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Abstract. We study actions of discrete groups on 2-categories. The motivating examples
are actions on the 2-category of representations of finite tensor categories and their relation
with the extension theory of tensor categories by groups. Associated to a group action on
a 2-category, we construct the 2-category of equivariant objects. We also introduce the G-
equivariant notions of pseudofunctor, pseudonatural transformation and modification. Our
first main result is a coherence theorem for 2-categories with an action of a group. For
a 2-category B with an action of a group G, we construct a braided G-crossed monoidal
category Zg (I3) with trivial component the Drinfeld center of 3. We prove that, in the case
of a G-action on the 2-category of representation of a tensor category C, the 2-category of
equivariant objects is biequivalent to the module categories over an associated G-extension
of C. Finally, we prove that the center of the equivariant 2-category is monoidally equivalent
to the equivariantization of a relative center, generalizing results obtained in Gelaki et al.
(Algebra Number Theory 3(8):959-990, 2009).

Introduction

The theory of 2-categories appears in a natural way in diverse contexts. For example,
it was used by Rouquier to “categorify” certain algebraic objects [23] and appears
in topological field theories [6,20]. The theory of representations of 2-categories
has been initiated in a series of papers [15-17].

Our motivation for the study of 2-categories comes from the theory of tensor
categories. For a tensor category C, a representation of C, or C-module category, is
a category M equipped with an associative action C x M — M satisfying certain
conditions. Given two C-module categories M, N, the category Fune (M, N) is the
category whose objects are C-module functor between M and A/, and morphisms
are C-module natural transformations. The 2-category of (left) C-modules ¢Mod
has as 0-cells C-module categories, 1-cells C-module functors between them and
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2-cells are C-module natural transformations. This 2-category is a strong invariant
of the tensor category C.

Given a 2-category B and a 2-monad T : B — B on B, in [18], the notion of
the equivariantization 2-category BT was presented. The equivariantization of a
2-category by a group was studied later in [13].

One of the purposes of the paper is to explicitly describe an action of a group G
on a 2-category 3, and describe all ingredients of the resulting equivariantization
2-category BC. An action of a group G on a 2-category B3 consists of

o a family of pseudofunctors F, : B — B, g € G,
o pseudonatural equivalences xg 4 : Fg o F, — Fgp,
e invertible modifications

Wgh,f * Xgh.f © (Xg.n®1d F) = Xg.nf o (id 7, ®xn. ),

forany g, h, f € G, satisfying certain axioms. We also prove a coherence theorem
for group action, stating that there exists another equivalent action of G on B, such
that all pseudofunctors F, involved in the group action are 2-functors, Fg o Fj, =
Fgp,and xg n, wg p, ¢ are all the identity. As an application of the coherent theorem
we prove that associated to every action of group G on a 2-category 5 there is
a braided G-crossed monoidal category Z¢ () such that the trivial component is
Z(B), the Drinfeld center of 5.

An important example comes from the theory of tensor categories. We show
that, if D = @4ec D, is a G-graded tensor category, and D = C, there is an action
of the group G acts on ¢cMod, the 2-category of representations of C, and there is
a biequivalence

(¢Mod °?)¢ ~ pMod.

The coherence theorem for group actions allows us to construct an associated strict
braided crossed monoidal category and to prove that there is a monoidal equivalence
between the center Z(3°) of the equivariantization and the monoidal category of
pseudonatural transformations of the forgetful pseudofunctor ® : B¢ — B. When
applied this result to the 2-category (cMod )“, we recover the results from [8], on
the center of graded tensor categories.

The contents of the paper are organized as follows. In Sect. 1 we recall the
basics of 2-categories. For any pseudofunctor H : B — B’ we define the monoidal
category Z('H) of pseudonatural transformations n : ‘H — H. When H is the
identity pseudofunctor, Z(Id) is a braided monoidal category called the center of
the 2-category.

In Sect. 2 we explicitly describe the notion of a group action on a 2-category.
Given two 2-categories B, B’ equipped with an action of a group G, we define
the notion of G-pseudofunctor between them. When a G-pseudofunctor is a
biequivalence, we say that B, B’ are G-biequivalent. Also, we define the notions
of G-pseudonatural transformation and G-modifications. All these data, turns
out to be a 2-category, denoted by 2CatC (13, B'). The equivariant 2-category is
BS = 2Cat¢ (Z, B), where 7 is the unit 2-category, where G acts trivially.



Group actions on 2-categories 83

In Sect. 3 we prove that any 2-category with a group action is G-biequivalent
to another one where the action is strict. Section 4 is devoted to explicitly describe
all ingredients in the equivariant 2-category BC.

In Sect. 5 we show an example coming from graded tensor categories. If D =
@g¢ec Dy is a G-graded tensor category, then the group G acts on the 2-category
p,Mod of left Di-modules. The resulting equivariant 2-category (p, Mod )C s
biequivalent to pMod . In Sect. 6 we define the G-braided center of a 2-category
with an action of a group G. In Sect. 7, we show that there is a monoidal equivalence
Z(BY) ~ Z(®)°, where ® : B — B is the forgetful pseudofunctor. When
applied to the example (cMod ), we recover results from [8].

1. 2-categories

Let us briefly recall the notion of a 2-category. For more details, the reader is
referred to [14,21]. For any 2-category B, the set of objects, also called 0-cells, will
be denoted by Obj(3). The composition in each hom-category B(A, B), that is, the
vertical composition of 2-cells, is denoted by juxtaposition fg, while the symbol
o is used to denote the horizontal composition functors

o:B(B,C) x B(A, B) = B(A, C).

The identity of a O-cell A is written as [4 : A — A. For any 1-cell X the identity
will be denoted id x or sometimes simply as 1y, when space saving is needed. For
any 2-category B, we shall denote by B°P the 2-category that is obtained from B
by reversing 1-cells.

Example 1.1. The unit 2-category Z has a single 0-cell, named . The monoidal
category Z (%, %) is the unit monoidal category.

A pseudofunctor (F,a) : B — B/, consists of a function F : Obj(B) —
Obj(B'), a family of functors F : B(A, B) — B/(F(A), F(B)), foreach A, B €
Obj(B), a collection of isomorphisms ¢4 : [r(ay — F(I4), and a family of natural
isomorphisms

o

B(B, C) x B(A, B) B(A, C)

FXF\L Mo \LF

B'(F(B), F(C)) x B'(F(A), F(B)) ———— B'(F(A), F(C)),

for O-cells A, B, C, subject to the usual axioms. A pseudofunctor is called unital
if F(I4) = IF(a), for any O-cell A, and the isomorphisms ¢4 are the identities.
A pseudofunctor is called a 2-functor if the associativity isomorphisms « are the
identities.
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F
If F', G are pseudofunctors, a pseudonatural transformation 3 |, 3/ consists

A 4
G

of a family of 1-cells xﬁ : F(A) - G(A), A € Obj(B) and isomorphisms

F(X)
F(A) —2% F(B)

xgi Ixx J/XZ

G(A) Tl G(B)

natural in X € B(A, B), subject to the usual axioms. If x, 6 are pseudonatural
F F

. P AN TN .
transformations, a modification from 3 |, B to B g [, consists of a
G G

family of 2-cells wy4 : xi{ — 02, such that the diagrams
0 xx 0
xgo F(X) ——=G(X)ox,
wBOidF()()\L \LidG(X) owA
6
0% o F(X) ——= G(X) 069

commute for all X € B(A, B). This modification will be denoted as w : x =
6. Given pseudofunctors F, G : B — B, we shall denote Pseu-Nat(F, G) the
category where objects are pseudonatural transformations from F to G and arrows
are modifications.

A l-cell X € B(A, B) is called an equivalence if there exists a 1-cell Y €
B(B,A) suchthat X oY = Ig and Y o X = I4. We will say that an invertible
1-cell X is an isomorphism if there is X* € B(B, A) such that X o X* = Iy and
X* o X = I4. The next result will be useful later to simplify some proofs.

Proposition 1.2. Every 2-category (or bicategory) is biequivalent to a 2-category
where every equivalence 1-cell is an isomorphism.

Proof. The proof goes along the lines of [9, Theorem 1.4]. Since every category
is equivalent to a skeletal one. Every bicategory B is biequivalent to a locally
skeletal one B3, that is, each of its hom-category is skeletal. Then in B/, every 1-cell
equivalence is an isomorphism. By Street’s Yoneda lemma for bicategories [22,
p.117 ], the Yoneda embedding

B’ — Bicat(', Cat) : A — BP(4A, —),

is locally an equivalence. Therefore, 13’ is biequivalent to B”; the full sub-2category
of Bicat(3'°P, Cat) determined by the contravariant representables. Since every
equivalence in B’ is an isomorphism, every equivalence in " is an isomorphism
and B is biequivalent to B”. O
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1.1. The tricategory of 2-categories

Given a pair of 2-categories B and B’, we can define the functor 2-category,
2Cat(B, B'), whose 0-cells are pseudofunctors B — B’, whose 1-cells are pseudo-
natural transformations, and whose 2-cells are modifications. Given 2-categories
B, B and B”, we define a pseudofunctor

® :2Cat(B’, B") x 2Cat(B, B) — 2Cat(B, B"),

called the tensor product. The tensor product at the level of pseudofunctors is the
composition. The tensor product of pseudonatural transformations is

G F GF
P
(B 18 B") (B w “B)=(B Tpew B"), (1.1)
R g R —
G’ F’ G'F'

where

(BRa)a = Bra) o Gaa)
Bx)x =Brx) o idG(a%))(idﬁg,(B) oG(ax)).

Here, the isomorphisms constraints of the pseudofunctors have been omitted as a
space-saving measure. If 8 : G — G’ and o’ : F — F’ are another pseudonatural
transformations and @ : B8 — B’ and ' : « — «' are modifications, their tensor
product is defined as w ® o’ : BRa — B/, (0 @ W) := wpi(a) 0 G(y), for
any O-cell A.

Ifa: F— F'and B : H — H’ are pseudonatural transformations between
pseudofunctors F, F' € 2Cat(B’, B"), H, H' € 2Cat(B3, '), then there is a mod-

ification
a®V Y@ﬁ
Jeap F'H’
% AH’
/
given by
(cap)a =0y i F'(Ba)oana) — ama) o F(Ba). (1.2)

This modification is called the comparison constraint.
The tensor product is associative only at the level of pseudofunctors, but not
for pseudonatural transformations. There exists an associativity constraint

(a®€)®y
KHG Lag.p.y K'H'G'

a®(B®Y)
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for pseudonatural transformations o : K — K',8: H - H' andy : G — G'.
The modification

(aa,p.y) A p a4 © G(Bra)) o GF(ya) = apma) o G(By(A) o F(ya))

is defined by (aq,g,)A = idD,F,H,(A) oG2(Bh'(a), F(ya)). It is easy to see that a

satisfies the pentagonal identity.

1.2. Finite tensor categories

A (strict) monoidal category is a 2-category with one single 0-cell. A finite tensor
category over K is a finite k-linear abelian rigid monoidal category C such that the
tensor product functor ® : C x C — C is k-linear in each variable. The reader is
referred to [5].

Suppose C and D are strict tensor categories. A monoidal functor (F, &, ¢) :
C — D is a pseudofunctor between the corresponding 2-categories. Explicitly, it
consists of a functor F' : C — D, natural isomorphisms £xy : F(X)QF(Y) —
F(X®Y), X,Y € C, and isomorphism ¢ : 1 — F(1), satisfying certain axioms.
If (F, &, ¢), (F', &, ¢") are monoidal functors , a natural monoidal transformation
0:(F, & ¢)— (F',&,¢) is anatural transformation 6 : F — F’, such that for
any pair of objects X, Y

019 = ¢, Oxeréxy = &x y(Ox®0y). (1.3)

1.3. The endomorphism category of a pseudofunctor

If B is a 2-category, the monoidal category
Z(B) =2Cat(B, B)(Id 5, 1d g)

is exactly the center of 15, i.e., the obvious generalization of the center construction
of a monoidal category. See [19].

Let B, B’ be two 2-categories and (H, ) : B — B’ be a unital pseudofunctor.
Denote Z(H) = 2Cat(B, B')(H, H); the category of pseudonatural transforma-
tions of the pseudofunctor H. This is a monoidal category with tensor product
described in the previous section. Explicitly, objects in Z(’H) are pairs (V, o),
where

V = {Va € B'(H(A), H(A))1-cells, for anyA € B},
o ={ox:VgoHap(X) > Hap(X)o V4l
where, for any X € B(A, B), oy is a natural isomorphism 2-cell such that
o1, =idy,, (ax,y oidy,)oxoy = (id 1(x) 0 oy)(ox oid 74y))(id v, 0 ax,y),

(1.4)
for any O-cells A, B, C € B, and any pair of 1-cells X € B(C, B),Y € B(A, C).
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If (V, o), (W, 1) are two objects in Z(H), a morphism f : (V,o) — (W, 1)
in Z(H) is a collection of 2-cells f4 : V4 = W4, A € B such that

(id 1x) o fa)ox = tx(fp o id 1 (x)), (L.5)

for any 1-cell X € B(A, B). The category Z(H) has a monoidal product defined
as follows. Let (V,0), (W, ) € Z(H) be two objects. Then (V,0)Q(W, 1) =
(V®W, 0 ®t), where for any O-cells A, B € B, and X € B(A, B)

(VRW)a =Vao Wy, (0Q®T)x = (0x oidw,)(idy, o Tx). (1.6)

If (V,0),(V',a"), (W,t),(W,1t') € Z(H) are objects, and f : (V,0) —
V',a", f': (W, 1), (W, ') are morphisms in Z(H), then fQf : (V,0)®
(V',o") = (W, 1)®(W’, ') is defined by

(f®f/)A = fA o f;ﬁv
for any O-cell A. The unit (1, ¢) € Z(H) is the object
14 =14, 1x =idx,

forany O-cells A, B and any 1-cell X € B(A, B). The center Z(Id g) of the identity
pseudofunctorId 5 : B — Bisdenoted as Z(15), and it coincides with the definition
presented in [19].

2. Group actions on 2-categories

Assume G is a group and B is a 2-category. We shall denote by G the 2-category
that has O-cells the elements of the group G. For any pair g, h € G

| the unit category, if g =nh
G h) = {@ if g h.

Moreover, G is a monoidal 2-category, see [9]. Since 2Cat(, B) is also a monoidal
2-category, we define an action of G on B as a weak monoidal homomorphism
(F, x,w,t,k,¢) : G — 2Cat(, B). See for example [9].

Explicitly, an action of G on a 2-category B3 consists of the following data:

A family of pseudofunctors F, : B — B, g € G,

pseudonatural equivalences (xg 1, Xg,h) i FyoFy, — Fyp,8,h €G,
a pseudonatural equivalence ¢ : Id g — Fi,

for any g, h, f € G invertible modifications

Wg.h,f * Xgh, f © (Xg.n®id F) = Xenp © (id F,®Xn, £,
Kg 't X1go(®idE) = idF,, &1 xg10(dfp,®) = idF,,
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such that for any 0-cell A

L0 s @ Feliepatgnp)a =140 5 0 G Fs ), @.1)
(id3 © (Fg(a)h,f,k)A)) (wg,hf,k oid 2) (id (Xghf,k)A o ((,()g,h,f)Fk(A)) =
= ((@g,h, 1) A 0id4))(id s 0 (xg,h)xgk)((wgh,f,k)A oidg), (2.2)

for any g, h, f, k € G. Where,

idz:ng id; =1 dg=1

O, Ry’ g n)a’ FeFr(xj )a

1d5 = l(Xgh,fk)A’ 1d6 = 1(Xi,),h)Fka(A)'

In Eq. (2.2), we are omitting the associativity isomorphisms of the pseudofunctors
Fg. In the following diagrams we shall denote by g the pseudofunctor Fj, the
composition of functors as juxtaposition and the tensor product of pseudonatural
transformations also by juxtaposition. Diagrammatically, we have modifications

- Xg,h®]7 -
h f gh f

1g®xn. s ‘ Vg r Xgh.f
ghf o ghf,

such that the next diagrams are equal for all g, i, f, k € G,

TR Xeh,f @17 T E
Xg.n®17® 1% Yogn I Xg.hf®ly Xghfk
ghTk— I ehfR Vg ohTk
el e Vg®wn, fk FOLk ot
gh fk - g hfk

2.3)
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- Xgh. f®lg _
gh fk ghf k
L7 ®X 1k Xghf.k
Ywgn, £k
ghfk Yexgnnpi gh fk : ghfk
Xgh. fk
Ywg n, fi
1§®1F®Xﬁk Xg,h®1ﬁ Xg,hfk
eh 7k ehrk
ght 1g®xn, fk ght

We say that a group G acts trivially on B if the weak monoidal homomorphism
(F,x,w,t,k,¢) : G — 2Cat(B, B) is the trivial one. This means that for any
g, h € G, the pseudofunctors F ¢ are the identity, x, ; are the identity pseudonatural
transformations and all the modifications are identities.

Remark 2.1. A definition of action over a topological group was given in [13]. S

Definition 2.2. An action (F, x, w, (,k,¢) : G — 2Cat(B, B) is called unital if
F, is a unital pseudofunctor, F| = Id g, and xg1 = id 5, = 1,4, kg = id = &g
for any g € G. A unital G-action will be denoted simply by (F, x, ®).

Definition 2.3. An action (F, x, w,t,k,¢) : G — 2Cat(B, B) is called strict if
each pseudofunctor Fy is a 2-functor, and F oF,=F ¢h» and the pseudonatural
transformations x, 5 and the modifications wg j,, r are theidentities forany g, i, f €
G.

A similar argument as in [7, Proposition 3.1] applied in this case, allows us
to consider only unital actions. Assume that 13, 3’ are 2-categories equipped with
unital actions of a group G via

(F.x,0): G — 2Cat(B, B), (F,%,@): G — 2Cat(B, B).

Definition 2.4. A G-pseudofunctor between B and Bisa triple (H, y, IT), where

e H : B — Bisa unital pseudofunctor, ~
o for any g € G, pseudonatural equivalences y, : Ho F; — Fzo'H,
e invertible modifications

~ 1 7@y ~
fHg fgH
ny %@]H
Hg Uy feH

M /
Hfg
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such that for all f, g,h € G

Y1 Zid'Ha l_[g,l Zidyg = Hl,g’ 2.4)
faHR
th U17®I, n —
gh fN Xf.g'hH
/ \ - / \

Hfg Crp g fHgh fehH B fghH

g\ s W

Kranlr —~—  Xfehln

Hf gh Y ygn ' fehH
Hfgh
2.5)
faHh
nglﬁ f Izvn
. ngﬁ N
ny o X e Vim
8
N Lnxrely R Yreln L7evn ~~
HFgh HFfg h FeHn FalH
| \ 1H®<“;f,g,h
HFXeh ™S Wgen  —~— " Xfenln
HF gh s U g
Hfgh

holds in 2Cat(B, B3). In the above diagrams, we are using the comparison constraints
¢ defined in (1.2).

Remark 2.5. A more general definition of G-functor, in the case G is a topological
group, was given in [12].

Definition 2.6. Assume that (H, y, IT), (H', y’, IT") are G-pseudofunctors. A G-
pseudonatural transformation is a pair (6, {fy}eeG), where 6 : H — H' is a
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pseudonatural transformation, and 6, are invertible modifications

Vg

Hg gH
0®17 16, 17260
Ve -
H'g L oM
such that for all g, f € G, the equation
jp— yglf — — 1~yf o~ Z,flﬁ ~
Hg | gHS - gfH—= gfM
Glglfl/ V6,15 1g91fl V1565 lglfQ Yoo 07 J/Is?fe
5 £ > / lgyf ’
H'g f p g gfM
Vel , e f 1o
Ungf /
Ly xg.s H,gf ng
Hg f —SHf gfH gfM
Kef I
Olgl+ i \) UM,y / \Ll
2T T Irixe.s e
H'g f Hef g
.10 1 U0y
\ elﬁl
IH/Xg,f — H/H Sy Yer

holds in 2Cat(B, B).

Definition 2.7. Assume that (6, {6} ¢cq). (0. {0} gcc) : (H. v, TI) — (H. 7. T
are G-pseudonatural transformations. A G-modification o : (0, {Og}gec) =
(0, {0g}gec) is a modification « : § = o such that

_ 1% ~,
Hg d gH
o®lz ( aslg 001540 llgeg
SN ~
H’g gH/

Ve
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Ve

Hg gH
g §H
0y ®lg 13®0 1'5720‘ 17®0
Ugg
H/E gH/
Vg

Assume that (Hl, yl, 1'11), (HZ, yz, Hz), (H3, y3, I"I3) are G-pseudofunctors,
and (9, {6g}gcc) : (H' y'. Y — (H2, y2. 11%), (0. {0 }geq) - (H?, 2, T1%) —
(H3, y3, I1°) are G-pseudonatural transformations. The composition

(o, {Ug}geG) o (0, {eg}gEG) = (p, {pg}geG)

is defined as follows. The pseudonatural transformation p = o o 6. For any 0-cell
AeBandany g € G

(pg)a = ((Ug)A ° idegg(m)(id Fo6®) © (Qg)A))'

Here, we are also ommiting the associativity constraints of the pseudofunctor Fj.
The composition of modifications of G-categories is the usual composition of modi-
fications.

Definition 2.8. 2Cat® (3, g) is the 2-category in which 0-cells are pseudofunctors
of G-categories, 1-cells are pseudonatural transformations of G-categories and 2-
cells are modifications of G-categories.

The next result is a consequence of [9, Corollary 8.3].
Proposition 2.9. 2Cat® (B, B)isa 2-category. O

Definition 2.10. We say that the 2-categories 53 and B are G-biequivalent if there
exists a G-pseudofunctor H : B — B that is also a biequivalence.

Lemma 2.11. (Transport of structure). Let B be a 2-category with an action of G
given by (F, x, w). Let H : B — B’ be a biequivalence,

Ly:B - B, yo: HoFy —> LgoH

a G-indexed family of pseudofunctors and pseudonatural equivalences, respec-
tively. Then, there is a way to endowed B' with a G-action (L, x', @) such that
(H,y, 1) : B— B is a G-biequivalence .

Proof. Since y; and xy,, are psedonatural equivalences, we can simultaneously
provide the datum I, and the pseudonatural equivalences x } ¢’ LfoLs, —
Lyg, f,g € G. Now, axiom 2.5 uniquely determines the modifications a)/f o
Axiom 2.3 follows from the corresponding axioms of G-action via (F, x, ®). The
pseudofunctor (H, y, IT) : B — B’ is a G-biequivalence by construction. O

Corollary 2.12. Every 2-category with a G-action is G-biequivalent to a 2-
category where G acts by 2-functors, that is, all Fy are 2-functors.
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Proof. By the coherence of theorem for pseudofunctor, see [11, Section 2.3], every
bicategory B is biequivalent to a 2-category st(B) such that every pseudo-functor
F : st(B) — st(B) is pseudo-natural equivalent to a 2-functor. Then applying
Lemma 2.11 we can transport the action of B to a G-biequivalent action on st(13)
where G acts by 2-functors. O

3. Coherence for group actions on 2-categories

The main result of this section is to prove the following coherence theorem for a
group action on a 2-category.

Theorem 3.1. (Coherence for group actions on 2-categories). Let G be a group.
Every 2-category with an action of G is G-biequivalent to a 2-category with a strict
action of G. O

Assume B is a 2-category equipped with a unital action of G, (F, x,®) : G —
2Cat(B, B). By Corollary 2.12 we can assume that Fy is a 2-functor for any g€G.
We shall first construct a 2-category B[G] with a strict action of G.

Objects of B[G] are triples (A, 0, a), where A = {A,} is a G-indexed family
of objects, 0 = {0y 5 : Fg(Ap) = Agnlg.nec is a G x G-indexed family of 1-cell
equivalences and

(Xg1)A s
FgFp(Ay) —————— Fgu(Ay)

FoOn, 1) agn, r Ogh.

Fe(Apf) Agny,

Og.hf
a G x G x G-index family of isomorphism 2-cells, such
01, = IAg, app,r =1id, og 1y =1d

that for all g, A, f, k, and equation

XO; : -
= ghf A
Vogns Xgns Oghnf k
...
_—— 1?®Xi?,f e
gh f A ghf Ag Yag nfk Aghfk
Vg®an, f.x
15®1;®0 1k O nfk
ghAp 8 Anfk

15®0n, 1k
(3.1)
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0
X -
e ghf A
127 ®0 1k Oghfk
Vogn, 1k
ghf A lxemo g gh Ak Aghfik
Ogh, fk
Yogn, s
1z®17;®0 1« X;,h ol 1k Og.hfk
ghA ZA
8 fk 12®0h. & 8 Ahfk

holds in B(Fg(Fy(Fr(Ak)), Agnri). If (A, 0, a) is a O-cell, the identity 1-cell
I(A.6,a) 1s defined as follows. I(4.6.a) = (IAg, ), where I, = idgg,h, for any
g, hedG.

If (A, 6, a) and (B, p, B) are objects in B[G], a 1-cell is a pair (X, [), where
X ={Xg : Ag — B} is a G-indexed family of 1-cells and

Fo(Xp)
Fo(Ap) ——————= F,(By)

O, Ugn Pg.h

Agh X thv

gh

is a G x G-indexed family of isomorphism 2-cells, such that for all f, g, h € G,
lig = ing and equation

_ 0 e
Faan — 5 Ty ey (32)

f(egh)i u?(lg,h) lfpg.h) U,Bf,g,h lpfgvh

F(Agn) ———— f(Bgp) ——— Byan

f(Xgh)
Uy gn
k /.8 /

Afgh
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0
Taan —LE L Femy Ty

f(egh) U(ng)xh Pfg.h
x fe(Xn)

S (Agn) U"‘f&h fg(An) Ysen

Org.h
M\ J X o

Afgh

holds in B(F¢(Fy(Ap)), Bygn). If (X, 1), (Y, s) are 1-cells, a 2-cell m : (X, 1) =
(Y, s) is a G-indexed family of 2-cells m = {m, : X, — Y} such that for all
g, f € G, equation

Fo(Xn)
Fg(Ap) Ulg.n F¢(Bp) (3.3)
eg,hi m lpg,h
Agh Umgh th
th
Fo(Xn)
Fy(Ap) BFe(m) Fo(By)
Gg,hl W i/’g,h
Agh Usg.n Bgn
Yen

holds in B(F,(Ap), Bgp).

The (vertical) composition in each category B[G]((A, 6, «), (B, p, B)) is
defined pointwise.

Now, let us define the horizontal composition o : B[G]((A, 0, «), (B, p, B)) x
BIGI(C,k,y), (A, 0,a)) = BIGI(C,k,y), (B, p, p)).If (A, 0,a) and (B, p, B)
are O-cells, and

(X, 1) € BIGI((A, 0, ), (B, p, B)), (Y,s) € BIGI(C,k,y),(A,0,a))
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are 1-cells, define
(X, D)o (Y,s)=(Z,1),

where Zy = Xg 0 Yy, and 15, = (1x,, 0 5g.1)(lg.h © 1F,(v,)), forany g, h € G.
The horizontal composition of 2-cells in B[G] is just the horizontal composition of
2-cells in B.

Lemma 3.2. B[G] is a 2-category endowed with a strict action of G.

Proof. The proof that B[G] is indeed a 2-category follows by a straightforward
calculation. Let us define now a canonical strict action of G on the 2-category
B[G]. For any g € G define the 2-functors L, : B[G] — B[G] as follows. If
(A,0,a)isa0-cell, g, x € G, then

Lg(A)x = Axgv Lg(e)x,y = ex,yg, Lg(a)x,y,z = Ox,y,zg-
If(X,D):(A,0,a) = (B, p, B)isa l-cell,
Lg(X)x = Xxgv Lg(l)x,y = lxyg-

Iftm : (X,]) = (Y,s) is a 2-cell, then Ly (m) = my,, for any x € G. Since the
L are 2-functors such that Ly o L = Lgy forall g, h € G and L, = Idgg}, L
defines a strict action of G on B[G]. O

There is a pseudofunctor H : B — B[G] defined as follows. If A is a 0-cell in
B, then

H(A) = (Fg(A)}, (X9 1) A @goh. ) frg.heG

if X : A — Bisa l-cell, then H(X) = (Fg(X), (xg,n)x) and for 2-cells m :
X — Y, H(m)g = Fy(m), where f, g, h € G. The fact that w are modifications
implies that H(X) is indeed a 1-cell in B[G]. The following proposition implies
immediately Theorem 3.1

Proposition 3.3. H : B — B[G] is a G-biequivalence.

Proof. 1f (A, 0, ) is an object in B[G], then the 1-equivalences 0, . : H(A.)g —
A, and the 2-cells

0

Xg.h
FeH(Ao . H(Ae)gh
Fg(eh,e) bag,h,e egh,e
Fg(Ap) m Agnf,

g.h

defines a 1-equivalence from H(A|) to A, that is, H is bi-essentially surjective.

Let A and B be objects in 53, and (X, 1) : H(A) — H(B) be a 1-cell in B[G].
The invertible 2-cells I 1 : H(X1)g — X, define an invertible 2-cell from H (X 1)
to X. Then H is locally essentially surjective.
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If X,Y, € B(A,B) and f, f' : X — Y such that H(f) = H(f’). Thus,
H(f)1 = H(f)1, but since we are considering a unital action, f = H(f); =
H(f)1 = f/, thatis, H is locally faithful. Suppose w : H(X) — H(Y) is a 2-cell
in B[G], condition (3.3) implies that wy = F,(m1), then w = H(w1). Since, H is
bi-essentially surjective and locally fully faithful,  is a biequivalence.

To see that H has a canonical structure of G-pseudofunctor, we note that

(HOFg)szons (LgoH)x:Fxga

forany x, g € G. Then, using the pseudonatural transformations x, ¢ : Fy o Fg —
Fy¢, we define a pseusonatural transformation

Ve i HoFy — L,oH,
as follows. For any O-cell A € Obj (13) we have to define an equivalence 1-cell
¥$ i HoFg(A) — LgoH(A)in B[G].Sety$ = (X, 1), where, forany x, f,h € G
Xe =G0 a Lin= (@5} Ja-

Axiom (2.3) implies that morphisms /7, fulfill condition (3.2). Thus, yg is indeed
a l-cell in B[G]. To complete the definition of of the pseudonatural equivalence
Ve, we have to define, 2-cells in B[G]

(Ve)x © vh o HFo(X) — LyH(X) oy,

for any 1-cell X € B(A, B). Set ((yg)x)x = (Xx,g)x, for any x € G. The fact
that @ are modifications, imply that 2-cells ((yg) X)x satisfy (3.3). To define the
modifications

1Lf®}’g
LiHF, LfLeH
VW K
HFf F Uy, Lng
HFyg

we note that
(AL 0y) 0 Vf @ Lr )]l = Xxfg o (Xx,f @ 1F,). x, f.8 €G,
and
[(AH ® xrg) o (Vfe)lx = Xx,fe 0 (1F, ® Xf10), X, fL8 €G.

Then we define (ITfg)x = wy, r, forallx, g, f € G.
Since wy, 1,¢ are modifications, I, ; turns out to be modifications forany g, h €
G. Condition described in diagram (2.5) is exactly diagram (2.3). O
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4. The equivariant 2-category

Let G be a group. Denote by 7 the unit 2-category endowed with the trivial action
of G, and assume that 53 is a 2-category with an action of G.

Definition 4.1. The equivariant 2-category is B¢ = 2Cat®(Z, B). 0-cells, 1-cells
and 2-cells in B¢ will be called equivariant O-cells, 1-cells and 2-cells, respectively.

Proposition 4.2. Assume B and B are G-biequivalent. Then the 2-categories B,
BC are biequivalent.

Proof. Straightforward. O
Lemma 4.3. There exists a forgetfull 2-functor ® : B — B. O

Proof. If (H, I, y) is an equivariant O-cell in B | then ®(H, I1,y) = H(x).
If (0, {0g}gec) is an equivariant 1-cell, then ® (0, {0y}gec) = 6. On 2-cells the
functor & is the identity. O

4.1. Unpacking definition of equivariantization

We shall explicitly describe the 2-category BC. This would allows us to show
concrete examples and obtain some results in Sect. 7.

We shall assume that there is a unital action of G on the 2-category B such that
all pseudofunctors F, are 2-functors. This is possible using Corollary 2.12. The
2-category BC has 0-cells triples (A, {Ug}gec, {Ilg,n}g,neG), where

e AisaO-cellin B;

o U, are invertible 1-cells in B(A, F,(A));

o Iy p: (ngh)A o Fg(Up) oUg — Uy, are isomorphisms 2-cells in the category
B(A, F4(A)) such that

Uiy =1a, g1 =idy, =Tl g,
I (id G gn)a © Fy(Ilg,p) oid Uf)((wf,g,h)A oid Fng(Uh)Ff(Ug)Uf)

= Mren(id 0 s rpgn © Mrg) (d 0, 0 Grgduy o id Frwpuf3D)

for all g, h, f € G. For short, the collection (A, {Ug}eei, {Ilg n}g nec) will be
denoted simply as (A, U, IT).
Given two equivariant O-cells (A, U

L ), (Z, l7, ﬁ), an equivariant 1-cell is a
pair (07 {eg}geG) € BG((Aa U7 H)a (Av )

7~H 2

U, 1)) where

e 0:B(A, A)isal-cell, ~

e and forany g € G, 8, : Fy(0) o Uy = U, o 0, are invertible 2-cells such that
01 =1id g, and such that forany g, f € G



Group actions on 2-categories 99

(Mg, f oidg)(id 00 paFe(@p) © 0,)(id o0 a © Fe(0p) 0id U,)
= O (id Fp0) © Mg, ) ((Xg. )0 ©1d Fyw v, )- (4.2)
If (0, {6g}gec), (0, {oglgec) : (A, U, u) — (AN, U, [t) are equivariant 1-cells, an

equivariant 2-cell o : (0, {0g}gec) — (0, {0g}gec) isa2-cella : & — o such
that forall g € G

(id 7, 0 )0 = 0g (F(@) 0id ). (4.3)
Suppose that (A, U, w), (Z, U, w), (A, U’, u') are equivariant 0-cells, and
0.0 : (A U 1) > (A, U. 1), (0.0) : (A, U, p) —> (A", U, 1t

are equivariant 1-cells, then the composition (6, 60g) o (0,0¢) @ (A, U, pn) —
(A, U, 1) is defined as (0, ;) o (0, 04) = (0 0 0, (0 0 0),), where for any g € G

(0 00)g = (B 0id o) (id F,(9) 0 ). (4.4)

5. Group actions from graded tensor categories

Starting with a G-graded tensor category @¢eCg, We shall construct a G-action
on the 2-category of Cj-representations.

5.1. Group actions on tensor categories

Let G be a finite group and C be a finite tensor category. An action of G on C
consists of the following data:

e tensor autoequivalences (g4, £8) : C — C forany g € G,
e anatural isomorphism ¢ : Id¢ — (1),
o and monoidal natural isomorphisms vy j : g« © hy — (gh),

such thatforall X € C, g, h, f € G

Wen, ) x We.n) f,x) = We.nf)x 8+ ((Wn, £)x), (5.1)
(Vg 1)x8+«(Cx) = id x = (V1) x g, (X)- (5.2)

For simplicity, we shall assumed that (1), = Id¢, ¢ =id and g1 =id = vy,
forall g € G.

If a finite group G acts on a finite tensor category C, there is associated a new
finite tensor category C° called the equivariantization of C by G. An objectin C© is
apair (X, s), where X € Cisanobject together with isomorphisms s, : g.(X) — X
satisfying

st =1idx, Sgn o (Vgn)x = 5g 0 g«(sn), (5.3)

for all g, h € G. A G-equivariant morphism f : (V,s) — (W,t) between G-
equivariant objects (V, s) and (W, t), is a morphism f : V — W in C such that
fos, =tg0g4(f) forall g € G. The category CY has a monoidal product as
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follows. If (V, s), (W, 1) € CY, then (V, s)@(W, 1) = (VQW, r), where for any
geCG

rg = (sg®’g)(5‘g/,w)_1'

For more details we refer the reader to [1-3].

There is also associated the graded tensor category C[G], with underlying
abelian category C[G] = ®gccCq, where C; = C forany g € G. If X € Cis
an object, the object in C, is denoted by [X, g]. The tensor product is

[X, gI®Y, h] = [X®g.(Y),gh]l, X,YeC(C,g,heG.

The reader is refered to [24] for the complete monoidal structure of this tensor
category.

5.2. Representations of tensor categories

AleftC-module category over atensor category C is a finite k-linear abelian category
M equipped with
e a k-bilinear bi-exact bifunctor ® : C x M — M;
e natural associativity and unit isomorphisms myyy : (X ® QM —
XR(YRM), Ly : 1®M — M, such that

myy zom Mxey,z,m = (d x®my z m) mx,yeozm(ax,y,z®id y),
54
Gd x®Lmx, 1 = id xgp- (5.5)
A module functor between module categories M and N over a tensor category
C is a pair (F, c), where
e F: M — N is aleft exact functor;

e natural isomorphism: cx y : F(X@M) - XQF (M), X € C, M € M, such
that forany X, Y € C, M € M:

(d x®cy,m)cx ygu F (mx,y,m) = mxy,r(m) Cxev.m (5.6)
Lrom crm = F(ly). (5.7

Let M and NV be C-module categories. We denote by Fung (M, N) the category
whose objects are module functors (F, ¢) from M to N. A morphism between
(F,c) and (G,d) € Fung(M, N) is a natural transformation o : F — G such
that forany X € C, M € M:

dx maygy = (id x®@ary)cx . (5.8)

We shall also say that o : F' — G is a C-module transformation.

Let (F,&,¢) : C — C be a tensor functor and let (M, ®, m) be a C-module
category. We shall denote by M the C-module category with the same under-
lying abelian category M and action, associativity and unit morphisms defined,
respectively, by

X®"'M = F(X)®M,
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m;’?,y,M = mF(X),F(Y),M(E;ZIYQid M), 1 =1y (o®id y),

forall X, Y € C, M € M. Right C-module and C-bimodule categories are defined
in a similar way. For the complete definition see [10].

A C-module category M is exact [5] if, for any projective object P € C, the
object PQM is projective in M for all M € M. If M is a left C-module then M°P
is the right C-module over the opposite Abelian category with action

MP xC— MP (M, X))~ X*QM, (5.9)

associativity isomorphisms mﬁx’y =my=+ x= py forall X, Y € C, M € M. Anal-
ogously, if M is a right C-module category, then M®P is a left C-module category.
If M is a C-bimodule category, we denote M the opposite Abelian category, with
left and right C-module structure given as in (5.9).

5.3. 2-categories of representations of tensor categories

Suppouse that C is a tensor category. The 2-category ¢Mod has as O-cells,
left C-module categories, if M, A are C-module categories, then the category
cMod(M, N) = Fung (M, N). Analogously we define the 2-category Mod ¢ of
right C-module categories.

If C is a finite tensor category, the 2-category ¢cMod, of exact left C-module
categories is defined in a similar way as ¢Mod, with O-cells being exact left C-
module categories. It is known that cMod. is 2-equivalent to pMod . if and only
if C is Morita equivalent to D.

5.4. G-Graded tensor categories

Let G be a finite group. A (faithful) G-grading on a finite tensor category D is a
decomposition D = @geCy, Where C, are full abelian subcategories of D such
that

o Co #0;
e ®:Cy xCp = Cgpforallg, h e G.

In this case C = C; is a tensor subcategory of D and each Cy is an exact C-bimodule
category. We shall assume that C, # O for any g € G. The tensor category D is
called a G-graded extension of C.

In [4] Etingof, Nikshych, and Ostrik studied fusion categories graded by a finite
group. They reduce the classification problem of fusion categories graded by a group
G to the classification (up to homotopy) of maps from BG to BPic(C), the clas-
sifying spaces of the monoidal bicategory where objects are invertible bimodules,
l-arrows are bimodule equivalences and 2-arrows are bimodule natural isomor-
phisms, see [4] for details. Since tricategories are algebraic models of homotopy
3-types, extension of a fusion categories are classified by monoidal pseudofunctors
from G to Pic(C), where G is the discrete monoidal 2-category with objects G, see
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[4, Section 8]. Now, since the monoidal bicategory Pic(C) can be interpreted as the

monoidal bicategory of biequivalences of Mod ¢, then it is natural to expect that
every G-extension of C induces an action of G on Mod ¢.

In this section, we explicitly present the action associated with a G-extension
of any finite tensor category as well as some consequence of this fact.

If M is a left C-module category, X € C,, M € M, the functor Gy p : q —
M defined by

Gx,m(Y)=(CYRX)®M,
for any Y € C,, is a C-module functor. Moreover, the functor
@ : Cg Mo M — Fung(Cq, M), (XK M) =Gy u,

is an equivalence of C-module categories.This is a particular case of [10, Thm.
3.20].

5.5. The relative center of a bimodule category

The next definition appeared in [8].

Definition 5.1. Let C be a tensor category and M a C-bimodule category. The
relative center of M is the category Z¢ (M) of C-bimodule functors from C to M.

Explicitly, objects of Z¢(M) are pairs (M, y), where M is an objects of M
and

y ={yx : X&M > M®X)xec
is a natural family of isomorphisms such that
rx o a)_(,lM,Y oYy = “&Tx,y O YX®Y © a)_(’ly’M’ (5.10)

where ax py 1 (X@M)QY 5 XR(M®Y) are the associativity constraints
in M.

Let D = @,c6C, be a G-graded tensor category, with C = C. The inclusion
functor C — D induces the forgetful pseudofunctor H : pMod — ¢Mod.

Proposition 5.2. There is a monoidal equivalence Z(H) = Z¢ (D).

Proof. Letus define the functor F : Z¢(D) — Z(H), as follows. Forany (V, y) €
Ze(D) set F(V,y) = (WY, 7). Here, for each M € pMod , W : M — M is
the C-module functor given by

WX(M) = V@M.
The isomorphisms endowing the functor WXA structure of C-module functor are

cxm T W(XBM) — XBW) (M),
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given by the following composition:

—1
My x.m

W (X®M) = VR(X®M) ——>

— vy '®idy _
VeX)oM —— (X ® V)M
mx.v.m — = — oV
——= XQ(V®M) = XQW (M),

forany X € C, M € M. It follows that (W/‘\//l’ ¢) is a C-module functor.
Now, we shall explain the definition of 7. Take M, N € pMod, and (G, d) :
M — N a D-module functor. Define

TG.d) - WX[OG — Go W./‘\//l’
(vG.a)m : VROG(M) — G(VRM), (v(G.a)m = d‘le,

for any M € M. Then, 1(G,q) is a C-module natural isomorphism.

Now, we shall define the functor F on morphisms. Let (V, y), (V',y’) be
objects in Z¢(D) and f : (V,y) — (V',y’) be an arrow in Z¢(D). Define
Ff) : WV, 1) - (WV/, 7’), as follows. For any D-module M, define the
C-module natural transformation

FOM:W = Wiy (FHMM = [Sid

forany M € M.
Now, we shall define a functor G : Z(H) — Z¢ (D), that will be the inverse of
F. Any object X € C induces a D-module functor Jx : D — D, Jx(V) = V® X.
Let (W, ) be an object in Z (H). For any D-module category M, Wp : M —
M is a C-module functor. We shall denote it by W = (W, ™). In particular,
Wp(1) € D. We have natural C-module isomorphisms (tp p)J, : Wp o Jx =
Jx o Wp. In particular, we have isomorphisms

((zp.p)s)1 : Wp(X) = Wp(1) @ X.
Using that Wp has a C-module structure, there is a natural isomorphism
X1 X®Wp(l) - Wp(X).
Let y be the natural isomorphism defined as

vx 1 X@Wp() — Wp(1)®X, yx = ((tpp)iy)1ocx1.

The natural transformation y satisfies 5.10 since (tp p)j, is a C-module natu-
ral transformation. Then (Wp(1), y) € Z¢(D). Whence, we define G(W, 1) =
(Wp(), y).

Let f : (W, 1) — (W', /) be amorphism in Z(H), then ( fp)1 is a morphism
in Z-(D) since fp is a C-module natural transformation. Set G(f) = (fp)1. It
follows straightforward that G is well-defined and that F and G are inverse of each
other. O
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The center of the 2-category of representations of a tensor category C coincides
with the Drinfeld center of C.

Corollary 5.3. Z(¢cMod) = Z(C).
Proof. Take D =C and 'H : cMod — ¢Mod the identity pseudofunctor. O

5.6. Group actions coming from graded tensor categories

Throughout this section G will denote a finite group. Assume that C is a finite tensor
category and D = @46 D, is a G-graded extension of C. Set D; = C. We shall
further assume that D is a strict monoidal category.

In this section we aim to prove the following result.

Theorem 5.4. There is an action of G on the 2-category ¢cMod °P. Moreover, there
are 2-equivalences

(cMod °?)¢ ~ pMod, (¢Mod )¢ ~ pMod.,.

Proof. First, let us define an action of G on the 2-category 5 = ¢Mod °P. For
any g € G define the 2-functors F, : B — B as follows. For any left C-module

category M, set Fg(M) = Fung (55,, M). If M, N are left C-module categories,
and G : M — N is a C-module functor, then

Fg(G) : Func(Dy, M) — Fung(Dg, N), Fg(G)(H) =G o H.

Now, we shall define the pseudonatural equivalences x, 5 : Fy o Fjy — Fgy, for
any g, h € G. For any left C-module category M

(Xg,h)/vz : Fung(Dgj, M) — Fune(Dg, Fung(Dy, M)),
(X D MHEH)(X)(Y) = H(X®Y),

for any H € Func(Dgn, M), X € Cg, Y € Cy. It follows that (xg ;) is a well-
defined C-module functor. For any C-module functor G : M — N we have that
Fo(Fr(G)) o (Xg,h)M = (Xg,h)N o Fgu(G), whence, we can define

(Xe)G © Fg(Fi(G)) o (X3 M = (X N © Fen(G)

to be the identities. Since xgp, f 0 (Xg,n®id Ff) = Xg.hf o (id pg®)(h,f), for any
f. &, h € G, then we can choose wyg 5, ¢ to be the identities.

Now, we shall define a biequivalence ® : B¢ — pMod . Assume (M, U, IT)
is an equivariant O-cell. This means that we have C-module functors

U, :Func(ﬁg, M) - M,
together with C-module natural isomorphisms
Mg : Ug 0 Fg(Un) o (X0 )M — Ugh

satisfying the required axioms. Recall the definition of the functors G x s given in
Sect. 5.4.
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Claim 5.5. Let be g, h € G. If X € Cq,Y € Cp, then, there exists a family of
C-module natural isomorphisms

Bx.y.m : Fg(Uh)((Xg,h)M(GX@)Y,M)) — GX,U,(Gy m)-
Proof of Claim. If Z € C,, then
Gx, UGy (Z) = ("ZOX)®Un(Gy,m),
Fo(Un (X0 ) m(Gxarm))(Z) = Un(Gxay.m (Z®-)).
Note that there are module natural isomorphisms
Gx.m(Z®—) = *Z®Gx.m, X®Gym = Gxey.m.
Combining these two isomorphisms we get that
Gxey.m(Z®—) = ("ZRX)®Gy u.
Using this isomorphism and the fact that Uj, is a C-module functor, we get that
Un(Gxgy.m(Z®-)) = (*Z&X)®Ui(Gy,m),
obtaining the desired isomorphisms. O

We define ® (M, U, TT) = M as Abelian categories. We must endowed the cate-
gory M with a structure of D-module category. If X € C;, M € M set

X®M = Uy(Gx,m).
We have to define associativity isomorphisms
mxym: (XQY)M — XQ(YRM).
Suppouse that X € Cq, Y € Cp, M € M. Then
(XQY)®M = Ugn(Gxoy.m), XQUX M) = Uyg(Gx,uy(Gy.u))-
Hence, we define
mxy,m = Ug(ng,Y,M)(Hg,h)(_;;@},_M-

Axiom (5.4) is equivalent, in this case, to axiom (4.1). It is clear that ® is a biequiv-
alence and restricted to the category of exact modules (¢cMod ¢¥) gives the second
biequivalence. O

6. Braided G-crossed tensor categories from G actions on 2-categories

In this section actions of groups on 2-categories are assumed to be strict. This does
not lead to any loss of generality, since, in view of Theorem 3.1, all definitions
and statements remain valid for non-strict actions after insertion of the suitable
isomorphisms.
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6.1. Strict braided G-crossed tensor categories

Braided G-crossed fusion categories play the same role in homotopy quantum field
theory that braided fusion categories in the topological quantum field theory, see
[25-27].

Definition 6.1. Let G be a groups and C a strict monoidal category. A strict braided
G-crossed structure on C consist of the following data:

(1) adecomposition C =[] 2€G Cg (coproduct of categories) such that
elc(,,
0 Co®Cy CCypforallg, heq,

(2) a G-indexed family of strict monoidal functor g, : C — C, such that
® 8«(Cp) C Cghg“’ gxhy = (gh)s, ey =1dg,

(3) afamily of natural isomorphisms

gxxlde

C xC, CxCq
flip Je ®
Cy x C = C

such that
® 8:(Ccx,7) = Cg.(X),:(2)
e cxyez = (dy®cx,z) o (cx,y®id z)
o cxwy,z = (cx,h,(2)®id y) o (id x®cy,z)

foral X eC,Y €Cy,Z€Ch, g, heC.

Even when the definition of strict braided G-crossed monoidal category is too
restrictive, every weak braided G-crossed category is equivalent to a strict braided
G-crossed category, see [7].

6.2. Center of a G-action

Let G be a group acting strictly on a 2-category B, where F, : B — B, denotes the
associated 2-functors. We shall introduce a G-graded monoidal category equipped
with an action of G.

6.2.1. The G-graded monoidal category Z5(B) Define the strict monoidal cat-
egory Zg(B) = ]_[geG ZG(B),, where Z(B)g = Pseu-Nat(Idg, Fy) and the
product induced by the tensor product of pseudonatural transformation defined in
(1.1). In other words, if X € Z5(B)g and ¥ € Z5(B);, we define X ® ¥ €
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ZG(B)gn = Pseu-Nat(Idg, Fy,) as folows: for any object A € B, (X @ B)s =
XF,a4) © Ya and for any 1-cell W € B(A, B)

w

A B
Y UYw Yp
Fi (W)
(X&Y)4 Fi(A) - Fu(B) | Xev)
X Fp(4) X F,x) Fy(B)
XF,w)
th (A) th(B)

The unit object is 114, € Pseu-Nat(Idg, Id).

6.2.2. The action of G on Zg(B) Given X € Z5(B); and g € G, we define
g+(X) € ZG(B)ghg—l as follows: for objects A € B, g«(X)a = Fg(XFg_l(A)) and
for any 1-arrow W : A — B

A B
Fg(XFg,l(Aﬂ ing(XFg,l(W)) Fg(XFg,l(B))
Fope—1(W)
thg—l(A) thg—l(B).

Analogously, the functor g, is defined for morphism in Z5(B).

6.2.3. The G-braiding of Zg(B) Let X € Zg(B), and Y € Zg(B)y. By the
definition of pseudo-natural transformation we have

A ra Fi(A)
Xa UXy, X4
Fg(Ya)
Fq(A) - Fon(A),

but (X ® Y)a4 = XF,a) 0 Ya and (g+(Y) ® X)4 = Fy(Ya) o X4, then the Xy,
define natural isomorphism cx y := Xy, : X ® Y — g.(Y) ® X.

Theorem 6.2. Let G be a groups with a strcit action on a 2-categoy B. Then the
monoidal category Zg(B) defined in 6.2.1 is a strict braided G-crossed monoidal
category with action defined in 6.2.2 and G-braiding defined in 6.2.3. Moreover,
the braided category Zg(B). is exactly the Drinfeld center of B.
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Proof. Since the action of G on B is strict, it follows by definition the equations

o 8.(Cx.72) = Cg,(X).8.(2)
o cxyez = (dyQ®cyx.z) o (cx y®id z)
o cxgy,z = (cx,h.(2)®idy) o (id x®cy,z).

6.3. Example

Let D = @46 Dy be a faithfully G-graded fusion category.
Since every D, is a D,-bimodule category, they define 2-functors

F¢(=) :=Dy Kp, (—) : D, — Mod — D, — Mod,

the tensor products ® : D, x Dy — Dy induce pseudo-natural equivalences
Xg.h @ Fg o Fy — Fgp, and the associator of D induce invertible modifications
@gh, f Xgh, £ © (Xg,n®id Ff) = Xg.nro(@d pg®xh,f), that defines an action of G
on D, — Mod. See [4] for details.

In this case the category Z¢ (p,Mod ), is just Funp, _p, (D., Dy), the category
of D,-bimodule functors and natural transformations from D, to D,. The category
Z(p,Mod), is canonically equivalent to the category Zp,(Dy) defined in [8,
Definition 2.1] (use that Funp, (D., Dg) — Dy, F +— F(1) is a category equiv-
alence). Then the G-graded category Zg(p,Mod) is equivalent to the monoidal
category Zp(D,). The braided G-crossed category Z¢ (p,Mod ) is equivalent to
the G-crossed category Zp(D,) defined in [8].

7. The center of the equivariant 2-category

This section is devoted to prove the following result. Let G be a finite group acting
on a 2-category 3. Recall the forgetful 2-functor ® : B¢ — B described in Lemma
4.3.

Theorem 7.1. The group G acts on Z(®) by monoidal autoequivalences, and there
is a monoidal equivalence

Z(B%) ~ Z(®)°.
As a consequence, we have the following result.

Corollary 7.2. [8, Thm. 3.5] Let D = ®¢ccCq be a faithfully graded tensor cate-
gory, with C = Cy. There is an action of the group G on the relative center Z¢ (D)
and a monoidal equivalence

Z(D) ~ Zo(D)C.
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Proof. Let’ H : pMod — ¢Mod be the forgetful pseudofunctor. Then
Z(D) ~ Z(pMod) =~ Z((cMod ?)%) ~ Z(H)¢ ~ Zp(D)°

The first equivalence follow from Corollary 5.3, the second one is Theorem 5.4,
and the last one is Proposition 5.2. O

For the rest of this section we shall use the notation introduced in Sect. 4.1.
There is no harm in assuming that the action is unital and strict, see definitions 2.2,
2.3. By Proposition 1.2, we can assume that any invertible 1-cell is an isomorphism.
In particular, if (A, U, IT) is an equivariant O-cell, for any g € G, the 1-cell U, is
invertible. Thus, we can choose a 1-cell U ;,‘ such that

Ug o U; = IFg(A), U; oUg = I4.

If X, Y are 1-cells, we shall sometimes denote X o Y = XY, as a space saving
measure.

7.1. A group action on Z (D)

For any g € G, we shall define tensor autoequivalences Ly : Z(®) — Z(®P) such
that they define an action of G on Z(®). First, let us explicitly describe objects in
Z(®). An object (X, o) € Z(P) consists of

X = {X(a.v.m € B(A, A) al-cell, (A, U, IT) € Obj (B%)},

o = {G(g’gg) : X(A“’fj’ﬁ) o =60o X(A,U,l'[) isomorphisms 2-cells in BG},

where (0, 6,) € BS((A, U, T0), (A, U, I)) is an equivariant 1-cell. The isomor-
phisms oy g,) satisfy (1.4). If (X, o), (¥, 7) € Z(P), a morphism f : (X,0) —
(Y, 7) is a collection of 2-cells in B(A, A)

fauvm : Xaum = Yaun,
such that for any equivariant 1-cell (6, 6,) € B ((A, U, ), (A, U, 1))
(ido o fia.v.m)ow.0,) = Tw.60 (f(7.5.7) ©ide)-

Lemma 7.3. Suppose g, h € G and (A, U, 1) is an equivariant 0-cell. There are
isomorphisms 2-cells

€g.h,(A,U,I) U;: o Fo(Up) = U;h

such that
Eg,h,(A,U,l'[) o Hg,h = id e Hg,h o Gg,h,(A,U,l'I) = id Ith(A)’
(7.1)
€gh. £.(A.U.T) (€g.h a0 ©1d £ ) = €gnravm(idug o Fylen r.a.v.m)),
(1.2)

forany g, h, f € G.
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Proof. Take €g 1, (a,v,m) = id ygor, W) 0 T, ) 0id v, - Equation (7.2) follow from
(4.1). O

For any g € G, let us define the functors L, : Z(®) — Z(®), Lg(X,0) =
(X8, 08). Where, for any equivariant O-cell (A, U, IT)

X(gA’U’H) = Uy o Fg(X(a.u.m) o Ug.
Remark 7.4. As a saving space measure, if (A, U ] ), (AV, U , ﬁ) are equivariant

0-cells, we are going to denote X = X4 y.m), X = X(gﬁ fi)- Also, we shall
denote €, , = €4, (A,u,1) and €g j = €, 1,(A,0,f1) When no confusion arises.

If (0, 0,) € B (A, U, D), (K, ﬁ, ﬁ)) is an equivariant 1-cell, then

0,00 = (17 © 05 © 1wz r,0ov,) (1gs © Fe(00.00) © 10,) (17, %) © 05 )-
If f:(X,0)— (Y, t)is amorphism in Z(J), then
Le(f)avm =idy; o Fg(fa,um)eidy,.
The proof of the next result follows straightforwardly.

Proposition 7.5. The functors L, : Z(®) — Z(P) are well-defined monoidal
functors. m|

Now, for any g,h € G, we shall define monoidal natural isomorphisms v, 5 :
LgoLp — Ly satisfying (5.1) and (5.2). Take (X, o) € Z(H), so we must define
an arrow

(ve.n)(X,0) : Lg o Lp(X,0) — Lgi(X, 0).
For each equivariant O-cell (A, U, IT) we define the map

(Ve x.0) (a.v.mmy * Ug Fe(Up) Fen(X(a,0,10) Fg(Up)
Ug — Ugthh(X(A,U,;L))U;h,
((ngh)“ﬁ))(A,U,M) = €g.h 01d Fyy (X401, © Tgun-
Proposition 7.6. For any g, h, f € G, the following assertions holds.

(i) vg.n : Lg o Ly — Lgp are well-defined natural isomorphisms in Z(®).
(ii) vg.p : Lg o Ly — Lgp are monoidal natural transformations.
(iii) Forany g, h, f € G and any (X, o) € Z(®), the following equation holds

(Weh, ) (x,0)We, W)L (X.0) = Wg,nf)(X,0)Lg((Vh, £)(x,0))- (7.3)
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Proof. (i). We must verify that (vg ;) (x,0) are morphisms in the category Z(®),
that is, equation

. h h .
(idg o ((Vem)x.0)) (4.17.,0) (@060 = 0.9, (Ve x.0)) 7 7 i) © 1d6)
(7.4)
is fulfilled for any equivariant 1-cell (6, 0,) € BS((A, U, D), (A, U, ). The left
hand side of (7.4) equals to

= (idg o €g.n 0id ryx) 0 Mg.n) (id gy © O 0 id Uz F, W) Fen () Fe U U)
(id g © F(0(h g,)) 0 id u,) (id g © b5 0 id 0, ) P () P W)U )
= (idg 0 €gp 0id py,0x0) 0 Tg) (id 06, 0id) (id 72 5, i) © Fe(O) 0id)
(id UgFo(UF) © Fen(0(9,6,)) 0 1d Fg(Uh)Ug) (id UgFo(UF) © Fg (91:1) oid Ug)
(id g7y 0 0 01 Uz £, U Fo 0O Fe U U)
= (id o egn 0id)(id iy (i) © (d f 7,
00g)(Fg(6h) oidy,) oid U;Fgw,j)th(X)Ugh)
(id gy £, () © Fen(00.60) 0 id )
(id Gy (175 () © (4 ) © Tg) (Fe (8 ) 0id p,)(d 1, 7, 6 )
= (id o €, 0id)(id bs o) © Gd @),y © 00) (Fe(0) 0id y) o id )
(id g, @7y © Fon(06.60) 0 id u,,)(id © 6 (T 0 idp)

The second equation follows from the definition of U(he,eg)’ the fourth equality
follows from (4.2). The right hand side of (7.4) equals to

- (id 17;11 © g 0 id U;thh(X)Ugh)(id ﬁ;h o Fgn(o(g.0,)) 0id Ugh)
. 1\~ ) . .
(id Ul Fan(X) © O ) (&.noid Fan(%) © Hg.n oid 9)
= (Eg‘h 9} Qgh oid U;h th(X)Ugh)(id U;kFg(U}T) (e} th (O’(e’eg)) oid Ugh)
. - -1, .
(id U Fo(Uf) Fo(X) © Ogp (g0 idg)).

It follows from Eq. (7.1) that both sides are equal.
(ii). Let (X, o), (Y, 7) be objects in Z(®). Since the functors L, are strict, this
means that L, ((X, 0)®(Y, 7)) = Lg(X, 0)®Lg (Y, T), we must prove that

e n) x,000.71) = We.n)(X,0)®We 1) (X,0)- (7.5)

Let (A, U, IT) be an equivariant O-cell. The left hand side of (7.5) evaluated in
(A, U, IT) equals to

€g,h © id Fon(X(a,u,m) © Hg,h O€gh O id Fon(Y(a,u,m) © Hg,h'

The right hand side of (7.5) evaluated in (A, U, IT) equals to

€g,h © id Fon(Xa,u,moY@,u,m) © Hg,h'
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It follows from (7.1) that both sides are equal.
(iii). Let (A, U, IT) be an equivariant O-cell. The left hand side of (7.3) evaluated
in (A, U, IT) is equal to

= (€gh.s ©id Fyy0x) © Tgn. 1) (€g.n ©1d Wi xUy) © T n)

= Egh,f(eg,h oid th(U}g)) oid thf(X) o th’f(id th(Uf) o Hg,h)~
The right hand side of (7.3) evaluated in (A, U, I1) is equal to

= (Gg’hf oid Fen(X) © Hg,hf)(id Uz © Fg(ep, ) oid Fen (X) © Fo(ITy, ) oid Ug)
= € py(id Uz © Fq(ep, ) oid Fenp(X) © Mg pp(Fe(Tlp, r) oid Ug)~

Now, that both expressions are equal follow by (7.2) and (4.1). O

7.1.1. Proof of Theorem 7.1 Let us first describe an object in the equivariantiza-
tion of the category Z(®). An object in Z(®)Y is a collection (X, 0),s) where
(X,0) € Z(®), and s : Lg(X,0) — (X, 0) is a morphism in the category, for
any g € G. This means, that X4, y,mm) € B(A, A) is a 1-cell, for any equ1var1ant 0-
cell (A, U, I), and for any equivariant 1-cell (z, 7g) € BG((A U, 1), (A U, H))
there is an isomorphism or,7,) : X3 7.fi) © T = T o X(a,u,m) such that Eq. (1.4)
is fulfilled. Also, for any g € G and any equivariant O-cell (A, U, IT) there are
morphisms

Goaum Uy Fe(Xa,u,m)Ug = Via,um,

such that

(idr o (Sg)(A»U,H))U(gT’Tl) = G(I’Tl)((sg)(g’ﬁ’ﬁ) oid f), (7.6)
Gen)a,u.mWen)a,um = Sg)a,u,mLg((sp)a,u.m). (7.7)

for any equ1var1ant 0 cells (A, U, II), (A U H) any equivariant 1-cell (7, 7g) €
BO((A, U, D), (A H)) and any g, h € G.Equation (7.6) follows from the fact
that s, : Lg(V,0) — (V,0) is a morphism in the category Z(®), and Eq. (7.7)
follows from (5.3).

Define the functor ¥ : Z(®)¢ — Z(BY)asfollows.Let (X, 0), s) € Z(P)Y,
then ®((X, o), s) = (V, ). For any equivariant O-cell (A, U, IT), V(4 v, m) mustbe
an equivariant 1-cell in the category BC((A, U, D), (A, U, IT)). Define Viaun =

(A,U,T1)
(X(A,U,H)s 9g ), where
04U Fy(X(a,u,m) o Ug = Ug 0 X(a 0.,

A .
095(, UID id U, © (Sg)(A,U,l'I)-

(7.8)

If (r,7g) € BG((A, U, ), (;f, 17, ﬁ)) is an equivariant 1-cell, then

U(r Tg) - (X(A U0y 9 (a.0.1) ) o (t, Tg) = (T, fg) o (X(A U1 Q(A’U'H)),

U(r,rg) = O0(1,74)"
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Claim 7.7. The following statements hold.

@) Vaa,u,m = (X@,u.n, Oé,A‘U’n)) € BG,foranyequivariantO-cell (A, U, II).
(ii) The object (V, &) belongs to the category Z (BY). In particular, the functor
W is well-defined.
(iii) The functor ¥ : Z(®) — Z(BY) is an equivalence of categories, and it
has a monoidal structure.

Proof of Claim. (i). We must check that the maps GéA’U’H) ) satisfy (4.2). In this
case, we must prove that forany g, h € G

(TMgn 0id xy 1)) (id £y 0 OV ) (Fe 0™y 0id g,

is equal to

(A,U.TI) /.
egh (ld Fen(Xa,u.m) © Hg:h)'

U,

Using the definition of O(g(,A , we get that the first expression is equal to

(Mg.n 0id x, y.y) (id Fywiv, © () a.v.m) (id Fywy) © Fe((sn)a.v.my) oid y,)
= (Mg,n 0id x4 1)) (id F, U, © () a0, (d UzoF, () a0.m)) © 1d U,)
= (Mg 0id x4 ) (id £ U, © (Sgn)(a.v.m Vg.n)(4,0.1T))
= (id Ugi © (sen)a,u,m) (Hg.n 0 (e n)(a,u.m)
(A,U,TI)
= egh (ld Fon(X(a,v.m) © Hg,h)'

The second equality follows from (7.7), and the last one follows from (7.1).

(ii). Since G(z, ) = O(z,z,) for any equivariant 1-cell (7, 7¢), then & satisfy (1.4).
We must verify only that 6, . ,) 1s an equivariant 2-cell, that is (4.3) is satisfied. To
simplify the notation, let us denote G(SSA‘U’H) =0, pAUID — gg. In this particular
case, using the composition of equivariant 1-cells given by (4.4), we have to prove
that

(1l7g ° U(f,fg))(gg ° lf)(ng()?) 0 7g) = (tg 0 1x) (1£,(x) 0 ) (F (0z.r)) © 1(17/g9)5
The left hand side of Eq. (7.9) is equal to '

= (1, 0 0z.rp) (17, © S a.v.m) (1, %) © Te)
= (1l7g o(lro (~?g)(A,U,1'l))0(gz,rg))(ng()?) 0 7g)

= (1, © (o) .v.m) (g © lug 00, ) (Fe (0(z.z) © 1u,)
= (7g 0 1x) (1£,r) © Og) (F (0r.z)) © 1)

The first equality follows by using the definition of 05(,A’U’H) given in (7.8), the
second equality follows from (7.6), and the third one follows from the definition of

O (r,zp)"
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(iii). The fact that W is an equivalence follows easily. A direct computation
shows that

Y(((X,0), )@Y, 1),1) = V((X,0), )@V (Y, 1), 1),

for any pair of objects (X, o), s), (Y, 7),1) € Z(P)C. |
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