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Abstract. We study actions of discrete groups on 2-categories. The motivating examples
are actions on the 2-category of representations of finite tensor categories and their relation
with the extension theory of tensor categories by groups. Associated to a group action on
a 2-category, we construct the 2-category of equivariant objects. We also introduce the G-
equivariant notions of pseudofunctor, pseudonatural transformation and modification. Our
first main result is a coherence theorem for 2-categories with an action of a group. For
a 2-category B with an action of a group G, we construct a braided G-crossed monoidal
category ZG(B) with trivial component the Drinfeld center of B. We prove that, in the case
of a G-action on the 2-category of representation of a tensor category C, the 2-category of
equivariant objects is biequivalent to the module categories over an associated G-extension
of C. Finally, we prove that the center of the equivariant 2-category is monoidally equivalent
to the equivariantization of a relative center, generalizing results obtained in Gelaki et al.
(Algebra Number Theory 3(8):959–990, 2009).

Introduction

The theory of 2-categories appears in a naturalway in diverse contexts. For example,
it was used by Rouquier to “categorify” certain algebraic objects [23] and appears
in topological field theories [6,20]. The theory of representations of 2-categories
has been initiated in a series of papers [15–17].

Our motivation for the study of 2-categories comes from the theory of tensor
categories. For a tensor category C, a representation of C, or C-module category, is
a categoryM equipped with an associative action C×M → M satisfying certain
conditions.Given twoC-module categoriesM,N , the categoryFunC(M,N ) is the
category whose objects are C-module functor between M and N , and morphisms
are C-module natural transformations. The 2-category of (left) C-modules CMod
has as 0-cells C-module categories, 1-cells C-module functors between them and
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2-cells are C-module natural transformations. This 2-category is a strong invariant
of the tensor category C.

Given a 2-category B and a 2-monad T : B → B on B, in [18], the notion of
the equivariantization 2-category BT was presented. The equivariantization of a
2-category by a group was studied later in [13].

One of the purposes of the paper is to explicitly describe an action of a group G
on a 2-category B, and describe all ingredients of the resulting equivariantization
2-category BG . An action of a group G on a 2-category B consists of

• a family of pseudofunctors Fg : B → B, g ∈ G,
• pseudonatural equivalences χg,h : Fg ◦ Fh → Fgh ,
• invertible modifications

ωg,h, f : χgh, f ◦ (χg,h⊗id Ff ) ⇒ χg,h f ◦ (id Fg⊗χh, f ),

for any g, h, f ∈ G, satisfying certain axioms. We also prove a coherence theorem
for group action, stating that there exists another equivalent action of G on B, such
that all pseudofunctors Fg involved in the group action are 2-functors, Fg ◦ Fh =
Fgh , and χg,h , ωg,h, f are all the identity. As an application of the coherent theorem
we prove that associated to every action of group G on a 2-category B there is
a braided G-crossed monoidal category ZG(B) such that the trivial component is
Z(B), the Drinfeld center of B.

An important example comes from the theory of tensor categories. We show
that, ifD = ⊕g∈GDg is a G-graded tensor category, andD1 = C, there is an action
of the group G acts on CMod , the 2-category of representations of C, and there is
a biequivalence

(CMod op)G 	 DMod.

The coherence theorem for group actions allows us to construct an associated strict
braided crossedmonoidal category and to prove that there is amonoidal equivalence
between the center Z(BG) of the equivariantization and the monoidal category of
pseudonatural transformations of the forgetful pseudofunctor � : BG → B. When
applied this result to the 2-category (CMod )G , we recover the results from [8], on
the center of graded tensor categories.

The contents of the paper are organized as follows. In Sect. 1 we recall the
basics of 2-categories. For any pseudofunctorH : B → B′ we define the monoidal
category Z(H) of pseudonatural transformations η : H → H. When H is the
identity pseudofunctor, Z(Id ) is a braided monoidal category called the center of
the 2-category.

In Sect. 2 we explicitly describe the notion of a group action on a 2-category.
Given two 2-categories B,B′ equipped with an action of a group G, we define
the notion of G-pseudofunctor between them. When a G-pseudofunctor is a
biequivalence, we say that B,B′ are G-biequivalent. Also, we define the notions
of G-pseudonatural transformation and G-modifications. All these data, turns
out to be a 2-category, denoted by 2CatG(B,B′). The equivariant 2-category is
BG = 2CatG(I,B), where I is the unit 2-category, where G acts trivially.
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In Sect. 3 we prove that any 2-category with a group action is G-biequivalent
to another one where the action is strict. Section 4 is devoted to explicitly describe
all ingredients in the equivariant 2-category BG .

In Sect. 5 we show an example coming from graded tensor categories. If D =
⊕g∈GDg is a G-graded tensor category, then the group G acts on the 2-category
D1Mod of left D1-modules. The resulting equivariant 2-category (D1Mod )G is
biequivalent to DMod . In Sect. 6 we define the G-braided center of a 2-category
with an action of a groupG. In Sect. 7, we show that there is amonoidal equivalence
Z(BG) 	 Z(�)G, where � : BG → B is the forgetful pseudofunctor. When
applied to the example (CMod )G , we recover results from [8].

1. 2-categories

Let us briefly recall the notion of a 2-category. For more details, the reader is
referred to [14,21]. For any 2-category B, the set of objects, also called 0-cells, will
be denoted by Obj(B). The composition in each hom-category B(A, B), that is, the
vertical composition of 2-cells, is denoted by juxtaposition f g, while the symbol
◦ is used to denote the horizontal composition functors

◦ : B(B,C) × B(A, B) → B(A,C).

The identity of a 0-cell A is written as IA : A → A. For any 1-cell X the identity
will be denoted id X or sometimes simply as 1X , when space saving is needed. For
any 2-category B, we shall denote by Bop the 2-category that is obtained from B
by reversing 1-cells.

Example 1.1. The unit 2-category I has a single 0-cell, named �. The monoidal
category I(�, �) is the unit monoidal category.

A pseudofunctor (F, α) : B → B′, consists of a function F : Obj(B) →
Obj(B′), a family of functors F : B(A, B) → B′(F(A), F(B)), for each A, B ∈
Obj(B), a collection of isomorphisms φA : IF(A) → F(IA), and a family of natural
isomorphisms

B(B,C) × B(A, B)

F×F
��

◦ ��

⇑α

B(A,C)

F
��

B′(F(B), F(C)) × B′(F(A), F(B))
◦ �� B′(F(A), F(C)),

for 0-cells A, B,C , subject to the usual axioms. A pseudofunctor is called unital
if F(IA) = IF(A), for any 0-cell A, and the isomorphisms φA are the identities.
A pseudofunctor is called a 2-functor if the associativity isomorphisms α are the
identities.
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If F ,G are pseudofunctors, apseudonatural transformation B ↓χ

F
��

G

��B′ consists

of a family of 1-cells χ0
A : F(A) → G(A), A ∈ Obj(B) and isomorphisms

F(A)
F(X) ��

χ0
A
��

F(B)

χ0
B

��
G(A)

G(X)
��

⇓χX

G(B)

natural in X ∈ B(A, B), subject to the usual axioms. If χ, θ are pseudonatural

transformations, a modification from B ↓χ

F
��

G

��B′ to B ↓θ

F
��

G

��B′ , consists of a

family of 2-cells ωA : χ0
A → θ0A, such that the diagrams

χ0
B ◦ F(X)

ωB◦idF(X)

��

χX �� G(X) ◦ χ0
A

idG(X) ◦ωA

��
θ0B ◦ F(X)

θX �� G(X) ◦ θ0A

commute for all X ∈ B(A, B). This modification will be denoted as ω : χ ⇒
θ . Given pseudofunctors F,G : B → B, we shall denote Pseu-Nat(F,G) the
category where objects are pseudonatural transformations from F to G and arrows
are modifications.

A 1-cell X ∈ B(A, B) is called an equivalence if there exists a 1-cell Y ∈
B(B, A) such that X ◦ Y ∼= IB and Y ◦ X ∼= IA. We will say that an invertible
1-cell X is an isomorphism if there is X∗ ∈ B(B, A) such that X ◦ X∗ = IB and
X∗ ◦ X = IA. The next result will be useful later to simplify some proofs.

Proposition 1.2. Every 2-category (or bicategory) is biequivalent to a 2-category
where every equivalence 1-cell is an isomorphism.

Proof. The proof goes along the lines of [9, Theorem 1.4]. Since every category
is equivalent to a skeletal one. Every bicategory B is biequivalent to a locally
skeletal one B′, that is, each of its hom-category is skeletal. Then in B′, every 1-cell
equivalence is an isomorphism. By Street’s Yoneda lemma for bicategories [22,
p.117 ], the Yoneda embedding

B′ → Bicat(B′,Cat) : A �→ B′op(A,−),

is locally an equivalence. Therefore,B′ is biequivalent toB′′; the full sub-2category
of Bicat(B′ op,Cat) determined by the contravariant representables. Since every
equivalence in B′ is an isomorphism, every equivalence in B′′ is an isomorphism
and B is biequivalent to B′′. ��
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1.1. The tricategory of 2-categories

Given a pair of 2-categories B and B′, we can define the functor 2-category,
2Cat(B,B′), whose 0-cells are pseudofunctors B → B′, whose 1-cells are pseudo-
natural transformations, and whose 2-cells are modifications. Given 2-categories
B,B′ and B′′, we define a pseudofunctor

⊗ : 2Cat(B′,B′′) × 2Cat(B,B′) → 2Cat(B,B′′),

called the tensor product. The tensor product at the level of pseudofunctors is the
composition. The tensor product of pseudonatural transformations is

( B′
G ��↓β

G ′
�� B′′ )( B

F ��↓α

F ′
�� B′ ) = ( B

GF
��

↓β⊗α

G ′F ′
�� B′′ )

, (1.1)

where

(β ⊗ α)A = βF ′(A) ◦ G(αA)

(β ⊗ α)X = (βF ′(X) ◦ idG(α0
A))(idβ0

F ′(B)
◦G(αX )).

Here, the isomorphisms constraints of the pseudofunctors have been omitted as a
space-saving measure. If β ′ : G → G ′ and α′ : F → F ′ are another pseudonatural
transformations and ω : β → β ′ and ω′ : α → α′ are modifications, their tensor
product is defined as ω ⊗ ω′ : β⊗α → β ′⊗α′, (ω ⊗ ω′)A := ωF ′(A) ◦ G(ω′

A), for
any 0-cell A.

If α : F → F ′ and β : H → H ′ are pseudonatural transformations between
pseudofunctors F, F ′ ∈ 2Cat(B′,B′′), H, H ′ ∈ 2Cat(B,B′), then there is a mod-
ification

F ′H
id F ′⊗β

���
��

��
��

��

FH ⇓cα,β

id H⊗β 		�
��

��
��

�

α⊗id H



���������
F ′H ′

FH ′
α⊗id H ′

�����������

given by
(cα,β)A := α−1

βA
: F ′(βA) ◦ αH(A) → αH ′(A) ◦ F(βA). (1.2)

This modification is called the comparison constraint.
The tensor product is associative only at the level of pseudofunctors, but not

for pseudonatural transformations. There exists an associativity constraint

K HG ⇓aα,β,γ

(α⊗β)⊗γ

��

α⊗(β⊗γ )



K ′H ′G ′
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for pseudonatural transformations α : K → K ′, β : H → H ′ and γ : G → G ′.
The modification

(aα,β,γ )A : αF ′H ′(A) ◦ G(βH ′(A)) ◦ GF(γA) → αF ′H ′(A) ◦ G(β ′
H (A) ◦ F(γA))

is defined by (aα,β,γ )A = idαF ′H ′(A)
◦G2(βH ′(A), F(γA)). It is easy to see that a

satisfies the pentagonal identity.

1.2. Finite tensor categories

A (strict) monoidal category is a 2-category with one single 0-cell. A finite tensor
category over k is a finite k-linear abelian rigid monoidal category C such that the
tensor product functor ⊗ : C × C → C is k-linear in each variable. The reader is
referred to [5].

Suppose C and D are strict tensor categories. A monoidal functor (F, ξ, φ) :
C → D is a pseudofunctor between the corresponding 2-categories. Explicitly, it
consists of a functor F : C → D, natural isomorphisms ξX,Y : F(X)⊗F(Y ) →
F(X⊗Y ), X,Y ∈ C, and isomorphism φ : 1 → F(1), satisfying certain axioms.
If (F, ξ, φ), (F ′, ξ ′, φ′) are monoidal functors , a natural monoidal transformation
θ : (F, ξ, φ) → (F ′, ξ ′, φ′) is a natural transformation θ : F → F ′, such that for
any pair of objects X,Y

θ1φ = φ′, θX⊗Y ξX,Y = ξ ′
X,Y (θX⊗θY ). (1.3)

1.3. The endomorphism category of a pseudofunctor

If B is a 2-category, the monoidal category

Z(B) = 2Cat(B,B)(Id B, Id B)

is exactly the center of B, i.e., the obvious generalization of the center construction
of a monoidal category. See [19].

Let B,B′ be two 2-categories and (H, α) : B → B′ be a unital pseudofunctor.
Denote Z(H) = 2Cat(B,B′)(H,H); the category of pseudonatural transforma-
tions of the pseudofunctor H. This is a monoidal category with tensor product
described in the previous section. Explicitly, objects in Z(H) are pairs (V, σ ),
where

V = {
VA ∈ B′(H(A),H(A))1-cells, for anyA ∈ B}

,

σ = {
σX : VB ◦ HA,B(X) → HA,B(X) ◦ VA

}
,

where, for any X ∈ B(A, B), σX is a natural isomorphism 2-cell such that

σIA = id VA , (αX,Y ◦ id VA )σX◦Y = (idH(X) ◦ σY )(σX ◦ idH(Y ))(id VB ◦ αX,Y ),

(1.4)
for any 0-cells A, B,C ∈ B, and any pair of 1-cells X ∈ B(C, B), Y ∈ B(A,C).
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If (V, σ ), (W, τ ) are two objects in Z(H), a morphism f : (V, σ ) → (W, τ )

in Z(H) is a collection of 2-cells f A : VA ⇒ WA, A ∈ B such that

(idH(X) ◦ f A)σX = τX ( fB ◦ idH(X)), (1.5)

for any 1-cell X ∈ B(A, B). The category Z(H) has a monoidal product defined
as follows. Let (V, σ ), (W, τ ) ∈ Z(H) be two objects. Then (V, σ )⊗(W, τ ) =
(V⊗W, σ⊗τ), where for any 0-cells A, B ∈ B, and X ∈ B(A, B)

(V⊗W )A = VA ◦ WA, (σ⊗τ)X = (σX ◦ id WA )(id VB ◦ τX ). (1.6)

If (V, σ ), (V ′, σ ′), (W, τ ), (W ′, τ ′) ∈ Z(H) are objects, and f : (V, σ ) →
(V ′, σ ′), f ′ : (W, τ ), (W ′, τ ′) are morphisms in Z(H), then f ⊗ f ′ : (V, σ )⊗
(V ′, σ ′) → (W, τ )⊗(W ′, τ ′) is defined by

( f ⊗ f ′)A = f A ◦ f ′
A,

for any 0-cell A. The unit (1, ι) ∈ Z(H) is the object

1A = IA, ιX = id X ,

for any 0-cells A, B and any 1-cell X ∈ B(A, B).The centerZ(Id B) of the identity
pseudofunctor Id B : B → B is denoted asZ(B), and it coincideswith the definition
presented in [19].

2. Group actions on 2-categories

Assume G is a group and B is a 2-category. We shall denote by G the 2-category
that has 0-cells the elements of the group G. For any pair g, h ∈ G

G(g, h) =
{

the unit category, if g = h
∅ if g �= h.

Moreover,G is a monoidal 2-category, see [9]. Since 2Cat(B,B) is also amonoidal
2-category, we define an action of G on B as a weak monoidal homomorphism
(F , χ, ω, ι, κ, ζ ) : G → 2Cat(B,B). See for example [9].

Explicitly, an action of G on a 2-category B consists of the following data:

• A family of pseudofunctors Fg : B → B, g ∈ G,
• pseudonatural equivalences (χg,h, χ

0
g,h) : Fg ◦ Fh → Fgh , g, h ∈ G,

• a pseudonatural equivalence ι : Id B → F1,
• for any g, h, f ∈ G invertible modifications

ωg,h, f : χgh, f ◦ (χg,h⊗id Ff ) ⇒ χg,h f ◦ (id Fg⊗χh, f ),

κg : χ1,g ◦ (ι⊗id Fg ) ⇒ id Fg , ζg : χg,1 ◦ (id Fg⊗ι) ⇒ id Fg ,
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such that for any 0-cell A

1(χ0
g, f )A

◦ Fg(κ f )A(ωg,1, f )A = 1(χ0
g, f )A

◦ (ζg)Ff (A), (2.1)
(
id 3 ◦ (Fg(ωh, f,k)A)

)(
ωg,h f,k ◦ id 2

)(
id (χ0

gh f,k )A
◦ (ωg,h, f )Fk(A)

) =
= (

(ωg,h, f k)A ◦ id 4)
)(
id 5 ◦ (χg,h)χ0

f,k

)(
(ωgh, f,k)A ◦ id 6

)
, (2.2)

for any g, h, f, k ∈ G. Where,

id 2 = 1Fg(χ0
h, f )Fk (A)

, id 3 = 1(χ0
g,h f k )A

, id 4 = 1FgF f (χ
0
h,k )A

,

id 5 = 1(χ0
gh, f k )A

, id 6 = 1(χ0
g,h)F f Fk (A)

.

In Eq. (2.2), we are omitting the associativity isomorphisms of the pseudofunctors
Fg . In the following diagrams we shall denote by g the pseudofunctor Fg , the
composition of functors as juxtaposition and the tensor product of pseudonatural
transformations also by juxtaposition. Diagrammatically, we have modifications

g h f

1g⊗χh, f

��

χg,h⊗1 f �� gh f

χgh, f

��
g h f

χg,h f
�� gh f ,

⇓ωg,h, f

such that the next diagrams are equal for all g, h, f, k ∈ G,

gh f k
χgh, f ⊗1k ��

⇓ωg,h, f ⊗1k

gh f k

χgh f,k

		�
��

��
��

��
��

�

g h f k

χg,h⊗1 f ⊗1k

��������������

1g⊗1h⊗χ f,k
���

��
��

��
��

��
�

1g⊗χh, f ⊗1k �� g h f k

χg,h f ⊗1k

��������������

1g⊗χh f,k

���
��

��
��

��
��

� gh f k⇓ωg,h f,k

g h f k

⇓1g⊗ωh, f,k

1g⊗χh, f k

�� g h f k

χg,h f k



������������

(2.3)

=
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gh f k

1gh⊗χ f,k

���
��

��
��

��
��

�

χgh, f ⊗1k �� gh f k

χgh f,k

		�
��

��
��

��
��

�

⇓ωgh, f,k

g h f k

χg,h⊗1 f ⊗1k

��������������

1g⊗1h⊗χ f,k
���

��
��

��
��

��
�

⇓cχg,h ,χ f,k gh f k
χgh, f k

�� gh f k

g h f k

χg,h⊗1 f k

��������������

1g⊗χh, f k

�� g h f k

χg,h f k



������������

⇓ωg,h, f k

We say that a group G acts trivially on B if the weak monoidal homomorphism
(F , χ, ω, ι, κ, ζ ) : G → 2Cat(B,B) is the trivial one. This means that for any
g, h ∈ G, the pseudofunctors Fg are the identity,χg,h are the identity pseudonatural
transformations and all the modifications are identities.

Remark 2.1. A definition of action over a topological group was given in [13]. S

Definition 2.2. An action (F , χ, ω, ι, κ, ζ ) : G → 2Cat(B,B) is called unital if
Fg is a unital pseudofunctor, F1 = Id B, and χg,1 = id Fg = χ1,g , κg = id = ζg
for any g ∈ G. A unital G-action will be denoted simply by (F , χ, ω).

Definition 2.3. An action (F , χ, ω, ι, κ, ζ ) : G → 2Cat(B,B) is called strict if
each pseudofunctor Fg is a 2-functor, and Fg ◦ Fh = Fgh , and the pseudonatural
transformationsχg,h and themodificationsωg,h, f are the identities for any g, h, f ∈
G.

A similar argument as in [7, Proposition 3.1] applied in this case, allows us
to consider only unital actions. Assume that B,B′ are 2-categories equipped with
unital actions of a group G via

(F , χ, ω) : G → 2Cat(B,B), (F̃, χ̃ , ω̃) : G → 2Cat(B̃, B̃).

Definition 2.4. A G-pseudofunctor between B and B̃ is a triple (H, γ,�), where

• H : B → B̃ is a unital pseudofunctor,
• for any g ∈ G, pseudonatural equivalences γg : H ◦ Fg → F̃g ◦ H,

• invertible modifications

f̃Hg
1 f̃ ⊗γg

�� f̃ g̃H
χ̃ f,g⊗1H

		�
��

��
��

�

H f g

γ f ⊗1g
����������

1H⊗χ f,g
�����

���
���

���
���

�� f̃ gH

H f g

γ f g

��																	

⇓� f,g
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such that for all f, g, h ∈ G

γ1 = idH, �g,1 = id γg = �1,g, (2.4)

f̃ g̃Hh
1 f̃ 1g̃γh

��



















⇓1 f̃ ⊗�g,hf̃Hgh

1 f̃ γg1h
����������������

1 f̃Hχg,h

����
���

� f̃ g̃h̃H
1 f̃ χ̃g,h1H

��






 χ̃ f,g1h̃H

����
���

�

H f gh cγ f ,χg,h

γ f 1g h
��







1H f χg,h ����
���

� f̃Hgh
1 f̃ γgh �� f̃ g̃hH

˜χ f,gh1H
���

��
��

f̃ gh̃H

χ̃ f g,h1H
����
��
�

H f gh
γ f 1gh

��







χ f,gh ��



















f̃ ghH

ω̃ f,g,h⇐

H f gh
γ f gh

����������������

⇓� f,gh

(2.5)

=

f̃ g̃Hh

χ̃ f,g1Hh

���
��

��
��

��
��

� 1 f̃ 1g̃γh

��


















f̃Hgh ⇓� f,g⊗1h

1 f̃ γg1h
����������������

f̃ g̃h̃H
χ̃ f,g1h̃H

����
���

�
cχ̃ f,g ,γh

H f gh
1Hχ f,g1h ��

γ f 1gh ��







1H f χg,h ����
���

� H f g h
γ f g1h ��

1Hχ f g,h

���
��

��
��

��
��

� f̃ gHh

⇓� f g,h

1 f̃ gγh �� f̃ gh̃H

χ̃ f g,h1H
����
��
�

H f gh

1H⊗ω f,g,h⇐

1Hχ f,gh ��



















f̃ ghH

H f gh
γ f gh

����������������

holds in 2Cat(B,B). In the abovediagrams,weare using the comparison constraints
c defined in (1.2).

Remark 2.5. A more general definition of G-functor, in the case G is a topological
group, was given in [12].

Definition 2.6. Assume that (H, γ,�), (H′, γ ′,�′) are G-pseudofunctors. A G-
pseudonatural transformation is a pair (θ, {θg}g∈G), where θ : H → H′ is a
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pseudonatural transformation, and θg are invertible modifications

Hg
γg ��

θ⊗1g

��

g̃H

1g̃⊗θ

��
H′g

γ ′
g �� g̃H′

⇓θg

such that for all g, f ∈ G, the equation

Hg f

⇓θg1 f

γg1 f ��

θ1g1 f
��

g̃H f

⇓1g̃θ f1g̃θ1 f
��

1g̃γ f �� g̃ f̃H
⇓cθ,χ̃g, f1g̃1 f̃ θ

��

χ̃g, f 1H �� g̃ fH
1g̃ f θ
��

H′g f

1H′χg, f ��

γ ′
g1 f

�� g̃H′ f
1g̃γ ′

f �� g̃ f̃H′
χ̃g, f 1H′

�� g̃ fH′

H′g f
γ ′
g f

��
⇓�′

g, f

=

Hg f

θ1g1 f
�� 1Hχg, f ��

γg1 f

�� g̃H f
1g̃γ f �� g̃ f̃H′

χ̃g, f 1H
�� g̃ fH

1g̃ f θ
��

H′g f ⇓c−1
θ,χg, f

1H′χg, f ��

Hg f

θ1g f
��

γg f

��
⇓�g, f

g̃ fH′
⇓θg f

H′g f
γ ′
g f

��

holds in 2Cat(B,B).

Definition 2.7. Assume that (θ, {θg}g∈G), (σ, {σg}g∈G) : (H, γ,�) → (H̃, γ̃ , �̃)

are G-pseudonatural transformations. A G-modification α : (θ, {θg}g∈G) ⇒
(σ, {σg}g∈G) is a modification α : θ ⇒ σ such that

Hg
γg ��

α⊗1g⇐σ⊗1g

��

θ⊗1g

��

g̃H
1g̃θg

��
H′g

γ ′
g

�� g̃H′

⇓θg

=
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Hg
γg ��

σg⊗1g

�� ⇓σg

g̃H
1g̃⊗α⇐1g̃⊗σ

��

1g̃⊗θ

��H′g
γ ′
g

�� g̃H′

Assume that (H1, γ 1,�1), (H2, γ 2,�2), (H3, γ 3,�3) areG-pseudofunctors,
and (θ, {θg}g∈G) : (H1, γ 1,�1) → (H2, γ 2,�2), (σ, {σg}g∈G) : (H2, γ 2,�2) →
(H3, γ 3,�3) are G-pseudonatural transformations. The composition

(σ, {σg}g∈G) ◦ (θ, {θg}g∈G) = (ρ, {ρg}g∈G)

is defined as follows. The pseudonatural transformation ρ = σ ◦ θ . For any 0-cell
A ∈ B and any g ∈ G

(ρg)A = (
(σg)A ◦ id θ0Fg (A)

)(
id F̃g(σ 0

A) ◦ (θg)A)
)
.

Here, we are also ommiting the associativity constraints of the pseudofunctor Fg .
The composition ofmodifications ofG-categories is the usual composition ofmodi-
fications.

Definition 2.8. 2CatG(B, B̃) is the 2-category in which 0-cells are pseudofunctors
of G-categories, 1-cells are pseudonatural transformations of G-categories and 2-
cells are modifications of G-categories.

The next result is a consequence of [9, Corollary 8.3].

Proposition 2.9. 2CatG(B, B̃) is a 2-category. ��
Definition 2.10. We say that the 2-categories B and B̃ are G-biequivalent if there
exists a G-pseudofunctor H : B → B̃ that is also a biequivalence.

Lemma 2.11. (Transport of structure). Let B be a 2-category with an action of G
given by (F , χ, ω). Let H : B → B′ be a biequivalence,

Lg : B′ → B′, γg : H ◦ Fg → Lg ◦ H
a G-indexed family of pseudofunctors and pseudonatural equivalences, respec-
tively. Then, there is a way to endowed B′ with a G-action (L , χ ′, ω′) such that
(H, γ,�) : B → B′ is a G-biequivalence .

Proof. Since γg and χ f,g are psedonatural equivalences, we can simultaneously
provide the datum � f,g and the pseudonatural equivalences χ ′

f,g : L f ◦ Lg →
L f g , f, g ∈ G. Now, axiom 2.5 uniquely determines the modifications ω′

f,g,h .
Axiom 2.3 follows from the corresponding axioms of G-action via (F , χ, ω). The
pseudofunctor (H, γ,�) : B → B′ is a G-biequivalence by construction. ��
Corollary 2.12. Every 2-category with a G-action is G-biequivalent to a 2-
category where G acts by 2-functors, that is, all Fg are 2-functors.
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Proof. By the coherence of theorem for pseudofunctor, see [11, Section 2.3], every
bicategory B is biequivalent to a 2-category st(B) such that every pseudo-functor
F : st(B) → st(B) is pseudo-natural equivalent to a 2-functor. Then applying
Lemma 2.11 we can transport the action of B to a G-biequivalent action on st(B)

where G acts by 2-functors. ��

3. Coherence for group actions on 2-categories

The main result of this section is to prove the following coherence theorem for a
group action on a 2-category.

Theorem 3.1. (Coherence for group actions on 2-categories). Let G be a group.
Every 2-category with an action of G is G-biequivalent to a 2-category with a strict
action of G. ��

Assume B is a 2-category equipped with a unital action of G, (F , χ, ω) : G →
2Cat(B,B). By Corollary 2.12 we can assume that Fg is a 2-functor for any g ∈ G.
We shall first construct a 2-category B[G] with a strict action of G.

Objects of B[G] are triples (A, θ, α), where A = {Ag}g is a G-indexed family
of objects, θ = {θg,h : Fg(Ah) → Agh}g,h∈G is a G × G-indexed family of 1-cell
equivalences and

FgFh(A f )

Fg(θh, f )

��

(χ0
g,h)A f �� Fgh(A f )

θgh, f

��
Fg(Ah f )

θg,h f

�� Agh f ,

⇓αg,h, f

a G × G × G-index family of isomorphism 2-cells, such

θ1,g = IAg , α1,h, f = id, αg,1, f = id

that for all g, h, f, k, and equation

gh f Ak

χ0
gh, f ��

⇓ωg,h, f

gh f Ak

θgh f,k

���
��

��
��

��
��

��

g h f Ak

χ0
g,h⊗1 f

���������������

1g⊗1h⊗θ f,k
���

��
��

��
��

��
��

1g⊗χ0
h, f �� g h f Ak

χ0
g,h f

���������������

1g⊗θh f,k

���
��

��
��

��
��

��
Agh f k⇓αg,h f,k

g h A f k

⇓1g⊗αh, f,k

1g⊗θh, f k

�� g Ah f k

θg,h f k

���������������

(3.1)
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gh f Ak

1gh⊗θ f,k

���
��

��
��

��
��

��

χ0
gh, f �� gh f Ak

θgh f,k

���
��

��
��

��
��

��

⇓αgh, f,k

g h f Ak

χ0
g,h⊗1 f

���������������

1g⊗1h⊗θ f,k
���

��
��

��
��

��
��

⇓(χg,h)θ f,k gh A f k
θgh, f k

�� Agh f k

g h A f k

χ0
g,h

��������������

1g⊗θh, f k

�� g Ah f k

θg,h f k

���������������

⇓αg,h, f k

holds in B(Fg(Fh(Ff (Ak)), Agh f k). If (A, θ, α) is a 0-cell, the identity 1-cell
I(A,θ,α) is defined as follows. I(A,θ,α) = (IAg , l), where lg,h = id θg,h , for any
g, h ∈ G.

If (A, θ, α) and (B, ρ, β) are objects in B[G], a 1-cell is a pair (X, l), where
X = {Xg : Ag → Bg} is a G-indexed family of 1-cells and

Fg(Ah)

θg,h

��

Fg(Xh) �� Fg(Bh)

ρg,h

��
Agh Xgh

�� Bgh,

⇓lg,h

is a G × G-indexed family of isomorphism 2-cells, such that for all f, g, h ∈ G,
l1,g = idXg and equation

f g(Ah)

f (θg,h)

��

f g(Xh) �� f g(Bh)

f ρg,h)

��

χ0
f,g �� f g(Bh)

ρ f g,h

��
f (Agh)

θ f,gh
����

���
���

���
���

�� f (Xgh)

�� f (Bgh)

⇓l f,gh

⇓ f (lg,h)

ρ f,gh
�� B f gh

⇓β f,g,h

A f gh

X f gh

�������������������

(3.2)

=
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f g(Ah)

f (θg,h)

�� χ0
f,g ����

���
���

���
���

�
f g(Xh) �� f g(Bh)

⇓(χ f,g)Xh

χ0
f,g �� f g(Bh)

ρ f g,h

��f (Agh)

θ f,gh
����

���
���

���
���

��
⇓α f,g,h f g(Ah)

f g(Xh)

�����������������

θ f g,h

��

⇓l f g,h

A f gh

X f gh

���������������������

holds in B(Ff (Fg(Ah)), B f gh). If (X, l), (Y, s) are 1-cells, a 2-cell m : (X, l) ⇒
(Y, s) is a G-indexed family of 2-cells m = {mg : Xg → Yg} such that for all
g, f ∈ G, equation

Fg(Ah)

θg,h

��

Fg(Xh)

��
Fg(Bh)

ρg,h

��

⇓lg,h

Agh

Xgh
��

Ygh

��
Bgh⇓mgh

(3.3)

=

Fg(Ah) ⇓Fg(mh)

θg,h

��

Fg(Xh)

��

Fg(Yh)
��
Fg(Bh)

ρg,h

��
Agh

Ygh

��
Bgh⇓sg,h

holds in B(Fg(Ah), Bgh).
The (vertical) composition in each category B[G]((A, θ, α), (B, ρ, β)) is

defined pointwise.
Now, let us define the horizontal composition ◦ : B[G]((A, θ, α), (B, ρ, β))×

B[G]((C, κ, γ ), (A, θ, α)) → B[G]((C, κ, γ ), (B, ρ, β)). If (A, θ, α) and (B, ρ, β)

are 0-cells, and

(X, l) ∈ B[G]((A, θ, α), (B, ρ, β)), (Y, s) ∈ B[G]((C, κ, γ ), (A, θ, α))
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are 1-cells, define

(X, l) ◦ (Y, s) = (Z , t),

where Zg = Xg ◦ Yg , and tg,h = (
1Xgh ◦ sg,h

)(
lg,h ◦ 1Fg(Yh)

)
, for any g, h ∈ G.

The horizontal composition of 2-cells in B[G] is just the horizontal composition of
2-cells in B.
Lemma 3.2. B[G] is a 2-category endowed with a strict action of G.

Proof. The proof that B[G] is indeed a 2-category follows by a straightforward
calculation. Let us define now a canonical strict action of G on the 2-category
B[G]. For any g ∈ G define the 2-functors Lg : B[G] → B[G] as follows. If
(A, θ, α) is a 0-cell, g, x ∈ G, then

Lg(A)x = Axg, Lg(θ)x,y = θx,yg, Lg(α)x,y,z = αx,y,zg.

If (X, l) : (A, θ, α) → (B, ρ, β) is a 1-cell,

Lg(X)x = Xxg, Lg(l)x,y = lxyg.

If m : (X, l) ⇒ (Y, s) is a 2-cell, then Lg(m)x = mxg , for any x ∈ G. Since the
Lg are 2-functors such that Lg ◦ Lh = Lgh for all g, h ∈ G and Le = IdB[G], L
defines a strict action of G on B[G]. ��

There is a pseudofunctor H : B → B[G] defined as follows. If A is a 0-cell in
B, then

H(A) = ({Fg(A)}, (χ0
g,h)A, ωg,h, f ) f,g,h∈G ,

if X : A → B is a 1-cell, then H(X) = (Fg(X), (χg,h)X ) and for 2-cells m :
X → Y , H(m)g = Fg(m), where f, g, h ∈ G. The fact that ω are modifications
implies that H(X) is indeed a 1-cell in B[G]. The following proposition implies
immediately Theorem 3.1

Proposition 3.3. H : B → B[G] is a G-biequivalence.

Proof. If (A, θ, α) is an object in B[G], then the 1-equivalences θg,e : H(Ae)g →
Ag and the 2-cells

FgH(Ae)h

Fg(θh,e)

��

χ0
g,h �� H(Ae)gh

θgh,e

��
Fg(Ah)

θ0g,h

�� Agh f ,

⇓αg,h,e

defines a 1-equivalence from H(A1) to A, that is,H is bi-essentially surjective.
Let A and B be objects in B, and (X, l) : H(A) → H(B) be a 1-cell in B[G].

The invertible 2-cells lg,1 : H(X1)g → Xg define an invertible 2-cell fromH(X1)

to X . Then H is locally essentially surjective.
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If X,Y,∈ B(A, B) and f, f ′ : X → Y such that H( f ) = H( f ′). Thus,
H( f )1 = H( f ′)1, but since we are considering a unital action, f = H( f )1 =
H( f ′)1 = f ′, that is,H is locally faithful. Suppose w : H(X) → H(Y ) is a 2-cell
in B[G], condition (3.3) implies that wg = Fg(m1), then w = H(w1). Since,H is
bi-essentially surjective and locally fully faithful,H is a biequivalence.

To see that H has a canonical structure of G-pseudofunctor, we note that

(H ◦ Fg)x = Fx ◦ Fg, (Lg ◦ H)x = Fxg,

for any x, g ∈ G. Then, using the pseudonatural transformations χx,g : Fx ◦ Fg →
Fxg , we define a pseusonatural transformation

γg : H ◦ Fg → Lg ◦ H,

as follows. For any 0-cell A ∈ Obj (B) we have to define an equivalence 1-cell
γ 0
A : H◦Fg(A) → Lg◦H(A) inB[G]. Set γ 0

A = (X, l), where, for any x, f, h ∈ G

Xx = (χ0
x,g)A, l f,h = (ω−1

f,h,g)A.

Axiom (2.3) implies that morphisms l f,h fulfill condition (3.2). Thus, γ 0
A is indeed

a 1-cell in B[G]. To complete the definition of of the pseudonatural equivalence
γg , we have to define, 2-cells in B[G]

(γg)X : γ 0
B ◦ HFg(X) → LgH(X) ◦ γ 0

A,

for any 1-cell X ∈ B(A, B). Set
(
(γg)X

)
x = (χx,g)X , for any x ∈ G. The fact

that ω are modifications, imply that 2-cells
(
(γg)X

)
x satisfy (3.3). To define the

modifications

L fHFg
1L f ⊗γg

�� L f LgH
id

����
��

��
��

�

HFf Fg

γ f ⊗1Fg
�����������

1H⊗χ f,g
�����

����
����

����
����

L f gH

HFf g

γ f g

���������������������

⇓� f,g

we note that

[(1L f ⊗γg ) ◦ (γ f ⊗ 1Fg )]x = χx f,g ◦ (χx, f ⊗ 1Fg ), x, f, g ∈ G,

and

[(1H ⊗ χ f,g) ◦ (γ f g)]x = χx, f g ◦ (1Fx ⊗ χ f,g), x, f, g ∈ G.

Then we define (� f,g)x = ωx, f,g for all x, g, f ∈ G.
Sinceωx, f,g aremodifications,�g,h turns out to bemodifications for any g, h ∈

G. Condition described in diagram (2.5) is exactly diagram (2.3). ��
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4. The equivariant 2-category

Let G be a group. Denote by I the unit 2-category endowed with the trivial action
of G, and assume that B is a 2-category with an action of G.

Definition 4.1. The equivariant 2-category is BG = 2CatG(I,B). 0-cells, 1-cells
and 2-cells inBG will be called equivariant 0-cells, 1-cells and 2-cells, respectively.

Proposition 4.2. Assume B and B̃ are G-biequivalent. Then the 2-categories BG,
B̃G are biequivalent.

Proof. Straightforward. ��
Lemma 4.3. There exists a forgetfull 2-functor � : BG → B. ��

Proof. If (H,�, γ ) is an equivariant 0-cell in BG , then �(H,�, γ ) = H(�).
If (θ, {θg}g∈G) is an equivariant 1-cell, then �(θ, {θg}g∈G) = θ . On 2-cells the
functor � is the identity. ��

4.1. Unpacking definition of equivariantization

We shall explicitly describe the 2-category BG . This would allows us to show
concrete examples and obtain some results in Sect. 7.

We shall assume that there is a unital action of G on the 2-category B such that
all pseudofunctors Fg are 2-functors. This is possible using Corollary 2.12. The
2-category BG has 0-cells triples (A, {Ug}g∈G, {�g,h}g,h∈G), where

• A is a 0-cell in B;
• Ug are invertible 1-cells in B(A, Fg(A));
• �g,h : (χ0

g,h)A ◦ Fg(Uh) ◦Ug → Ugh are isomorphisms 2-cells in the category
B(A, Fgh(A)) such that

U1 = IA, �g,1 = id Ug = �1,g,

� f,gh
(
id (χ0

f,gh)A
◦ Ff (�g,h) ◦ id U f

)(
(ω f,g,h)A ◦ id Ff Fg(Uh)Ff (Ug)U f

)

= � f g,h
(
id (χ0

f g,h)AF f g(Uh)
◦ � f,g

)(
id (χ0

f g,h)A
◦ (χ f,g)Uh ◦ id Ff (Ug)U f

)
(4.1)

for all g, h, f ∈ G. For short, the collection (A, {Ug}g∈G , {�g,h}g,h∈G) will be
denoted simply as (A,U,�).

Given two equivariant 0-cells (A,U,�), ( Ã, Ũ , �̃), an equivariant 1-cell is a
pair (θ, {θg}g∈G) ∈ BG((A,U,�), ( Ã, Ũ , �̃)) where

• θ : B(A, Ã) is a 1-cell,
• and for any g ∈ G, θg : Fg(θ) ◦ Ug ⇒ Ũg ◦ θ , are invertible 2-cells such that

θ1 = id θ , and such that for any g, f ∈ G
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(
�̃g, f ◦ id θ

)(
id (χ0

g, f )AFg(Ũ f )
◦ θg

)(
id (χ0

g, f )A
◦ Fg(θ f ) ◦ id Ug

)

= θg f
(
id Fg f (θ) ◦ �g, f

)(
(χg, f )θ ◦ id Fg(U f )Ug

)
. (4.2)

If (θ, {θg}g∈G), (σ, {σg}g∈G) : (A,U, μ) → ( Ã, Ũ , μ̃) are equivariant 1-cells, an
equivariant 2-cell α : (θ, {θg}g∈G) → (σ, {σg}g∈G) is a 2-cell α : θ → σ such
that for all g ∈ G

(id Ũg
◦ α)θg = σg(Fg(α) ◦ id Ug ). (4.3)

Suppose that (A,U, μ), ( Ã, Ũ , μ̃), (A′,U ′, μ′) are equivariant 0-cells, and

(θ, θg) : (A′,U ′, μ′) → ( Ã, Ũ , μ̃), (σ, σg) : (A,U, μ) → (A′,U ′, μ′)

are equivariant 1-cells, then the composition (θ, θg) ◦ (σ, σg) : (A,U, μ) →
( Ã, Ũ , μ̃) is defined as (θ, θg) ◦ (σ, σg) = (θ ◦ σ, (θ ◦ σ)g), where for any g ∈ G

(θ ◦ σ)g = (θg ◦ id σ )(id Fg(θ) ◦ σg). (4.4)

5. Group actions from graded tensor categories

Starting with a G-graded tensor category ⊕g∈GCg , we shall construct a G-action
on the 2-category of C1-representations.

5.1. Group actions on tensor categories

Let G be a finite group and C be a finite tensor category. An action of G on C
consists of the following data:

• tensor autoequivalences (g∗, ξ g) : C → C for any g ∈ G,
• a natural isomorphism ζ : Id C → (1)∗,
• and monoidal natural isomorphisms νg,h : g∗ ◦ h∗ → (gh)∗,

such that for all X ∈ C, g, h, f ∈ G

(νgh, f )X (νg,h) f∗(X) = (νg,h f )X g∗((νh, f )X ), (5.1)

(νg,1)X g∗(ζX ) = id X = (ν1,g)Xζg∗(X). (5.2)

For simplicity, we shall assumed that (1)∗ = Id C , ζ = id and μg,1 = id = ν1,g
for all g ∈ G.

If a finite group G acts on a finite tensor category C, there is associated a new
finite tensor category CG called the equivariantization of C byG. An object in CG is
a pair (X, s), where X ∈ C is an object togetherwith isomorphisms sg : g∗(X) → X
satisfying

s1 = id X , sgh ◦ (νg,h)X = sg ◦ g∗(sh), (5.3)

for all g, h ∈ G. A G-equivariant morphism f : (V, s) → (W, t) between G-
equivariant objects (V, s) and (W, t), is a morphism f : V → W in C such that
f ◦ sg = tg ◦ g∗( f ) for all g ∈ G. The category CG has a monoidal product as
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follows. If (V, s), (W, t) ∈ CG , then (V, s)⊗(W, t) = (V⊗W, r), where for any
g ∈ G

rg = (sg⊗tg)(ξ
g
V,W )−1.

For more details we refer the reader to [1–3].
There is also associated the graded tensor category C[G], with underlying

abelian category C[G] = ⊕g∈GCg , where Cg = C for any g ∈ G. If X ∈ C is
an object, the object in Cg is denoted by [X, g]. The tensor product is

[X, g]⊗[Y, h] = [X⊗g∗(Y ), gh], X,Y ∈ C, g, h ∈ G.

The reader is refered to [24] for the complete monoidal structure of this tensor
category.

5.2. Representations of tensor categories

AleftC-module category over a tensor categoryC is a finitek-linear abelian category
M equipped with

• a k-bilinear bi-exact bifunctor ⊗ : C × M → M;
• natural associativity and unit isomorphisms mX,Y,M : (X ⊗ Y )⊗M →

X⊗(Y⊗M), �M : 1⊗M → M , such that

mX,Y,Z⊗M mX⊗Y,Z ,M = (id X⊗mY,Z ,M ) mX,Y⊗Z ,M (aX,Y,Z⊗id M ),

(5.4)

(id X⊗lM )mX,1,M = id X⊗M . (5.5)

Amodule functor between module categoriesM andN over a tensor category
C is a pair (F, c), where

• F : M → N is a left exact functor;
• natural isomorphism: cX,M : F(X⊗M) → X⊗F(M), X ∈ C, M ∈ M, such
that for any X,Y ∈ C, M ∈ M:

(id X⊗cY,M )cX,Y⊗MF(mX,Y,M ) = mX,Y,F(M) cX⊗Y,M (5.6)

�F(M) c1,M = F(�M ). (5.7)

LetM andN be C-module categories.We denote by FunC(M,N ) the category
whose objects are module functors (F, c) from M to N . A morphism between
(F, c) and (G, d) ∈ FunC(M,N ) is a natural transformation α : F → G such
that for any X ∈ C, M ∈ M:

dX,MαX⊗M = (id X⊗αM )cX,M . (5.8)

We shall also say that α : F → G is a C-module transformation.
Let (F, ξ, φ) : C → C be a tensor functor and let (M,⊗,m) be a C-module

category. We shall denote by MF the C-module category with the same under-
lying abelian category M and action, associativity and unit morphisms defined,
respectively, by

X⊗FM = F(X)⊗M,
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mF
X,Y,M = mF(X),F(Y ),M (ξ−1

X,Y⊗ id M ), l FM = lM (φ⊗id M ),

for all X,Y ∈ C, M ∈ M. Right C-module and C-bimodule categories are defined
in a similar way. For the complete definition see [10].

A C-module category M is exact [5] if, for any projective object P ∈ C, the
object P⊗M is projective inM for all M ∈ M. IfM is a left C-module thenMop

is the right C-module over the opposite Abelian category with action

Mop × C → Mop, (M, X) �→ X∗⊗M, (5.9)

associativity isomorphisms mop
M,X,Y = mY ∗,X∗,M for all X,Y ∈ C, M ∈ M. Anal-

ogously, ifM is a right C-module category, thenMop is a left C-module category.
IfM is a C-bimodule category, we denoteM the opposite Abelian category, with
left and right C-module structure given as in (5.9).

5.3. 2-categories of representations of tensor categories

Suppouse that C is a tensor category. The 2-category CMod has as 0-cells,
left C-module categories, if M,N are C-module categories, then the category
CMod(M,N ) = FunC(M,N ). Analogously we define the 2-category Mod C of
right C-module categories.

If C is a finite tensor category, the 2-category CMode of exact left C-module
categories is defined in a similar way as CMod, with 0-cells being exact left C-
module categories. It is known that CMode is 2-equivalent to DMod e if and only
if C is Morita equivalent to D.

5.4. G-Graded tensor categories

Let G be a finite group. A (faithful) G-grading on a finite tensor category D is a
decomposition D = ⊕g∈GCg , where Cg are full abelian subcategories of D such
that

• Cg �= 0;
• ⊗ : Cg × Ch → Cgh for all g, h ∈ G.

In this case C = C1 is a tensor subcategory ofD and each Cg is an exact C-bimodule
category. We shall assume that Cg �= 0 for any g ∈ G. The tensor category D is
called a G-graded extension of C.

In [4] Etingof, Nikshych, and Ostrik studied fusion categories graded by a finite
group. They reduce the classification problemof fusion categories graded by a group
G to the classification (up to homotopy) of maps from BG to BPic(C), the clas-

sifying spaces of the monoidal bicategory where objects are invertible bimodules,
1-arrows are bimodule equivalences and 2-arrows are bimodule natural isomor-
phisms, see [4] for details. Since tricategories are algebraic models of homotopy
3-types, extension of a fusion categories are classified by monoidal pseudofunctors
from G to Pic(C), where G is the discrete monoidal 2-category with objects G, see



102 E. Bernaschini et al.

[4, Section 8]. Now, since the monoidal bicategory Pic(C) can be interpreted as the

monoidal bicategory of biequivalences of Mod C , then it is natural to expect that
every G-extension of C induces an action of G on Mod C .

In this section, we explicitly present the action associated with a G-extension
of any finite tensor category as well as some consequence of this fact.

IfM is a left C-module category, X ∈ Cg , M ∈ M, the functor GX,M : Cg →
M defined by

GX,M (Y ) = (∗Y⊗X)⊗M,

for any Y ∈ Cg , is a C-module functor. Moreover, the functor

� : Cg �C M → FunC(Cg,M), �(X � M) = GX,M ,

is an equivalence of C-module categories.This is a particular case of [10, Thm.
3.20].

5.5. The relative center of a bimodule category

The next definition appeared in [8].

Definition 5.1. Let C be a tensor category and M a C-bimodule category. The
relative center ofM is the categoryZC(M) of C-bimodule functors from C toM.

Explicitly, objects of ZC(M) are pairs (M, γ ), where M is an objects of M
and

γ = {γX : X⊗M
∼−→ M⊗X}X∈C

is a natural family of isomorphisms such that

γX ◦ α−1
X,M,Y ◦ γY = α−1

M,X,Y ◦ γX⊗Y ◦ α−1
X,Y,M , (5.10)

where αX,M,Y : (X⊗M)⊗Y
∼−→ X⊗(M⊗Y ) are the associativity constraints

inM.

Let D = ⊕g∈GCg be a G-graded tensor category, with C = C1. The inclusion
functor C ↪→ D induces the forgetful pseudofunctor H : DMod → CMod .

Proposition 5.2. There is a monoidal equivalence Z(H) � ZC(D).

Proof. Let us define the functorF : ZC(D) → Z(H), as follows. For any (V, γ ) ∈
ZC(D) set F(V, γ ) = (WV , τ ). Here, for each M ∈ DMod , WV

M : M → M is
the C-module functor given by

WV
M(M) = V⊗M.

The isomorphisms endowing the functor WV
M structure of C-module functor are

cX,M : WV
M(X⊗M) → X⊗WV

M(M),
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given by the following composition:

WV
M(X⊗M) = V⊗(X⊗M)

m−1
V,X,M−−−−→

(V ⊗ X)⊗M
γ −1
X ⊗id M−−−−−−→ (X ⊗ V )⊗M

mX,V,M−−−−→ X⊗(V⊗M) = X⊗WV
M(M),

for any X ∈ C, M ∈ M. It follows that (WV
M, c) is a C-module functor.

Now, we shall explain the definition of τ . Take M,N ∈ DMod , and (G, d) :
M → N a D-module functor. Define

τ(G,d) : WV
N ◦ G → G ◦ WV

M,

(τ(G,d))M : V⊗G(M) → G(V⊗M), (τ(G,d))M = d−1
V,M ,

for any M ∈ M. Then, τ(G,d) is a C-module natural isomorphism.
Now, we shall define the functor F on morphisms. Let (V, γ ), (V ′, γ ′) be

objects in ZC(D) and f : (V, γ ) → (V ′, γ ′) be an arrow in ZC(D). Define
F( f ) : (WV , τ ) → (WV ′

, τ ′), as follows. For any D-module M, define the
C-module natural transformation

F( f )M : WV
M → WV ′

M, (F( f )M)M = f ⊗id M ,

for any M ∈ M.
Now, we shall define a functor G : Z(H) → ZC(D), that will be the inverse of

F . Any object X ∈ C induces aD-module functor JX : D → D, JX (V ) = V ⊗ X .
Let (W, τ ) be an object inZ(H). For anyD-module categoryM,WM : M →

M is a C-module functor. We shall denote it by WM = (WM, cM). In particular,

WD(1) ∈ D. We have natural C-module isomorphisms (τD,D)JX : WD ◦ JX
�−→

JX ◦ WD. In particular, we have isomorphisms

((τD,D)JX )1 : WD(X)
�−→ WD(1) ⊗ X.

Using that WD has a C-module structure, there is a natural isomorphism

cDX,1 : X ⊗ WD(1) → WD(X).

Let γ be the natural isomorphism defined as

γX : X⊗WD(1) → WD(1)⊗X, γX = ((τD,D)JX )1 ◦ cX,1.

The natural transformation γ satisfies 5.10 since (τD,D)JX is a C-module natu-
ral transformation. Then (WD(1), γ ) ∈ ZC(D). Whence, we define G(W, τ ) =
(WD(1), γ ).

Let f : (W, τ ) → (W ′, τ ′) be a morphism in Z(H), then ( fD)1 is a morphism
in ZC(D) since fD is a C-module natural transformation. Set G( f ) = ( fD)1. It
follows straightforward that G is well-defined and that F and G are inverse of each
other. ��
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The center of the 2-category of representations of a tensor category C coincides
with the Drinfeld center of C.
Corollary 5.3. Z(CMod ) � Z(C).

Proof. Take D = C and H : CMod → CMod the identity pseudofunctor. ��

5.6. Group actions coming from graded tensor categories

Throughout this sectionG will denote a finite group. Assume that C is a finite tensor
category and D = ⊕g∈GDg is a G-graded extension of C. Set D1 = C. We shall
further assume that D is a strict monoidal category.

In this section we aim to prove the following result.

Theorem 5.4. There is an action of G on the 2-category CMod op. Moreover, there
are 2-equivalences

(CMod op)G 	 DMod , (CMod op
e )G 	 DMod e.

Proof. First, let us define an action of G on the 2-category B = CMod op. For
any g ∈ G define the 2-functors Fg : B → B as follows. For any left C-module
categoryM, set Fg(M) = FunC(Dg,M). IfM,N are left C-module categories,
and G : M → N is a C-module functor, then

Fg(G) : FunC(Dg,M) → FunC(Dg,N ), Fg(G)(H) = G ◦ H.

Now, we shall define the pseudonatural equivalences χg,h : Fg ◦ Fh → Fgh , for
any g, h ∈ G. For any left C-module category M

(χ0
g,h)M : FunC(Dgh,M) → FunC(Dg,FunC(Dh,M)),

(χ0
g,h)M(H)(X)(Y ) = H(X⊗Y ),

for any H ∈ FunC(Dgh,M), X ∈ Cg,Y ∈ Ch . It follows that (χ0
g,h)M is a well-

defined C-module functor. For any C-module functor G : M → N we have that
Fg(Fh(G)) ◦ (χ0

g,h)M = (χ0
g,h)N ◦ Fgh(G), whence, we can define

(χg,h)G : Fg(Fh(G)) ◦ (χ0
g,h)M → (χ0

g,h)N ◦ Fgh(G)

to be the identities. Since χgh, f ◦ (χg,h⊗id Ff ) = χg,h f ◦ (id Fg⊗χh, f ), for any
f, g, h ∈ G, then we can choose ωg,h, f to be the identities.

Now, we shall define a biequivalence � : BG → DMod . Assume (M,U,�)

is an equivariant 0-cell. This means that we have C-module functors

Ug : FunC(Dg,M) → M,

together with C-module natural isomorphisms

�g,h : Ug ◦ Fg(Uh) ◦ (χ0
g,h)M → Ugh,

satisfying the required axioms. Recall the definition of the functors GX,M given in
Sect. 5.4.
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Claim 5.5. Let be g, h ∈ G. If X ∈ Cg,Y ∈ Ch, then, there exists a family of
C-module natural isomorphisms

βX,Y,M : Fg(Uh)
(
(χ0

g,h)M(GX⊗Y,M )
) → GX,Uh(GY,M ).

Proof of Claim. If Z ∈ Cg , then
GX,Uh(GY,M )(Z) = (∗Z⊗X)⊗Uh(GY,M ),

Fg(Uh)
(
(χ0

g,h)M(GX⊗Y,M )
)
(Z) = Uh(GX⊗Y,M (Z⊗−)).

Note that there are module natural isomorphisms

GX,M (Z⊗−) 	 ∗Z⊗GX,M , X⊗GY,M 	 GX⊗Y,M .

Combining these two isomorphisms we get that

GX⊗Y,M (Z⊗−) 	 (∗Z⊗X)⊗GY,M .

Using this isomorphism and the fact that Uh is a C-module functor, we get that

Uh(GX⊗Y,M (Z⊗−)) 	 (∗Z⊗X)⊗Uh(GY,M ),

obtaining the desired isomorphisms. ��
We define �(M,U,�) = M as Abelian categories. We must endowed the cate-
gory M with a structure of D-module category. If X ∈ Cg , M ∈ M set

X⊗M = Ug(GX,M ).

We have to define associativity isomorphisms

mX,Y,M : (X⊗Y )⊗M → X⊗(Y⊗M).

Suppouse that X ∈ Cg,Y ∈ Ch , M ∈ M. Then

(X⊗Y )⊗M = Ugh(GX⊗Y,M ), X⊗(Y⊗M) = Ug(GX,Uh(GY,M )).

Hence, we define

mX,Y,M = Ug(βX,Y,M )(�g,h)
−1
GX⊗Y,M

.

Axiom (5.4) is equivalent, in this case, to axiom (4.1). It is clear that� is a biequiv-
alence and restricted to the category of exact modules (CMod op

e ) gives the second
biequivalence. ��

6. Braided G-crossed tensor categories from G actions on 2-categories

In this section actions of groups on 2-categories are assumed to be strict. This does
not lead to any loss of generality, since, in view of Theorem 3.1, all definitions
and statements remain valid for non-strict actions after insertion of the suitable
isomorphisms.
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6.1. Strict braided G-crossed tensor categories

Braided G-crossed fusion categories play the same role in homotopy quantum field
theory that braided fusion categories in the topological quantum field theory, see
[25–27].

Definition 6.1. LetG be a groups and C a strict monoidal category. A strict braided
G-crossed structure on C consist of the following data:

(1) a decomposition C = ∐
g∈G Cg (coproduct of categories) such that

• 1 ∈ Ce,
• Cg ⊗ Ch ⊂ Cgh for all g, h ∈ G,

(2) a G-indexed family of strict monoidal functor g∗ : C → C, such that
• g∗(Ch) ⊂ Cghg−1 , g∗h∗ = (gh)∗, e∗ = IdC ,

(3) a family of natural isomorphisms

C × Cg g∗×IdC �� C × Cg

⊗

��
Cg × C

flip

��

⊗
�� C

⇓c

such that
• g∗(cX,Z ) = cg∗(X),g∗(Z)

• cX,Y⊗Z = (id Y⊗cX,Z ) ◦ (cX,Y⊗id Z )

• cX⊗Y,Z = (cX,h∗(Z)⊗id Y ) ◦ (id X⊗cY,Z )

for all X ∈ C, Y ∈ Cg, Z ∈ Ch, g, h ∈ G.

Even when the definition of strict braided G-crossed monoidal category is too
restrictive, every weak braided G-crossed category is equivalent to a strict braided
G-crossed category, see [7].

6.2. Center of a G-action

Let G be a group acting strictly on a 2-category B, where Fg : B → B, denotes the
associated 2-functors. We shall introduce a G-graded monoidal category equipped
with an action of G.

6.2.1. The G-graded monoidal category ZG(B) Define the strict monoidal cat-
egory ZG(B) = ∐

g∈G ZG(B)g, where ZG(B)g = Pseu-Nat(IdB, Fg) and the
product induced by the tensor product of pseudonatural transformation defined in
(1.1). In other words, if X ∈ ZG(B)g and Y ∈ ZG(B)h , we define X ⊗ Y ∈
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ZG(B)gh = Pseu-Nat(IdB, Fgh) as folows: for any object A ∈ B, (X ⊗ B)A =
XFh(A) ◦ YA and for any 1-cell W ∈ B(A, B)

A

(X⊗Y )A

��

YA

��

W �� B

YB

��
(X⊗Y )B

��

Fh(A)
Fh(W ) ��

XFh (A)

��

Fh(B)

Fh(B)

��

⇓YW

Fgh(A)
XFh (W ) �� Fgh(B)

⇓XFh (X)

The unit object is 1IdB ∈ Pseu-Nat(IdB, IdB).

6.2.2. The action of G on ZG(B) Given X ∈ ZG(B)h and g ∈ G, we define
g∗(X) ∈ ZG(B)ghg−1 as follows: for objects A ∈ B, g∗(X)A = Fg(XFg−1 (A)) and
for any 1-arrow W : A → B

A

Fg(XF
g−1 (A))

��

W �� B

Fg(XF
g−1 (B))

��
Fghg−1(A)

Fghg−1 (W )
�� Fghg−1(B).

⇓Fg(XF
g−1 (W ))

Analogously, the functor g∗ is defined for morphism in ZG(B).

6.2.3. The G-braiding of ZG(B) Let X ∈ ZG(B)g and Y ∈ ZG(B)h . By the
definition of pseudo-natural transformation we have

A

XA

��

YA �� Fh(A)

XFh (A)

��
Fg(A)

Fg(YA) �� Fgh(A),

⇓XYA

but (X ⊗ Y )A = XFh(A) ◦ YA and (g∗(Y ) ⊗ X)A = Fg(YA) ◦ XA, then the XYA

define natural isomorphism cX,Y := XYA : X ⊗ Y → g∗(Y ) ⊗ X .

Theorem 6.2. Let G be a groups with a strcit action on a 2-categoy B. Then the
monoidal category ZG(B) defined in 6.2.1 is a strict braided G-crossed monoidal
category with action defined in 6.2.2 and G-braiding defined in 6.2.3. Moreover,
the braided category ZG(B)e is exactly the Drinfeld center of B.
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Proof. Since the action of G on B is strict, it follows by definition the equations

• g∗(cX,Z ) = cg∗(X),g∗(Z)

• cX,Y⊗Z = (id Y⊗cX,Z ) ◦ (cX,Y⊗id Z )

• cX⊗Y,Z = (cX,h∗(Z)⊗id Y ) ◦ (id X⊗cY,Z ).

��

6.3. Example

Let D = ⊕g∈GDg be a faithfully G-graded fusion category.
Since every Dg is a De-bimodule category, they define 2-functors

Fg(−) := Dg �De (−) : De − Mod → De − Mod,

the tensor products ⊗ : Dg × Dh → Dgh induce pseudo-natural equivalences
χg,h : Fg ◦ Fh → Fgh and the associator of D induce invertible modifications
ωg,h, f : χgh, f ◦ (χg,h⊗id Ff ) ⇒ χg,h f ◦ (id Fg⊗χh, f ), that defines an action of G
on De − Mod. See [4] for details.

In this case the categoryZG(DeMod )g is just FunDe−De (De,Dg), the category
ofDe-bimodule functors and natural transformations fromDe toDg . The category
ZG(DeMod )g is canonically equivalent to the category ZDe (Dg) defined in [8,
Definition 2.1] (use that FunDe(De,Dg) → Dg, F �→ F(1) is a category equiv-
alence). Then the G-graded category ZG(DeMod ) is equivalent to the monoidal
category ZD(De). The braided G-crossed category ZG(DeMod ) is equivalent to
the G-crossed category ZD(De) defined in [8].

7. The center of the equivariant 2-category

This section is devoted to prove the following result. Let G be a finite group acting
on a 2-categoryB. Recall the forgetful 2-functor� : BG → B described in Lemma
4.3.

Theorem 7.1. The group G acts onZ(�) bymonoidal autoequivalences, and there
is a monoidal equivalence

Z(BG) 	 Z(�)G .

As a consequence, we have the following result.

Corollary 7.2. [8, Thm. 3.5] Let D = ⊕g∈GCg be a faithfully graded tensor cate-
gory, with C = C1. There is an action of the group G on the relative center ZC(D)

and a monoidal equivalence

Z(D) 	 ZC(D)G .
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Proof. Let H : DMod → CMod be the forgetful pseudofunctor. Then

Z(D) 	 Z(DMod ) 	 Z(
(
CMod op)G) 	 Z(H)G 	 ZC(D)G

The first equivalence follow from Corollary 5.3, the second one is Theorem 5.4,
and the last one is Proposition 5.2. ��

For the rest of this section we shall use the notation introduced in Sect. 4.1.
There is no harm in assuming that the action is unital and strict, see definitions 2.2,
2.3. By Proposition 1.2, we can assume that any invertible 1-cell is an isomorphism.
In particular, if (A,U,�) is an equivariant 0-cell, for any g ∈ G, the 1-cell Ug is
invertible. Thus, we can choose a 1-cell U∗

g such that

Ug ◦U∗
g = IFg(A), U∗

g ◦Ug = IA.

If X,Y are 1-cells, we shall sometimes denote X ◦ Y = XY , as a space saving
measure.

7.1. A group action on Z(�)

For any g ∈ G, we shall define tensor autoequivalences Lg : Z(�) → Z(�) such
that they define an action of G on Z(�). First, let us explicitly describe objects in
Z(�). An object (X, σ ) ∈ Z(�) consists of

X = {X(A,U,�) ∈ B(A, A) a 1-cell, (A,U,�) ∈ Obj (BG)},
σ = {σ(θ,θg) : X( Ã,Ũ ,�̃) ◦ θ ⇒ θ ◦ X(A,U,�) isomorphisms 2-cells inBG},

where (θ, θg) ∈ BG((A,U,�), ( Ã, Ũ , �̃)) is an equivariant 1-cell. The isomor-
phisms σ(θ,θg) satisfy (1.4). If (X, σ ), (Y, τ ) ∈ Z(�), a morphism f : (X, σ ) →
(Y, τ ) is a collection of 2-cells in B(A, A)

f(A,U,�) : X(A,U,�) ⇒ Y(A,U,�),

such that for any equivariant 1-cell (θ, θg) ∈ BG((A,U,�), ( Ã, Ũ , �̃))

(
id θ ◦ f(A,U,�)

)
σ(θ,θg) = τ(θ,θg)

(
f( Ã,Ũ ,�̃) ◦ id θ

)
.

Lemma 7.3. Suppose g, h ∈ G and (A,U,�) is an equivariant 0-cell. There are
isomorphisms 2-cells

εg,h,(A,U,�) : U∗
g ◦ Fg(U

∗
h ) ⇒ U∗

gh

such that

εg,h,(A,U,�) ◦ �g,h = id IA , �g,h ◦ εg,h,(A,U,�) = id IFgh (A)
,

(7.1)

εgh, f,(A,U,�)

(
εg,h,(A,U,�) ◦ id Fgh(U∗

f )

) = εg,h f,(A,U,�)

(
id U∗

g
◦ Fg(εh, f,(A,U,�))

)
,

(7.2)

for any g, h, f ∈ G.
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Proof. Take εg,h,(A,U,�) = id U∗
g ◦Fg(U∗

h ) ◦�−1
g,h ◦ id U∗

gh
. Equation (7.2) follow from

(4.1). ��

For any g ∈ G, let us define the functors Lg : Z(�) → Z(�), Lg(X, σ ) =
(Xg, σ g). Where, for any equivariant 0-cell (A,U,�)

Xg
(A,U,�) = U∗

g ◦ Fg(X(A,U,�)) ◦Ug.

Remark 7.4. As a saving space measure, if (A,U,�), ( Ã, Ũ , �̃) are equivariant
0-cells, we are going to denote X = X(A,U,�), X̃ = X( Ã,Ũ ,�̃). Also, we shall
denote εg,h = εg,h,(A,U,�) and ε̃g,h = εg,h,( Ã,Ũ ,�̃) when no confusion arises.

If (θ, θg) ∈ BG((A,U,�), ( Ã, Ũ , �̃)) is an equivariant 1-cell, then

σ
g
(θ,θg)

= (
1Ũ∗

g
◦ θg ◦ 1U∗

g Fg(X)Ug

)(
1Ũ∗

g
◦ Fg(σ(θ,θg)) ◦ 1Ug

)(
1Ũg Fg(X̃) ◦ θ−1

g

)
.

If f : (X, σ ) → (Y, τ ) is a morphism in Z(�), then

Lg( f )(A,U,�) = id U∗
g

◦ Fg( f(A,U,�)) ◦ id Ug .

The proof of the next result follows straightforwardly.

Proposition 7.5. The functors Lg : Z(�) → Z(�) are well-defined monoidal
functors. ��

Now, for any g, h ∈ G, we shall define monoidal natural isomorphisms νg,h :
Lg ◦ Lh → Lgh satisfying (5.1) and (5.2). Take (X, σ ) ∈ Z(H), so we must define
an arrow

(νg,h)(X,σ ) : Lg ◦ Lh(X, σ ) → Lgh(X, σ ).

For each equivariant 0-cell (A,U,�) we define the map

(
(νg,h)(X,σ )

)
(A,U,�)

: U∗
g Fg(U

∗
h )Fgh(X(A,U,μ))Fg(Uh)

Ug → UghFgh(X(A,U,μ))U
∗
gh,(

(νg,h)(X,σ )

)
(A,U,μ)

= εg,h ◦ id Fgh(X(A,U,μ)) ◦ �g,h .

Proposition 7.6. For any g, h, f ∈ G, the following assertions holds.

(i) νg,h : Lg ◦ Lh → Lgh are well-defined natural isomorphisms in Z(�).
(ii) νg,h : Lg ◦ Lh → Lgh are monoidal natural transformations.
(iii) For any g, h, f ∈ G and any (X, σ ) ∈ Z(�), the following equation holds

(νgh, f )(X,σ )(νg,h)L f (X,σ ) = (νg,h f )(X,σ )Lg((νh, f )(X,σ )). (7.3)
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Proof. (i). We must verify that (νg,h)(X,σ ) are morphisms in the category Z(�),
that is, equation

(
id θ ◦ (

(νg,h)(X,σ )

)
(A,U,μ)

)
((σ h)g)(θ,θg) = σ

gh
(θ,θg)

((
(νg,h)(X,σ )

)
( Ã,Ũ ,�̃)

◦ id θ

)

(7.4)
is fulfilled for any equivariant 1-cell (θ, θg) ∈ BG((A,U,�), ( Ã, Ũ , �̃)). The left
hand side of (7.4) equals to

= (
id θ ◦ εg,h ◦ id Fgh(X) ◦ �g,h

)(
id Ũ∗

g
◦ θg ◦ id U∗

g Fg(U
∗
h )Fgh(X)Fg(Uh)Ug

)

(
id Ũ∗

g
◦ Fg(σ

h
(θ,θg)

) ◦ id Ug

)(
id Ũ∗

g
◦ θg ◦ id U∗

g Fg(U
∗
h )Fgh(X)Fg(Uh)Ug

)

= (
id θ ◦ εg,h ◦ id Fgh(X) ◦ �g,h

)(
id ◦ θg ◦ id

)(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ Fg(θh) ◦ id

)

(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ Fgh(σ(θ,θg)) ◦ id Fg(Uh)Ug

)(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ Fg(θ

−1
h ) ◦ id Ug

)

(
id Ũ∗

g
◦ θg ◦ id U∗

g Fg(U
∗
h )Fgh(X)Fg(Uh)Ug

)

= (
id ◦ εg,h ◦ id

)(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ (id Fg(Ũh)

◦ θg)(Fg(θh) ◦ id Ug ) ◦ id U∗
g Fg(U

∗
h )Fgh(X)Ugh

)

(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ Fgh(σ(θ,θg)) ◦ id Ugh

)

(
id Ũ∗

g Fg(Ũ
∗
h )Fgh(X̃) ◦ (id Fgh(θ) ◦ �g,h)(Fg(θ

−1
h ) ◦ id Ug )(id Fgh(Ũh)

◦ θ−1
g )

)

= (
id ◦ εg,h ◦ id

)(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ (id Fg(Ũh)

◦ θg)(Fg(θh) ◦ id Ug ) ◦ id
)

(
id Ũ∗

g Fg(Ũ
∗
h ) ◦ Fgh(σ(θ,θg)) ◦ id Ugh

)(
id ◦ θ−1

gh (�̃g,h ◦ id θ )
)

The second equation follows from the definition of σ h
(θ,θg)

, the fourth equality
follows from (4.2). The right hand side of (7.4) equals to

= (
id Ũ∗

gh
◦ θgh ◦ id U∗

gh Fgh(X)Ugh

)(
id Ũ∗

gh
◦ Fgh(σ(θ,θg)) ◦ id Ugh

)

(
id Ũ∗

gh Fgh(X̃) ◦ θ−1
gh

)(
ε̃g,h ◦ id Fgh(X̃) ◦ �̃g,h ◦ id θ

)

= (
ε̃g,h ◦ θgh ◦ id U∗

gh Fgh(X)Ugh

)(
id U∗

g Fg(U
∗
h ) ◦ Fgh(σ(θ,θg)) ◦ id Ugh

)

(
id U∗

g Fg(U
∗
h )Fgh(X̃) ◦ θ−1

gh (�̃g,h ◦ id θ )
)
.

It follows from Eq. (7.1) that both sides are equal.
(ii). Let (X, σ ), (Y, τ ) be objects in Z(�). Since the functors Lg are strict, this

means that Lg((X, σ )⊗(Y, τ )) = Lg(X, σ )⊗Lg(Y, τ ), we must prove that

(νg,h)(X,σ )⊗(Y,τ ) = (νg,h)(X,σ )⊗(νg,h)(X,σ ). (7.5)

Let (A,U,�) be an equivariant 0-cell. The left hand side of (7.5) evaluated in
(A,U,�) equals to

εg,h ◦ id Fgh(X(A,U,�)) ◦ �g,h ◦ εg,h ◦ id Fgh(Y(A,U,�)) ◦ �g,h .

The right hand side of (7.5) evaluated in (A,U,�) equals to

εg,h ◦ id Fgh(X(A,U,�)◦Y(A,U,�)) ◦ �g,h .
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It follows from (7.1) that both sides are equal.
(iii). Let (A,U,�) be an equivariant 0-cell. The left hand side of (7.3) evaluated

in (A,U,�) is equal to

= (
εgh, f ◦ id Fgh f (X) ◦ �gh, f

)(
εg,h ◦ id Fgh(U∗

f XU f ) ◦ �g,h
)

= εgh, f (εg,h ◦ id Fgh(U∗
f )

) ◦ id Fgh f (X) ◦ �gh, f (id Fgh(U f ) ◦ �g,h).

The right hand side of (7.3) evaluated in (A,U,�) is equal to

= (
εg,h f ◦ id Fgh(X) ◦ �g,h f

)(
id U∗

g
◦ Fg(εh, f ) ◦ id Fgh f (X) ◦ Fg(�h, f ) ◦ id Ug

)

= εg,h f (id U∗
g

◦ Fg(εh, f )) ◦ id Fgh f (X) ◦ �g,h f (Fg(�h, f ) ◦ id Ug ).

Now, that both expressions are equal follow by (7.2) and (4.1). ��

7.1.1. Proof of Theorem 7.1 Let us first describe an object in the equivariantiza-
tion of the category Z(�). An object in Z(�)G is a collection ((X, σ ), s) where
(X, σ ) ∈ Z(�), and sg : Lg(X, σ ) → (X, σ ) is a morphism in the category, for
any g ∈ G. This means, that X(A,U,�) ∈ B(A, A) is a 1-cell, for any equivariant 0-
cell (A,U,�), and for any equivariant 1-cell (τ, τg) ∈ BG((A,U,�), ( Ã, Ũ , �̃))

there is an isomorphism σ(τ,τg) : X( Ã,Ũ ,�̃) ◦ τ → τ ◦ X(A,U,�) such that Eq. (1.4)
is fulfilled. Also, for any g ∈ G and any equivariant 0-cell (A,U,�) there are
morphisms

(sg)(A,U,�) : U∗
g Fg(X(A,U,�))Ug → V(A,U,�),

such that
(
id τ ◦ (sg)(A,U,�)

)
σ
g
(τ,τ 1)

= σ(τ,τ 1)

(
(sg)( Ã,Ũ ,�̃) ◦ id τ

)
, (7.6)

(sgh)(A,U,�)(νg,h)(A,U,�) = (sg)(A,U,�)Lg((sh)(A,U,�)), (7.7)

for any equivariant 0-cells (A,U,�), ( Ã, Ũ , �̃), any equivariant 1-cell (τ, τg) ∈
BG((A,U,�), ( Ã, Ũ , �̃)), and any g, h ∈ G. Equation (7.6) follows from the fact
that sg : Lg(V, σ ) → (V, σ ) is a morphism in the category Z(�), and Eq. (7.7)
follows from (5.3).

Define the functor� : Z(�)G → Z(BG) as follows.Let ((X, σ ), s) ∈ Z(�)G ,
then�((X, σ ), s) = (V, σ̃ ). For any equivariant 0-cell (A,U,�),V(A,U,�) must be
an equivariant 1-cell in the categoryBG((A,U,�), (A,U,�)). Define V(A,U,�) =
(X(A,U,�), θ

(A,U,�)
g ), where

θ(A,U,�)
g : Fg(X(A,U,�)) ◦Ug ⇒ Ug ◦ X(A,U,�),

θ(A,U,�)
g = id Ug ◦ (sg)(A,U,�).

(7.8)

If (τ, τg) ∈ BG((A,U,�), ( Ã, Ũ , �̃)) is an equivariant 1-cell, then

σ̃(τ,τg) : (X( Ã,Ũ ,�̃), θ
( Ã,Ũ ,�̃)
g ) ◦ (τ, τg) ⇒ (τ, τg) ◦ (X(A,U,�), θ

(A,U,�)
g ),

σ̃(τ,τg) = σ(τ,τg).
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Claim 7.7. The following statements hold.

(i) V(A,U,�) = (X(A,U,�), θ
(A,U,�)
g ) ∈ BG, for any equivariant 0-cell (A,U,�).

(ii) The object (V, σ̃ ) belongs to the category Z(BG). In particular, the functor
� is well-defined.

(iii) The functor � : Z(�)G → Z(BG) is an equivalence of categories, and it
has a monoidal structure.

Proof of Claim. (i). We must check that the maps θ
(A,U,�)
g ) satisfy (4.2). In this

case, we must prove that for any g, h ∈ G

(
�g,h ◦ id X(A,U,�)

)(
id Fg(Uh) ◦ θ(A,U,�)

g

)(
Fg(θ

(A,U,�)
h ) ◦ id Ug

)

is equal to

θ
(A,U,�)
gh

(
id Fgh(X(A,U,�)) ◦ �g,h

)
.

Using the definition of θ
(A,U,�)
g , we get that the first expression is equal to

(
�g,h ◦ id X(A,U,�)

)(
id Fg(Uh)Ug ◦ (sg)(A,U,�)

)(
id Fg(Uh) ◦ Fg((sh)(A,U,�)) ◦ id Ug

)

= (
�g,h ◦ id X(A,U,�)

)(
id Fg(Uh)Ug ◦ (sg)(A,U,�)(id U∗

g ◦Fg((sh)(A,U,�))) ◦ id Ug

)

= (
�g,h ◦ id X(A,U,�)

)(
id Fg(Uh)Ug ◦ (sgh)(A,U,�)(νg,h)(A,U,�)

)

= (
id Ugh ◦ (sgh)(A,U,�)

)(
�g,h ◦ (νg,h)(A,U,�)

)

= θ
(A,U,�)
gh

(
id Fgh(X(A,U,�)) ◦ �g,h

)
.

The second equality follows from (7.7), and the last one follows from (7.1).
(ii). Since σ̃(τ,τg) = σ(τ,τg) for any equivariant 1-cell (τ, τg), then σ̃ satisfy (1.4).

We must verify only that σ̃(τ,τg) is an equivariant 2-cell, that is (4.3) is satisfied. To

simplify the notation, let us denote θ
(A,U,�)
g = θg, θ

( Ã,Ũ ,�̃) = θ̃g. In this particular
case, using the composition of equivariant 1-cells given by (4.4), we have to prove
that
(
1Ũg

◦ σ(τ,τg)

)(
θ̃g ◦ 1τ

)(
1Fg(X̃) ◦ τg

) = (
τg ◦ 1X

)(
1Fg(τ ) ◦ θg

)(
Fg(σ(τ,τg)) ◦ 1Ug

)
.

(7.9)
The left hand side of Eq. (7.9) is equal to

= (
1Ũg

◦ σ(τ,τg)

)(
1Ũg

◦ (sg)(A,U,�)

)(
1Fg(X̃) ◦ τg

)

= (
1Ũg

◦ (1τ ◦ (sg)(A,U,�))σ
g
(τ,τg)

)(
1Fg(X̃) ◦ τg

)

= (
1Ũg

◦ (sg)(A,U,�)

)(
τg ◦ 1U∗

g Fg(X)Ug

)(
Fg(σ(τ,τg)) ◦ 1Ug

)

= (
τg ◦ 1X

)(
1Fg(τ ) ◦ θg

)(
Fg(σ(τ,τg)) ◦ 1Ug

)
.

The first equality follows by using the definition of θ
(A,U,�)
g given in (7.8), the

second equality follows from (7.6), and the third one follows from the definition of
σ
g
(τ,τg)

.
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(iii). The fact that � is an equivalence follows easily. A direct computation
shows that

�
(
((X, σ ), s)⊗((Y, τ ), t)

) = �((X, σ ), s)⊗�((Y, τ ), t),

for any pair of objects ((X, σ ), s), ((Y, τ ), t) ∈ Z(�)G . ��

Acknowledgements: The work of E.B. and M.M. was partially supported by CONICET,
Secyt (UNC), Argentina. M.M. is grateful to the department of mathematics at Universidad
de los Andes, Bogotá, where part of this work was done, for the kind hospitality. C.G. was
partially supported by Fondo de Investigaciones de la Facultad de Ciencias de la Universidad
de los Andes, Convocatoria 2018–2019 para la Financiación de Programas de Investigación,
programa ”Simetría T (inversión temporal ) en categorías de fusión y modulares”.

References

[1] Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not.
2011(24), 5644–5705 (2011)

[2] Burciu, S., Natale, S.: Fusion rules of equivariantizations of fusion categories. J. Math.
Phys. 54, 013511 (2013). https://doi.org/10.1063/1.4774293

[3] Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion
categories. Adv. Math 226(15), 176–205 (2011)

[4] Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum
Topol. 1(3), 209–273 (2010)

[5] Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654 (2004)
[6] Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for

surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013)
[7] Galindo, C.: Coherence for monoidal G-categories and braided G-crossed categories,

Preprint arxiv:1604.01679
[8] Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra

Number Theory 3(8), 959–990 (2009)
[9] Gordon, R., Power, A., Street, R.: Coherence for tricategories, Mem. Am. Math. Soc.

117 (1995)
[10] Greenough, J.: Monoidal 2-structure of Bimodule Categories. J. Algebra 324, 1818–

1859 (2010)
[11] Gurski, N.: Coherence in three-dimensional category theory, volume 201 of Cambridge

Tracts in Mathematics. Cambridge University Press, Cambridge (2013)
[12] Hesse, J.: An equivalence between Frobenius algebras and Calabi-Yau categories,

preprint arXiv:1609.06475
[13] Hesse, J., Schweigert, C., Valentino, A.: Frobenius algebras and homotopy fixed points

of group actions on bicategories, preprint arXiv:1607.05148
[14] Kelly, G., Street, R.: Review of the elements of 2-categories, in: Category Seminar

(Proc. Sem.), Sydney, 1972/1973, in: Lecture Notes in Math., vol. 420, Springer 75–
103 (1974)

[15] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos.
Math. 147(5), 1519–1545 (2011)

[16] Mazorchuk, V., Miemietz, V.: Transitive 2-representations of finitary 2-categories.
Trans. Am. Math. Soc. 368(11), 7623–7644 (2016)

https://doi.org/10.1063/1.4774293
http://arxiv.org/abs/1604.01679
http://arxiv.org/abs/1609.06475
http://arxiv.org/abs/1607.05148


Group actions on 2-categories 115

[17] Mazorchuk, V., Miemietz, V.: Isotypic faithful 2-representations of J-simple fiat 2-
categories. Math. Z. 282(1-2), 411–434 (2016)

[18] Mombelli, M., Natale, S.: Module categories over equivariantized tensor categories,
accepted in Moscow Math. J., preprint arxiv:1405.7896

[19] Meir, E., Szymik, M.: Drinfeld centers for bicategories. Doc. Math. J. DMV 20, 707–
735 (2015)

[20] Nikolaus, T., Schweigert, C.: Bicategories in field theories—an invitation preprint
Hamburger Beiträge zur Mathematik Nr. 425, (2001)

[21] Street, R.: Fibrations andYoneda’s Lemma in a 2-category, in: Category Seminar (Proc.
Sem.), Sydney, 1972/1973, in: Lecture Notes inMath., vol. 420, Springer, pp. 104–133.
(1974)

[22] Street, R.: Fibrations in bicategories. Cahiers Topologie Geom. Differentielle 21(2),
111–160 (1980)

[23] Rouquier, R.: 2-Kac-Moody algebras, Preprint arXiv:0812.5023
[24] Tambara, D.: Invariants and semi-direct products for finite group actions on tensor

categories. J. Math. Soc. Jpn. 53, 429–456 (2001)
[25] Turaev, V.: Homotopy quantum field theory, volume 10 of EMSTracts inMathematics.

European Mathematical Society (EMS), Zürich, Appendix 5 by Michael Müger and
Appendices 6 and 7 by Alexis Virelizier (2010)

[26] Turaev, V., Virelizier, A.: On 3-dimensional homotopy quantumfield theory, I. Internat.
J. Math. 23(9):1250094, 28, (2012)

[27] Turaev, V., Virelizier, A.: On 3-dimensional homotopy quantum field theory II: The
surgery approach. Internat. J. Math., 25(4):1450027, 66, (2014)

http://arxiv.org/abs/1405.7896
http://arxiv.org/abs/0812.5023

	Group actions on 2-categories
	Abstract.
	1 2-categories
	1.1 The tricategory of 2-categories
	1.2 Finite tensor categories
	1.3 The endomorphism category of a pseudofunctor

	2 Group actions on 2-categories
	3 Coherence for group actions on 2-categories
	4 The equivariant 2-category
	4.1 Unpacking definition of equivariantization

	5 Group actions from graded tensor categories
	5.1 Group actions on tensor categories
	5.2 Representations of tensor categories
	5.3 2-categories of representations of tensor categories
	5.4 G-Graded tensor categories
	5.5 The relative center of a bimodule category
	5.6 Group actions coming from graded tensor categories

	6 Braided G-crossed tensor categories from G actions on 2-categories
	6.1 Strict braided G-crossed tensor categories
	6.2 Center of a G-action
	6.2.1 The G-graded monoidal category mathcalZG(mathcalB)
	6.2.2 The action of G on mathcalZG(mathcalB)
	6.2.3 The G-braiding of mathcalZG(mathcalB)

	6.3 Example

	7 The center of the equivariant 2-category
	7.1 A group action on mathcalZ(Φ)
	7.1.1 Proof of Theorem 7.1


	Acknowledgements:
	References




