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Abstract. The aim of this paper is to investigate the static perfect fluid spacetime M4 × f R

such that (M4, g) is a half conformally flat Riemannian manifold. We prove that (M4, g)
is, in fact, locally isometric to a warped product manifold I ×φ N3 where I ⊂ R and N3 is
a space form. Consequently, we make an analysis of the Fischer-Marsden conjecture for a
4-dimensional Riemannian manifold.

1. Introduction

The Einstein equation with perfect fluid as a matter field is given by

R̂ic − R̂

2
ĝ = (μ + ρ)η ⊗ η + ρ ĝ, (1.1)

where R̂ic and R̂ are, respectively, the Ricci tensor and the scalar curvature for
the metric ĝ. Moreover, η is a 1-form with ĝ(η, η) = −1 whose associated vector
field represents the flux of the fluid, μ, ρ are smooth functions, namely the energy
density and pressure, respectively (see [9–11]). The equation (1.1) was presented
by Einstein in 1915, and shows the relationship between matter and spacetime.
Some solutions of (1.1) provide models for galaxies, stars and black holes (cf. [9]).
Therefore, it is natural to study Einstein’s equation. Oneway to do this is to consider
some special cases of ĝ.

In this work we will explore the static spacetime ( ̂Mn+1, ĝ) = Mn × f R such
that

ĝ = − f 2dt2 + g (1.2)

where (Mn, g) is an open, connected and oriented Riemannian manifold, and f :
Mn → (0,+∞) is a smooth warped function.
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Therefore, from (1.1) and (1.2) we know that the static perfect fluid equation
is equivalent to

f R̊ic = ∇̊2 f (1.3)

and

2μ = R and fρ = n − 1

n

[

� f − (n − 2)

2(n − 1)
R f

]

,

where R̊ic = Ric − R
n g and ∇̊2 f = ∇2 f − � f

n g are, respectively, the Ricci and
the Hessian traceless tensors, � is the Laplacian and R is the scalar curvature for
g (cf. [10,11]).

An n-dimensional Riemannian manifold with n ≥ 4 is locally conformally flat
if and only if the Weyl tensor W is equal to zero. For n = 3 the Weyl tensor is
always zero. Then, a 3-dimensional Riemannian manifold is locally conformally
flat if and only if the Cotton tensorC vanishes. A paper published byKobayashi and
Obata [11] reveals that a complete locally conformally flat Riemannian manifold
(Mn, g, f ) inwhich (g, f ) satisfies (1.3) has the property that, for a connected com-
ponent M0 of the open submanifold {∇ f �= 0} ⊂ M , M0 is isometric to the warped
product I ×φ N of (I, dr2) and (N , g), i.e., g|M0 = dr2 + φ(r)2g, where I is an
open interval inR, φ is a positive function on I , and (N , g) is an (n−1)-dimensional
complete space with constant sectional curvature (cf. Lemma B in [10]).

Here, we will prove that a half locally conformally flat (i.e.,W± = 0) complete
Riemannianmanifold satisfying the static perfect fluid equation (1.3)will be, in fact,
locally conformally flat (see Section 2.1). A four oriented Riemannian manifold
with compatible complex structures has a natural almost complex structure which
is integrable if, and only if, W± vanishes (cf. Chapter 13 in [3]). Moreover, we
provided a different proof that M0 is isometric to the warped product mentioned
earlier. It is worth to mention that in [1] they consider the metric (1.3) under the
additional conditions that M4 is compact with constant scalar curvature such that

(n − 1)� f + R f = −n.

Sincewe are considering that (M4, g) satisfies Equation (1.3)without any condition
on the Laplacian (cf. Equation (2.2) in [1] or Equation (1.5) below) and that R is
not necessarily constant, our result is quite different from the result provided in [1].

In [11], the following result was demonstrated for a locally conformally flat
Riemannian manifold satisfying (1.3). In this paper, we prove such result for n = 4
and metric half locally conformally flat.

Without further ado, we state our main result.

Theorem 1. Let (M4, g, f ) be a complete half locally conformally flat Riemannian
manifold satisfying (1.3). Then, (M4, g) is locally conformally flat. Moreover, for
any connected component M0 of the open submanifold {∇ f �= 0} ⊂ M, M0 is
isometric to the warped product

(I, dr2) ×φ (N 3, ḡ),
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where φ(r) = e
1
3

∫ r
r0

H(t)dt
and H is the mean curvature for the level set �r0 =

f −1(r0) for any regular value r0 of the function f . Furthermore, I is an open
interval in R and (N , g) is a 3-dimensional Einstein manifold (i.e., is a space
form).

Now, we will consider a special case of (1.3). Let (Mn, g) be a compact Rie-
mannian manifold, for a while. Remember that from the linearization of the scalar
curvature equation (cf. [3,7,10]) we can take from the Stokes formula that the
adjoint operator of dRg has non trivial kernel. Hence, we can conclude that

− g� f + ∇2 f − f Ric = 0. (1.4)

Contracting (1.4) we obtain

− � f = R f

n − 1
. (1.5)

Moreover, taking the divergent of (1.4), from the contracted Bianchi identity it is
easy to see that R is constant (cf. [7]). And if we consider M compact, we have
from (1.5) that R ≥ 0.

So, from (1.3) and (1.5) we obtain (1.4) (cf. [10]). It means that (1.4) is equiva-
lent to (1.3) with constant energy density and under the additional condition (1.5).
Thus, the next result is a special case of Theorem 1.

Theorem 2. Let (M4, g, f ) be a complete half locally conformally flat Riemannian
manifold satisfying (1.4). Then, (M4, g) is locally conformally flat. In addition, for
any connected component M0 of the open submanifold {∇ f �= 0} ⊂ M, M0 is
isometric to the warped product

(I, ds2) ×φ (N 3, ḡ),

where I is an open interval in R and (N , g) is a 3-dimensional Einstein manifold
(i.e., is a space form).

An immediately consequence of Theorems 2 and 3.1 in [10] is that a complete
half conformally flat Riemannian manifold satisfying (1.4) is isometric to a space
formor it is a special case demonstrated in Section 3 in [10]. Further, fromTheorems
1 and 4.1 in [11] we have that if the spatial factor M4 of (1.2) is half conformally
flat and Einstein, then ̂M5 is conformally flat.

Further, from Theorem 1 and Theorem 4.1 in [11] we have that if the spatial
factor M4 of (1.2) is half conformally flat and Einstein, then ̂M5 is conformally flat

2. Background

2.1. Four Dimensional Manifolds

The world of 4-dimensional manifolds is quite unusual. This environment is big-
ger than any other set of n-dimensional spaces. For example, some 4-dimensional
manifolds have no smooth structure and others admit a variety of such structures.
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Furthermore, we remember that CP2 is an example of manifold that is half con-
formally flat but it is not conformally flat. On the other hand, any 4-dimensional
conformally flat manifold is half conformally flat. This shows us that the set of the
half conformally spaces is larger that the set of conformally flat spaces (see more
in [3,6]).

In what follows, M4 will denote an oriented 4-dimensional manifold and g
a Riemannian metric on M4. As it was previously stated, 4-manifolds are fairly
special. For instance, following the notations used in [6], given any local orthogonal
frame {e1, e2, e3, e4} in an open set of M4 with dual basis {e1, e2, e3, e4}, there is
a unique bundle morphism ∗ called Hodge star (acting on bivectors), where

∗(e1 ∧ e2) = e3 ∧ e4.

This implies that ∗ is an involution, that is, ∗2 = I d. In particular, the bundle
of 2-forms in a 4-dimensional oriented Riemannian manifold can be invariantly
decomposed as a direct sum �2 = �2+ ⊕ �2−. From this, it follows that the Weyl
tensor W is an endomorphism of �2 = �+ ⊕ �− for which

W = W+ ⊕ W−.

A four dimensional manifold is half conformally flat if it is self or anti-self dual,
i.e., if W− = 0 or W+ = 0.

Observe that dimR(�2) = 6 and dimR(�±) = 3. Moreover, these spaces are
generated by

�+ = span
{e1 ∧ e2 + e3 ∧ e4√

2
,
e1 ∧ e3 + e4 ∧ e2√

2
,
e3 ∧ e2 + e4 ∧ e1√

2

}

(2.1)

and

�− = span
{e1 ∧ e2 − e3 ∧ e4√

2
,
e1 ∧ e3 − e4 ∧ e2√

2
,
e3 ∧ e2 − e4 ∧ e1√

2

}

. (2.2)

Therefore, the bundles �+ and �− carry natural orientations such that the bases
(2.1) and (2.2) are both positive-oriented.

Thus, from the Hodge star we have W± = 1
2 (W ± W∗), i.e.,

W±
p q l s = 1

2

(

Wpq l s ± Wpq l s
)

,

where (p q) stands for the dual of (p q), that is, (p q l s) = σ(1234) for some even
permutation σ in the set {1, 2, 3, 4}. For more details refer to [6] and [12].
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2.2. The Warped Product Structure

Here we state some well known warped products formulas that we will need to
prove our main results.

Consider the warped product manifold

(Mn, g) = (I, dr2) ×φ (Nn−1, ḡ), (2.3)

where ds2 = dr2+φ(r)2ḡ. Choose any local coordinates system θ = (θ2, . . . , θn)

on Nn−1, and pick (x1, x2, . . . , xn) = (r, θ2, . . . , θn). In what follows a, b, c, d
range from 2 to n. Also, curvature tensors with bar are the curvature tensors of
(N , ḡ). It is well known that the Riemann curvature tensor of (Mn, g) is given by
(cf. [3,4])

R1a1b = −φφ′′ḡab, R1abc = 0 (2.4)

and

Rabcd = φ2 R̄abcd − (φφ′)2(ḡacḡbd − ḡad ḡbc). (2.5)

From the above equations, the Ricci tensor formulas of (Mn, g) and (Nn−1, ḡ)
are related by

R11 = −(n − 1)
φ′′

φ
, R1a = 0 (2 ≤ a ≤ n)

and

Rab = R̄ab − [(n − 2)(φ′)2 + φφ′′]ḡab (2 ≤ a, b ≤ n).

Further,

R = φ−2 R̄ − (n − 1)(n − 2)

(

φ′

φ

)2

− 2(n − 1)
φ′′

φ
.

2.3. Fundamental Equations

In a system of local coordinates, (1.3) is equivalent to

f

(

Ri j − R

n
gi j

)

= ∇i∇ j f − � f

n
gi j . (2.6)

It is easy to see from (2.6) that

f R̊i j∇ j f = ∇i∇ j f ∇ j f − � f

n
gi j∇ j f.

Then, since ∇i∇ j f ∇ j f = 1
2∇i |∇ f |2 and gi j∇ j f = ∇i f we get:

f R̊i j∇ j f = 1

2
∇i |∇ f |2 − � f

n
∇i f. (2.7)
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Taking now the covariant derivative of (2.6) we have

∇i f R̊ jk + f ∇i R̊ jk = ∇i∇ j∇k f − 1

n
∇i� f g jk (2.8)

and

∇ j f R̊ik + f ∇ j R̊ik = ∇ j∇i∇k f − 1

n
∇ j� f gik . (2.9)

Then, subtracting (2.8) and (2.9) we obtain

f (∇i R̊ jk − ∇ j R̊ik) + (R̊ jk∇i f − R̊ik∇ j f ) = ∇i∇ j∇k f − ∇ j∇i∇k f

+1

n
(∇ j (� f )gik − ∇i (� f )g jk). (2.10)

Then, using the Ricci equation

∇i∇ j∇k f − ∇ j∇i∇k f = Ri jkl∇l f

in (2.10) we can show that

f (∇i R̊ jk − ∇ j R̊ik) + (R̊ jk∇i f − R̊ik∇ j f ) = Ri jkl∇l f

+1

n
(∇ j (� f )gik − ∇i (� f )g jk). (2.11)

Contracting Equation (2.11) over i and k and remembering that R̊ic is trace
free, we have

f gik∇i R̊ jk + R̊ jl∇l f = R jl∇l f

+∇ j (� f ) − 1

n
∇ j (� f ).

Considering the contracted second Bianchi identity gik∇i R̊ jk = n−2
2n ∇ j R we

obtain from the above equation

1

2(n − 1)
[(n − 2) f ∇ j R − 2R∇ j f ] = ∇ j (� f ). (2.12)

The next result has the same conclusion of Lemma 2 in [1]. However, theMiao-
Tam metric has constant scalar curvature. Here, we are considering that the scalar
curvature is not necessarily constant. To prove the following Lemma, Equation
(2.12) will be essential.

Lemma 1. Let (Mn, g, f ) be a Riemannian manifold satisfying (1.3). Then,

f Ci jk = Wi jkl∇l f − 1

n − 2
(Ril∇l f g jk − R jl∇l f gik)

+n − 1

n − 2
(Rik∇ j f − R jk∇i f ) + R

n − 2
(∇i f g jk − ∇ j f gik),

where C and W are, respectively, the Cotton tensor and the Weyl tensor.
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Proof. Then, from (2.11) and (2.12) we obtain

f (∇i R̊ jk − ∇ j R̊ik) + (R̊ jk∇i f − R̊ik∇ j f ) = Ri jkl∇l f

+ n − 2

2n(n − 1)
f (∇ j Rgik − ∇i Rg jk) + R

n(n − 1)
(∇i f g jk − ∇ j f gik).

Further, since R̊ic = Ric − R
n g we have

f (∇i R jk − ∇ j Rik) + (R jk∇i f − Rik∇ j f ) = Ri jkl∇l f

+ 1

2(n − 1)
f (∇i Rg jk − ∇ j Rgik) + R

(n − 1)
(∇i f g jk − ∇ j f gik). (2.13)

Moreover, we know the Cotton tensor is given by

Ci jk = ∇i R jk − ∇ j Rik − 1

2(n − 1)
(∇i Rg jk − ∇ j Rgik). (2.14)

Then, from (2.14), (2.13) becomes

f Ci jk = Ri jkl∇l f + (Rik∇ j f − R jk∇i f ) + R

n − 1
(∇i f g jk − ∇ j f gik). (2.15)

Remember the Weyl formula

Ri jkl = Wi jkl + 1

n − 2

(

Rikg jl + R jl gik − Ril g jk − R jkgil
)

− R

(n − 1)(n − 2)

(

g jl gik − gil g jk
)

. (2.16)

Therefore, from (2.16) we have

Ri jkl∇l f = Wi jkl∇l f + 1

n − 2

(

Rik∇ j f + R jl∇l f gik − Ril∇l f g jk − R jk∇i f
)

− R

(n − 1)(n − 2)

(∇ j f gik − ∇i f g jk
)

. (2.17)

From (2.15) and (2.17) we get

f Ci jk = Wi jkl∇l f − 1

n − 2
(Ril∇l f g jk − R jl∇l f gik)

+n − 1

n − 2
(Rik∇ j f − R jk∇i f ) + R

n − 2
(∇i f g jk − ∇ j f gik).

��
Namely,

Ti jk = − 1

n − 2
(Ril∇l f g jk − R jl∇l f gik)

+n − 1

n − 2
(Rik∇ j f − R jk∇i f ) + R

n − 2
(∇i f g jk − ∇ j f gik). (2.18)
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That is, from Lemma 1 we have

f Ci jk = Wi jkl∇l f + Ti jk . (2.19)

It is important to highlight that T is skew-symmetric and trace free, i.e.,

Ti jk = −Tjik

and

gi j Ti jk = g jkTi jk = gikTi jk = 0.

The demonstration for the next result follows the same steps of [2,5].

Lemma 2. Let (M4, g, f ) be a half conformally flat Riemannian manifold satisfy-
ing (1.3) in a neighborhood of a regular point q. Then, T |q ≡ 0.

Proof. Consider from now on an orthonormal frame {e1, e2, e3, e4} where
e1, e2, e3, e4 are eigenvectors of Ric at q and Ri j (q) = Riiδi j (q), where Rii

represents the eigenvalue of ei .
Let’s now prove that T |q = 0. From the skew-symmetry property, it is easy to

see that Tiik = 0 for all i, k ∈ {1, 2, 3, 4}. Furthermore, from (2.18) we can see
that Ti jk = 0 for all different i, j, k ∈ {1, 2, 3, 4}.

Now, remember that Ci jk = − n−2
n−3∇lWi jkl . Thus,

Ci jk = −2∇lWi jkl .

Then, from (2.19) we have

Ti jk = −
[

2 f ∇lWi jkl + Wi jkl∇l f
]

.

On the other hand, we already know that

2W+ = W + W∗,

where ∗ is the Hodge star. By hypothesis, we have that W+ = 0, it implies

W12kl + W34kl = 0; W13kl + W42kl = 0 and W14kl + W23kl = 0. (2.20)

Hence, we can infer

T12k + T34k = −
[

2 f ∇l(W12kl + W34kl) + (W12kl + W34kl)∇l f
]

= 0.

Analogously, we obtain

T13k + T42k = 0 and T14k + T23k = 0.

Then, we have Ti ji = 0 for all i �= j ∈ {1, 2, 3, 4}. Finally, we have proof that
T |q = 0. ��

Our following result can be compared with other well known results such as
[1,2,5].
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Proposition 1. Let (M4, g, f ) be a half locally conformally flat Riemannian man-
ifold satisfying (1.3) where �c is a connected component of f −1(c) = {q ∈
M4; f (q) = c}, the level surface with respect to regular value c of f. Then, for any
local orthonormal frame {e1, e2, e3, e4} with e1 = ∇ f

|∇ f | and {e2, e3, e4} tangent to
�c, we have:

(1) ∇ f is an eigenvector of the Ricci operator. Furthermore,
(i) Ric(e1, e1) = R11;
(ii) Ric(e1, ea) = 0, a = 2, 3, 4;
(iii) Ric(ea, eb) = Raaδab, a, b = 2, 3, 4, where R11 = . . . = R44 = λ or

R22 = R33 = R44 = λ and R11 has multiplicity 1;
(2) |∇ f |2 is constant on �c;
(3) The second fundamental form of �c is

hab = H

3
gab,

where H is the constant mean curvature of �c;
(4) (M4, g) is locally conformally flat manifold, i.e., W = 0.

Proof. Consider an orthonormal frame {e1, e2, e3, e4} diagonalizing Ric at q ∈ �c

with associated eigenvalues Rkk(q), k = 1, . . . , 4, respectively. That is, Ri j (q) =
Riiδi j (q). From Lemma 2 we can see that T (q) = 0. Then, from (2.18), Ti j j = 0,
i.e.,

1

2
∇ j f [R j j + 3Rii − R] = 0, ∀i �= j. (2.21)

Assume that, for a fixed j , ∇ j f (p) �= 0 and ∇i f (p) = 0 for all i �= j ;
i, j ∈ {1, 2, 3, 4}. Then, we have Ric(∇ f ) = R j j∇ f , i.e., ∇ f is a eigenvector
for Ric. Moreover, from (2.21) we know that R j j has multiplicity 1 and Rii has
multiplicity 3, for all i �= j . In the other case, if ∇i f �= 0 for at least two distinct
directions, from (2.21) we concluded that λ = R11 = · · · = R44 and we also have
∇ f an eigenvector for Ric (see this discussion in [2]).

Therefore, in any case we perceive that∇ f is an eigenvector for Ric at q. From
the above analysis we can take {e1 = ∇ f

|∇ f | , e2, e3, e4} an orthonormal frame for�c

diagonalizing Ric at q ∈ �c.
We know that ∇ f is an eigenvector for Ric. Then, (2.7) gives

f R̊ic(ea,∇ f ) = 1

2
∇a |∇ f |2 − � f

4
∇a f.

Hence, |∇ f |2 is constant on �c.
By definition of the second fundamental form we have

hab = ∇a∇b f

|∇ f | in �c.



60 B. Leandro, N. Solórzano

Now, since Rab = λgab for all a, b ∈ {2, 3, 4}, from (1.3) we get

∇a∇b f =
[

f R̊ab + � f

4
gab

]

=
[

f

(

λgab − R

4
gab

)

+ � f

4
gab

]

=
[

f

(

λ − R

4

)

+ � f

4

]

gab.

Therefore,

hab = 1

|∇ f |
[

f

(

λ − R

4

)

+ � f

4

]

gab.

Contracting the above equation in a and b we obtain the mean curvature of �c

H = 3

|∇ f |
[

f

(

λ − R

4

)

+ � f

4

]

. (2.22)

Which implies that

hab = H

3
gab. (2.23)

Contracting the Codazzi equation

R1cab = ∇ahbc − ∇bhac

over c and b gives

R1a = ∇a(H) − 1

3
∇a(H) = 2

3
∇a(H).

On the other hand, since R1a = 0 we know that H is constant in �c. Then, we can
see from the Codazzi equation that R1abc = 0. Since the frame that we consider
diagonalizes the Ricci tensor, from the Weyl equation (2.16) we have that

0 = W1abc + 1

2

(

R1bgac + Racg1b − R1cgab − Rabg1c
)

− R

6

(

gacg1b − g1cgab
)

.

Therefore, from the above equation we conclude that W1abc = 0, and since W +
W∗ = 0 we get from (2.20) that W = 0. ��
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3. Proof of Theorem 1

Now that we are familiarized with Proposition 1 we can move on to Theorem 1.

Proof of Theorem 1:. We started the demonstration saying that there is no open
subset � of M4 where {∇ f = 0} is dense. In fact, if f is constant in �, since M4

is complete we have f analytic, which implies f constant everywhere (cf. Lemma
2.5 in [5]). Thus, consider �c a connected component of the level surface f −1(c)
(possibly disconnected) where c is any regular value of the function f . Suppose
that I is an open interval containing c such that f has no critical points in the open
neighborhood UI = f −1(I ) of �c. For sake of simplicity, let UI be a connected
component of f −1(I ). Therefore, we can extend smoothly g|UI to a smooth metric
g|M0 .

FromProposition 1we know that |∇ f |2 is constant on�c. Then, we can express
the metric g in the form

ds2 = 1

|∇ f |2 d f
2 + gab( f, θ)dθadθb,

where gab( f, θ)dθadθb is the induced metric and (θ2, θ3, θ4) is a local coordinate
system on �c. Since |∇ f |2 is a function of f only we can make a change of
variables

r(x) =
∫

d f

|∇ f |
such that the metric g in UI can be expressed by

ds2 = dr2 + gab(r, θ)dθadθb.

Let∇r = ∂
∂r , then |∇r | = 1 and∇ f = f ′(r) ∂

∂r onUI . Observe that f ′(r) does
not change sign on UI . Moreover, we have ∇∂r∂r = 0. From (2.23) the second
fundamental formula on �c is given by

hab = ∇a∇b f

|∇ f | = H

3
gab,

where H = H(r), since H is constant in �c.
For what follows, we fix a local coordinates system

(x1, x2, x3, x4) = (r, θ2, θ3, θ4)

in UI , where (θ2, θ3, θ4) is any local coordinates system on the level surface �c.
Admit that a, b, c, . . . ∈ {2, 3, 4}, we have

hab = −g(∂r ,∇a∂b) = −g(∂r , �
l
ab∂l) = −�1

ab.

Now, by definition

�1
ab = 1

2
g11

(

− ∂

∂r
gab

)

= −1

2

∂

∂r
gab.
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Then,

2

3
H(r)gab = ∂

∂r
gab.

Hence, we can infer that

gab(r, θ) = φ(r)2gab(r0, θ),

where φ(r) = e
1
3

(

∫ r
r0

H(s)ds
)

and the level set {r = r0} corresponds to the connected
component �c of f −1(c) (this c was defined at the beginning of the proof).

Moreover, from (2.4) and (2.5) the Weyl tensor W for an arbitrary warped
product manifold (2.3) is given by (see [3,4]):

W1a1b = −1

2
R̄ab + R̄

6
ḡab,

W1abc = 0, (3.1)

and

Wabcd = φ2Wabcd ,

where W denotes the Weyl tensor of (Nn−1, ḡ). Since, from Proposition 1, the
warped product manifold (2.3) is locally conformally flat (i.e., W = 0), from (3.1)
we obtain

R̄ab = R̄

3
ḡab.

��
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