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Abstract. A co-Higgs sheaf on a smooth complex projective variety X is a pair of a torsion-
free coherent sheaf E and a global section of End(E) ⊗ TX with TX the tangent bundle.
We construct 2-nilpotent co-Higgs sheaves of rank two for some rational surfaces and of
rank three for P

3, using the Hartshorne-Serre correspondence. Then we investigate the non-
existence, especially over projective spaces.

1. Introduction

Let X be a smooth projective varietywith tangent bundle TX . A co-Higgs bundle, i.e.
a pair of an holomorphic bundle E and a morphism� : E → E ⊗TX with�∧� =
0 called the co-Higgs field, is a generalized holomorphic bundle over a smooth
complex projective variety X , considered as a generalized complex manifold [11,
14]. It is observed that the existence of a stable co-Higgs bundle gives a constraint
on the position of X in the Kodaira spectrum. Indeed, there are no stable co-Higgs
bundles with non-zero co-Higgs field on curves of genus at least two, K3 surfaces
and surfaces of general type [20,21]. With the same philosophy, M. Corrêa has
shown in [8] that the existence of stable co-Higgs bundle of rank two with a non-
trivial nilpotent co-Higgsfield, forces the base surface to beuniruledup tofinite étale
cover. In [1] we investigate the surfaces with H0(TX ) = H0(S2TX ) = 0, which
implies that co-Higgs fields are automatically nilpotent. The natural definition of
stable co-Higgs bundles allows one to study theirmoduli and there have been several
recent works on the description of the moduli spaces over projective spaces and a
smooth quadric surface; see [6,19,21].

In this article our main concern is the existence and non-existence of a co-
Higgs sheaf with a nilpotent co-Higgs field. The Hartshorne-Serre correspondence
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states that the construction of vector bundles of rank at least two is closely related
with the structure of two-codimensional locally complete intersection subschemes.
Using the correspondence we produce a nilpotent co-Higgs structure on bundles
satisfying a certain condition over various varieties; see Condition 2.2. Assuming
Pic(X) = Z〈OX (1)〉 for a very ample line bundle OX (1), we define xE for a
reflexive sheaf E of rank two to be themaximal integer x such that H0(E(−x)) �= 0,
to measure its instability. Then we observe that any nilpotent map associated to E
is trivial if xE is low. In case X = P

n and rank two, we get the following:

Theorem 1.1. The set of nilpotent co-Higgs fields on a fixed stable reflexive sheaf
E of rank two on P

n is identified with the total space of OPn (−1)⊕h0(E(1)), with
the zero section blown down to a point corresponding to the trivial field, only if
c1(E) + 2xE = −3. In the other cases the set is trivial.

All co-Higgs structures on TP2(t) are described in [19, Case r = 2 of 5.5] and [21,
Theorem 5.9]. In case X = P

3 we show the existence of some nilpotent co-Higgs
structures on some rank three semistable bundles with trivial first Chern class.

Theorem 1.2. For each positive integer c2, there exist both strictly semistable inde-
composable bundle and stable bundle of rank three on P

3 with trivial first Chern
class, on which there are nilpotent co-Higgs structures � with ker(�) = O⊕2

P3
.

Wehave examples of rank two semistable co-Higgs bundles of several Chern classes
on some rational surfaces and the three-dimensional projective space with respect
to various polarizations in Sect. 2. In Example 2.11 we show the existence of
semistable co-Higgs bundles of rank two with nilpotent co-Higgs fields over the
variety with no global tangent vector fields. In Example 2.13 we produce nilpotent
co-Higgs structures over a smooth quadric surface and in particular we derive the
existence part of [6, Theorem in page 2].

Thenwe turn our attention to the non-existence of nilpotent co-Higgs structures.
As observed in Lemma 3.5, the existence of non-semistable reflexive sheaf of
rank two with semistable co-Higgs structures forces X to be a projective space.
From Proposition 3.7 any reflexive sheaf of rank two with high stability and extra
condition involving new invariant yE turns out to have no non-trivial trace-free
co-Higgs structures. So we are driven to focus on projective spaces, especially P

2

and P
3. Using Theorem 1.2 we show the existence of both of strictly semistable

indecomposable reflexive sheaf and stable reflexive sheaf of rank twowith nilpotent
co-Higgs structures for each Chern numbers from the Bogomolov inequality; see
Corollaries 3.12 and 3.13. On the other hand, this existence are not expected to
hold for vector bundles due to the following:

Proposition 1.3. If E is a non-splitting and strictly semistable bundle of rank two on
P
3 with the Chern numbers (c1, c2) with a non-trivial nilpotent co-Higgs structure,

then we have 4c2 − c21 > 32.

We also get similar result for stable vector bundles of rank two with the condition
4c2 − c21 > 28; see Proposition 3.15. In case of P

2 a general stable rank two
bundle has no non-zero trace zero co-Higgs structures, except for very few integers
c21 − 4c2. Indeed, we prove the following result.



2-nilpotent co-Higgs structures 41

Theorem 1.4. If E is a general element in the moduli of stable sheaves of rank
two on P

2 with c1(E) ∈ {−1, 0}, equipped with a non-trivial trace-free co-Higgs
structure, then we have c2(E) < 5(c1(E) + 5).

Then we suggest a condition to insure the non-existence of non-trivial trace-
free co-Higgs structure on a reflexive sheaf of rank two on non-projective spaces
in Proposition 4.2, using another newly introduced invariant zE .

Let us summarize here the structure of this article. In Sect. 2 we introduce
the definition of semistable co-Higgs sheaves and suggest a condition to construct
a nilpotent co-Higgs structure, using the Hartshorne-Serre correspondence. Then
we play this construction over several rational surfaces and three-dimensional pro-
jective space. In Sect. 3, we introduce two invariants xE and yE associated to a
rank two reflexive sheaf, with which we collect the criterion for the existence and
non-existence of non-trivial nilpotent co-Higgs structures. We finish the article in
Sect. 4 by dealing with a criterion of non-existence over non-projective spaces.

2. Definitions and examples

Throughout the article our base field is the field C of complex numbers. We will
always assume that X is a smooth projective variety of dimension n with tangent
bundle TX . For a fixed ample line bundle OX (1) and a coherent sheaf E on X ,
we denote E ⊗ OX (t) by E(t) for t ∈ Z. The dimension of cohomology group
Hi (X, E) is denoted by hi (X, E) and we will skip X in the notation, if there is no
confusion.

Definition 2.1. A co-Higgs sheaf on X is a pair (E,�) where E is a torsion-free
coherent sheaf on X and � ∈ H0(End(E) ⊗ TX ) for which � ∧ � = 0 as an
element of H0(End(E)⊗∧2TX ). Here � is called the co-Higgs field of (E,�) and
the condition � ∧ � = 0 is an integrability condition originating in the work of
Simpson [22].

Let E be a torsion-free sheaf on X and � : E → E ⊗ TX be a map of OX -
sheaves. We say that � is 2-nilpotent if � is non-trivial and � ◦ � = 0. Note that
any 2-nilpotent map � : E → E ⊗ TX satisfies � ∧ � = 0 and so it is a non-zero
co-Higgs structure on E , i.e. a nilpotent co-Higgs structure.
Condition 2.2. For a fixed integer r ≥ 2, a two-codimensional locally complete
intersection Z ⊂ X and A ∈ Pic(X), we consider the following two conditions:

(i) H0(TX ⊗ A∨) �= 0;
(ii) the general sheaf fitting into the following exact sequence is locally free,

0 −→ O⊕(r−1)
X

u
−→ E

v

−→ IZ ⊗ A −→ 0. (1)

Our main object of interest is the middle term E in (1) with the additional property
that it is reflexive. If X is a smooth surface, then reflexivity is equivalent to local-
freeness and in the Examples 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13 we produce vector
bundles. If n is at least 3, there are many reflexive, but non-locally free sheaves of
rank two. In Example 2.14 we produce such sheaves.



42 E. Ballico, S. Huh

Remark 2.3. By [23] any smooth projective variety X of dimension n satisfying
H0(TX (−1)) �= 0 is isomorphic to P

n . So Condition 2.2(i) with A ∼= OX (1)
implies that X = P

n . Note that we always have H0(TX (−2)) = 0, except when
X = P

1.

Definition 2.4. For a fixed ample line bundle H on X , a co-Higgs sheaf (E,�) is
H-semistable (resp.H-stable) if

det(F) · Hn−1

rankF ≤ (resp. <)
det(E) · Hn−1

rank E
for every coherent subsheaf 0 � F � E with�(F) ⊂ F⊗TX . In caseH ∼= OX (1)
we will simply call it semistable (resp. stable) without specifying H.

Remark 2.5. Take any torsion-free sheaf E fitting into (1) with Z = ∅ and A
any numerically trivial line bundle. Then E is H-semistable with respect to any
polarization H. By Lemma 2.6, E has a nonzero 2-nilpotent co-Higgs field.

Lemma 2.6. Fix a torsion-free sheaf E fitting into (1) and assume Condition 2.2(i).
Then there exists a 2-nilpotent co-Higgs structure on E with ker(�) ∼= O⊕(r−1)

X .

Proof. Any non-zero section σ ∈ H0(TX ⊗ A∨) induces a non-zero map h :
IZ ⊗ A → TX . Then we may define � to be the following composite:

E
v

−→ IZ ⊗ A
h

−→ TX
g

−→ O⊕(r−1)
X ⊗ TX

u⊗id
−→ E ⊗ TX ,

where the map g is induced by an inclusion OX → O⊕(r−1)
X . ��

Note that the way of constructing a 2-nilpotent co-Higgs structure, used in
Lemma 2.6, will be used throughout the whole article, specially when we prove the
existence of a non-trivial co-Higgs structure.

Example 2.7. Take n = dim(X) ≥ 3 and assume H0(TX (−D)) �= 0 for some
effective divisor D. Lemma 2.6 with A ∼= OX (D) gives pairs (E,�), where E is
a torsion-free sheaf and � is nonzero with � ◦ � = 0. Note that (E,�) is stable
for any polarization on X . We take as Z a smooth two-codimensional subvariety,
not necessarily connected. By [13, Theorem 4.1] it is sufficient that ωZ ⊗ ωX (D)

is globally generated. We may take as Z a disjoint union of smooth complete
intersections of an element of |OX (a)| and an element of |OX (b)| with ωX (a + b)
globally generated. In particular, there are plenty of non-locally free examples.
Among the examples we may take as X the Segre variety P

n1 × · · · × P
nk with as

D the pull-back of OP
ni (1) by the projection πi : X → P

ni on the i-th factor.

Example 2.8. Let X be a smooth and connected projective surface with H0(TX ) �=
0. Fix an integer r ≥ 2. In Lemma 2.6 we take A ∼= OX and a general subset Z of
X with cardinality s ≥ r − 1 + h0(ωX ). Since Z is general and s > h0(ωX ), we
have h0(ωX ⊗IS\{p}) = 0 for each p ∈ Z and so the Cayley–Bacharach condition
is satisfied. Thus the middle term E in the general extension (1) is locally free. We
have det(E) ∼= OX and E is strictly semistable for any polarization of X . Since
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H0(TX ⊗ A∨) > 0, Lemma 2.6 gives the existence of a non-trivial 2-nilpotent
� : E → E ⊗ TX . From the long exact sequence of cohomology of

0 −→ IZ ⊗ ωX −→ ωX −→ ωX ⊗ OZ −→ 0,

we get h1(IZ ⊗ ωX ) ≥ s − h0(ωX ) ≥ r − 1 and so dim Ext1(IZ ,OX ) ≥ r − 1.
Hence there is E with no trivial factor. Now we check that any locally free E with
no trivial factor is indecomposable. Assume E ∼= E1 ⊕ E2 with k = rank(E1)
and 1 ≤ k ≤ r − 1. Let Gi ⊆ Ei for i = 1, 2, be the image of the evaluation
map H0(Ei ) ⊗ OX → Ei . Since Z is not empty, we have h0(E) = r − 1 and
G := u(O⊕(r−1)

X ) is the image of the evaluation map H0(E) ⊗ OX → E . Since
G1 ⊕ G2 ∼= G ∼= O⊕(r−1)

X and G is saturated in E , Gi is locally free and saturated in
Ei for each i . Since rank(G1) + rank(G2) + 1 = rank(E1) + rank(E2), there exists
i with Ei = Gi and so E has a trivial factor, contradicting our assumptions.

In Condition 2.2, if A is negative with respect to a polarization H, then the
co-Higgs bundle (E,�) in Lemma 2.6 is not H-semistable, because ker(�) =
O⊕(r−1)

X . Note that if E is (semi)stable with respect to H, then each co-Higgs
structure on F has the same property. Thus it is necessary to check when E is
(semi)stable and we will focus on the sheaves in Condition 2.2(ii) for a few cases
such as

• Blow-ups of P
2 at a finite set of points;

• A smooth quadric surface;
• The three-dimensional projective space P

3.

Example 2.9. Let X = P
2 and take A ∼= OP2(1). Note that the Cayley–Bacharach

condition is satisfied for any locally complete intersection zero-dimensional sub-
scheme, or a finite set, Z to get a locally free sheaf E with c1(E) = 1 and
c2(E) = deg(Z). ForE to have no trivial factor, it is sufficient to have deg(Z) ≥ r−1
and that the extension is general. If r = 2 and (1) does not split, then E is stable.
Note that (1) does not split if Z �= ∅ and E is locally free.

Now assume r ≥ 3. Note that E is semistable if and only if it is stable i.e.
there is no subsheaf G ⊂ E with positive degree and rank less than r . We assume
that E is locally free. Since h1(OP2) = 0, we have h0(E) = r − 1 + h0(IZ (1)).
Assume that E is not semistable and so the existence of a subsheaf G ⊂ E of rank
s < r with maximal positive degree among all subsheaves. Then G is saturated in
E , i.e. E/G has no torsion. We take s maximal with the previous properties, i.e. if
s ≤ r −2 we assume that no subsheaf of E with rank {s+1, . . . , r −1} has positive
degree. Since deg(G ∩ u(O⊕(r−1)

P2
)) ≤ 0, we have v(G) �= 0 and deg(v(G)) > 0.

Thus we have v(G) ∼= IW (1) for some zero-dimensional subschemeW ⊇ Z . From
h0(IW (1)) ≤ h0(IZ (1)), we get

h0(G) ≤ h0(IZ (1)) + h0(G ∩ u(O⊕(r−1)
P2

)).

Since v(G) is not trivial, we have{
rank(G ∩ u(O⊕(r−1)

P2
)) = s − 1, if s > 1;

G ∩ u(O⊕(r−1)
P2

) = 0, if s = 1.
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Since G ∩ u(O⊕(r−1)
P2

) is a subsheaf of a trivial vector bundle, we have

deg(G ∩ u(O⊕(r−1)
P2

)) ≤ 0 , h0(G ∩ u(O⊕(r−1)
P2

)) ≤ s − 1.

It implies that h0(E/G) > 0 and so take a trivial subsheaf OP2 ⊆ E/G. Let π :
E → E/G be the quotient map. If s ≤ r − 2, then π−1(OP2) contradicts the
maximality of s. Now assume s = r − 1. Since E/G is a torsion-free sheaf of rank
one with a non-zero section, we have E/G ∼= OP2 . Since h0(E/G) = 1, we get
h0(G ∩ u(O⊕(r−1)

P2
)) = s − 1 = r − 2. Then any element in

H0
(
u

(
O⊕(r−1)

P2

))
\ H0

(
G ∩ u

(
O⊕(r−1)

P2

))
induces a splitting of the surjection E → E/G ∼= OP2 , contrary to the assumption
that E has no trivial factor.

Example 2.10. Let π : X → P
2 be the blow-up at two points, say p1 and p2.

Setting Di := π−1(pi ) for i = 1, 2 and writing

OX (a; 0, 0) := π∗OP2(a),OX (0; b, 0) := OX (bD1),OX (0; 0, c) := OX (cD2),

we haveωX ∼= OX (−3; 1, 1). Let D ⊂ X be the strict transform of the line through
p1 and p2 and then we have {D} = |OX (1;−1,−1)|. Recall that for any smooth
projective variety Y the vector space H0(TY ) is the tangent space at the identity of
the scheme Aut(Y ). So we have h0(TX ) = 4, h0(TX (−D1)) = h0(TX (−D2)) = 6
and h0(TX (−D1 − D2)) = h0(TX (−D1 − D2 − D)) = 4. Set

S := {OX ,OX (D1),OX (D2),OX (D),OX (D1 + D2),OX (D1 + D2 + D)};
S1 := {OX (B1 + B2 − B3),OX (B1 − B2) | {B1, B2, B3} = {D1, D2, D}} .

If we take as A any element of S ∪ S1, then we have h0(TX ⊗A∨) > 0. Note that
h0(A) = 1 if A ∈ S and h0(A) = 0 if A ∈ S1. Now fix an integer r ≥ 2 and take
as Z a general subset of X with cardinality s in Condition 2.2(ii). Assume for the
moment that the middle term E of (1) is locally free. If A ∼= OX , then E is strictly
semistable for any polarization of X .

Assume A ∈ S \ {OX } and fix a polarization H of X . If L ⊂ E is a saturated
subsheaf of rank one with positiveH-slope, then it is a line bundle. SinceL ·H > 0,
we have L � u(OX ). Since Im(�) ⊆ u(OX ) ⊗ TX , we have �(L) � L ⊗ TX .
Thus (E,�) isH-stable.

Now we check a criterion for s with which E is locally free; moreover if r > 2,
we also want s so that E has no trivial factor. In the case s = 0, E is decomposable
and so we may assume s > 0. First assume r = 2. In this case we only need to
check the Cayley–Bacharach condition. Indeed this condition is satisfied, because
H0(ωX ) = 0. Now assume r > 2 and then by the case r = 2 a general E fitting
into (1) is locally free. To check that it has no trivial factor it is sufficient to have
dim Ext1(IZ ⊗ A,OX ) ≥ r − 1, because (1) is induced by r − 1 elements of
Ext1(IZ ⊗ A,OX ) and a trivial factor of E would be a factor of the subsheaf
u(O⊕(r−1)

X ) of E , since we have h0(IZ ⊗ A) = 0 due to generality of Z . Now for
any A ∈ S, we have Ext1(IZ ⊗ A,OX ) ∼= H1(IZ ⊗ A ⊗ ωX ) whose dimension
is always s and so we may choose s at least r − 1.



2-nilpotent co-Higgs structures 45

Example 2.11. Let π : X → P
2 be the blow-up at three non-collinear points p1,

p2 and p3. Set Di := π−1(pi ) for i = 1, 2, 3 and writing OX (a; 0, 0, 0) :=
π∗OP2(a),

OX (0; b, 0, 0) := OX (bD1),OX (0; 0, c, 0) := OX (cD2),

OX (0; 0, 0, d) := OX (dD3),

we have ωX ∼= OX (−3; 1, 1, 1). For any h ∈ {1, 2, 3}, let Th ⊂ X be the strict
transform of the line through pi and p j with {h, i, j} = {1, 2, 3}. We have {T1} =
|OX (1; 0,−1,−1)| and similar formulas hold for T2 and T3. As in Example 2.10
we have h0(TX ) = h0(TX (−D1 − D2 − D3 − T1 − T2 − T3)) = 2.

Let Z be the collection of the line bundles OX (D) with D > 0 and D ⊆
D1 ∪ D2 ∪ D3 ∪ T1 ∪ T2 ∪ T3. As in Example 2.10, ifA ∼= OX , then E is stable for
any polarization, and if A ∈ Z , then (E,�) is stable for any polarization. We may
also take as A a line bundle OX (B) with B �= 0, B a sum of some of the divisors
Di and Tj with sign. In this case (E,�) is (semi)stable for some polarization, but
not for all polarizations. Note that in any case we have h0(TX ⊗ A∨) > 0.

Example 2.12. Fix an integer k ≥ 3 and a line � ⊂ P
2. Let π : X → P

2 be the
blow-up at k points p1, . . . , pk ∈ �. Set Di := π−1(pi ) for i = 1, . . . , k and let
D ⊂ X be the strict transform of �. Then we have

(π∗OP2(1))(−D1 − · · · − Dk) ∼= OX (D) , ωX ∼= (π∗OP2(−3))(D1 + · · · + Dk).

We also have h0(TX ) = h0(TX (−D1 − · · · − Dk)) > 0.
Let Z be the collection of the line bundles OX (T ) with T > 0 and T ⊆

D ∪ D1 ∪ · · · ∪ Dk . As in Examples 2.10 and 2.11, if A ∼= OX , then E is stable
for any polarization, and if A ∈ Z , then (E,�) is stable for any polarization. We
may also take as A a line bundle OX (B) with B �= 0, B a sum of some of the
irreducible components of D ∪ D1 ∪ · · · ∪ Dk with sign. In this case (E,�) is
(semi)stable for some polarization, but not for all polarizations. Again in any case
we have h0(TX ⊗ A∨) > 0.

Example 2.13. Let X be a smooth quadric surface and take A from

{OX ,OX (1, 0),OX (2, 0),OX (0, 1),OX (0, 2)}
In each case the Cayley–Bacharach condition is satisfied. IfA ∼= OX , then for any
r ≥ 2 and integer deg(Z) ≥ 0 we get vector bundles which are strictly semistable
for any polarization (see Example 2.9). Now assume A � OX and let H be any
polarization on X .We claim that (E,�) isH-stable. Take an integer s ∈ {1, . . . , r−
1} and a subsheaf G ⊂ E of rank s withmaximalH-slope and with�(G) ⊂ G⊗TX .
Wehave Im(�) ⊂ OX⊗TX andker(�) ∼= O⊕(r−1)

X . Thus theH-slope ofG∩ker(�)

is at most zero. We have �(G) ⊂ OX ⊗ TX and so G ⊂ O⊕(r−1)
X . In particular, we

have degH(G) ≤ 0 and so (E,�) is stable for any polarization. In many cases even
E is stable for some or most polarizations.

Assume A ∼= OX (1, 0). If Z = ∅, then E ∼= OX ⊕ OX (1, 0) and so E is
not semistable for any polarization. Assume Z �= ∅ and that (E,�) is not stable
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with respect to a polarization H ∼= OX (a, b) with b < 2a. There is a saturated
subsheafL = OX (u, v) ⊂ E of rank one with av+bu ≥ b/2. In particular, at least
one of the integers u and v is positive. Write E/L ∼= IW (1 − u, 0 − v) for some
zero-dimensional scheme W ⊂ X . We have c2(E) = deg(W ) + v(1 − u) − uv.
Composing the inclusionL ⊂ E with the surjection v in (1), we get a non-zero map
f : OX (u, v) → IZ (1, 0), and so we get v ≤ 0 and u = 1.

First assume v < 0 and then we have h0(L) = 0. Since H0(E) �= 0, we get
h0(IW (0,−v)) > 0. Since b > 0 and 0 < a < 2b, we get av + b < b/2, a
contradiction.

Now assume v = 0 and we get h0(L) = 2. Then we have h0(E) ≥ 2. Since Z is
not empty, (1) implies that Z is a single point and so c2(E) = 1. From E/L ∼= IW ,
we get c2(E) = deg(W ) and so W is a single point. The map u in (1) and the
inclusion L ⊂ E induce an injective map j : OX (1, 0) ⊕ OX → E . Since j
is an injective map between vector bundles with the same rank and isomorphic
determinant, it is an isomorphism. Thus we have c2(E) = 0, a contradiction. The
same proof works for the case A ∼= OX (0, 1) for the polarization H ∼= OX (a, b)
with a < 2b.

For r = 2 we recover most of the existence part in part (1) of [7, Theorem in
page 2]. The advantage of the current argument is that we prove stability simulta-
neously with respect to many polarizations H ∼= OX (a, b) and that we explicitly
state that our co-Higgs fields are nilpotent. To be in the framework of part (2) of [7,
Theorem in page 2] we need to modify the general set-up. Instead of vector bundles
E fitting into the exact sequence (1) withA as above, we take vector bundles fitting
into the exact sequence with A ∼= OX (1,−1),

0 −→ OX −→ E −→ IZ (1,−1) −→ 0 (2)

with Z a zero-dimensional scheme, where we have det(E) ∼= OX (1,−1). By taking
a twist by some OX (α, β) we get vector bundles of rank two with an arbitrary
determinantOX (γ, δ)with both γ and δ odd. But the twist may destroy the stability
with respect to certain polarizations.

Example 2.14. Let X = P
3 and take A ∼= OP3(1). Then we have either

• ωZ (3) is spanned, if r ≥ 3;
• ωZ ∼= OZ (−3), if r = 2.

In case of r = 2, we get curvilinear reflexive sheaves E with c2(E) = deg(Z) and
c3(E) = deg(ωZ ) + 3 deg(Z); see [4]. We always assume Z �= ∅, so that E is
indecomposable. We claim that E is stable. Assume the existence of a line bundle
OX (t) ⊂ E with t > 0. Composing with the surjection v : E → IZ (1) we get the
zero map, because t > 0 and Z �= ∅. Thus we get OX (t) ⊆ OX , a contradiction.

Now we take r ≥ 3 and Z a non-empty disjoint union of smooth curves.
Assume that E has no trivial factor, e.g. if Z is large, and that h0(IZ (1)) = 0,
i.e. Z is not planar. If (E,�) is not stable, then there is a subsheaf G ⊂ E of rank
s ∈ {1, . . . , r−1}with deg(G) > 0 such that�(G) ⊂ G⊗TX and s is theminimum
among all subsheaves of E with the other properties. Since Im(�) ⊂ TX has rank
one, so we get Im(�)∨∨ ∼= OX (1), i.e. Im(�) ∼= IW (1) for some W ⊂ P

3 with



2-nilpotent co-Higgs structures 47

dim(W ) ≤ 1. G is saturated in E , i.e. E/G is torsion-free, and so G is a reflexive
sheaf. Since E is assumed to be locally free, in the case s = 1 we get G ∼= OX (1).
We exclude this case, because OX (1) � E .

Now assume r = 3 and s = 2. The map G → IZ (1) induced by the surjection
in (1) must be non-zero. Due to s = 2, we get G � O⊕2

X andO⊕2
X is the image of the

evaluation map H0(E)⊗OX → E , we have h0(G) ≤ 1 and so h0(E/G) > 0. Since
E/G is a torsion-free sheaf of rank one, we get E/G ∼= OX . Since h0(E) > h0(G),
there is σ ∈ H0(E) whose image in E/G ∼= OX . The map 1 �→ σ shows that OX

is a factor of E , contradicting our assumption.
Now we assume r = 3 and list several Z for which the middle term E of a

general extension (1) with A ∼= OX (1) has not OX as a factor; in each case we
certainly need thatωZ (3) is spanned and that h0(ωZ (3)) ≥ 2. Assume E ∼= OX ⊕G.
Since E is locally free, so is G. Since h0(G) = 1 and h0(G(−1)) = h0(E(−1)) = 0,
G fits in an exact sequence

0 −→ OX −→ G −→ IW (1) −→ 0, (3)

where W is a locally complete curve with ωW (3) ∼= OW and h0(IW (1)) = 0. We
obviously have that W is not reduced. From H0(G(−1)) = 0, we get that G is a
stable vector bundle of rank two on P

3 with c1(G) = 1 and c2(G) = deg(W ). The
subsheaf OX of G is the image of the evaluation map H0(G) ⊗ OX → G. So the
surjective maps in (1) and (3) induce a non-zero map IW (1) → IZ (1) and so we
get W ⊇ Z . Since c2(F) = c2(G), we have deg(Z) = deg(W ) and so Z = W ,
which gives a contradiction each time we chose Z with ωZ � OZ (−3), e.g. each
time we chose as Z a disjoint union of d lines.

3. Existence and non-existence of co-Higgs structures

Let X be a smooth projective variety of dimension n with Pic(X) ∼= Z, where
the ample generatorOX (1) is very ample. We keep this assumption until Theorem
3.16, where we assume Num(X) ∼= Z. Set δ := deg(X) with respect toOX (1). For
any reflexive sheaf E of rank two on X , define xE to be

max{x ∈ Z | h0(E(−x)) > 0}. (4)

Then E fits into an exact sequence for a subscheme Z with pure codimension two,

0 −→ OX (xE ) −→ E −→ IZ (c1 − xE ) −→ 0, (5)

where c1 = c1(E) and c2(E) = deg(Z) + xE (c1 − xE )δ. Note that we have
h0(IZ (c1 − xE − 1)) = 0 by definition of xE .

Proposition 3.1. Let E be a reflexive sheaf of rank two on X with c1(E) ∈ {−1, 0}
and xE ≤ −2. Then any nilpotent map � : E → E ⊗ TX is trivial.
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Proof. If � �= 0, then we have ker(�) ∼= OX (t) for some t ≤ xE ≤ −2. Since
Im(�) has rank one with no torsion, we have Im(�) ∼= IB(−t + c1) for some
closed scheme B ⊂ X with dim(B) ≤ n − 2. Since �1

X (2) is globally gener-
ated and Im(�) is a subsheaf of E ⊗ TX , we may consider Im(�) as a subsheaf
of E(2)⊕N for some N > 0. In particular, we get −t + c1 − 2 ≤ xE , a
contradiction. ��

Proposition 3.2. Assume X �= P
n. If E is a reflexive sheaf of rank two on X with

c1(E) + 2xE = −3, then any nilpotent map � : E → E ⊗ TX is trivial.

Proof. Up to a twist we may assume c1(E) = −1. Assume the existence of a non-
zero nilpotent � : E → E ⊗ TX . We have ker(�) ∼= OX (t) for some t < 0. By
Proposition 3.1 we have t = −1. Since Im(�) has rank one with no torsion, we
have Im(�) ∼= IB for some closed scheme B ⊂ X with dim(B) ≤ dim(X) − 2.
Since Im(�) ⊂ ker(�) ⊗ TX , we get H0(TX (−1)) �= 0, and so X = P

n by [23],
a contradiction. ��

Remark 3.3. Let E be a stable reflexive sheaf of rank two on X with c1(E) = −1.
By the stability of E , we have xE ≤ −1. If xE ≤ −2, then any nilpotent map
� : E → E ⊗ TX is trivial by Proposition 3.1. As an example, we may take as E
the Horrocks–Mumford bundle; X = P

4, c1 = −1 and c2 = 4. If xE = −1, then
E fits in an exact sequence

0 −→ OX −→ E(1) −→ IZ (1) −→ 0

for some 2-codimensional scheme Z ⊂ X . Assume H0(TX (−1)) �= 0 and so
X = P

n by [23]. Then by Lemma 2.6 there exists a non-trivial nilpotent map
� : E → E ⊗ TPn with ker(�) = OPn .

Proposition 3.4. Let E be a stable reflexive sheaf of rank two on P
n with c1(E) = 0.

Then there exists no non-trivial nilpotent map � : E → E ⊗ TPn .

Proof. Since E is stable, we have ker(�) ∼= OPn (t) for some t ≤ −1 and the proof
of Proposition 3.1 gives t = −1. Since Im(�) has rank one with no torsion, we
have Im(�) ∼= IB(1) for some closed subscheme B � P

n .
First assume dim B ≤ n − 2. Since � ◦ � = 0, we have Im(�) ⊂ ker(�) ⊗

TPn ∼= TPn (−1). In particular, we get a nonzero map h : IB(1) → TPn (−1). Since
TPn (−2) is locally free and dim B ≤ n − 2, we have

H0(Pn \ B, TPn (−2))|Pn\B) = H0(Pn, TPn (−2))

by [13, Proposition 1.6], which is trivial. But the map h gives H0(TPn (−2)) �= 0,
a contradiction.

Now assume that B contains a hypersurface of degree e. We get Im(�) ∼=
IZ (1− e) for some closed subscheme Z with dim Z ≤ n−2. Since c1(E) = 0 and
e > 0, E is not stable, a contradiction. ��
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Proof of Theorem 1.1:. Denote by S the set of all nilpotent maps and up to a twist
we may assume c1(E) ∈ {−1, 0}. By Proposition 3.4 we can consider only the case
of c1(E) = −1. By Proposition 3.1 we have S = {0}, unless xE = −1. Thus we
may assume xE = −1 and so E fits into an exact sequence

0 −→ OPn (−1)
σ

−→ E −→ IZ −→ 0 (6)

with Z of codimension 2. By Lemma 2.6 a cheapway to get a non-trivial� is to take
the composition of the surjection in (6) with the inclusion IZ → OPn (−1) ⊗ TPn .
In this way we get an (n+1)-dimensional vector space contained in S, isomorphic
to H0(TPn (−1)). Conversely, choose any arbitrary nonzero map � ∈ S. The proof
of Proposition 3.1 gives ker(�) ∼= OPn (−1) and so Im(�) ∼= IB for some closed
subscheme B � P

n of codimension two. Since � ◦ � = 0, we have Im(�) ⊂
ker(�) ⊗ TPn ∼= TPn (−1), and thus � is also obtain by the same way as in Lemma
2.6. Thus any such nilpotent map is represented by an element in H0(E(1)) ×
H0(TPn (−1)) with an action of C

∗ defined by c · (σ, s) = (cσ, c−1s). Thus the set
of nilpotent maps is parametrized by

H0(E(1)) × H0(TPn (−1)) � C
∗,

which is the total space of OPn (−1)⊕a with a = h0(E(1)); see [21, Theorem 5.7]
for a similar description. Now the assertion follows from the observation that non-
proportional sections of E(1) have different zeros as in [13, Theorem 4.1] and that
if σ of s is trivial, then the pair (σ, s) corresponds to the trivial nilpotent map. ��

Westill assume that X is a smooth projective varietywith Pic(X) ∼= Z generated
by an ample line bundle OX (1) and H0(TX (−2)) = 0, which excludes the case
X ∼= P

1 by [23]. Let E be a non-semistable reflexive sheaf of rank two on X such
that (E,�) is semistable for a map � : E → E ⊗ TX . Without loss of generality
we assume that E is initialized, i.e. H0(E) �= 0 and H0(E(−1)) = 0. Since E is
not semistable, we have an exact sequence

0 −→ OX −→ E −→ IZ (−b) −→ 0 (7)

with b > 0 and dim(Z) ≤ dim(X) − 2.

Lemma 3.5. Let E be a non-semistable reflexive sheaf of rank two on X with (E,�)

semistable. Then we have X ∼= P
n with n ≥ 2 and b = 1. Also we have either

• E ∼= OPn ⊕ OPn (−1), or
• n = 2 and Z is a point of P

2.

Proof. Since E is reflexive, either Z = ∅ or Z has pure codimension 2. From (7)
we get an exact sequence

0 −→ OX ⊗ TX −→ E ⊗ TX
v

−→ IZ ⊗ TX (−b) −→ 0. (8)

Since (E,�) is semistable, we have �(OX ) � OX ⊗ TX and so v ◦ � : OX →
IZ ⊗ TX (−b) is a non-zero map. Since X � P

1 by [23], we have X ∼= P
n with

n ≥ 2 and b = 1. We also get h0(IZ ⊗ TX ) > 0. The zero-locus of each non-zero
section of TX (−1) is a single point. Hence we have either Z = ∅, or n = 2 and Z
is a single point. If Z = ∅, then (7) gives E ∼= OPn ⊕ OPn (−1). ��
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Recall that xE depends only on the isomorphism class of E ; see (4). For any E
fitting into (5) with Z satisfying h0(IZ (c1 − xE −1)) = 0, we know that E is stable
(resp. semistable) if and only if 2xE < c1 (resp. 2xE ≤ c1). For a fixed E , the same
subscheme Z ⊂ X may occur only by proportional sections in H0(E(−x)) by [12,
Proposition 1.3]. Define yE to be

min{y ≥ 0 | h0(IZ (c1 − xE + y)) > 0}.
Note that yE = 0 if andonly ifE has at least twonon-proportionalmapsOX (x) → E
and so fits in at least two non-proportional sequences (5), with different subschemes
Z . Thus in all cases the integer yE is well-defined.

Lemma 3.6. Let E be a reflexive sheaf of rank two on X with c1 − 2xE > 0. Then
we have h0(End(E)(z)) = h0(OX (z)) for 0 ≤ z < min{xE + yE , c1 − 2xE }.
Proof. Set x := xE and y := yE , and assume that E fits in (5) for some Z . Fix
f ∈ Hom(E, E(z)) and let f1 : E → IZ (c1 − x + z) be the map obtained by
composing f with the map E(z) → IZ (c1 − x + z) twisted from (5) with OX (z).
From the assumption z < x + y, we have f1(OX (x)) = 0 and so f induces
f2 : IZ (c1 − x) → IZ (c1 − x + z). Now take g ∈ H0(OX (z)) inducing f2 and
let γ : E → E(z) be obtained by the multiplication by g. Our claim is that f = γ .
Taking f − γ instead of f we reduce to the case g = 0 and in this case we need
to prove that f = 0, when we have f (E) ⊆ OX (x + z). Since E is reflexive of
rank two, we have E∨ ∼= E(−c1). Thus f : E → OX (x + z) is induced by a
unique a ∈ H0(E(x + z − c1)). Since x + z − c1 < −x , we have a = 0 and so
f = 0. ��
Proposition 3.7. If E is a reflexive sheaf of rank two on X with

min{xE + yE , c1(E) − 2xE } ≥ 3,

then it has no non-zero trace-free co-Higgs field, not even a non-integrable one.

Proof. Take any map � : E → E ⊗ TX . Since OX (1) is very ample, �1
X (2) is

spanned and so TX is a subsheaf of OX (2)⊕N , where N = h0(�1
X (2)). Thus �

induces N elements �i : E → E(2) with i = 1, . . . , N . By Lemma 3.6 each �i

is induced by fi ∈ H0(OX (2)). Composing the trace map Tr(�) : OX → TX of
� with the inclusion TX ⊂ OX (2)⊕N , we also get N elements gi ∈ H0(OX (2)).
Note that we have 2 fi = gi for all i . If � is trace-free, then we get gi = 0 and so
fi = 0 for all i . Thus � is trivial. ��

3.1. Case X = P
2

For (c1, c2) ∈ Z
⊕2, let MP2(c1, c2) denote the moduli space of stable vector bun-

dles of rank two on P
2 with Chern numbers (c1, c2). Schwarzenberger proved

that MP2(c1, c2) is non-empty if and only if −4 �= c21 − 4c2 < 0; see [12,
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Lemma 3.2]. When non-empty, MP2(c1, c2) is irreducible; see [2,15,17,18]. For
E ∈ MP2(c1, c2) and any t ∈ Z, we have

c1(E(t)) = c1 + 2t,

c2(E(t)) = c2 + t2 + tc1,

χ(E(t)) = (c1 + 2t + 2)(c1 + 2t + 1)/2 + 1 − c2 − t2 − t (c1 + t)

= c1(c1 + 2t + 3)/2 + (t + 1)(t + 2) − c2;
see [5, page 469]. Up to a twist we may assume that c1 ∈ {−1, 0}. Since E is stable,
we have h0(E) = 0 and so xE < 0. Define an integer α(c1, c2) as

α(c1, c2) := min{t ∈ Z>0 | c1(c1 + 2t + 3)/2 + (t + 1)(t + 2) > c2}.
For any E ∈ MP2(c1, c2), we have χ(E(a)) > 0 for all a ≥ α(c1, c2), and α(c1, c2)
is the minimal positive integer with this property; see [12, Proposition 7.1]. By
[5, Theorem 5.1], a general bundle E ∈ MP2(c1, c2) has xE = −α(c1, c2) and
h1(E(t)) = 0 for all t ≥ α(c1, c2). By Proposition 3.4, if c1 is even, no bundle
E ∈ MP2(c1, c2) has a non-zero nilpotent map � : E → E ⊗ TX . If c1 is odd, we
have the following.

Proposition 3.8. Let E be s general element of MP2(−1, c2) with c2 ≥ 4. If � :
E → E ⊗ TP2 is a nilpotent map, then we have � = 0.

Proof. By Proposition 3.1 it is sufficient to prove that xE ≤ −2, i.e. h0(E(1)) = 0.
Note that χ(E(1)) = 4 − c2 ≤ 0 and so we may apply [5, Theorem 5.1]. ��

For any x ∈ Z, let MP2(c1, c2, x) denote the set of all E ∈ MP2(c1, c2) with
xE = x . It is an irreducible family and we have a description of the nilpotent
co-Higgs fields on each bundle in MP2(c1, c2, x); see Theorem 1.1.

Remark 3.9. Any E ∈ MP2(−1, c2) with E(−1) as in Lemma 2.6 and (1) for A ∼=
OP2(1) occurs in an exact sequence

0 −→ OP2(−1) −→ E −→ IZ −→ 0 (9)

with Z a locally complete intersection scheme Z ⊂ P
2 with deg(Z) = c2(E), using

that deg(Z) = c2(E(1)) by [13, Corollary 2.2]. Since Z is not empty, every vector
bundle fitting into (9) is stable and so we have xE = −1. The general element of
MP2(−1, c2,−1) admits an extension (9) with as Z the general subset of P

2 with
cardinality c2.

For a general stable vector bundle of rank two on P
2, we have yE ≤ 1 by [5] and

so we cannot use Proposition 3.7 for it. We prove Theorem 1.4 using the following
key observation.

Remark 3.10. Take an irreducible family  of reflexive sheaves of rank two on X .
Let G denote the general element of . Assume the existence of some E ∈  with
c1(E) − 2xE ≥ 3 and yE + xE ≥ 3. By Lemma 3.6 we have h0(End(E)(2)) =
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h0(OX (2)), which is the minimum possibility for h0(End(G)(2)) with G reflex-
ive of rank two on X , i.e. H0(End(E)(2)) has the minimal dimension among
all reflexive sheaves of rank two on X . By the semicontinuity theorem we have
h0(End(G)(2)) = h0(OX (2)). Thus we may apply the proof of Proposition 3.7 to
G, even when G does not satisfy the assumptions of Proposition 3.7.

Proof of Theorem 1.4:. The proof of Proposition 3.7 shows that it is enough to
prove h0(End(E)(2)) = 6. And by semicontinuity it is also sufficient to prove that
h0(End(G)(2)) = 6 for some G ∈ MP2(c1, c2). Furthermore, by Lemma 3.6 it is
sufficient to find G ∈ MP2(c1, c2) with xG = −2 and yG ≥ 5.

Now take a general S ⊂ P
2 with �(S) = c2 + 4 + 2c1 and let G be a general

sheaf fitting into

0 −→ OP2(−2) −→ G −→ IS(c1 + 2) −→ 0.

By Bogomolov inequality we have 4c2 > c21. We have h0(IS\{p}(c1 + 1)) = 0 for
p ∈ S and so the Cayley–Bacharach condition is satisfied. Thus G is locally free.
We also have h0(G(1)) = 0 from h0(IS(c1 + 1)) = 0, and so we have xG = −2.
On the other hand, we have �(S) >

(c1+8
2

)
, we have h0(IS(c1 + 6)) = 0 and so

yG ≥ 5. Now we may use Remark 3.10 and the irreducibility ofMP2(c1, c2). ��

3.2. Case X = P
3 and r ≥ 3

We look at locally free sheaves E of rank at least three on P
3 fitting into (1) with

eitherA ∼= OP3 orA ∼= OP3(1). By Lemma 2.6 any such a sheaf E has a 2-nilpotent
� : E → E ⊗ TP3 with ker(�) ∼= O⊕(r−1)

P3
. If A ∼= OP3 , then any torsion-free E

fitting into (1) is strictly slope-semistable. Note also that if Z is empty in (1), then
E ∼= O⊕(r−1)

P3
⊕ A and that deg(Z) = c2(E). In particular if E is not a direct sum

of line bundles, then we have c2(E) > 0.

Lemma 3.11. Let E be a reflexive sheaf of rank three fitting into (1) with A ∼=
OP3(1). Then the followings are equivalent.

(i) E is slope-semistable;
(ii) E is slope-stable;
(iii) E has no trivial factor.

Proof. Assume that E has a saturated subsheaf G of rank s < 3 with deg(G)/s ≥
1/3.

If s = 1, then we have G ∼= OP3(t) for some t > 0, because E is reflexive and
E/G has no torsion (see [13, Propositions 1.1 and 1.9]). Then we have G � u(O⊕2

P3
)

and so v(OP3(t)) is a non-zero subsheaf of IZ (1). In particular, we get t = 1 and
Z = ∅. Thus we have E ∼= OP3(1) ⊕ O⊕2

P3
.

Now assume s = 2. Again v(G) is a non-zero subsheaf of IZ (1) and so we
get deg(G) = 1 and that G is an extension of some IW (1) with W ⊇ Z by OP3 .
It implies that the torsion-free sheaf E/G is a rank one sheaf of degree zero with
h0(E/G) > 0. Thuswe have E/G ∼= OP3 and themap u(O⊕2

P3
) → E/G is surjective.
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Taking a section of u(O⊕2
P3

)with 1 ∈ H0(E/G) as its image, we get amap E/G → E
inducing a splitting E ∼= G ⊕ OP3 . Thus (iii) implies (ii). Clearly (ii) implies (i).
Now assume that E has a trivial factor, i.e. E ∼= OP3 ⊕ F with F a bundle of rank
two. Then the slope of F is 1/2, which is greater than the slope of E . Thus (i)
implies (iii). ��
Proof of Theorem 1.2:. For the strictly semistable bundle, we apply Lemma 2.6
withA ∼= OP3 . Except the indecomposability, it is sufficient to find a locallyCohen-
Macaulay curve Z ⊂ P

3 of deg(Z) = c2 such that ωZ (4) is spanned and there is
a 2-dimensional linear subspace V ⊆ H0(ωZ (4)) spanning ωZ (4) at each point
of Zred. We may even take a smooth Z . Note that for every smooth and connected
curve Z ⊂ P

3, ωZ (4) is spanned and non-trivial, and so we get h0(ωZ (4)) ≥ 2.
Since ωZ (4) is a line bundle on a curve Z , a general 2-dimensional linear subspace
of H0(ωZ (4)) spans ωZ (4).

Assume now that E is decomposable. Using the same argument in the proof of
Lemma 3.11 to show that (iii) implies (ii), we get E ∼= OP3 ⊕ G for some vector
bundle G of rank two. Since Z is not empty, we have G � O⊕2

P3
and we see that G

fits in (1) with the same Z above and r = 2. Thus we get ωZ ∼= OZ (−4) by [12,
Theorem 1.1], contradicting the assumption that Z is a reduced curve.

For the stable bundle, we follow the argument above with ωZ (3) instead of
ωZ (4). ��

For any reflexive sheaf G of rank two on P
3 we have c1(G(t))2 − 4c2(G(t)) =

c1(G)2 − 4c2(G) for all t ∈ Z. Take E produced by Theorem 1.2 and consider its
quotient by a subsheaf OX ⊂ E , or use (1) for r = 2 and the Hartshorne-Serre
correspondence in [13, Theorem 4.1]. Then we get the following results (for the
“ only if ” part use [13, Corollary 3.3]).

Corollary 3.12. For a fixed pair of integers (c1, c2) with c1 even, there are an
indecomposable and strictly semistable reflexive sheaf E of rank two on P

3 with
c1(E) = c1 and c2(E) = c2, and a non-trivial nilpotent map � : E → E ⊗ TP3 if
and only if c21 − 4c2 < 0.

Corollary 3.13. For a fixed pair of integers (c1, c2) with c1 odd, there is a stable
reflexive sheaf E of rank two on P

3 with c1(E) = c1 and c2(E) = c2, equipped with
a non-trivial nilpotent map � : E → E ⊗ TP3 if and only if c21 − 4c2 < 0.

Remark 3.14. The interested reader may state and prove statements similar to The-
orem 1.2 and Corollary 3.12 that involve Lemma 2.6 withA ∼= OP3 , when X is the
three-dimensional smooth quadric Q3 ⊂ P

4, using ωZ (−3) instead of ωZ (−4).

Proof of Proposition 1.3:. Since 4c2(E(t)) − c1(E(t))2 is a constant function on
t , we may reduce to the case c1 = 0. By [9], [10] and [16, Appendix C], we see
that E must be as in Lemma 2.6 and (1) with r = 2 and A ∼= OP3 . Since we have
d := deg(Z) = c2(E), so we get c2(E) = 0 if and only if Z = ∅, i.e. E ∼= O⊕2

P3
. For

the conclusion, it is sufficient to exclude the Chern numbers c2 with 1 ≤ c2 ≤ 8.
If such E exists, then Z is a locally complete intersection and ωZ ∼= OZ (−4). By
the duality we have 2χ(OZ ) = deg(ωZ ) = −4d, i.e. χ(OZ ) = −2d.



54 E. Ballico, S. Huh

Macaulay proved that a polynomial q(t) is the Hilbert function of a curve of
degree d in some P

n , not necessarily locally a complete intersection, if and only if
there is a non-negative integer α such that

q(t) =
d−1∑
i=0

(t + i − i) + α = dt − (d − 2)(d − 3)/2 + α;

see [9,10,16]; for locally Cohen-Macaulay space curves, one can also use [3]. If
p(t) is the Hilbert polynomial of the scheme Z , then we have χ(OZ ) = p(0) and
so −(d − 2)(d − 3)/2 ≤ −2d, i.e. (d − 2)(d − 3) ≥ 4d. But it is false if 1 ≤ d
≤ 8. ��
Proposition 3.15. Forafixedpair of integers (c1, c2)with c1 oddand4c2−c21 ≤ 28,
there is no pair (E,�), where E is a stable vector bundle of rank two on P

3 with
c1(E) = c1 and c2(E) = c2, and � : E → E ⊗ TP3 is a non-trivial nilpotent map.

Proof. Since c1 is odd, we get that c2 is even by [12, Corollary 2.2]. As in the
proof of Proposition 1.3 we first reduce to the case c1 = 1 and then use that
ωZ ∼= OZ (−3), implying 2χ(OX ) = 3c2, to exclude the cases c2 ∈ {2, 4, 6} by
the inequality (c2 − 2)(c2 − 3) ≥ 3c2. ��

3.3. Case Num(X) ∼= Z

Now we drop the main assumption on Pic(X); let Num(X) be the quotient of
Pic(X) by numerical equivalence. Note that if Num(X) ∼= Z, then the notion of
(semi)stability does not depend on the choice of a polarization. For L ∈ Pic(X) we
call deg(L) the numerical class of L.
Theorem 3.16. Assume thatNum(X) ∼= Z and that X �= P

n. If� : E → E⊗TX is
a nilpotent map for a stable reflexive sheaf of rank two on X, then we have � = 0.

Proof. Assume � �= 0 and then L := ker(�) is a rank one saturated subsheaf
of E . Set F := E ⊗ L∨. Since L is saturated in E , F fits in an exact sequence
(1) with r = 2. Since E is stable, we have deg(A) > 0 and so A is ample. Call
� : F → F ⊗ TX the non-zero nilpotent map obtained from �. Since � ◦ � = 0,
we have �(F) ⊂ u(OX ) ⊗ TX ∼= TX . Thus � induces a non-zero map A → TX .
Since A is ample, we have X = P

n by [23], a contradiction. ��

4. Arbitrary Picard groups

Now we drop the assumption Pic(X) ∼= Z, but we fix a very ample line bundle
H ∼= OX (1) on X and we use H to check the slope-(semi)stability of sheaves on
X . We use that OX (1) is very ample only to guarantee that �1

X (2) is spanned. For
any torsion-free sheaf of rank two on X , define zE = zE,H to be

max{z ∈ Z | H0(E(−z)) has a section not vanishing on a divisor of X}.
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Then we have an exact sequence

0 −→ OX (z) −→ E −→ IZ ⊗ det(E)(−z) −→ 0 (10)

with z = zE,H and Z ⊂ X of codimension 2. The integer ρ2,H(E) is the minimal
integer t such that h0(IZ ⊗ det(E)(t − z)) > 0 for some (10). Recall that xE
or xE,H was defined to be the only integer x such that H0(E(−x)) �= 0 and
H0(E(−x − 1)) = 0. The following result is an adaptation of Lemma 3.6.

Lemma 4.1. Let E be a reflexive sheaf of rank two on X. For a ∈ Z such that

a < min{ρ2,H(E) − zE ,max{−xE∨ − zE ,−xE − xdet(E) − zE − 1}},
we have h0(End(E)(a)) = h0(OX (a)).

Proof. SinceOX is a factor of End(E), we have h0(End(E)(a)) ≥ h0(OX (a)) and
so it is sufficient to prove the inequality h0(End(E)(a)) ≤ h0(OX (a)).

Set z := zE,H and assume that E fits in the exact sequence (10) computing the
integer ρ2,H(E). For a fixed f ∈ Hom(E, E(a)), let

f1 : E → IZ ⊗ det(E)(−z + a)

be the map obtained by composing f with the map E(a) → IZ ⊗ det(E)(−z + a)

twisted from (10) with OX (a). Since a < ρ2,H(E) − zE , we have f1(OX (z)) = 0
and so f induces

f2 : IZ ⊗ det(E)(−z) → IZ ⊗ det(E)(−z + a).

Now take g ∈ H0(OX (a)) inducing f2 and let γ : E → E(a) be the map
obtained by the multiplication by g. Then it is enough to prove that f = γ . Taking
f − γ instead of f , we reduce to the case g = 0 and in this case we need to
prove that f = 0. From the assumption that g = 0, we have f (E) ⊆ OX (z + a),
and so f = 0 if −xE∨ > z + a. Note that E is reflexive of rank two and so we
have E∨ ∼= E ⊗ det(E)∨. Thus f : E → OX (z + a) is induced by a unique
b ∈ H0(E(z + a) ⊗ det(E)∨). If z + a < −xE − xdet(E)∨ − 1, we have b = 0,
because h0(E(−xE − 1)) = 0 and h0(det(E)∨(−xdet(E)∨ − 1)) = 0. ��
Proposition 4.2. LetE be a reflexive sheaf of rank two on X �= P

n withρ2,H(E) ≥ 3
and either −xE∨ − zE or −xdet(E) + 1 at least two. Then any trace-zero co-Higgs
field for E is identically zero.

Proof. Basically the same argument in the proof of Proposition 3.7 works with
Lemma 3.6 replaced by Lemma 4.1. Since TX is a subsheaf of OX (2)⊕N for N =
h0(�1

X (2)), any map � : E → E ⊗ TX induces N elements �i : E → E(2) with
i = 1, . . . , N . Then by Lemma 4.1 each �i is induced by fi ∈ H0(OX (2)). Now
by composing the trace map of � with the inclusion TX ⊂ OX (2)⊕N , we also get
N elements gi ∈ H0(OX (2)). We know that 2 fi = gi for each i . If � is trace-free,
then we get gi = 0 and so fi = for each i . Thus � is trivial. ��
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