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Abstract. We will extend a recent result of Choi and Daskalopoulos [4]. Foranyn > 3,0 <

m< "2 m # %, B > 0and A > 0, we prove the higher order expansion of the radially

T
symmetric solution vy g(r) of ”n—:lAvm + %v + Bx - Vv = 0in R", v(0) = A, as
r — 00. As a consequence forany n > 3 and 0 < m < ",1;2 if u is the solution of the
equation u; = ”m;lAu’" in R" x (0, 0o) with initial value 0 < ug € L°°(R") satisfy-
. — 2(n—1)(n—2— —2— 2

ing ug(n)! " = HELOCETm (tog x| — " 2=5=E20 tog(log [x) + K1 +o(1))) as
|x] — oo for some constants B > 0 and K1 € R, then as r — oo the rescaled function

~ 28 .
Hx,t) = eTn'uEPlx, 1) converges uniformly on every compact subsets of R" to vy, g
for some constant A1 > 0.

1. Introduction

Recently there is a lot of interest in the following singular diffusion equation [1,7,
15,16],

n—1

Au™ in R" x (0, T) (1.1)

Ur =
m

which arises in the study of many physical models and geometric flows. When
0 < m < 1, (1.1) is called the fast diffusion equation. On the other hand as

observed by Daskalopoulos et al. [6,9,10], the metric g = uﬁd y? satisfies the
Yamabe flow [2,3],

g

— = —R 1.2

Y g (1.2)
onR", n > 3,for0 <t < T, where R is the scalar curvature of the metric g, if
and only if u satisfies (1.1) with

n—2

n+2

For
n—2
n>3 and 0 <m < , (1.3)
n
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asymptotic behaviour of solution of (1.1) near finite extinction time was studied by
Galaktionov and Peletier [11] and Daskalopoulos and Sesum [8]. Extinction profile
for solutions of (1.1) for the case m = +2, n > 3, was studied in [10] by del Pino
and Sdez. Such extinction behaviour occurs for the solution of (1.1) when (1.3)
holds and the solution u € L*°(R" x (0, T)) satisfies

u(x,t) < Clx|~ =3 Vix| >Ry, 0<t<T

for some constants C > 0 and R; > O (cf. [8]). On the other hand if (1.3) holds
and 0 < ug € Lﬁ) . (R"") for some constant p > M which satisfies

1
lim inf 5 ugdx = 00,
R—o00 Rn T=m J|x|<R

then Hsu [13] proved the existence and uniqueness of solutions of

{u, =2LAu™  in R" x (0, 00) 14

u(x,0) =ug(x) in R".

These results say that we will have either global existence of solution of (1.1) or
extinction in finite time for solution of (1.1) depending on whether the growth rate
of the solution is large enough at infinity. When (1.3) holds, existence, uniqueness
and decay rate of self-similar solutions of (1.1) were also proved by Hsu in [12].
Interested reader can read the book [7] by Daskalopoulos and Kenig and the book
[16] by Vazquez for the most recent results on (1.1).

In the recent paper [4], Choi and Daskalopoulos proved the higher order expan-
sion of the radially symmetric solution v;, g(r) of

n—1_ 28 . n

- Av —i—l_mv—}—ﬁx Vv=0, v>0, inR (15)
v(0) =\

for any constant A > 0 where m = +2,

if u is the solution of (1.4) in R” x (0, co) with m =
uo > 0 satisfying

)1—m ~ n—1Dn-2)
Blx|?

for some constants 8 > 0 and K| € R, then as t — oo the rescaled function

n > 3, as r — oo. They also proved that

+2, n > 3, and initial value

ugp(x (log|x|+ K1 +0(1)) as r=|x| > o0

2
w(x, 1) :e%’u(eﬁ’x,t) (1.6)

converges uniformly on every compact subsets of R” to vy, g (x) for some constant
A1 > 0. Note that for any solution u of (1.1) in R" x (0, 00), & satisfies

- 28 - ~ .
7 =2 Au—l—l_ﬂmu+,3x~Vu in R" x (0, 00). (1.7)
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This result of Choi and Daskalopoulos [4] shows that the asymptotic large time
behaviour of the solution of (1.4) depends critically on the higher order expansion
of the initial value of the solution. Moreover the asymptotic large time behaviour of
the solution of (1.4) is after a rescaling similar to the solution of (1.5) with the same
higher order expansion. Hence it is important to study the higher order expansion
of the solution of (1.5).

In this paper we will extend the result of [4]. We will prove the higher order
expansion of the radially symmetric solution v, g(r) of (1.5) as r — oo for any
n>30<m< ”n;z,m #= n—2 B > 0and A > 0. We will also prove that when

n+2°
n23,0<m<"n;2,and

2(n — 1)(n — 2 — nm)
(1 —m)Blx|?

n—2—m+2)m
x (log X = =3 — oy 10200 D + K1 +0(1)>

up(x)' " &~

asr = |x| — ooforsomeconstants § > Oand K| € R, thenast — oo therescaled
solution u given by (1.6) will converges uniformly on every compact subsets of R”
to the radially symmetric solution vy, g(x) of (1.5) for some constant A = A1 > 0.

We first start with a definition. For any 0 < ug € L}OC(R”), we say that a
function u is a solution of (1.4)if u > 0 in R"” x (0, co) is a classical solution of

(1.1) in R" x (0, c0) and
(-, 1) — MOHLI(E) —0 asr—0

for any compact subset E of R”. For any A > 0 and 8 > 0, we say that v is a
solution of (1.5) if v is a positive classical solution of (1.5) in R". When there
is no ambiguity we will drop the subscript and write v for the radially symmetric
solution vy, g of (1.5). Let

w(s) = r2v@)'™ and s = logr. (1.8)

We will assume that n > 3,0 < m < ”n;z, B > 0,1 > 0 and w be given by

(1.8) for the rest of this paper. Unless stated otherwise we will also assume that
-2
m | | -
‘We obtain the following two main theorems in this paper.

Theorem L.1. Letn > 3,0 < m < “2.m # "3 B > Oand ) > 0. Let
v, g(r) be the radially symmetric solution of (1.5) given by [12]. Then there exists
a constant K¢ independent of B and ). and a constant K (A, B) such that

_ 2n — 1)(n — 2 — nm) n—2—m+2)m
1-m
= 1 — log(1
vp () (1 —m)pr2 { 201 =2 —nm) o8logr)
1—m 1 a  (n—2—(n+2)m)?
logh + =1 K
gy lee e f o Kot T =2 — )2
y log(logr)  o(log r)} (19)
logr logr
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asr — oo where

(n—2—(n+2)m)? (1 —m)?a(1,1)

ap = — (1.10)

4(n — 2 —nm)? 4n — 1)(n —2 — nm)?
and
N 20 =2m)(n — (n —2 — nm) (n—1Dn—=2—1n+2)m)?
ai(x, B) = )2 )2

L 2= @EDm) b g, (1.11)

(1 —m)

Theorem12 Letn >3,0<m<"2m#%23 8>00<ug=0¢+v.¢c

@RY), ¢ € LY@ N LY (RM), for some constant p > d zm)", be such that

loc loc

2n — 1)(n — 2 — nm)

(1 —m)Bx|?

—2— (42
log x| — 2 (n A+ 2m | eog x]) + K +o0(1) ) as [x| — 0o
2(n — 2 — nm)

(1.12)

px)' =

for some constant K| € R. If u is the unique solution of (1.1) in R" x (0, c0) given
by Theorem 1.1 of [13], then as t — 00, the rescaled function u(x, t) given by (1.6)

1
converges to v, g in Lloc (R™) with A = (eZKl/KO/ﬂ) I=m ywhere the constant K
is given by Theorem 1.1.
Moreover if ug also satisfies ug = ¢ € L (R"), then as t — oo, u(x, 1) also

converges to v, g uniformly in C>(E) for any compact subset E C R".

2. Proofs

In this section we will give the proof of Theorems 1.1 and 1.2. We first recall some
results of [8,12,14].

Theorem 2.1. (Theorem 1.3 of [12] and its proof) Let v be the unique radially
symmetric solution of (1.5) and w be given by (1.8). Then

Ix[2v(x)t=m ow(s) 2(n — D(n — 2 — nm)
—————— = lim = lim wy(s) =
Ix|>oc  log|x| 5500 § §—00 (1—m)B

@2.1)

Lemma 2.2. (cf. Corollary 2.2 of [8] and Lemma 2.2 of [14]) Let 0 < ug,1, uo,2 €

loc (R™) be such that ug,1 —uo 2 € L' (R™). Suppose uy, us, are solutions of (1.1)
in R* x (0, 00) with initial values uo. 1, ug 2 respectively such that for any T > 0
there exist constants C1 > 0, Ry > 0, such that

ui(x,t) > Cqlx|~ =T Vix| >Ry, O0<t<T, i=1,2.
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Then
i (s ) —ua( Ol prwey < llwor —uo2llpiwey Vi >0

and hence
~ ~ 7wt ~ ~
w1 (. 1) — w2, Dl ey <€ T o — o2l prwny Yt >0
where U\ (-, 1), U (-, t), are the rescaled solutions of uy, uz, given by (1.6).
By the computation of [12] we have

_1=2m w! n—-2—(n+2m

Wys = — = s
l—-m w 1—m
B 2(n — 1)(n — 2 — nm) .
— R. 2.2
+n_1< Y ws Jw in (2.2)
b 20— 1(n — 2 — nm)
n—1Dn—2—nm
h(s) = w(s) — s. (2.3)
(I—=m)B
Then by (2.2),
1—-2m ws2 n—2—m4+2ym) (2(n —1)(n —2 — nm)
hxs = T + hv
l-m w l—m (I-m)p
2 — 1D —2 —
__F (=D nm) e n)h, in R
n—1 a1-mp
Hence
2(n — 2 — -2 - 2
I + (n nm)s+ B h+n (n+2)m I
(1 —m) n—1 1—m
1-2 2
- Y by in R (2.4)
1l—-m w
where
b — 2 —1)(n —2 —nm)(n —2 — (n 4+ 2)m)
. (1 —m)2p '
Lemma2.3. Letn >3,0<m < "n;z and m #+ % Then h satisfies
h —Dn—-2-— 2
fim ) i s hy (s = - DI (t+2m] s
s—oo logs §—>00 (1—m)p
Proof. We first observe that by Theorem 2.1,
wi(s)  limg oo wi(s)

(2.6)

s—o00 w(s) h limg_ 00 S - (w(s)/s) -

Then by (2.4) and (2.6) for any 0 < ¢ < |bg|/2 there exists a constant s; € R such
that
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_bo—gfhvr+<2(n_2_nm) /3 h+n_2_(n+2)m>hY
(1—m) n—1 I —m
< —byp+¢e Vs>s]. (2.7)
Let
f(s) = exp <("_2_”’")s2+ £ /Sh(z)dz+n_2_(n+2)m5>-
(1—m) n—1J I—m
(2.8)

By (2.7),

(=bo — &) f(s) = (f(9)hs(s))s = (=bo+ &) f(s) Vs =5
N fsDhs(s1)s + (=bo —e)s [} f(2)dz

o) < shg(s)
h b § dz
_ J60hG0s + (f(so)+ sy f@dz _— 2.9)

By (2.1), hs(s) — 0 as s — oo. Hence h(s) = o(s) and h(s)/s — 0 ass — oo.
Then by (2.8) f(s) — oo as s — oo. Hence by the 1’Hospital rule,

o f@dz ()
lim ——— = lim EYP— 5 5 5 =0
— — —2— —2—
s—oo  f(s) §—>00 f(s)( n(l_mr)lm s+ Lohs) + n 18:1? )m)
(2.10)
and
. s . 1
lim —— = lim = 5 5 =0. (2.11)
TS () (Rl 4 () + M)
Hence by (2.10) and the I’Hospital rule,
s [y fdz sf(s)+ [; f(2)dz
m ——— = lim
§—>00 f(S) §— 00 f(s) (Z(n(IE;nr)tm)s + nﬂ%lh(s) + n72I£nm+2)m>
1—
__d=m 2.12)
2(n — 2 — nm)
Letting first s — oo and then ¢ — 01in (2.9), by (2.11) and (2.12) we have
1 —m)b —Dn—-2-— 2
lim 5 hy(s) = —— 0 —m™b0 (1= Din (n+2ml 53
§—>00 2(n — 2 — nm) (1—m)p
Hence
—Dn—-2-— 2
hs) < = Dl (R F Mo ass — 0o (2.14)

2(1 —m)p
and (2.5) follows from (2.13), (2.14) and the I’Hospital rule. |
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Corollary 24. Let n > 3,0 < m < ”n;2 and m # % Then there exists a

constant so € R such that

-2
hs(s) <0 Vs > s if0<m<Z+2
ho(s) > 0 Vs > i n—2 n—2
s(8) > s >50 I n+2<m< —
Let | ) )
hi(s) = h(s) + o Dln =2 = e 2ml, oo (2.15)
(I—m)p
Then by Lemma 2.3, i1 (s) = o(logs) as s — oco. By (2.4) h; satisfies
2(n —2 — -2 — 2
B+ (n nm)s+ B h+n (n+2)m I
1 —m) n—1 1—m
1-2 2 1 -2 2 1
_lzam s el (P Dm0 R
l—-m w 52 n—1 1—m s
(2.16)
where
m—Dn—-2—(n+2)m]
a) = .
(I—m)B
LemmaZ.S.Let0<m<"n;z,m;é%,k>0andﬂ>0.Then
2 2
h —Dn—-2-— 2
lim S 1s(8) _ (n— D@ (n+2)m) _ 2.17)
s—oo  logs 2n =2 —nm)(1 —m)p
Proof. Let
1—2m w? 1 n—2—m+2)m\ 1
H(s) = S ta-—5+ P h+ (t2my L
l—m w s n—1 1—m s

Then by Theorem 2.1 and Lemma 2.3,

sH(s)_ (n—2—(n+2)m)
s—oo logs - 1—m =

= _as (2.18)

where
_ (n— D —2—(n+2)m)?

(1 —m)?p
By (2.16) and (2.18) for any 0 < ¢ < a3/2 there exists a constant s; > 1 such that

as (2.19)

1 2(n — 2 —
(—a3z — 8)£ =< hl,ss + (n nm)s P
s (1 —m) n—1

n—2—(m+2m
( ) )hl,s <(-a3z+¢)
1—m

h

log s

(2.20)
S
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holds forall s > s;.Let f be given by (2.8). Multiplying (2.20) by f and integrating
over (s1, 5),

2 [ fGDh (1) + (—as —e) [0 82 f(2) dz _ 5Phi)
( £(s) ) -
2 [ FGDhsG) + (—as + o) [0 % f(2) dz

( f(s) )

log s log s

< 2.21)
log s

holds for all s > s;. By the I’Hospital rule and Lemma 2.3,

52 ;1 l(’%f(z) dz
s=oo  f(s)logs

_ fs)slogs +2s [ 22 f(2)dz
= lim

§—00 f(S) (2(n(IE;1r)Lm)s+ h(s)+n 2— (n+2)m>10gs+ f(s)

1—m 1—m i fssllo%f(Z)dZ
m

T 2n—2—nm)  n—2—nms>x f(s)logs

(2.22)

Since
J2 8 f () de ) [ f@)dz v -
S S,
f(s)logs £ =0
by (2.10),
e A GL
By (2.22) and (2.23),
A EI@d 1w (2.24)
w200 f(s)logs 2 —2—nm)’ '

Letting first s — oo and then ¢ — 0 in (2.21), by (2.24) we get (2.17) and the
lemma follows. O

Corollary 2.6. Letn > 3,0 <m < n=2

n

7én+2,k>0and,8>0 Then

KO, B):= lim hi(s) e R exists (2.25)
S—> 00
and

hi(s) = K&, B) +

n—1Dm—-2—m+2)m)? [1+logs
2(n —2 —nm)(1 —m)p < s )

1+1
+o0 (ﬂ> as s — oo. (2.26)
s
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Proof. By (2.17) there exist constants C; > 0 and s; > 1 such that

Szhl,s(s)

<Ci Vs=>si. (2.27)
log s

Hence
N s logz
lhi(s) —hi(sDl = [ [h1s5(2)]dz = Cy Z—2dZSC2 Vs = 51
51 S1
= [h1(s)| = C2 + [h1(s1)] Vs =51 (2.28)

for some constant C, > 0. On the other hand by (2.17) there exists a constant
so > s1 such that

his(s) <0 Vs> sp.
Then A1 (s) is monotone decreasing in (sg, 00). This together with (2.28) implies

that (2.25) holds. By (2.17) for any 0 < ¢ < (';;nlﬁz"j,f,;)((’qtﬁ;’gz there exists a
constant s» > 1 such that

2
(Foobos2otean? Jow
2(n —2 —nm)(1 —m)p 52 ’

_ <_ (n—1n—2—1n+2)m)? 8) log s

2(n —2 —nm)(1 —m)B ) (2.29)

holds for all s > s,. Integrating (2.29) over (s, 00), s > 57,
(n—1n—-2—m+2)m)? e (1 +logs)
2(n —2 —nm)(1 —m)p s

- (n=Dn-2-@m+2)m?* )(1+logs)
= 2i—2—mm)yd—mp_°©

=K@, B)—hi(s)

S
for all s > s, and (2.26) follows. O
Let K (X, B) be given by (2.25) and

—D(n—2—@n+2)m)? (1+1
hz(s)=h1(s)—K(A,ﬂ)—(n2(n i(’;_nm)gjm))";) ( +s°gs>. (2.30)

Then
1+ logs

N

hy(s) =0 <
and by (2.15) and (2.16),
o os + (2(n—2—nm)s B n—2-— (n+2)m>h2’s

)as s — 00 (2.31)

h
(1 —m) n—1 + 1—m

_1=2m w} (n—Dn—2—(n+2m)? 1

T l-m w (1 —m)2B s
n—2—m+2)m) hi(s) a
1—m . K _s_2
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_ _9_ 2 _
n—1Dm—-2—m+2)m) ' [(1 2logs) N ( B hes)
2(1 —m)(n —2 —nm)B 53 -1
+n—2—(n+2)m> . 10gsi|
1—m 52
— Hi(s). (2.32)

Lemma 2.7. Letn > 3,0 < m < "; ,m # 2 n+2, A > 0and B > 0. Then hy
satisfies

o, (L —mai(+, )
Sli)rgos hys(s) = —2(n i S—— (2.33)

where ay (A, B) is given by (1.11) with K (A, B) given by (2.25).
Proof. By Theorem 2.1, Lemma 2.3 and (2.25),
ai(r, B)

lim sHy(s) = (2.34)
§—>00

where aj (A, B) is given by (1.11) with K (A, B) given by (2.25). Then by (2.32)
and (2.34) for any 0 < & < 1 there exists a constant s; > 1 such that

(al(?», B 8) 1
B s

2(n —2 — nm) B n—2—m+2)m
5h2’”+< G—m Ta-i't T i—m )h“
- (“10"/9) +8>1 (2.35)
B s

holds forall s > s1.Let f be given by (2.8). Multiplying (2.35) by f and integrating
over (s1, 8),
f(sDha(s1)s? + (‘”(A -£) 8) 52 [XY] @dz
S(s)
f(Sl)hz(Sl)S + (al(A D 4 8) fgl L9 4,
- fs)
holds for all s > s;. Since by the 1’Hospital rule,

< 5%hy5(s)

(2.36)

fSS f@) dz (s)
. 1z L s —
vllfgo f(S) vllglo 2(n—2—nm) B n—2—(n+2)m 0,

FO(Tamm s Tasgh) + ==,

by Lemma 2.3 and the I’Hospital rule,

Z

lim = lim
§—00 f(s) §—00 f(s )(WS+%}I(S)+ n721in’;r2)m>

Zj;l 1@ 4, , sf(s)+2s [ @dz
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(
(1—m) -m [P
T 2n—2—nm) (n—2—nm)s—>oo  f(s)
(1 —m)
=—— (2.37)
2(n — 2 — nm)
Hence letting first s — oo and then ¢ — 0 in (2.36), by (2.8) and (2.37) we get
(2.33) and the lemma follows. |

By (2.31) and Lemma 2.7 we have the following result.
Lemma 2.8. Letn > 3,0 <m < "T m # n+2,k>0andﬂ > 0. Then

(I —m)ai(x, B) | o(s)
h = 4 — 2.38
2(5) 2(n —2 —nm)Bs + K as 8= o0 ( )
where ay (A, B) is given by (1.11) with K (A, B) given by (2.25).
We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. Letay, a (A, B),be givenby (1.10)and (1.11) with K (A, )

given by (2.25). Let
I-mK(d,1)

2n — D —2 —nm)’
By (1.8), (2.3), (2.15), (2.30) and (2.38),

Ko =

vy ()
_2(n—1)(n—2—nm) _(n—2—(n+2)m)
- (1 —m)r2 { 30— 2 —nm) _ oellogn) + Ko
N (n—2—n+2)m)? (l + log(log r))
4(n —2 —nm)? logr
- (1 —m)? ai(1,1) o(logr)}
4(n — (n —2 —nm)? logr logr
_2(n—1)(n—2—nm) 1 (11—2—(71—}—2)m)1 1
= 1 —m)r? { & = T =2y (0gllogn)
ap n—=2—(n+2)m)? log(logr)  o(logr)
+Ko+logr+ 4n—2—nm)?  logr logr } asr oo
(2.39)
Then by (2.19) of [4] and (2.39),
vx,,s(’)l_m
= )»lfmvl,l()uliTm\/Br)lfm
20— D(n —2—nm) — (n+2)m)
B (1 —m)pr? —2 —nm)
ap (n —2—(n+2)m)?

log(log(A 2 + Ko + +
x log(log(A 2" \/Br)) + Ko log(. 2" Bry | 4 —2—nm)?
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y log(log(h 2" /Br)) . o(log(1' 2" /Br))
log(A' 2" /Br) log(A' 2" /Br)

2n — DH(n — 2 — nm) ) n—2—m+2)m) log(log 1))
= r— r
0 —mpr2 g 2n—2—nm) BV
1—m 1 ay  (n—2—(n+2)m)?
logh + =1 K
+ 2 0% +2Ogﬂ+ O—i_logr—}_ 4(n —2 — nm)?
log(logr) o(logr)
X
logr logr
as r — oo and Theorem 1.1 follows. |

Remark 2.9. From (1.9),

_2(n—1)(n—2—nm) 1—m l ao
hi(s) = d—mp { > logk+2logﬁ+K0+S

n—2—m+2)m? logs o(s) }
+ — as § — 00.

+ 4(n — 2 —nm)? s

Hence

2(n — D(n — 2 — nm) {1
(I—m)B
Thus by (2.25) and (2.40),

— 1
Iim hi(s) = mlog)»—l——log,B—l—Ko}. (2.40)
s—00 2 2

K(A,ﬂ)ZZ(n—l)(n—Z—nm) {1—m

I —=m)p 2

Proof of Theorem 1.2. Since the proof is similar to the proof of Theorem 3.1 and
Corollary 3.2 of [4] we will only sketch the proof here. Let K¢ be given by Theorem

1
log A + Elogﬁ—l—Ko}.

1.1 and A; = (e2(K17K0) /) =7 Then for any 0 < & < A; there exists a constant
R. > 0 such that

Up—e,p(xX) < P(X) < Uy 4ep(x) Vx| =R,
= Upy—e,p(X) + Y (xX) S uo(x) < spy4ep(x) + ¥ (x) Vx| = Re. (241

For any 6 > 0, let u1, uz, u1s and wj s be the solution of (1.4) with initial value

min(uy, —e, g(x) + ¥ (x), up(x)), max(u,+e pg(x) + ¥ (x), uo(x)),
min(uy, — g (x) + ¥ (x), up(x)) + 4,
and u;,, ¢ g(x) + & respectively given by Theorem 1.1 of [13]. Let iy, u>, u1,s and

w1 5 be given by (1.6) with u being replaced by u, us, u; s and wy s respectively.
By (2.41) and the construction of solutions in [13],

<
IATA

SIS

uy, urs>8, wis>8 in R"x (0,00) V6>0 (242)

1 b
>y, in R" x (0, 00). (2.43)

=
=

N

= Ui
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By (2.42) and Lemma 2.2,

(n—

lu1,sC, 1) — Wi sC, Ol L1 @ny < = || min(uy,—e g + ¥, uo)

— uxl*&ﬂ”L'(R") Vit >0 (24’4)
Since min(uy, —¢ g (x) + ¥ (x), uo(x)) + 8 and u;, . g(x) + & decreases monoton-
ically to

min(u—g p(x) + ¥ (x), uo(x)) and uy,—e p(x)
28

asé — 0, uy s and wy s decreases monotonically to u; and e_mtuxl,g,ﬁ(e_ﬂ’x)
as 6 — 0. Hence letting § — 0in (2.44),

(n—2—nm)

||El(" 1) — Mxl—a,ﬁ||Ll(sz) <e l —m || mm(”kl —ep T+ ¥, uo)
_MM—E,ﬂ”Ll(R”) vVt >0 (245)
Similarly,
_ (n— 2 nm)
[72(, 1) — sy el L1y < | max (s, —e.p + ¥, o)
— e pllpiwny Vi >0 (2.46)
By (2.43), (2.45) and (2.46), and an argument similar to the proof of Theorem 3.1
of [4], the rescaled function % (x, r) given by (1.6) converges to v;, g in LZOC(R”)

ast — o0o.
Suppose now u also satisfies ug = ¢ € L°°(R"). Then by an argument similar
to the proof of Corollary 3.2 of [4], there exists a constant A, > 0 such that

up < Vi, B in R”

Hence by maximum principle for solutions of (1.1) in bounded domains (cf. Lemma
2.3 of [5]) and the construction of solution (1.4) in [13],

28
u(x, 1) <e Tnlvy, gePx) Vx eR", 1> 0
= u(x, 1) <v,px) YxeR"1>0. (2.47)
Then by (1.7), (2.47), and an argument similar to the proof on P.10 of [4], the

rescaled function u(x, 1) converges to v, g uniformly in C 21(E) for any compact
subset E C R" ast — oo. O

Finally by Theorem 1.1 and a similar argument as the proof of Theorem 3.6
and Proposition 3.9 of [4] we have the following result.

Theorem210 Letn>3.0<m<"2 m#"3 >00<ug=¢+y.¢c
R™), ¥ € L'(R") N IOC(R”) for some constant p > (1_2'")", such that

loc

o 2 l—m _ €1 _(n—2—(n+2)m)
K> = lllgl_fl;f [lxl up(x) B <log |x| —2(n i p—— log(log \xl))] < 00.

holds and ¢ satisfies (1.12) for some constant K1 € R where ¢ = 2(n — 1)(n —
2 —nm)/(1 — m). If u is the unique solution of (1.1) in R" x (0, co) given by
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Theorem 1.1 of [13], then as t — 00, the rescaled function u(x, t) given by (1.6)
converges to vy, g uniformly in C>Y(E) for any compact subset E C R" with

.
Al = (62(’(1 ’KO)/,B) 1=m ywhere the constant K is given by Theorem 1.1. Moreover

1\m|1 sup |:|x|2u(x, t)l_’71 — %1 <1 x| — nz—(nZ_—z(n_—;i))m log(log |x|)>]
SK2_2(n—1)(n—2—nm)t Vi > 0.
(I—m)

3. Appendix

For the sake of completeness, in this appendix we will state and prove the analogue
of Lemma 2.3 for the case m = %, n>3.
Proposition 3.1. (Proposition 2.3 of [4]) Letn > 3, m = % A>0and B > 0.
Let v be the solution of (1.5) and h be given by (2.3) with w given by (1.8). Then
h satisfies
6-—n)(n—-1)

48 '

Proof. This proposition is stated and proved in [4]. For the sake of completeness
we will give a simple different proof of the proposition here. We first observe that
by Theorem 2.1,

lim 52 h(s) =
S—> 00

lim sws(s)2 . 2(n — 1)(n — 2 — nm) _ n—1Dn-2) G.1)
s—o00  w(s) o (1—m)p N B ' '

Let
_ (1 =-2m)(n—1)(n —2)

1—-mp
Then by (2.4) and (3.1) for any 0 < ¢ < |a4]|/2 there exists a constant s; € R such
that

(@4 — &)s~) Shﬂ_|_<2(n—2—nm) B _’_n—Z—(n—i—Z)m)h‘Y

(1 —m) n—1 1—m

< (ag +¢&)s7!

Vs > s51. (3.2)
By (3.2) and an argument similar to the proof of Lemma 2.7,

(I-=m)as  (6—n)(n—1)
2(n —2—nm) 48

lim 52 hy(s) =
§—>00

and the proposition follows. O
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