphismbetweenM(

V1, A(0, 1−
α1, β1)

)
and M(

V2, A(0, 1 − α1, β2)
)
by Proposition 4.5. Then it follows from

Theorem 4.3 that d1 = d2 and that V α1
1

∼= V α2
2 are β−1

1 β2-isomorphic as
H̄max{r1,r2},d1 -modules. So it is reasonable to include these into sufficient condi-
tions for M(

V1,�(λ1, α1, β1)
)
and M(

V2,�(λ2, α2, β2)
)
being isomorphic. In

fact, one more condition λ1 = λ2 will be enough, as stated in the following result.

Theorem 4.6. Let di ∈ {0, 1}, ri ∈ Z+, λi , βi ∈ C
∗, αi ∈ C and Vi be an irre-

ducible H̄ri ,di -module such that M(
Vi ,�(λi , αi , βi )

)
is irreducible for i = 1, 2.

Then

M(
V1,�(λ1, α1, β1)

) ∼= M(
V2,�(λ2, α2, β2)

)
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as H-modules if and only if d1 = d2, λ1 = λ2 and V α1
1

∼= V α2
2 are β−1

1 β2-
isomorphic as H̄max{r1,r2},d1 -modules.

Proof. Let

φ : M(
V1,�(λ1, α1, β1)

) → M(
V2,�(λ2, α2, β2)

)

be an isomorphism of H-modules. By the remark before this theorem we know
that d1 = d2 and that the linear map ϕ : V α1

1 → V α2
2 induced from φ is a β−1

1 β2-
isomorphism of H̄max{r1,r2},d1 -modules. It remains to show λ1 = λ2.

Take any 0 �= w ∈ V1 and assume that φ(w ⊗ 1) = ∑
i ui ⊗ t i ∈

M(
V2,�(λ2, α2, β2)

)
. Note on the one hand that φ induces an H-module iso-

morphism

φA : M(
V1, A(0, 1 − α1, β1)

) → M(
V2, A(0, 1 − α2, β2)

)

sending w ⊗ vn to
∑

i (
λ1
λ2

)nni ui ⊗ vn for any n ∈ Z by Lemma 4.4 and Proposi-
tion 4.5, and on the other hand that φA(w⊗vn) = ϕ(w)⊗vn for any n ∈ Z (see [6,
Theorem 4.1]). Thus, ϕ(w) = ∑

i (
λ1
λ2

)nni ui , which implies λ1 = λ2 and ui = 0 if
i �= 0.

Conversely, let ϕ : V α1
1 → V α2

2 be a β−1
1 β2-isomorphism of H̄max{r1,r2},d1 -

modules. One can check the linear map φ : M(
V1,�(λ, α1, β1)

) →
M(

V2,�(λ, α2, β2)
)
sending v ⊗ f (t) to ϕ(v) ⊗ f (t) is an isomorphism of H-

modules. 
�

5. New irreducible modules

In this section, we shall show that any one of �(λ, α, β) ⊗ Ind(M) and
M(

V,�(λ, α, β)
)
is not isomorphic to Ind(M) or the irreducible non-weight

H-modules defined in [6] and that �(λ, α, β) ⊗ Ind(M) is not isomorphic to
M(

V,�(λ′, α′, β ′)
)
.

For any l, m ∈ Z, s ∈ Z+, define a sequence of operators T (s)
l,m as follows

T (s)
l,m =

s∑

i=0

(−1)s−i
(

s

i

)
Il−m−i Im+i .

Lemma 5.1. Letλ ∈ C
∗, α, β ∈ C and V an irreducible H̄r,d -module. Suppose that

M is an irreducible He-module satisfying the conditions in Theorem 2.3. Assume
that r ′ is the maximal nonnegative integer such that Īr ′+d V �= 0. Then

(i) the action of Lm for m sufficiently large is not locally nilpotent on �(λ, α, β)⊗
Ind(M);

(ii) the action of Lm for each m ∈ Z on M(
V,�(λ, α, β)

)
is not locally nilpotent;

(iii) T (2r ′+2d)
l,m is a linear automorphism of M(

V,�(λ, α, β)
)

and M̃(V, γ (t)) for

l, m ∈ Z and γ (t) ∈ C[t, t−1];



278 H. Chen et al.

(iv) T (s)
l,m (s ≥ 1) is locally nilpotent on �(λ, α, β)⊗ Ind(M) whenever m � 0 and

l � m;
(v) T (1)

l,m acts nontrivially on �(λ, α, β) ⊗ Ind(M) whenever m � 0 and l � m.

Proof. (i) follows from the local nilpotency of Lm on Ind(M) by Theorem 2.3 for
m sufficiently large and its non-local nilpotency on�(λ, α, β). (ii) and (iii) follows
from [6, Lemma 3.3]. (iv) follows from an easy observation that

T (s)
l,m�(λ, α, β) = 0 for l, m ∈ Z

and T (s)
l,m is locally nilpotent on Ind(M) when m � 0 and l � m. Note when

m � 0 and l � m that Il−m /∈ He and Im /∈ He. It follows from this and a direct
computation that for 0 �= 1 ⊗ 1 ⊗ v ∈ �(λ, α, β) ⊗ Ind(M) we have

T (1)
l,m (1 ⊗ 1 ⊗ v) = 1 ⊗ ( − λmβ Il−m − λl−mβ Im − Il−m Im

+λm+1β Il−m−1 + λl−m−1β Im+1 + Il−m−1 Im+1
) ⊗ v �= 0.

So T (1)
l,m

(
�(λ, α, β) ⊗ Ind(M)

) �= 0, proving (v). 
�

Let d ∈ {0, 1}, r ∈ Z+ and V be an H̄r,d -module. For any fixed γ (t) =∑
i ci t i ∈ C[t, t−1], define the action of H on V ⊗ C[t, t−1] as follows

Lm(v ⊗ tn) =
(

Lm +
∑

i

ci Im+i

)

(v ⊗ tn),

Im(v ⊗ tn) = Im(v ⊗ tn),

Ci (v ⊗ tn) = 0 for m, n ∈ Z, v ∈ V and i = 1, 2, 3.

Then V ⊗ C[t, t−1] carries the structure of an H-module under the above given
actions, which is denoted by M̃(V, γ (t)). Note that M̃(V, γ (t)) is a weight H-
module if and only if γ (t) ∈ C and also that theH-module M̃(V, γ (t)) for γ (t) ∈
C[t, t−1] is irreducible if and only if V is irreducible (see [6]).

We are now ready to state the main result of this section.

Proposition 5.2. Let d ∈ {0, 1}, r, e ∈ Z+, λ ∈ C
∗, α, β ∈ C and V an irreducible

H̄r,d -module. Suppose that M is an irreducibleHe-module satisfying the conditions
in Theorem 2.3. Then any of �(λ, α, β) ⊗ Ind(M) and M(

V,�(λ, α, β)
)

is not
isomorphic to Ind(M ′) for any irreducible He-module M ′ satisfying the conditions
in Theorem 2.3 or �(λ′, α′, β ′) for any λ′ ∈ C

∗, α′, β ′ ∈ C, or M̃(W, γ (t)) for
any H̄r ′,d ′ -module W and γ (t) = ∑

i ci t i ∈ C[t, t−1]; and �(λ, α, β) ⊗ Ind(M)

is not isomorphic to M(
W,�(λ′, α′, β ′)

)
for any H̄r ′,d ′ -module W and λ′ ∈

C
∗, α′, β ′ ∈ C.

Proof. �(λ, α, β) ⊗ Ind(M) � Ind(M ′) follows from Lemma 5.1(i) and Theo-
rem 2.3; M(

V, �(λ, α, β)
)

� Ind(M ′) follows from Lemma 5.1(ii) and Theo-
rem2.3;�(λ, α, β)⊗Ind(M) � M(

W,�(λ′, α′, β ′)
)
and�(λ, α, β)⊗Ind(M) �

M̃(W, γ (t)) follows from Lemma 5.1(iii) and (iv); �(λ, α, β) ⊗ Ind(M) �
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�(λ′, α′, β ′) follows from Lemma 5.1(v) and the fact T (1)
l,m �(λ, α, β) = 0 for

l, m ∈ Z. Finally, on the one hand, note that the restriction of L0 − ∑
i ci Ii on

W ⊗ tn is the scalar n, namely, L0 − ∑
i ci Ii is semisimple on M̃(W, γ (t));

on the other hand, L0 − ∑
i ci Ii has no eigenvector in M(

V,�(λ, α, β)
)
. Thus,

M(
V,�(λ, α, β)

)
� M̃(

W, γ (t)
)
. 
�

6. Applications

Inspired by [17,23], we first construct two classes of non-weight modules and then
apply Theorem 3.1 to give certain conditions for these modules being irreducible.

For λ ∈ C
∗, we denote H(0)

λ = spanC{Lm − λm L0, I0, Im | m ≥ 1} and

H(1)
λ = spanC{Lm − λm−1L1, In | m ≥ 2, n ≥ 1}. It is easy to check that both

H(0)
λ and H(1)

λ are Lie subalgebras of H. For fixed RS = (r1, r2, s0, s1) ∈ C
4 and

P Q = (p2, p3, p4, q1, q2) ∈ C
5, we define anH(0)

λ -action on C by

(Lm − λm L0)1 = rm for m = 1, 2;
(Lm − λm L0)1 = λm−2(m − 1)r2 − λm−1(m − 2)r1 for m > 2;

Im1 = sm for m = 0, 1;
Im1 = λm−1s1 for m > 1,

(6.1)

and an H(1)
λ -action on C by

(Lm − λm−1L1)1 = pm for m = 2, 3, 4;
(Lm − λm−1L1)1 = λm−4(m − 3)p4 − λm−3(m − 4)p3 for m > 4;

Im1 = qm for m = 1, 2;
Im1 = λm−2q2 for m > 2.

(6.2)

It is straightforward to verify that under the given actions C is an H(0)
λ -module

and also an H(1)
λ -module, denoted by CRS and CP Q , respectively. For a fixed

y = (y1, y2, y3) ∈ C
3 and z = (z0, z1, z2, z3) ∈ C

4, form modules Indy,λ(CRS)

and Indz,λ(CP Q) as follows:

Indy,λ(CRS) = U(H) ⊗U(H(0)
λ )

CRS

/ 3∑

i=1

(Ci − yi )U(H) ⊗U(H(0)
λ )

CRS,(6.3)

Indz,λ(CP Q) = U(H) ⊗U(H(1)
λ )

CP Q

/ 3∑

i=0

(Ci − zi )U(H) ⊗U(H(1)
λ )

CP Q .(6.4)

The following lemma is the key to proving the main results of this section,
which generalizes [23, Lemma 6].
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Lemma 6.1. Suppose that V is a cyclic H-module with a basis
{

I ki−m
i−m · · · I ki

i L
l j−n
j−n · · · L

l j
j v | m, n, ki , . . . , ki−m, l j , . . . , l j−n ∈ Z+

}
,

where 0 �= v ∈ V is a fixed vector, i, j are fixed integers and Ipv ∈ Cv, Lqv ∈ Cv

for all integers p > i, q > j . Then for (λ, α) ∈ (C∗)2 or (λ, β) ∈ (C∗)2,
�(λ, α, β) ⊗ V is a cyclic H-module with a generator 1 ⊗ v and a basis

B =
{

I ki−m
i−m · · · I ki

i L
l j−n
j−n · · · L

l j
j L

l j+1
j+1(1 ⊗ v) |

m, n, ki , . . . , ki−m, l j+1, l j , . . . , l j−n ∈ Z+
}
.

Proof. Observe from (2.1) that �(λ, α, β) ⊗ V has a basis

B′ =
{

t l j+1 ⊗ I ki−m
i−m · · · I ki

i L
l j−n
j−n · · · L

l j
j v |

m, n, ki , . . . , ki−m, l j+1, l j , . . . , l j−n ∈ Z+
}
.

Now we define the following partial order “≺” on B′ by decreeing

t l j+1 ⊗ I
ki−m1
i−m1

· · · I ki
i L

l j−n1
j−n1

· · · L
l j
j v ≺ tq j+1 ⊗ I

pi−m2
i−m2

· · · I pi
i L

q j−n2
j−n2

· · · L
q j
j v

if and only if
⎛

⎝l j , . . . , l j−n1, ki , . . . , ki−m1 , 0, . . . , 0︸ ︷︷ ︸
m2+n2

, l j+1

⎞

⎠

<

⎛

⎝q j , . . . , q j−n2 , pi , . . . , pi−m2 , 0, . . . , 0︸ ︷︷ ︸
m1+n1

, q j+1

⎞

⎠ .

Here the order “<” is the lexicographical order, which is defined

(a1, . . . , a) < (b1, . . . , b) ⇐⇒ ∃k > 0 such that ai = bi for all i < k

and ak < bk .

Note that each element of B can be written as a linear combination of elements in
B′:

I ki−m
i−m · · · I ki

i L
l j−n
j−n · · · L

l j
j L

l j+1
j+1(1 ⊗ v)

= λ( j+1)l j+1 t l j+1 ⊗ I ki−m
i−m · · · I ki

i L
l j−n
j−n · · · L

l j
j v + lower terms (w.r.t ≺).

This shows that the transition matrix from B′ to B is upper triangular with diagonal
entries nonzero. Thus, B is a basis of �(λ, α, β) ⊗ V and the lemma follows. 
�

Now we are ready to give some conditions under which Indy,λ(CRS) is irre-
ducible.

Theorem 6.2. Let λ ∈ C
∗, y = (y1, y2, y3) ∈ C

3, RS = (r1, r2, s0, s1) ∈ C
4

with y3 = 0. Then
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(i) Indy,λ(CRS) ∼= �(λ, α, β) ⊗ V, where V is the classical Verma module
described in Example 3.2 (i) and α, β, h, di for i = 0, 1, 2, 3 are defined as

α = λ−2(λr1 − r2), β = λ−1s1, h = λ−2(r2 − 2λr1),

d0 = s0 − λ−1s1, d3 = y3 = 0, di = yi for i = 1, 2.
(6.5)

(ii) Indy,λ(CRS) is irreducible if s0 − λ−1s1 + (n − 1)y2 �= 0 for all n ∈
Z\{0}, and either r2 �= λr1 or s1 �= 0.

Proof. (i) Let α, β, h, di ∈ C for i = 0, 1, 2, 3 as in (6.5). Then

r1 = −λ(α + h), r2 = −λ2(2α + h), s1 = λβ,

s0 = d0 + β, y3 = d3 = 0, yi = di for i = 1, 2.

Denote v = 1+ J1 ∈ V . By Lemma 6.1 and the structure of V , �(λ, α, β) ⊗ V is
a cyclic module with a generator 1 ⊗ v and has a basis

B1 = {I l−n−n · · · I l−1
−1 Lk−m−m · · · Lk−1

−1 Lk0
0 (1 ⊗ v) |

m, n, k−m, . . . , k−1, k0, l−n, . . . , l−1 ∈ Z+}.
By Theorem 3.1 and the fact that d3 = 0, �(λ, α, β) ⊗ V is irreducible if d0 +
(n − 1)d2 �= 0 for all n ∈ Z\{0} and either α ∈ C

∗ or β ∈ C
∗.

In �(λ, α, β) ⊗ V, we have that

(Lm − λm L0)(1 ⊗ v) = −λm(mα + h)(1 ⊗ v) = rm(1 ⊗ v) for m = 1, 2;
(Lm − λm L0)(1 ⊗ v) = −λm(mα + h)(1 ⊗ v)

= (
λm−2(m − 1)r2 − λm−1(m − 2)r1

)
(1 ⊗ v) for m > 2;

Im(1 ⊗ v) = (λmβ + δm,0d0)(1 ⊗ v) = sm(1 ⊗ v) for m = 0, 1;
Im(1 ⊗ v) = λmβ(1 ⊗ v) = λm−1s1(1 ⊗ v) for m > 1

and that Ci (1 ⊗ v) = di (1 ⊗ v) = yi (1 ⊗ v) for i = 1, 2, 3. It follows from these
and (6.1) that there exists an H-module epimorphism

τ : Indy,λ(CRS) → �(λ, α, β) ⊗ V,

which is uniquely determined by τ(1̄) = 1 ⊗ v, where

1̄ := 1 ⊗ 1 +
3∑

i=1

(Ci − yi )U(H) ⊗U(H(0)
λ )

CRS ∈ Indy,λ(CRS).

Clearly, Indy,λ(CRS) has a basis

B2 =
{

I l−n−n · · · I l−1
−1 Lk−m−m · · · Lk−1

−1 Lk0
0 1̄ |

m, n, k−m, . . . , k−1, k0, l−n, . . . , l−1 ∈ Z+} .

Since τ |B2 : B2 → B1 is a bijection, τ : Indy,λ(CRS) → �(λ, α, β) ⊗ V is an
isomorphism.
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(ii) By (i) and Theorem 3.1, Indy,λ(CRS) is irreducible if and only if
�(λ, α, β) ⊗ V is irreducible. But �(λ, α, β) ⊗ V is irreducible if d0 + (n −
1)d2 �= 0 for all n ∈ Z\{0} and either α �= 0 or β �= 0 by noting d3 = 0,
as pointed out in Examples 3.2(i). Thus by (6.5), Indy,λ(CRS) is irreducible if

s0 − λ−1s1 + (n − 1)y2 �= 0 for all n ∈ Z\{0} and either r2 �= λr1 or s1 �= 0. 
�
While the irreducible conditions for Indz,λ(CP Q) can be given as follows.

Theorem 6.3. Letλ ∈ C
∗, z = (z0, z1, z2, z3) ∈ C

4, P Q = (p2, p3, p4, q1, q2) ∈
C
5 with z3 = 0. Then

(i) Indz,λ(CP Q) ∼= �(λ, α, β) ⊗ V, where V is the classical Whittaker module
described in Example 3.2 (ii) and α, β, λ1, λ2, μ1, ei for i = 0, 1, 2, 3 are
defined as

α = λ−4(λp3 − p4), β = λ−2q2, λ1 = λ−3(2p4 − 3λp3),

λ2 = λ−2(p4 − 2λp3 + λ2 p2), μ1 = q1 − λ−1q2,

e3 = z3 = 0, e0 = z0 − λ−2q2, ei = zi for i = 1, 2;
(6.6)

(ii) Indz,λ(CP Q) is irreducible if z0 + (n − 1)z2 �= 0 for all n ∈ Z\{0}, λq1 �=
q2 and either p4 �= λp3 or q2 �= 0.

Proof. (i) Let α, β, λ1, λ2, μ1 ∈ C be as in (6.6). Then we have

p2 = λ2 − λλ1 − λ2α, p3 = −λ2(λ1 + 2λα), p4 = −λ3(λ1 + 3λα),

q1 = μ1 + λβ, q2 = λ2β, z3 = e3 = 0, z0 = e0 + β, zi = ei for i = 1, 2.

Denote v = 1 + J2 ∈ V . Clearly, H+v ∈ Cv. Since V has a basis

{I l−n−n · · · I l−1
−1 Lk−m−m · · · Lk−1

−1 Lk0
0 v | m, n, k−m, . . . , k0, l−n, . . . , l−1 ∈ Z+},

using Lemma 6.1, we see that �(λ, α, β) ⊗ V is cyclic with a generator 1⊗ v and
has a basis

B1 = {I l−n−n · · · I l−1
−1 Lk−m−m · · · Lk0

0 Lk1
1 (1 ⊗ v) |

m, n, k−m, . . . , k0, k1, l−n, . . . , l−1 ∈ Z+}.
By Theorem 3.1 and the fact that e3 = 0,�(λ, α, β)⊗ V is irreducible if e0 + (n −
1)e2 �= 0 for all n ∈ Z\{0}, μ1 �= 0 and either α ∈ C

∗ or β ∈ C
∗.

In W, we have that

(Lm − λm−1L1)(1 ⊗ v) = (
λm(1 − m)α − λm−1λ1 + δ2−m,0λ2

)
(1 ⊗ v)

= pm(1 ⊗ v) for m = 2, 3, 4;
(Lm − λm−1L1)(1 ⊗ v) = (

λm(1 − m)α − λm−1λ1
)
(1 ⊗ v)

= (
λm−4(m − 3)p4 − λm−3(m − 4)p3

)
(1 ⊗ v)

for m > 4;
Im(1 ⊗ v) = (λmβ + δ1−m,0μ1)(1 ⊗ v) = qm(1 ⊗ v)

for m = 1, 2;
Im(1 ⊗ v) = λmβ(1 ⊗ v) = λm−2q2(1 ⊗ v) for m > 2;
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and that Ci (1⊗ v) = (ei + δi,0β)(1⊗ v) = zi (1⊗ v) for i = 0, 1, 2, 3. It follows
from these and (6.2) that there exists an H-module epimorphism

τ : Indz,λ(CP Q) → �(λ, α, β) ⊗ V,

which uniquely determined by τ(1̄) = 1 ⊗ v, where

1̄ := 1 ⊗ 1 +
3∑

i=0

(Ci − zi )U(H) ⊗U(H(1)
λ )

CP Q ∈ Indz,λ(CP Q).

It is clear that Indz,λ(CP Q) has a basis

B2 = {I l−n−n · · · I l−1
−1 Lk−m−m · · · Lk0

0 Lk1
1 1̄ | m, n, k−m, . . . , k0, k1, l−n, . . . , l−1 ∈ Z+}.

Since τ |B2 : B2 → B1 is a bijection, τ : Indz,λ(CP Q) → �(λ, α, β) ⊗ V is an
isomorphism.

(ii) By (i) and Theorem 3.1, Indz,λ(CP Q) is irreducible if and only if
�(λ, α, β)⊗V is irreducible. But�(λ, α, β)⊗V is irreducible if e0+(n−1)e2 �=
0 for all n ∈ Z\{0}, μ1 �= 0 and either α �= 0 or β �= 0 by noting e3 = 0,
as pointed out in Example 3.2(ii), Thus by (6.6), Indz,λ(CP Q) is irreducible if
z0 + (n − 1)z2 �= 0 for all n ∈ Z\{0}, λq1 �= q2 and either p4 �= λp3 or q2 �= 0. 
�
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