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Abstract. Let M be a most singular orbit of the isotropy representation of a simple sym-
metric space. Let (νi , �i ) be an irreducible factor of the normal holonomy representation
(νpM,�(p)). We prove that there exists a basis of a section �i ⊂ νi of �i such that the
corresponding shape operators have rational eigenvalues (this is not in general true for other
isotropy orbits). Conversely, this property, if referred to some non-transitive irreducible nor-
mal holonomy factor, characterizes the isotropy orbits. We also prove that the definition of
a submanifold with constant principal curvatures can be given by using only the traceless
shape operator, instead of the shape operator, restricted to a non-transitive (non necessarily
irreducible) normal holonomy factor. This article generalizes previous results of the authors
that characterized Veronese submanifolds in terms of normal holonomy.

1. Introduction

The orbits of s-representations (i.e., isotropy representations of semisimple sym-
metric spaces) play a similar role, in Euclidean submanifold geometry, to that of
symmetric spaces in Riemannian geometry [1]. These orbits coincide with the so-
called generalized real flag manifolds.

Any s-representation is a polar representation, i.e., there is a linear subspace,
called a section (which in this case is a maximal abelian subspace of the Car-
tan complement), that intersects every orbit in an orthogonal way. Conversely, by
the classification of Dadok [4,6], given a polar representation there exists an s-
representation with the same orbits.

The rank of an s-representation, i.e., the codimension of a principal orbit, coin-
cides with the rank of the associated symmetric space.
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Orbits of s-representations are submanifolds with constant principal curvatures.
Namely, the shape operator of such an orbit, in the direction of any arbitrary par-
allel normal field along a curve, has constant eigenvalues. Moreover, the principal
orbits are isoparametric submanifolds, i.e., submanifolds with constant principal
curvatures and flat normal bundle. Conversely, by a remarkable result of Thor-
bergsson [9,14], any irreducible and full Euclidean isoparametric submanifold of
codimension at least 3 is a principal orbit of an s-representation.

The Thorbergsson theorem was genereralized by Di Scala and the first author
[5] to the so-called rank rigidity theorem for submanifolds [3]. In particular, one
has the following characterization, where the rank of a submanifold is the maximal
number of linearly independent, locally defined, parallel normal fields.

Theorem 1.1. [10,11] Let Mn, n ≥ 2, be an irreducible and full homogeneous
submanifold of Euclidean space. Then

(i) rank(M) ≥ 1 if and only if M is contained in a sphere.
(ii) rank(M) ≥ 2 if and only if M is an orbit of an s-representation, of rank at least

rank(M), which is not most singular.

Since the normal holonomy is a conformal invariant, any conformal diffeo-
morphism of the sphere maps a submanifold into another one with the same rank.
But, in general, such a diffeomorphism does not preserve the homogeneity. So the
assumption that the submanifold is homogeneous cannot be dropped from the above
result. The group of presentation of M , in the above theorem, may be smaller than
the group associated to the s-representation.

Observe that the rank of a submanifold can be regarded as the dimension of
the fixed vectors of the normal holonomy action. So, the rank rigidity theorem
characterizes, in terms of the normal holonomy, all the orbits of s-representations
which are not most singular.

A major open question, in this context, is the following conjecture that would
generalize the rank rigidity theorem.

Conjecture. [10] A full irreducible homogeneous submanifold Mn of the sphere,
n ≥ 2, such that the normal holonomy is non-transitive must be an orbit of an
s-representation.

A partial answer to this conjecture was given in [2,12]. Namely, the so-called
Veronese submanifolds of dimension at least 3 are characterized as homogeneous
submanifols with generic first normal space and irreducible non-transitive normal
holonomy. In particular, this implies a positive answer for the conjecture if n = 3,
since the number of irreducible factors of the normal holonomy is always bounded
by n

2 . For n = 2 the normal holonomy must be always transitive and so the conjec-
ture also holds.

The goal of this paper is to generalize the results in [12]. For this sake we need,
in particular, to avoid the delicate topological arguments used there for n = 3. This
led us, on the one hand, to consider the so-called traceless shape operator Ã and to
recover, from this object, the information given by the usual shape operator.

On the other hand, we need necessary and sufficient conditions on the subspace
Ã� ⊂ End(TpM), � a section for the normal holonomy action, so that M is an
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orbit of an s-representation. So, we first study how this subspace looks like for most
singular s-orbits. We prove that it has interesting rational properties. Such proper-
ties, that depend on the fact that the Weyl group associated to an s-representation
is crystallographic, do not hold for arbitrary isotropy orbits which are not most sin-
gular. Namely, such a subspace admits a basis any of whose elements has rational
eigenvalues. The same properties are true if we replace� by a section of the normal
holonomy action restricted to an irreducible factor.

The family of shape operators at p of a (Euclidean or spherical) subman-
ifold Mn may be regarded as a subspace of T[e]X , where X is the symmet-
ric space GL(TpM)/SO(TpM) � GLn/SOn . Since this symmetric space is
not semisimple, it is natural to consider the so-called traceless shape operator
Ãξ = Aξ − 1

n 〈H, ξ 〉I d = Aξ − 1
n trace(Aξ )I d, where A is the shape operator and

H is the mean curvature vector. In this way, X is replaced by the simple symmetric
space SL(TpM)/SO(TpM). Moreover, if we replace the shape operator Aξ by the
so-called dual shape operator i Aξ , the above mentioned rational properties are
equivalent to the fact that a maximal abelian subspace of shape operators is the
tangent space to a compact flat, in general non-maximal, of the dual symmetric
space X∗ � SUn/SOn . This allows us to use general facts about smooth variations
of compact flats.

Let us enounce our main results

Theorem 1.2. Let Mn, n ≥ 2, be a full and irreducible submanifold either of the
sphere SN−1 or of the Euclidean space RN which is not contained in a sphere. Let
0 �= ν′M be a parallel subbundle of the normal bundle νM of M. Assume that
the normal holonomy group �(p) of M, restricted to ν′

pM, is not transitive on
the sphere, p ∈ M (e.g., if M is not a hypersurface and has flat normal bundle,
and ν′M = νM). Then the traceless shape operator of M, restricted to ν′M,
has constant principal curvatures if and only if M is a submanifold with constant
principal curvatures.

Let us say that the traceless shape operator Ã of M , restricted to ν′M , has con-
stant principal curvatures if Ãξ(t) has constant eigenvalues for any parallel section,
along any curve, ξ(t) of ν′M .

This result will be needed for the proof of the next theorem.Moreover, it implies
substantial simplifications in the proof of the main result in [12], that avoids topo-
logical arguments.

The above theorem is not true if we drop the condition that the normal holonomy
is not transitive. In fact, one can construct a Weingarten, non isoparametric, rota-
tional surface inR3 such that the traceless shape operator has constant eigenvalues.
Or, equivalently, the difference between the two principal curvatures is constant.
The construction of such an example is just by solving an ordinary differential
equation.

The proof of the above theorem, since it is independent of the main tools devel-
oped in this article, will be given in the last section.

Theorem 1.3. Let Mn, n ≥ 2, be a full and irreducible homogeneous submanifold
of the sphere SN−1 such that the normal holonomy has a non-transitive irreducible
factor (νi ,�i ). Then the following assertions are equivalent:
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a) M is an orbit of an irreducible s-representation.
b) The normal holonomy factor (νi ,�i ) has sections of compact type.

The normal holonomy factor (νi ,�i ) has sections of compact type if the sections
of �i correspond, via the dual traceless shape operator, to the tangent space of a
compact flat in X∗ � SUn/SOn . Or, equivalently, if such a section, via the traceless
shape operator Ã, admits a basis any of whose elements has rational eigenvalues.
If �i is non-transitive, on the unit sphere of νi , then �i has sections of the compact
type if Ãνi is a Lie tryple system of the symmetric endomorphisms of the tangent
space. This is always the case when M is extrinsic symmetric or when the normal
holonomyacts irreducibly, non-transitively, and the codimension is themaximal one
1
2n(n−1)−1. Then our result generalizes the main results in [12] that characterize
Veronese submanifolds.

Any most singular orbit M , of the isotropy representation of a simple sym-
metric space of rank at least 3, has a non-transitive irreducible normal holonomy
factor. In fact, this follows from [7], and from the table of Dynkin diagrams with
root multiplicities for irreducible Riemannian symmetric spaces. Then the above
theorem is a characterization of such singular orbits.

For the same reasons mentioned after Theorem 1.1, the assumption of homo-
geneity cannot be dropped from the hypothesis of Theorem 1.3. In fact, if one
applies a conformal diffeomorphism, the traceless shape operator changes by a
common scalar multiple and the normal holonomy is preserved.

We hope that this theoremwould be useful for proving the previouslymentioned
conjecture.

2. Preliminaries

LetV be a k-dimensional Euclidean vector space and consider the global symmetric
space

X := SL(V)/SO(V) � SLk/SOk,

with Cartan decomposition

sl(V) = sim0(V) ⊕ so(V),

where sim0(V) are the trace-free symmetric endomorphisms. Let us consider the
dual compact globally symmetric space

X∗ := SU(VC)/SO(V) � SUk/SOk,

with Cartan decomposition

su(V) = i sim0(V) ⊕ so(V),

where VC = V ⊕ iV is the complexification of V. There is a natural linear map �,
which maps Lie triple systems into Lie triple systems, from the Cartan subspace
p := sim0(V) into the Cartan subspace ip = su(V). Namely, �(w) = iw.
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The exponential maps: exp : T[e]X � p, exp ∗ : T[e]X∗ � ip is given by the
usual exponential ex of endomorphisms (projected to the respective quotients).

An abelian subspace ia of ip � T[e]X∗ is called of compact type if it is the
tangent space at [e] of a compact (non-necessarily maximal) flat of X∗. This is
equivalent to the fact that eia is compact.

Definition 2.1. An abelian subspace a of p = sim0(V) is called of compact type if
eia is compact.

Remark 2.2. The Riemannian curvature tensor of X∗ at [e], up to a rescaling of the
metric and identifying T[e]X∗ � p∗, is given by

〈Ru,vw, z〉 = −([iu, iv], [iw, i z]),
where ( , ) is the usual inner product of symmetric matrices given by

(A, B) = trace(AB)

2.1. Smooth variation of compact flats in symmetric spaces

We will need the following auxiliary result which is standard to prove.

Lemma 2.3. Let H be a compact connected subgroup of SOr and let c(t) be a
smooth curve in R

r such that the orbits H · c(t) are all of the same isotropy type,
for all t . Then, if p = c(0), there exist a smooth curve α(t) in the normal space
νp(H · p) and a smooth curve h(t) in H, with h(0) = e, such that:

i) c(t) = h(t)α(t),
ii) α(t) is fixed by the isotropy Hp, for all t .

LetG ′/K ′ be a compact Riemannian globally symmetric space, where (G ′, K ′)
is an almost effective symmetric pair with Cartan decomposition

g′ = p′ ⊕ k′.

We do not assume that G ′/K ′ is simply connected but we assume that K ′ is con-
nected.Wewill be interested, for the applications, in the symmetric spaceSUn/SOn .

The group K ′ acts on p′ by means of the adjoint representation, which is iden-
tified with the isotropy representation of K ′ on T[e](G ′/K ′).

Let a′
t ⊂ ip′, t ∈ (−ε, ε), be an abelian subspace which is tangent to a compact

flat of G ′/K ′. Let us assume that this is a smooth linear variation. Namely, there
exists a linear isomorphism Ft : a′

0 → at such that Ft (w) is a smooth curve in p′,
for allw ∈ a′

0. From the linearity, we only need to considerw in an open non-empty
subset of a′

0. This is equivalent to the fact that F : (−ε, ε) × a′
0 → p′ is smooth.

Such a smooth variation is called a compact variation of abelian spaces.

Proposition 2.4. Let c(t) be a smooth curve in p′ with c(0) = p and let a′
t be a

compact variation of abelian subspaces of p′ such that c(t) ∈ a′
t and ċ(t) ⊥ a′

t .
Assume, furthermore, that K ′ · c(t) are all of the same isotropy type and write, as
in Lemma 2.3, c(t) = h(t)α(t), where h(t) is a curve in K ′ and α(t) is a curve in
νp(K ′ · p) fixed by K ′

p. Then α(t) ≡ p and hence the curve c(t) = h(t)p lies in
the orbit K ′ · p.
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Proof. Let ν0 be the set of vectors fixed by K ′
p in νp(K ′ · p). One has that ν0 ⊂ p′

is an abelian subspace of compact type. In fact, let ξ ∈ νp(K ′ · p) be such that
M = K ′ · q is a principal orbit (and hence isoparametric), where q = p+ ξ . Then,
by the Slice Theorem of Palais-Terng [13, Theorem 6.5.9, (i), p. 134], ν0 coincides
with the intersection of the normal spaces νr M , where r ∈ Sq,−ξ : p + (K ′

p)
o · ξ .

Since any of these normal spaces is a maximal abelian subspace of p′ (and hence
of compact type), we conclude that ν0 is an abelian subspace of compact type.

Let us now consider the abelian subspace h−1(t)a′
t which is of compact type

and is contained in να(t)(K ′ ·α(t)). Since K ′ · p and K ′ ·α(t) are parallel manifolds,
νp(K ′ · p) = να(t)(K ′ · α(t)), for all t . So

h−1(t)a′
t ⊂ νp(K

′ · p).
The intersection h−1(t)a′

t ∩ν0 is an abelian subspace of compact type that contains
α(t). For an open and dense subsetU of the real parameter t one has that h−1(t)a′

t ∩
ν0 has locally constant dimension. Since any abelian subspace of compact type has
a discrete number of subspaces of compact type, the family h−1(t)a′

t ∩ν0 is locally
constant, t ∈ U . Let t0 ∈ U and let It0 be the open real interval defined by the
connected component of t0 in U . Let

bt0 := h−1(t)a′
t ∩ ν0,

which is independent of t ∈ It0 . Then, if t ∈ It0 ,

ċ(t) = (h(t)α(t))′ = ḣ(t)α(t) + h(t)α̇(t)

= h(t)(Xt .α(t)) + h(t)α̇(t), (2.1)

where Xt = h−1(t)ḣ(t) ∈ k′.
On the one hand,

Xt .α(t) ∈ Tα(t)(K
′ · α(t)) = Tp(K

′ · p) ⊥ νp(K
′ · p)

On the other hand, the abelian subspace h−1(t)a′
t contains α(t) and so it is perpen-

dicular to the orbit K ′ · α(t) = K ′ · p. This implies that the first term, in the last
equality of (2.1), is perpendicular to a′

t . So, from the assumptions of the proposition,
the second term of this equality must be perpendicular to a′

t .
But α(t) ∈ bt0 and so ˙α(t) ∈ bt0 ⊂ h−1(t)a′

t . Then h(t) ˙α(t) ∈ a′
t . A contradiction,

unless ˙α(t) = 0. for all t ∈ U . Since U is dense, we obtain that ˙α(t) = 0 for all t
and hence α(t) ≡ p.

��
We will be interested in the symmetric spaces of Sect. 2. Namely, X =

SL(V)/SO(V) � SLk/SOk, and its dual X∗ = SU(VC)/SO(V) � SUk/SOk .
We keep the notation of that section.

Definition 2.5. A family at of abelian subspaces of p := sim0(V) is said to be a
compact variation of abelian subspaces if iat is so.
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Remark 2.6. From the previous definition, since the isotropy representations of dual
symmetric spaces coincide, one has that Proposition 2.4 remains true if we replace
p′ by p = sim0(V).

A general reference for the next part is [1]. Let Mn = H · v be a homogeneous
submanifold of the Euclidean space RN , where H is a (connected) Lie subgroup
of the isometries I(RN ). Let us denote by �(u) the (restricted) normal holonomy
group of M at u, which acts on the normal space νuM , up to the set of fixed vectors,
as an s-representation (i.e., the isotropy representation of a semisimple Riemannian
symmetric space). In particular, �(u) acts polarly, i.e., there is a linear subspace
� of νuM such that it meets every �(u)-orbit and these orbits intersect � perpen-
dicularly. Such a subspace � is called a section of �(u) and is always obtained as
the normal space to a principal orbit (and so any other section is conjugated to �

by an element of the normal holonomy group).
Let us decompose, as in the normal holonomy theorem,

νuM = ν0 ⊕ · · · ⊕ νr ,

�(u) = �1 × · · · × �r ,

where �i acts irreducible on νi and trivially on ν j , i = 1, . . . , r , j = 0, . . . , r ,
i �= j . If �i ⊂ νi is a section for the irreducible s-representation (νi ,�i ), then
� = �0 × �1 × · · · × �r is a section for the normal holonomy action, where
�0 = ν0. Moreover, any section can be written in this way.

From Theorem 1.1we may assume that M = H · v is a submanifold of the
sphere and that ν0 = 0.

If ξ, η ∈ � then [Aξ , Aη] = 0, where A denotes the shape operator of M .
This is a consequence of the fact that the (principal) holonomy tubes have flat
normal bundle and the so-called tube formula. Then A� is an abelian subspace
of sim(TuM), the symmetric endomorphisms of TuM . This implies that Ã� is an
abelian subspace of sim0(TuM), the trace-free symmetric endomorphisms of TuM .
In particular, Ã� j is an abelian subspace of sim0(TuM), for all j = 0, . . . , r .

Definition 2.7. The (restricted) normal holonomy factor (νi ,�i ) at u, i > 1, is said
to have sections of the compact type if the abelian subspace Ã�i of sim

0(TuM) is
of compact type, for any section �i ⊂ νi of the action of �i on νi (where Ã is the
traceless shape operator).

Observe that if �i has sections of the compact type, for some u ∈ M , then the
same holds for any u ∈ M , since M = H · v is homogeneous. In this case we
simply say that the normal holonomy factor (νi ,�i ) has sections of the compact
type.

Lemma 2.8. Let R be the curvature tensor at p of a (symply connected) symmet-
ric space M without Euclidean factor. Assume that there are two complementary
subspaces V,W of TpM such that RV,W = {0}. Then V ⊥ W and so M splits if
the subspaces are non-trivial.
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Proof. From the Bianchi identity one obtains that

RV,VW = {0}, RW,WV = {0}. (2.2)

One has that Rx,y ·R = 0, where (Rx,y ·R)u,v = [Rx,y, Ru,v]−RRx,yu,v −Ru,Rx,yv .
So, from (2.2) one obtains that

[RV,V, RW,W] = 0. (2.3)

Assume that there exists z ∈ TpM with z /∈ W and RV,Vz = {0}. Since V and
W are complementary, we may assume, by (2.2), that z ∈ V. This implies, from the
assumption RV,W = {0} and (2.2), that RTpM,TpM z = {0}. A contradiction since
R must non-degenerate. The same is true if one interchanges V withW.

We have proved that
⋂

v,v′∈V
ker(Rv,v′) = W,

⋂

w,w′∈W
ker(Rw,w′) = V (2.4)

Observe, from (2.3), that any skew-symmetric endomorphism Rv,v′ , v, v′ ∈ V,
commutes with all Rw,w′ , w,w′ ∈ W. Then Rv,v′ leaves invariant

⋂

w,w′∈W
ker(Rw,w′)

which coincides, by (2.4), with V (and the same is true interchanging V with W).
Then

RV,VV ⊂ V, RW,WW ⊂ W (2.5)

Observe that the image im(B) and the kernel ker(B) of a skew-symmetric
endomorphism B are mutually perpendicular. Then, by making use of (2.5), the
linear span of {im(Rv,v′) : v, v′ ∈ V} coincides with W

⊥. But, by (2.5), such a
span is contained in V. Then W

⊥ ⊂ V. Since dim(W⊥) = dim(V), we conclude
that V = W

⊥. ��

3. Proof of (b) ⇒ (a) of Theorem 1.3

Let p ∈ Mn be fixed and, for simplicity of the exposition, let us identify TpM � R
n

(by means of an orthonormal basis). Let us consider the compact symmetric space
X∗ = SUn/SOn with Cartan decomposition sun = i sim0

n ⊕ son . Let us consider
the map Ã∗ : νi → i sim0

n , defined by

Ã∗
ξ = i Ãξ ,

where Ã is the traceless shape operator of the submanifold M of the sphere and
(νi ,�i ) is an irreducible and non-transitive normal holonomy factor of the normal
holonomy of M at p.

From the Ricci identity, the adapted normal curvature tensorR (see [1]) is given
by

〈Rξ1,ξ2ξ3, ξ4〉 = trace([ Ãξ1 , Ãξ1 ][ Ãξ3, Ãξ4 ]),
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Then

〈Rξ1,ξ2ξ3, ξ4〉 = −〈RÃ∗
ξ1

, Ã∗
ξ2
Ã∗

ξ3
, Ã∗

ξ4
〉

(see Remark 2.2).
Let us consider the algebraic curvature tensor R̄ of V := Ã∗

νi
⊂ i sim0

n given
by

〈R̄u,vw, z〉 = 〈Ru,vw, z〉,
i.e., R̄u,vw is the projection to V of Ru,vw.

Observe that R̄ �= 0. Otherwise, R|νi = 0 and so νi would be flat (we identify
the subspace νi of νpM with the associated parallel sub-bundle of νM).

Since the factor �i of �(p) acts irreducibly on νi , and it is non-transitive (on
the sphere), the map Ã : νi → sim0

n , and hence Ã∗ : νi → i sim0
n is injective [12].

In this reference it was used the shape operator A, but the proof is the same if one
replaces A by Ã. Moreover, one can consider only Ã restricted νi .

Lemma 3.1. Let h be the Lie subalgebra of so(V)which is algebraically generated
by {R̄u,v : u, v ∈ V} and let H ⊂ SO(V) be its associated Lie group. Then
[V, R̄, H ] is an irreducible non-transitive holonomy system (see [1]).

Proof. LetO be the open and dense subset of νi which consists of the regular vectors
for the representation of �i on νi ⊂ νpM . LetD be the (smooth) distribution onO
given by the normal spaces to the�i -orbits (or, equivalently, to the sections of�i ).
Let Ō := Ã∗

O. Let us prove that the distribution D̄⊥ is integrable. First, observe
the following: the (isotropy) orbits of SOn on i sim0

n are always perpendicular to
any abelian subspace. Then the integrability of D̄⊥ follows from Proposition 2.4.
(Recall, from assumptions, that A∗

� is an abelian subspace of compact type of any
� section of the normal holonomy action).

Let u, v ∈ V and let us consider the (Euclidean) Killing field Xu,v of V given
by Xu,v

q = R̄u,vq. Then Xu,v
|O lies in D⊥. Since this distribution is integrable, any

iterated bracket of Killing field of the form Xu,v
|O , u, v ∈ V lies inD⊥. This implies

that H is non-transitive (on the unit sphere), since dimD ≥ 2.
Since [νi ;R,�i ] is an irreducible holonomy system and

〈Rξ1,ξ2ξ3, ξ4〉 = −〈R̄ Ã∗
ξ1

, Ã∗
ξ2
Ã∗

ξ3
, Ã∗

ξ4
〉,

one obtains that if the holonomy system [V, R̄, H ] is reducible, there would exist a
non-trivial orthogonal decomposition V = V1 ⊕V2 such that R̄V1,V2 = {0}. Then
the subspaces ( Ã∗)−1(V1) and ( Ã∗)−1(V2) are in the assumptions of Lemma 2.8
and R is a non-trivial product of Riemannian curvature tensors. A contradiction.
This shows the irreducibility of [V, R̄, H ]. ��

By Lemma 3.1 and [12, Proposition 2.21] we obtain the following:

Corollary 3.2. Ã∗ : νi → V = Ã∗
νi
is a homothety and Ã∗�i ( Ã∗)−1 = H.
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From the above corollary and Proposition 2.4 one obtains, by a limit argument
for singular points, that:

(*) given ξ ∈ νi , φ ∈ �i there exists k ∈ K ′ = SOn such that Ã∗
φξ = k Ã∗

φξ k
−1

(recall that SOn acts on the symmetric matrices by conjugation)
Then Ã∗

φξ and Ã∗
ξ have the same (pure imaginary) eigenvalues. The same is

true if we replace Ã∗ by the shape operator A. Namely, Ã∗
φξ and Ã∗

ξ have the same
eigenvalues.

Being the homogeneous submanifold G · p = Mn an irreducible submanifold
ofRN , by [1, Theorem 5.2.4], given g ∈ G there exists a curve c in M from p to gp
such that dg|νi coincideswith the normal parallel transport τc along c. This property,
together with (*), implies that for any curve γ in M and any ξ ∈ (νi )γ (0) Ãξ and
Ãτγ (ξ) have the same eigenvalues. Then, by Theorem 1.2 and Remark 4.1, M has
constant principal curvatures. Since the normal holonomy ofM has a non-transitive
normal holonomy factor, any principal holonomy tube of M has codimension at
least 2 in the sphere. Then, by the Theorem of Thorbergsson [14] (see also BCO),
one has that M is an orbit of an irreducible s-representation. This completes the
proof of (b) ⇒ (a) of the Theorem 1.3.

4. The proof of (a) ⇒ (b) of Theorem 1.3

Let G/K be an irreducible simply connected symmetric space with Cartan decom-
position g = k⊕ p. Let us consider the isotropy representation of K on T[e](G/K )

which can be regarded as the Ad-representation of K on p � R
n , whose scalar

product will be denoted by ( , ). We will regard Ad(K ) as a compact subgroup,
that we will also denote by K , of SO(n). Let us consider a principal orbit K · p
which is an isoparametric submanifold. Let� be the normal space at p of K · p that
corresponds to a maximal abelian subspace of the Cartan complement p. Let W
be the (irreducible) Weyl group at p associated to the isoparametric submanifold
K · p. Note that W does not change if we pass to a parallel principal orbit K · q,
q ∈ �. The finite reflection group W coincides with the usual one associated to
the symmetric space G/K , with respect to the maximal abelian subspace �. Such
a Weyl group W has associated a reduced (crystallographic) root system � ⊂ �,
whose elements are called roots. That is, � is a finite subset of � such that the
following conditions holds:

(i) 0 /∈ � and � spans �.
(ii) If x ∈ � then −x ∈ � and no other scalar multiple of x belongs to �.
(iii) The reflection through the hyperplane perpendicular to any root leaves �

invariant.
(iv) The number 2 (x,y)

(x,x) is a rational number, for any x, y ∈ �.

The Weyl group W coincides with the finite group of isometries which is gen-
erated by the reflections through the hyperplanes perpendicular to the roots.

Observe that from (iv) we deduce that (y,y)
(x,x) is a rational number, provided

(x, y) �= 0. But this will be always true ifW acts irreducibly. In fact, given x, y ∈ �
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there exists a finite sequence of elements x1, . . . , x j in � such that x1 = x , x j = y

and such that (xi , xi+1) �= 0, for i = 1, . . . , j −1. This implies that always (y,y)
(x,x) is

a rational number. (Otherwise the root system would be the union of two mutually
orthogonal subsets and W would be reducible).

Then, by rescaling all the roots by an appropriate λ �= 0, we may assume that
the square of the norms of any element of � is a rational number. Then, by (iv), the
scalar product of any two elements of � is a rational number.

Let us consider the discrete abelian subgroup L ⊂ � given by the linear combi-
nations with integer coefficients of the roots (which is a so-called rational lattice).
Let us consider a subgroup S of L and assume that S (linearly) spans a proper sub-
spaceW of �. Consider S⊥ = L ∩W

⊥. Then S⊥ spansW⊥, i.e., it is a full lattice
of W⊥. In fact, let v1, . . . , v j ∈ S linearly independent that spans W and com-
plete them, with elements of L , v j+1, . . . , vk to a basis of �. Use Gram-Schmidt
procedure, but without normalizing the obtained vectors to obtain an orthogonal
(no orthonormal) basis ṽ1, . . . , ṽk of � such that any element of {ṽ1, . . . , ṽk} is a
rational combination of elements of L and the span of ṽ1, . . . , ṽi coincides with
that of v1, . . . vi , i = 1, . . . k. We have used that the scalar product of any two
elements of L is rational. After multiplying each of the elements of {ṽ1, . . . , ṽk},
by an appropriate integer number, we obtain an orthogonal basis v′

1, . . . ṽ
′
k of �

which consists of elements of L . It is clear that v′
j+1, . . . , v

′
k belong to S⊥ and span

W
⊥. This may be interpreted as follows: the exponential of the normal space at a

point of any subtorus of �/L is a subtorus (cf. [8, Thm. 2.8]).
As a consequence, we obtain the following: if a (positive dimensional) subspace

V of � is the intersection of some of the reflection hyperplanes, then the elements
of the lattice that belong to V span V. In fact, let J ⊂ � be the roots associated to
these hyperplanes. Then V is the orthogonal complement of the linear span of J .

4.1. The shape operator of isotropy orbits.

Wekeep the assumptions and notation of this section. Let K · p ⊂ R
N be a principal

orbit, where p ∈ �. For α ∈ � let us denote by Hα the hyperplane of � which
is perpendicular to α. The set of curvature normals {ηα : α ∈ �} at p, associated
the commuting family of shape operators of K · p, and indexed by �, are given by
(see [13]):

ηα = − 1

(p, α)
α.

So the eigenvalues of the shape operator Aξ , if ξ ∈ νp(K · p) � �, are given by
− (α,ξ)

(p,α)
. Let p ∈ L be fixed. Then, if ξ ∈ �, the eigenvalues of Aξ are rational

numbers. Since � spans �, we obtain that the family of shape operators of K · p is
an abelian subspace of compact type of sim(Tp(K · p)) (see Definition 2.1). This
family of shape operators is not in general of compact type if p does not belong to
the lattice L .

Let us now assume that K · p, p �= 0, is not a principal orbit and so� is properly
contained in the normal space νp(K · p). Let
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J := {β ∈ � : p ∈ Hβ} ⊂ �.

Then p belongs to the intersection of the hyperplanes Hβ , with β ∈ J . Such
an intersection is the orthogonal complement of W := linear span of J . Assume,
furthermore, that K · p ismost singular. Namely, thatW⊥ = Rp is one dimensional.

Observe that W is a section of the normal holonomy of K · p, regarded as a
submanifold of the sphere.

Let us compute the eigenvalues of the commuting family of shape operators
{Aξ : ξ ∈ �} of K · p at p. One has that these eigenvalues are given by

{
− (α, ξ)

(p, α)
: α ∈ � is not perpendicular to p

}

As we have remarkedW⊥ has associated a full sub-lattice. So there must exist
a non-zero γ ∈ L such that γ = ap, for some a ∈ R.

Let us consider the set J̃ := aJ which spans W. Then any shape operator of
Aξ , with ξ ∈ J̃ has rational eigenvalues. So, Ãξ has rational eigenvalues. Then
ÃW ⊂ sim0(Tp(K · p)) is of compact type. Since the isotropy Kp, represented on
the normal space νp(K · p), coincides with the normal holonomy, we obtain that
the normal holonomy of K · p has sections of compact type.

Let � be the (restricted) normal holonomy group of K · p at p (regarded as a
submanifold of the sphere). Let us decompose, as in the normal holonomy theorem,
� = �1 × · · · × �r , νp(K · p) = ν1 ⊕ · · · ⊕ νr , where �i acts irreducible on
νi and trivially on ν j , if i �= j . Choose any normal holonomy factor that we may
assume that it is (ν1,�1). Let � be a section for the normal holonomy action of �

on νp(K · p) and let �1 = ∏
i �=1 �i . Then

�1 =
⋂

g∈�1

g�

is a section for the action of �1 on ν1. Since ξ �→ Ãξ is injective

Ã�1 =
⋂

g∈�1

Ãg� =
⋂

g∈�1

g Ã�g−1

.
This shows that �1 is a section of �1 of compact type. Hence any normal

holonomy factor (ν1,�1), of the normal holonomy of K · p, has sections of the
compact type. This finishes the proof of (a) implies (b) of Theorem 1.3. ��

We do not know any homogeneous example that shows that the non-transitivity
of the normal holonomy could not be removed from Theorem 1.3. But we expect
it does exist.

Remark 4.1. Let Mn be an irreducible and full submanifold of the Euclidean space.
Assume that the (restricted) normal holonomy �(p) of M has a (non-necessarily
irreducible) non-transitive factor. Namely, there is a subspace ν′

pM ⊂ νpM which
is �(p)-invariant and such that �(p) is not transitive on the unit sphere of ν′

pM .
This defines a ∇⊥-parallel sub-bundle ν′M of the normal bundle νM . Assume that
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the shape operator Aξ(t) has constant eigenvalues for any arbitrary parallel normal
field ξ(t) (along any curve in M ) which lies in ν′M . Then M has constant principal
curvatures. In fact, if w �= 0 belongs to ν′

pM , the holonomy tube (M)w admits a
parallel normal field η̃ such that M = ((M)w)η (i.e., M is a parallel focal manifold
to the holonomy tube). From the tube formula (see [1]), the eigenvalues of the shape
operator Aη of (M)w are constant (and there are at least two different eigenvalues).
Then the irreducible submanifold (M)v admits a so-called parallel isoparametric
section. Then, by theorems 4.5.10 and 4.5.2 of [1], (M)w, and henceM is contained
in a sphere and has constant principal curvatures.

5. The proof of Theorem 1.2

This proof is independent of the main tools developed in this article.

Proof. If M is a submanifold of constant principal curvatures, then its mean curva-
ture normal field is parallel and so the traceless shape operator has constant principal
curvatures, and in particular when restricted to ν′M . Let us prove the converse.

If M is a submanifold of the sphere SN−1, we will regard it as an Euclidean
submanifold. In this case its normal space νM will be regarded as the parallel sub-
bundle, of the normal space to theRN , which is perpendicular to the position vector
field.

Let � ⊂ ν′
pM be section for the normal holonomy action of �(p)|ν′

pM at

p ∈ M . Then the family of traceless shape operators Ã� = { Ãξ : ξ ∈ �} is
simultaneously diagonalizable. Each eigenvalue linear function λ� : � → R

defines the so-called associated curvature normal η� (with respect to ν′M and
�), i.e., 〈η�, . . .〉 = λ( · ). Let η�

1 , . . . , η�
d be the distinct curvature normals. Let

c(t) be a curve on M with c(0) = p and let τt denote the ∇⊥-parallel transport
along c(t), restricted to ν′M . If ξ(t) is a parallel normal field along c(t), with
ξ(0) ∈ �, then η

τt (�)
i = τt (η

�
i ) are the curvature normals associated to Ãτt (�),

i = 1, . . . , d. Let i0 ∈ {1, . . . , d} be fixed. Let us show that η�
i − η�

i0
, i =

1, . . . , d, span �. If not, let 0 �= ξ ∈ � perpendicular to this span. This implies
that Ãξ = 0 and so Aξ = 〈 1n H(p), ξ 〉Id = 〈 1n H ′(p), ξ 〉Id, where H ′ is the
projection of H to the parallel subbundle ν′M . From the assumptions, if ξ(t) is the
parallel transport in the normal connection along any curve c(t), then Ãξ(t) = 0.
So Aξ(t) = 〈 1n H ′(c(t)), ξ(t)〉Id. Let ν̄M be the parallel subbundle of the parallel
subbundle ν′M ⊂ νM that is linearly spanned by the normal parallel transport of ξ
along any curve. Then Aψ = 〈 1n H ′(q), ψ〉Id, for any ψ ∈ ν̄′

qM . The same proof,
relaying on the Codazzi identity, used for proving that umbilical submanifolds have
parallel mean curvature, shows that the orthogonal projection H̄ of H ′ to ν̄M is
parallel. Assume that M is a Euclidean submanifold. Then, since AH̄ is a constant
multiple of the identity, M is either contained in a sphere, if H̄ �= 0, or M is not
full. This contradicts the assumptions. If M is a spherical submanifold, then in any
case M is not full. A contradiction. Then η�

i − η�
i0
, i = 1, . . . , d, span �.

Let p ∈ M be arbitrary and let� be a section for�(p)|ν′
pM . Let i0 ∈ {1, . . . , d}

be fixed and let, for i ∈ {1, . . . , d},Vi = {η�
i −η�

i0
}⊥. If the hyperplanesVi , i �= i0,
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do not generate � then η�
i − η�

i0
must all lie in a line through the origin of �. This

is a contradiction since η�
i − η�

i0
span � and dim� ≥ 2.

Let vi ∈ Vi be fixed and short and let us consider the (partial) holonomy tube
[1, 3.4.3]

(M)vi = {c(1) + τc(vi )}
where c : [0, 1] → M with c(0) = p and τc denotes the normal parallel transport
along c (eventually, by making M smaller around p).

We have that M itself is parallel focal manifold to the holonomy tube. Namely,

M = ((M)vi )−ξi

where ξi is the parallel normal field of (M)vi defined by ξi (c(1)+τc(vi )) = τc(vi ).
Let us consider the shape operator Ai

ξi
of (M)vi . Since M = ((M)vi )−ξi , then the

vertical distribution

νi := ker
(
Id − Ai−ξi

)

of (M)vi coincides with the eigendistribution of A
i−ξi

associated to the eigenvalue

1. The restriction of Ai
ξi

= −Ai−ξi
to the horizontal distribution H, perpendicular

to νi , is given by the so-called tube formula in [1].
Namely, let q = c(1) + τc(vi ). Then, taking into account that Hq = Tc(1)M ,

Ai
ξi (q)|Tc(1)M = Aτc(vi )

(
I d − Aτc(vi )

)−1
.

and no eigenvalue of this restriction is −1.
From the assumptions, the eigenvalues of the traceless shape operator Ãτc(vi )

are the same as those of Ãvi . Then the multiplicities of the eigenvalues of Aτc(vi )

do not depend on c. This implies that the multiplicities of the eigenvalues of Ai
ξi

are constant. Let W1, . . . ,Wd be the common eigenspaces of A� , associated to
the eigenvalues functions 〈η�

1 , . . .〉, . . . , 〈η�
d , . . .〉.

Since vi is perpendicular to η�
i − η�

i0
, 〈η�

i , vi 〉 = 〈η�
i0

, vi 〉.
From the tube formula, we obtain thatWi0 ⊕Wi is contained in an eigenspace

of Ai
ξi (q) which extends to an (integrable by Codazzi identity) eigendistribution Ei

of Ai
ξi
, since the eigenvalues of this shape operator have constant multiplicities.

Moreover, Ei is perpendicular to the vertical distribution νi . Since dim(Ei ) ≥ 2,
we have that the corresponding eigenvalue, let us say λi , is constant along Ei (this
is similar to the classic Dupin condition; see [12, Lemma 3.3]). This eigenvalue is
given by

λi (q) = bi + 1
n 〈H ′(c(1)), τc(vi )〉

1 − bi − 1
n 〈H ′(c(1)), τc(vi )〉

,

where

bi := 〈η�
i0 (p), vi 〉 = 〈ητc(�)

i0
(c(1)), τc(vi )〉.
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Now let c̃(t) be a curve in (M)vi which is tangent to Ei with c̃(0) = p+vi . Let

c(t) = π(c̃(t)), where π : (M)vi → M is the natural projection u
π→ u − ξi (u).

Then vi (t) = c̃(t) − c(t) coincides with the normal parallel transport in M of vi
along c(t). Then the previous formula yields

λi (c̃(t)) = bi + 1
n 〈H ′(c(t)), vi (t)〉

1 − bi − 1
n 〈H ′(c(t)), vi (t)〉

.

The constancy of λi along Ei implies, by taking the derivative, that ∇⊥
c′(0)H

′ is
perpendicular to vi . Observe now that

c′(0) = d

dt |0
(c̃(t) − ξi (c̃(t)) = (I d + Ai

ξi (p+vi )
)c̃′(0) = (I d + Ai

vi
)c̃′(0).

Observe that Ai
vi
Ei (p + vi ) = Ei (p + vi ). So, since c̃(t) is arbitrary, we

obtain that ∇⊥
Ei (p+vi )

H ′ is perpendicular to vi . Hence, since Wi0 ⊂ Wi0 ⊕ Wi ⊂
Ei (p + vi ),

vi ⊥ ∇⊥
Wi0

H ′.

Since i �= i0 is arbitrary, and vi is arbitrary inVi , and these hyperplanes generate
�, we obtain that∇⊥

Wi0
H ′ ⊥ �. Since i0 is arbitrary, we have that∇⊥

Wi
H ′ ⊥ �, for

all i = 1, . . . , d. Then∇⊥
TpM

H ′ ⊥ �. Since� is arbitrary section of�(p)|ν′M , and

since any vector in ν′
pM is contained in some section, we conclude that∇⊥

TpM
H ′ =

0. Since p ∈ M is arbitrary, we conclude that H ′ is parallel. This implies, by
making use the assumptions, that the shape operator of M , restricted to ν′M , has
constant principal curvatures along parallel normal fields. Thus, by Remark 4.1, M
has constant principal curvatures. ��
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