
manuscripta math. 156, 521–543 (2018) © Springer-Verlag GmbH Germany 2017

Petteri Harjulehto · Ritva Hurri-Syrjänen

Pointwise estimates to the modified Riesz potential

Received: 21 January 2017 / Accepted: 15 October 2017
Published online: 3 November 2017

Abstract. In a smooth domain a function can be estimated pointwise by the classical Riesz
potential of its gradient. Combining this estimate with the boundedness of the classical Riesz
potential yields the optimal Sobolev–Poincaré inequality. We show that this method gives
a Sobolev–Poincaré inequality also for irregular domains whenever we use the modified
Riesz potential which arise naturally from the geometry of the domain. The exponent of
the Sobolev–Poincaré inequality depends on the domain. The Sobolev–Poincaré inequality
given by this approach is not sharp for irregular domains, although the embedding for the
modified Riesz potential is optimal. In order to obtain the results we prove a new pointwise
estimate for the Hardy–Littlewood maximal operator.

1. Introduction

In irregular domains a function can be estimated pointwise by a modified Riesz
potential of its gradient where the Riesz potential depends on the geometry of the
domain. When the modified Riesz potential is bounded from L p to LH , here LH

is an Orlicz space, this leads to the Poincaré inequality

‖u − uD‖LH (D) ≤ C‖∇u‖L p(D).

Thismethod iswell known for smooth domains, ormore precisely for Johndomains,
and it gives the optimal Sobolev embedding, we refer to [5, Chapter 7] and [24].We
will show that this method does not give the optimal integrability in more irregular
domains than John domains although the embedding for theRiesz potential is sharp.

We assume that ϕ is a continuous, strictly increasing function on [0,∞) such
that for some constant Cϕ

ϕ(t1)

t1
≤ Cϕ

ϕ(t2)

t2
whenever 0 < t1 ≤ t2. (1.1)
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In Theorem 4.4 we show that if D is a ϕ-John domain, Definition 4.1, then

∣
∣u(x) − uD

∣
∣ ≤ C

∫

D

|∇u(y)|
ϕ
(|x − y|)n−1 dy

for every u ∈ L1
1(D). Here uD is the integral average of u over D. For ϕ(t) = t

this result was proved in [5, Chapter 7] and [24].
F.-Y. Maeda, Y. Mizuta, T. Ohno, and T. Shimomura showed in [16, Corol-

lary 6.5] that the modified Riesz potential is bounded from L p to LH , where LH

is an Orlicz space and the Orlicz function H depends on ϕ. We give an alterna-
tive proof for their result in Theorem 3.8. Our proof is based on a new pointwise
estimate by the Hardy–Littlewood maximal operator, see Theorem 3.5.

These results together give the Sobolev–Poincaré type inequality

‖u − uD‖LH (D) ≤ C‖∇u‖L p(D)

that is presented in Theorem 5.2. As a special case we study the situation

ϕ(t) = tα

logβ(e + t−1)
and H(t) =

(
t

logβ(n−1)(m + t)

) np
αp(n−1)+n(1−p)

,

where 1 ≤ α < n/(n − 1) and β ≥ 0. This special case has been earlier studied by
the authors in [10]. This is sharp when α = 1 and β = 0 or when α > 1, β = 0
and p = 1. However, when α > 1, β = 0 and p > 1 the Sobolev–Poincaré type
inequality ‖u−uD‖LH (D) ≤ C‖∇u‖L p(D) is not sharp.We conjecture that the right
exponent is np

α(n−1)−p+1 also in the case β > 0. For more details and for references
we refer to the discussion after Theorem 5.2. Somewhat suprisingly, in Theorem 6.5
we show that in these cases theRiesz embedding L p ↪→ LH is sharp in the sense that
the exponent np

αp(n−1)+n(1−p) cannot be larger and the exponent β(n−1) cannot be
smaller. Our conclusion is that in very irregular domains the natural modified Riesz
potential is not the right tool for the optimal Sobolev–Poincaré type inequalities.

The paper is organised as follows. We have collected main properties of Orlicz
spaces to Sect. 2. In Sect. 3 we prove pointwise estimates to the modified Riesz
potential and prove boundedness. In Sect. 4 we show that our modified Riesz
potential arises naturally from the geometry of the domain. In Sect. 5 we prove
the Sobolev–Poincaré inequalities. In Sect. 6 we study the sharpness of the results.

2. Preliminaries

Throughout this paper we assume that the function H : [0,∞) → [0,∞) has the
properties: (1) H is continuous; (2) H is strictly increasing; (3) H is convex; (4)
limt→0+ H(t)

t = 0 and limt→∞ H(t)
t = ∞; (5) H(t)

t <
H(s)
s for 0 < t < s; and

(6) there exists C�2
H such that H(2t) ≤ C�2

H H(t) for all t > 0. In other words, we
suppose that H is an N -function, [1, 8.2], that satisfies the �2-condition.

Let G inRn be an open set. The Orlicz class is a set of all measurable functions
u defined on G such that

∫

G
H
(

|u(x)|
)

dx < ∞.
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We study the Orlicz space LH (G)which means a space of all measurable functions
u defined on G such that

∫

G
H
(

λ|u(x)|
)

dx < ∞

for some λ > 0.
When the function H satisfies the �2-condition, then the space LH (G) is a

vector space and it is equivalent to the corresponding Orlicz class. We study these
Orlicz spaces and call their functions Orlicz functions. The Orlicz space LH (G)

equipped with the Luxemburg norm

‖u‖L�(G) = inf

{

λ > 0 :
∫

G
�

( |u(x)|
λ

)

dx ≤ 1

}

is a Banach space.
We note that if the n-Lebesque measure ofG is finite, then there is a continuous

embedding LH (G) ↪→ L1(G). For more information about Orlicz spaces we refer
to [1, Section 8] and [6, Section 6.3].

The space of locally integrable functions defined on an open set G is written as
L1
loc(G). We recall that the space L1

p(G) , 1 ≤ p < ∞, is a space of distributions
on G with the first order derivatives in the space L p(G).

An open ball with a center x and radius r > 0 is written as B(x, r). The
corresponding closed ball is denoted by B(x, r). Given any proper subset A of
R
n and any x ∈ R

n , the distance between x and the boundary ∂A is written as
dist(x, ∂A), and diam(A) stands for the diameter of A. The characteristic function
of a set A is denoted by χA. When A in R

n is a Lebesgue measurable set with
positive n-Lebesgue measure |A| we write the integral average of an integrable
function u in A as

uA =
∫

A

u(x) dx = |A|−1
∫

A
u(x) dx .

We let C(∗, · · · , ∗) and C∗ denote constants which depend on the given quan-
tities only. In the calculations from one line to the next line we usually write C for
constants when it is not important to specify constants’ dependence on the quan-
tities appearing in the calculations. From line to line C might stand for a different
constant.

3. Pointwise estimates for a modified Riesz potential

The classical centered Hardy–Littlewood maximal function is written as

M f (x) = sup
r>0

∫

B(x,r)

| f (y)| dy

where f is a locally integrable function defined on R
n , [25, Section 1]. We give

two pointwise estimates by using the Hardy–Littlewood maximal operator in Lem-
mas 3.1 and 3.3. Lars Inge Hedberg stated and proved the corresponding results
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when ϕ(t) = t , [13, Lemma (a), (b)]. A. Cianchi and B. Stroffolini used the Hed-
berg method for the classical Riesz potential when functions are Orlicz functions,
[4, Theorem 1, Corollary 1].

Lemma 3.1. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing func-
tion. Let h : [0,∞) → [0,∞) satisfy

∞
∑

k=1

(2−k t)n

ϕ(t2−k)n−1 ≤ h(t) for all t > 0. (3.2)

Let δ > 0 be given. If f ∈ L1
loc(R

n), then there exists a constant C(n) such that
the inequality

∫

B(x,δ)

| f (y)|
ϕ(|x − y|)n−1 dy ≤ C(n)h(δ)M f (x)

holds for every x ∈ R
n.

Proof. Let x ∈ R
n be fixed and let δ be given. Let us divide the ball B(x, δ)

into annuli. By bringing in the Hardy–Littlewood maximal operator and by using
inequality (3.2) we obtain

∫

B(x,δ)

| f (y)|
ϕ(|x − y|)n−1 dy ≤

∞
∑

k=1

ϕ(δ2−k)1−n
∫

{z:2−kδ≤|x−z|<2−k+1δ}
| f (y)| dy

≤ C(n)

∞
∑

k=1

(2−kδ)n

ϕ(δ2−k)n−1

∫

{z:|x−z|<2−k+1δ}
| f (y)| dy

≤ C(n)M f (x)
∞
∑

k=1

(2−kδ)n

ϕ(δ2−k)n−1

≤ C(n)M f (x)h(δ).


�
We consider the integral over the set Rn\B(x, δ), too.

Lemma 3.3. Let ϕ : [0,∞) → [0,∞) be a continuous strictly increasing function
such that inequality (1.1) holds. Let 1 ≤ p < n. Let δ > 0 be given. If ‖ f ‖L p(Rn) ≤
1, then there is a constantC, depending onn, p, andCϕ only such that the inequality

∫

Rn\B(x,δ)

| f (y)|
ϕ(|x − y|)n−1 dy ≤ Cϕ(δ)1−nδ

n(1− 1
p )

holds for every x ∈ R
n.

The inequality in Lemma 3.3 has been proved for the function ϕ(t) =
tα/ logβ(e + t−1) when 1 ≤ α < 1 + 1/(n − 1) and β ≥ 0 in [10, Lemma
3.2]. The proof here is a generalization of this earlier result. We give the proof for
the sake of completeness.
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Proof of Lemma 3.3. Suppose that 1 < p < n and let us write p′ = p/(p − 1).
Let the point x ∈ R

n be fixed and let δ > 0 be given. By Hölder’s inequality we
obtain
∫

Rn\B(x,δ)

| f (y)|
ϕ(|x − y|)n−1 dy ≤ ‖ f ‖L p(Rn)

∥
∥χRn\B(x,δ)ϕ(|x − ·|)1−n

∥
∥
L p′ (Rn)

≤ ∥∥χRn\B(x,δ)ϕ(|x − ·|)−n
∥
∥

(n−1)/n
L(n−1)p′/n(Rn)

.

For every y ∈ R
n \ B(x, δ),

ϕ(|x − y|)−n = C(n)|B(y, ϕ(|x − y|))|−1

= C(n)

∫

B(y,2|x−y|)
χB(x,δ)(z)|B(x, δ)|−1

|B(y, 2|x − y|)|
|B(y, ϕ(|x − y|))| dz.

By assumption (1.1) we obtain that

|B(y, 2t)|
|B(y, ϕ(t))| ≤ C(n,Cϕ)

(
δ

ϕ(δ)

)n

for every t ≥ δ. Hence,

ϕ(|x − y|)−n ≤ C(n,Cϕ)

(
δ

ϕ(δ)

)n

M
(

χB(x,δ)|B(x, δ)|−1
)

(y)

for every y ∈ R
n \ B(x, δ).

Since 1 < p < n, we have 1 < n−1
n p′ < ∞. Thus, the Hardy–Littlewood

maximal operator is bounded in L(n−1)p′/n(Rn), [25, Section 1, Theorem 1(c)],
and we obtain

∥
∥χRn\B(x,δ)ϕ(|x − ·|)−n

∥
∥(n−1)/n
L(n−1)p′/n(Rn)

≤ C(n,Cϕ)

(
δ

ϕ(δ)

)n−1 ∥
∥
∥M
(

χB(x,δ)|B(x, δ)|−1
)∥
∥
∥

(n−1)/n

L(n−1)p′/n(Rn)

≤ C(n,Cϕ, p)

(
δ

ϕ(δ)

)n−1 ∥
∥
∥χB(x,δ)|B(x, δ)|−1

∥
∥
∥

(n−1)/n

L(n−1)p′/n(Rn)

≤ C(n,Cϕ, p)ϕ(δ)1−n
∥
∥χB(x,δ)

∥
∥

(n−1)/n
L(n−1)p′/n(Rn)

≤ C(n,Cϕ, p)ϕ(δ)1−nδ
n
p′ .

Hence, the claim is proved whenever 1 < p < ∞.
If p = 1, and δ > 0 is given, and ‖ f ‖L1(Rn) ≤ 1, then
∫

Rn\B(x,δ)

| f (y)|
ϕ(|x − y|)n−1 dy ≤ ϕ(δ)1−n

∫

Rn\B(x,δ)
| f (y)| dy ≤ ϕ(δ)1−n .


�
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Remark 3.4. Let us assume that ϕ(t) = tα

logβ(e+t−1)
, α ∈

[

1, 1 + 1
n−1

)

and β ≥ 0.

We use this ϕ in Corollary 5.10. In this case the restriction p < n in Lemma 3.3
can be replaced by the inequality p < n/(n − α(n − 1)). This yields that in
Theorems 3.5, 3.8 and 5.1 the restriction p < n can be replaced by p < n/(n −
α(n− 1)). In the proof of Lemma 3.3 we may estimate the term

∥
∥χRn\B(x,δ)ϕ(|x −

·|)1−n
∥
∥
L p′ (Rn)

by using the following calculation:
∥
∥χRn\B(x,δ)ϕ(|x − y|)1−n

∥
∥
L p′ (Rn)

=
(∫

Rn\B(x,δ)
ϕ(|x − ·|)p′(1−n) dy

) 1
p′

=
(

C(n)

∫ ∞

δ

ϕ(t)p
′(1−n)tn−1 dt

) 1
p′

= C(n, p)

(∫ ∞

δ

tαp
′(1−n)+n−1 logβp′(n−1)(e + t−1) dt

) 1
p′

≤ C(n, p) logβ(n−1)(e + δ−1)

(∫ ∞

δ

tαp
′(1−n)+n−1 dt

) 1
p′

.

The last integral is finite if αp′(1 − n) + n < 0. In this case we obtain
∥
∥χRn\B(x,δ)ϕ(|x − y|)1−n

∥
∥
L p′ (Rn)

≤ C(n, p) logβ(n−1)(e + δ−1)δ
α(1−n)+ n

p′

= ϕ(δ)1−nδ
n(1− 1

p )
.

Theorem 3.5. Let 1 ≤ p < n be given. Let ϕ : [0,∞) → [0,∞) be a continuous,
strictly increasing function which satisfies condition (1.1). Suppose that there exists
a continuous function h : [0,∞) → [0,∞) so that (3.2) holds. Let δ : (0,∞) →
[0,∞) be a continuous function and let H : [0,∞) → [0,∞) be anOrlicz function
satisfying the�2-condition. Suppose that there exists a finite constant CH such that
the inequality

H
(

h(δ(t))t + ϕ(δ(t))1−n(δ(t))n(1− 1
p )
)

≤ CHt
p (3.6)

holds for all t > 0. Let G in Rn be an open set. If ‖ f ‖L p(Rn) ≤ 1, then there exists
a constant C such that the inequality

H

(∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

)

≤ C(M f (x))p (3.7)

holds for every x ∈ R
n. Here the constant C depends on n, p,Cϕ,CH , and the

�2-constant of H only.

Proof. We may assume that M f (x) > 0, since otherwise f (x) = 0 almost every-
where. By Lemmas 3.1 and 3.3 there exists a constant C such that we obtain

∫

G

| f (y)|
ϕ(|x − y|)n−1 dy ≤

∫

Rn

| f (y)|
ϕ(|x − y|)n−1 dy

≤ Ch(δ(M f (x)))M f (x) + Cϕ(δ(M f (x)))1−n(M f (x))n(1− 1
p )
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for every x in Rn . Condition (3.6) implies for all x in Rn

H

(∫

D

| f (y)|
ϕ(|x − y|)n−1 dy

)

≤ C(M f (x))p.


�
F.-Y. Maeda, Y. Mizuta, T. Ohno, and T. Shimomura showed in [16, Corol-

lary 6.5] that the modified Riesz potential is bounded in generalized Orlicz spaces.
The following result is a special case of their result. We have written the result for
an open setG inRn to make it clear that the result does not depend on the geometry
of the domain. This formulation also is more convenient when we connect it to
irregular domains. We point out that it is possible to choose G = R

n .

Theorem 3.8. (Corollary 6.5 in [16]) Let H be an Orlicz function and ϕ be an
increasing function as in Theorem 3.5. Let G be an open set in R

n. Then there
exists a constant C such that the inequality

∫

G
H

(∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

)

dx ≤ C

holds for every f when ‖ f ‖L log L(G) ≤ 1 if p = 1 in (3.6), and for every f when
‖ f ‖L p(G) ≤ 1 if 1 < p < n in (3.6). Here the constant C depends on n, p,Cϕ,CH ,
and the �2-constant of H only.

We give an alternative proof for this theorem based on the Hedberg method.

Proof. Suppose that 1 < p < n. Let us assume that ‖ f ‖L p(G) ≤ 1. Then by
Theorem 3.5 the inequality

H

(∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

)

≤ C (M f (x))p

holds for every x ∈ G. Since the Hardy–Littlewood maximal operator M : L p →
L p is bounded whenever 1 < p < ∞, we obtain by integrating both sides of this
inequality over G

∫

G
H

(∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

)

dx ≤ C
∫

G
(M f (x))p dx

≤ C
∫

G
| f (x)|p dx ≤ C.

The proof in the case p = 1 follows in the same lines; but the fact that the
maximal operator M : L log L → L1 is bounded had to be used instead of the
boundedness of the maximal operator M : L p → L p whenever 1 < p < ∞. 
�
Remark 3.9. Note that if the inequality

∫

G
H

(∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

)

dx ≤ C
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holds for every f whenever ‖ f ‖L p(G) ≤ 1, where 1 < p < ∞, then
∥
∥
∥
∥

∫

G

| f (y)|
ϕ(|x − y|)n−1 dy

∥
∥
∥
∥
LH (G)

≤ C

for every f whenever ‖ f ‖L p(G) ≤ 1 and 1 < p < ∞. The boundedness of the
Luxemburg norm follows by applying this inequality to f/‖ f ‖L p(G) whenever
1 < p < ∞. Arguments in the case p = 1 are similar.

We state the boundedness of the Luxemburg norm in the following corollary.

Corollary 3.10. Let H be an Orlicz function and ϕ be an increasing function as in
Theorem 3.5. Let G be an open set in Rn.

If 1 < p < n, then there exists a constant C such that the inequality
∥
∥
∥
∥

∫

G

| f (y)|
ϕ(| · −y|)n−1 dy

∥
∥
∥
∥
LH (G)

≤ C‖ f ‖L p(G)

holds for every f ∈ L p(G). Here the constant C depends on n, p,Cϕ,CH , and
the �2-constant of H only.

If p = 1, then there exists a constant C1 such that the inequality
∥
∥
∥
∥

∫

G

| f (y)|
ϕ(| · −y|)n−1 dy

∥
∥
∥
∥
LH (G)

≤ C1‖ f ‖L log L(G)

holds for every f ∈ L log L(G). Here the constant C1 depends on n,Cϕ,CH , and
the �2-constant of H only.

Remark 3.11. (a) Theorem 3.5 reduces to the classical pointwise estimate for the
Riesz potential Iα f ,

Iα f (x) =
∫

Rn

| f (y)|
|x − y|n−α

dy ,

that is, there exists a constant C such that

|Iα f (x)|np/(n−αp) ≤ CM f (x)p ‖ f ‖αpnp/n(n−αp)
L p(Rn)

,

when α ∈ (0, 1] and 1 < p < n, [13, (3) in the proof of Theorem 1]. Indeed, if

f ∈ L p(Rn) is given and we choose ϕ(t) = t
n−α
n−1 , h(t) = tα, δ(t) = t−

p
n

‖ f ‖L p (Rn )
,

and H(t) = n−αp
np tnp/(n−αp), then the assumptions of Theorem 3.5 are valid.

If α ∈ (1, n), then inequality (1.1) fails and we can not use the method of our
proof for Theorem 3.5.

(b) The classical (np/(n − αp), p)-inequality for the Riesz potential Iα f , that is,
for α > 0, 1 < p < ∞, and αp < n there is a constant C(n, p, α) such
that ‖Iα f ‖Lnp/(n−αp)(Rn) ≤ C(n, p, α) ‖ f ‖L p(Rn) whenever f ∈ L p(Rn), [13,

Theorem 1], is a special case of Theorem 3.8 with ϕ(t) = t
n−α
n−1 and H(t) =

n−αp
np tnp/(n−αp) whenever α ∈ (0, 1] and 1 < p < n.
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(c) Trudinger’s inequality [28, p. 479], [19, Theorem 1], [26, Theorem], and [13,
Theorem2] for functionswith compact support follows fromTheorem3.8when
ϕ(t) = t as in [13, p. 507].

More generally boundedness results to the Riesz operator Iα from an Orlicz
space to anotherOrlicz space are found in [15,21,27], and [2]. Cianchi characterized
the Orlicz functions which give the corresponding norm inequalities, [3, Theorem
2 (ii)]. Cianchi and Stroffolini gave simplified proofs, [4, Theorem 1 , Corollary 1].
For recent developments we refer to [20].

4. Pointwise estimates for functions defined on irregular domains

We are going to give new embedding results for L1
p-functions, which are defined

on domains with fractal boundaries. We recall the definition of very irregular John
domains and give an integral representation to functions defined on these domains.

Definition 4.1. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing func-
tion. A bounded domain D in R

n , n ≥ 2 , is a ϕ-John domain if there exist a
constant cJ > 0 and a point x0 ∈ D such that each point x ∈ D can be joined to
x0 by a rectifiable curve γ : [0, l] → D, parametrized by its arc length, such that
γ (0) = x, γ (l) = x0, l ≤ cJ , and

ϕ(t) ≤ cJ dist
(

γ (t), ∂D
)

for all t ∈ [0, cJ ].
The point x0 is called a John center of D and the constant cJ is called a John
constant of D.

If a domain is a ϕ-John domain with a John center x0, then it is a ϕ-John domain
with any other x ∈ D, but the John constant might be different.

Lipschitz domains, classical John domains, and the so called s-John domains
are examples of these domains. But there are more irregular domains such as the
mushrooms domain studied in [10, 6. Example] and in [11, 6. Example].

The following lemma is needed to prove a pointwise integral representation to
L1
1-functions defined on a ϕ-John domain. Lemma 4.3 is a generalization of [9,

Theorem 9.3] where the classical John domain, corresponding to the case ϕ(t) = t ,
is considered. For the function ϕ(t) = t/ log(e+ t−1) the corresponding result has
been proved in [11, Lemma 3.5]. The following inequality (4.2) is needed: There
exists a constant C ′

ϕ depending on ϕ and cJ only such that

ϕ(t) ≤ C ′
ϕ t for all t ∈ [0, cJ ]. (4.2)

Namely, for a given John domain with a John constant cJ by inequality (1.1) there
exists a constant Cϕ such that

ϕ(t) ≤ Cϕ

ϕ(cJ )

cJ
t=:C ′

ϕ t for all t ∈ [0, cJ ].



530 P. Harjulehto, R. Hurri-Syrjänen

Lemma 4.3. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing �2-
function satisfying inequality (4.2). Let D in R

n , n ≥ 2 , be a ϕ-John domain
with a John constant cJ and a John center x0 ∈ D. Then for every x ∈ D \
B(x0, dist(x0, ∂D)) there exists a sequence of balls

(

B(xi , ri )
)

such that B(xi , 2ri )
is in D , i = 0, 1, . . . , and for some constants K = K (cJ ,C ′

ϕ), N = N (n), and
M = M(n)

(1) B0 = B
(

x0,
1
2 dist(x0, ∂D)

)

;

(2) ϕ(dist(x, Bi )) ≤ Kri , and ri → 0 as i → ∞;
(3) no point of the domain D belongs to more than N balls B(xi , ri ); and
(4) |B(xi , ri ) ∪ B(xi+1, ri+1)| ≤ M |B(xi , ri ) ∩ B(xi+1, ri+1)|.
Proof. The definition of ϕ affects only to the property (2). Thus the proofs for (3)
and (4) are the same as in [11, Lemma 3.5].

Let x ∈ D \ B(x0, dist(x0, ∂D)). Let γ be a John curve joining x to x0, its arc

length written as l. We write B ′
0 = B

(

x0,
1
4 dist

(

x0, ∂D
))

and consider the balls

B ′
0 and

B
(

γ (t),
1

4
dist

(

γ (t), ∂D ∪ {x})
)

,

where t ∈ (0, l). By the Besicovitch covering theorem, there is a sequence of closed
balls B ′

1, B
′
2, . . . and B ′

0 that cover the set {γ (t) : t ∈ [0, l]} \ {x} and have a
uniformly bounded overlap depending on n only. We write B(xi , ri ) = 2B ′

i for
every i = 0, 1 , 2 , . . ., where xi = γ (ti ), ti ∈ (0, l), and ri = 1

2 dist
(

xi , ∂D∪{x}).
By the fact that ϕ is an increasing function and by the definition of ϕ-John

domain we obtain

ϕ(dist(x, B0)) ≤ ϕ(l) ≤ cJ dist(x0, ∂D) = 2cJ r0.

Let us suppose then that i ≥ 1. If ri = 1
2 dist(xi , x), then by inequality (4.2) we

obtain

ϕ(dist(x, B(xi , ri ))) ≤ C ′
ϕ dist(x, B(xi , ri )) ≤ 2C ′

ϕri .

If ri = 1
2 dist(xi , ∂D), then the fact that ϕ is increasing and the definition of a

ϕ-John domain give

ϕ(dist(x, B(xi , ri ))) ≤ ϕ(dist(x, xi )) ≤ ϕ(ti )

≤ cJ dist(xi , ∂D) = 2cJ ri .

Thus, property (2) holds. 
�
The following pointwise integral representation for L1

1-functions defined on the
classical John domain is well known, [7,24]. The corresponding integral represen-
tation when ϕ(t) = t/ log(e + t−1) is proved in [11, Theorem 3.4]. For the sake
of completeness we give the proof for the general function ϕ here. Lemma 4.3 is
essential to this proof.
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Theorem 4.4. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing �2-
function satisfying (4.2). Let D in R

n , n ≥ 2 , be a ϕ-John domain with a John
constant cJ and a John center x0. Then there exists a finite constant C such that
for every u ∈ L1

1(D) and for almost every x ∈ D the inequality

∣
∣u(x) − uB(x0,dist(x0,∂D))

∣
∣ ≤ C

∫

D

|∇u(y)|
ϕ
(|x − y|)n−1 dy

holds.

Proof. If x ∈ B(x0, dist(x0, ∂D)), then

∣
∣u(x) − uB(x0,dist(x0,∂D))

∣
∣ ≤ diam(B(x0, dist(x0, ∂D)))n

n|B(x0, dist(x0, ∂D))|
∫

B(x0,dist(x0,∂D))

|∇u(y)|
|x − y|n−1 dy

by [5, Lemma 7.16]. Since by inequality (4.2) there is a constantC ′
ϕ such thatϕ(|x−

y|)n−1 ≤ (C ′
ϕ |x − y|)n−1, the claim follows for points x ∈ B(x0, dist(x0, ∂D)).

Let us then assume that x ∈ D\B(x0, dist(x0, ∂D)). Let (Bi )∞i=0 be a sequence
of balls constructed in Lemma 4.3. Property (2) in Lemma 4.3 gives that ri →
0 and dist(x, Bi ) → 0 whenever i → ∞, since limt→0+ ϕ(t) = 0 and ϕ is
continuously strictly increasing. Note that limt→0+ ϕ(t) = 0 follows from the
definition of ϕ-John domain by considering points near the boundary. Since ri =
1
2 dist

(

xi , ∂D ∪ {x}), we obtain that ri = 1
2 dist(xi , x) when i is large enough.

Thus the Lebesgue differentiation theorem [25, Section 1, Corollary 1] imply that
uBi → u(x) when i → ∞ for almost every x . We obtain

|u(x) − uB0 | ≤
∞
∑

i=0

|uBi − uBi+1 | ≤
∞
∑

i=0

(|uBi − uBi∩Bi+1 | + |uBi+1 − uBi∩Bi+1 |
)

≤
∞
∑

i=0

⎛

⎜
⎝

∫

Bi∩Bi+1

|u(y) − uBi | dy +
∫

Bi∩Bi+1

|u(y) − uBi+1 | dy
⎞

⎟
⎠ .

By property (4) in Lemma 4.3 |u(x)−uB0 | ≤ 2C
∑∞

i=0 |Bi |−1
∫

Bi
|u(y)−uBi | dy.

By using the (1, 1)-Poincaré inequality in a ball Bi , [5, Section 7.8], we obtain

|u(x) − uB0 | ≤ C
∞
∑

i=0

ri

∫

Bi

|∇u(y)| dy.

By (4.2) we have ϕ(2ri ) ≤ 2C ′
ϕri . Since ϕ is strictly increasing, there exists the

strictly increasing inverse function ϕ−1 such that the inequality ϕ−1(2C ′
ϕri ) ≥ 2ri

holds. Thus, for each z ∈ Bi we obtain by property (2) in Lemma 4.3 that

|x − z| ≤ dist(x, Bi ) + 2ri ≤ ϕ−1(Kri ) + 2ri ≤ 2ϕ−1(Cri
)

,
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C = max{K , 2C ′
ϕ}. Hence, we have ϕ

( 1
2 |x − z|) ≤ Cri . By using this estimate

and property (3) in Lemma 4.3 we obtain that

|u(x) − uB0 | ≤ C
∞
∑

i=0

ri

∫

Bi

|∇u(y)| dy ≤ C
∞
∑

i=0

∫

Bi

|∇u(y)|
rn−1
i

dy

≤ C
∞
∑

i=0

∫

Bi

|∇u(y)|
ϕ
( 1
2 |x − y|)n−1 dy

≤ C
∫

D

|∇u(y)|
ϕ
( 1
2 |x − y|)n−1 dy.

Since the function ϕ safisfy the �2-condition, the claim follows. 
�

5. Orlicz embbeding theorems

Continuous embeddings into Orlicz spaces of exponential type for domains with a
cone condition are well known, [28, Theorem 1, Theorem 2]; we also refer to [22,
23,29]. We recall that Cianchi has proved sharp results for Orlicz-Sobolev spaces
whenever relative isoperimetric inequalities are valid in the underlying domain, [2,
Theorem 2 and Example 1]. His work covers Orlicz spaces of exponential type and
more. In particular, classical John domains, that is, ϕ(t) = t , satisfy the Trudinger
inequality, [2, Example1].

We formulate the new embedding results for L1
p-functions defined on ϕ-John

domains.

Theorem 5.1. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing �2-
function which satisfies condition (1.1). Let H be an Orlicz function defined as in
Theorem 3.5. Let 1 < p < n. If D in R

n , n ≥ 2 , is a ϕ-John domain with a John
center x0, then there exists a constant C < ∞ such that the inequality

∫

D
H(|u(x) − uB(x0,dist(x0,∂D)|) dx ≤ C

holds whenever u ∈ L1
p(D) and ‖∇u‖L p(D) ≤ 1; the constant C does not depend

on the function u.

If p = 1, we need an extra assumption on the Orlicz function H .

Theorem 5.2. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing �2-
function which satisfies condition (1.1). Let H be an Orlicz function defined as in
Theorem 3.5. Let D in Rn, n ≥ 2, be a ϕ-John domain. If

∞
∑

j=1

H(2− j ) < ∞ , (5.3)
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then there exists a finite constant C such that the inequality
∫

D
H(|u(x) − uB(x0,dist(x0,∂D))|) dx ≤ C

holds for every u ∈ L1
1(D) when ‖∇u‖L1(D) ≤ 1; the constant C does not depend

on the function u.

We state the corresponding norm inequalities next.

Corollary 5.4. If 1 < p < n, let ϕ, H, and D be defined as in Theorem 5.1. If
p = 1, let ϕ, H, and D be defined as in Theorem 5.2. Then there exists a constant
C < ∞ such that the inequality

‖u − uD‖LH (D) ≤ C‖∇u‖L p(D)

holds for every u ∈ L1
p(D); the constant C does not depend on the function u.

The pointwise estimate in Theorem 4.4 is crucial for the proofs.

Proof of the embedding result Theorem 5.1. Let u ∈ L1
p(D). Then, by [17, 1.1.2,

Theorem] u ∈ L p
loc(D). Let x0 ∈ D be a John center of D. Theorem 4.4 and

Theorem 3.8 imply the claim. 
�
The proof of the embedding result is more tedious when p = 1.

Proof of the embedding result Theorem 5.2. Let us consider functions u ∈ L1
1(D)

such that ‖∇u‖L1(D) ≤ 1. The center ball B(x0, dist(x0, ∂D)) is written as B. We
show that there exists a constant C < ∞ such that the inequality

∫

D
H(|u(x) − uB |) dx ≤ C (5.5)

holds whenever ‖∇u‖L1(D) ≤ 1. First we estimate
∫

D
H(|u(x) − uB |) dx ≤

∑

j∈Z

∫

{x∈D:2 j<|u(x)−uB |≤2 j+1}
H(2 j+1) dx .

Let us define v j (x) = max
{

0,min
{|u(x) − uB | − 2 j , 2 j

}}

for all x ∈ D. If

x ∈ {x ∈ D : 2 j < |u(x) − uB | ≤ 2 j+1}, then v j−1(x) ≥ 2 j−1. We obtain
∫

D
H(|u(x) − uB |) dx ≤

∑

j∈Z

∫

{x∈D:v j (x)≥2 j }
H(2 j+2) dx . (5.6)

By the triangle inequality and Theorem 4.4 we have

v j (x) ≤ |v j (x) − (v j )B | + |(v j )B |
≤ C

∫

D

|∇v j (y)|
ϕ
(|x − y|)n−1 dy + |(v j )B |
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for almost every x ∈ D. By the (1, 1)-Poincaré inequality in a ball B, [5, Section
7.8], there exists a constant C such that

|(v j )B | = (v j )B =
∫

B

v j (x) dx ≤
∫

B

|u(x) − uB | dx

≤ C
∫

B

|∇u(x)| dx ≤ C |B|−1.

Thus, by the definition of B the number |(v j )B | is bounded by a constant depending
on n and the distance between the John center and the boundary of D only. We
write

Iϕ(∇v j )(x) =
∫

D

|∇v j (y)|
ϕ
(|x − y|)n−1 dy.

We continue to estimate the right hand side of inequality (5.6)
∫

D
H(|u(x) − uB |) dx ≤

∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)+C≥2 j }
H(2 j+2) dx

≤
∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)≥2 j−1}
H(2 j+2) dx

+
j0∑

j=−∞

∫

D
H(2 j+2) dx .

(5.7)

By (5.3) we obtain

j0∑

j=−∞

∫

D
H(2 j+2) dx = |D|

j0∑

j=−∞
H(2 j+2) ≤ C |D|. (5.8)

Then, we will find an upper bound for the sum

∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)≥2 j−1}
H(2 j+2) dx .

Since ‖∇v j‖L1(D) ≤ ‖∇u‖L1(D) ≤ 1, Theorem 3.5 implies that

∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)≥2 j−1}
H(2 j+2) dx

≤
∑

j∈Z

∫

{x∈D:H(C Iϕ(∇v j )(x))≥H(2 j−1)}
H(2 j+2) dx

≤
∑

j∈Z

∫

{x∈D:CM|∇v j |(x)≥H(2 j−1)}
H(2 j+2) dx .
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We choose for every x ∈ {x ∈ D : CM |∇v j |(x) ≥ H(2 j−2)} a ball B(x, rx ),
centered at x and with radius rx depending on x , such that

C
∫

B(x,rx )

|∇v j (y)| dy ≥ 1

2
H(2 j−1)

with the understanding that |∇v j | is zero outside D. By the Besicovitch covering
theorem (or the 5-covering theorem) we obtain a subcovering {Bk}∞k=1 so that we
may estimate by the �2-condition of H

∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)≥2 j−1}
H(2 j+2) dx ≤

∑

j∈Z

∞
∑

k=1

∫

Bk
H(2 j+2) dx

≤
∑

j∈Z

∞
∑

k=1

|Bk |H(2 j+2) ≤
∑

j∈Z

∞
∑

k=1

C |Bk |H(2 j+2)

H(2 j−1)

∫

Bk

|∇v j (y)| dy

≤ C
∑

j∈Z

∫

D
|∇v j (y)| dy.

Let E j = {x ∈ D : 2 j < |u(x) − uB | ≤ 2 j+1}. Since |∇v j | is zero almost
everywhere in D \ E j and |∇u(x)| =∑ j |∇v j (x)|χE j (x) for almost every x ∈ D,
we obtain

∑

j∈Z

∫

{x∈D:C Iϕ(∇v j )(x)≥2 j−1}
H(2 j+2) dx ≤ C

∫

D
|∇u(y)| dy ≤ C. (5.9)

Estimates (5.7), (5.8), and (5.9) imply inequality (5.5). 
�
Proof of Corollary 5.4. Let us write B = B(x0, dist(x0, ∂D)). Theorem 5.1 for
1 < p < n and Theorem 5.2 for p = 1 yield ‖u − uB‖LH (D) ≤ C for every
u ∈ L1

p(D) with ‖∇u‖L p(D) ≤ 1. By using this inequality for u/‖∇u‖L p(D) we
obtain

‖u − uB‖LH (D) ≤ C‖∇u‖L p(D).

By the triangle inequality ‖u − uD‖LH (D) ≤ ‖u − uB‖LH (D) + ‖uB − uD‖LH (D)

and furthermore for some constant C

‖uB − uD‖LH (D) = |uB − uD| ‖1‖LH (D)

≤ ‖1‖LH (D)‖u − uB‖L1(D)

≤ C‖1‖LH (D)‖u − uB‖LH (D).


�
As an application of Theorems 5.1 and 5.2 we obtain the following corollary.

By Remark 3.4 we may replace the assumption p < n by the assumption p <

n/(n − α(n − 1)).
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Corollary 5.10. (Theorem 4.1 in [10]) Let 1 ≤ p < n/(n − α(n − 1)) be given.
Let α ∈ [1, 1 + 1/(n − 1)) and β ≥ 0. Let ϕ : (0,∞) → R and H : [0,∞) → R

be the functions

ϕ(t) = tα

logβ(e + t−1)
and

H(t) =
(

t

logβ(n−1)(m + t)

) np
αp(n−1)+n(1−p)

where m = m(n, p) ≥ e. If D in R
n , n ≥ 2 , is a ϕ-John domain, then there is a

constant C such that the inequality
∫

D
H(|u(x) − uB(x0,dist(x0,∂D))|) dx ≤ C

holds for every u ∈ L1
p(D) when ‖∇u‖L p(D) ≤ 1. The constant C does not depend

on the function u.

Corollary 5.10 recovers the well known case when α = 1 and β = 0. Corol-
lary 5.10 with α > 1, β = 0 and p = 1 is sharp but, with α > 1, β = 0 and
p > 1 it is not sharp. Namely, the exponent in the Orlicz function H should be

np
α(n−1)−p+1 , and not np

αp(n−1)+n(1−p) , according to [8, p. 437] and [14, Theorem

2.3]. We propose a conjecture that np
α(n−1)−p+1 is the right exponent in the case

β > 0 also. We note that our method based on the modified Riesz potential does
not give a better exponent than np

αp(n−1)+n(1−p) , see Theorem 6.5.
We give a detailed proof Corollary 5.10, since the proof shows why the values

of α should have the upper bound n/(n− 1). In Remark 5.11 we will point out that
the upper bound n/(n − 1) is the best possible with this Hedberg-type method for
the modified Riesz potentials.

Proof of Corollary 5.10. Let α ∈ [1, 1 + 1/(n − 1)) and β ≥ 0. When ϕ(t) =
tα

logβ(e+t−1)
, calculations show that the �2-condition of ϕ and inequality (1.1) hold.

In order to have condition (3.2) we substitute ϕ to the left hand side of (3.2)
and estimate, for α < n

n−1 ,

∞
∑

k=1

(

2−k t
)n

ϕ(2−k t)n−1 ≤ tn−α(n−1)
∞
∑

k=1

2−k(n−α(n−1) logβ(n−1)
(

2k
(

e + 1

t

))

≤ Ctn−α(n−1) logβ(n−1)
(

e + 1

t

)

.

Thus, we may choose

h(t) = Ctn+(1−n)α logβ(n−1)(e + t−1) and

H(t) =
(

t

logβ(n−1)(m + t)

) np
αp(n−1)+n−np

.

Conditions �2 and (5.3) for the function H hold clearly.
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We choose δ : (0,∞) → (0,∞), δ(t) = t−
p
n , and show that condition (3.6)

holds with δ, h, and H . By substituting h and δ to the left hand side of (3.6) we
obtain

H(h(δ(t))t + ϕ(δ(t))1−nδ(t)n(1− 1
p ) = H

(

2Ct
αp(n−1)+n−np

n logβ(n−1)(e + t
p
n )
)

.

The definition of H and straightforward estimates imply

H
(

h(δ(t))t + ϕ(δ(t))1−nδ(t)n(1− 1
p

)

≤
Ct p

(

logβ(n−1)(e + t
p
n )
) pn

αp(n−1)+n−np

(

logβ(n−1)
(

m + 2Ct
αp(n−1)+n−np

n logβ(n−1)(e + t
p
n )
)) pn

αp(n−1)+n−np

≤ Ct p

⎛

⎝
logβ(n−1)(e + t

p
n )

logβ(n−1)
(

m + 2Ct
αp(n−1)+n−np

n

)

⎞

⎠

pn
αp(n−1)+n−np

≤ Ct p.

Thus the claim follows by Theorems 5.1 and 5.2. 
�
Remark 5.11. We emphasize that the assumption α < 1 + 1

n−1 is natural when we

consider the function ϕ(t) = tα

logβ(e+t−1)
. Namely, if we assume that α ≥ 1 + 1

n−1

and β ≥ 0 and choose f ≡ 1 in D, then we obtain that
∫

D

| f (y)|
ϕ(|x − y|)n−1 dy ≥

∫

B(x,min{1,dist(x,∂D)})
logβ(n−1)(e + |x − y|−1)

|x − y|α(n−1)
dy

≥
∫

B(x,min{1,dist(x,∂D)})
1

|x − y|α(n−1)
dy

≥
∫

B(x,min{1,dist(x,∂D)})
1

|x − y|n dy = ∞

for every x ∈ D.

6. Sharpness of the results

In this section we study sharpness of the norm inequalities
∥
∥
∥
∥

∫

D

|u(z)|
ϕ(| · −z|) dz

∥
∥
∥
∥
LH (D)

≤ C‖u‖L p(D)

and ‖u − uD‖LH (D) ≤ C‖∇u‖L p(D). We start from the latter inequality.
Let ϕ : [0,∞) → [0,∞) be a continuous, strictly increasing �2-function

which satisfies condition (1.1). We give a sufficient condition to the function H in
Theorem 6.2 so that the corresponding inequality in Theorem 5.1 fails. We do it by
constructing a mushrooms-type domain. Mushrooms-type domains can be found in
[10–12,17,18]. By using Theorem 6.2 we show that the embedding in Theorem 5.2
is sharp.
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Next we construct the mushrooms-type domain. Let (rm) be a decreasing
sequence converging to zero. Let Qm,m = 1, 2, . . ., be a closed cube in R

n with
side length 2rm . Let Pm,m = 1, 2, . . ., be a closed rectangle in Rn which has side
length rm for one side and 2ϕ(rm) for the remaining n − 1 sides. Let Q0 = [0, 1]n .
We attach Qm and Pm together creating ’mushrooms’ which we then attach, as
pairwise disjoint sets, to one side of Q0. We have to assume here that ϕ(rm) ≤ rm .
We attach the mushrooms to the side that lies in the hyperplane x2 = 1. We wish to
define a domain that is symmetric with respect to the hyperplane x2 = 1

2 . Thus, let
Q∗

m and P∗
m be the images of the sets Qm and Pm , respectively, under the reflection

across the hyperplane x2 = 1
2 . We define

G = int

(

Q0 ∪
∞
⋃

m=1

(

Qm ∪ Pm ∪ Q∗
m ∪ P∗

m

)
)

. (6.1)

We give a sufficient condition to theOrlicz function H so that the corresponding
Orlicz embedding result in Theorem 5.1 fails.

Theorem 6.2. Let p ≥ 1. Let ϕ : [0,∞) → [0,∞) be a continuous, strictly
increasing �2-function which satisfies condition (1.1). Suppose that there exists
t0 > 0 such that ϕ(t) ≤ t for 0 < t < t0. Let G in R

n, n ≥ 2, be a mushrooms-
type domain constructed as in (6.1). If H is an Orlicz function which satisfies the
�2-property and the condition

lim
t→0+ tn H

((
t p−1

ϕ(t)n−1

)1/p
)

= ∞,

then there exists a sequence of functions (uk) in L1
p(G) such that ‖∇uk‖L p(G) = 1

for every k and
∫

D
H(|uk(x) − (uk)D|) dx → ∞ as k → ∞.

Proof. Let us define a sequence of piecewise linear continuous functions (uk)∞k=1
by setting

uk(x):=
⎧

⎨

⎩

F(rk) in Qk,

−F(rk) in Q∗
k ,

0 inQ0,

where the function F will be given in (6.3). Then the integral average of uk over
G is zero for each k.

The gradient of uk differs from zero in Pm ∪ P∗
m only and

|∇uk(x)| = F(rm)

rm
, when x ∈ Pm ∪ P∗

m .

Note that
∫

G
|∇uk(x)|p dx = 2

∫

Pm

(
F(rm)

rm

)p

dx = 2rm (ϕ(rm))n−1 F(rm)p

r pm
.
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We require that
∫

G |∇uk(x)|p dx = 1. Hence,

F(rm) =
(

r p−1
m

2ϕ(rm)n−1

)1/p

. (6.3)

Since (uk)G = 0 and uk is a constant in Qm we have
∫

G
H(|uk(x) − (uk)G |) dx ≥ 2

∫

Qm

H(F(rm)) dx = 2rnmH(F(rm)).

Hence, by (6.3), the �2-condition, and the assumption we have

rnmH(F(rm)) = rnmH

((
rm p−1

2ϕ(rm)n−1

)1/p)

≥ rnmH

(
1

2

(
rm p−1

ϕ(rm)n−1

)1/p)

≥ 1

C�2
H

rnmH

((
rm p−1

ϕ(rm)n−1

)1/p)

→ ∞, whenever m → ∞.


�
Theorem 6.2 implies that condition (3.6) in Theorem 5.2, in the p = 1 case, is

sharp.

Remark 6.4. Let H be an Orlicz �2-function which satisfies condition (5.3). Let
us assume that (3.6) holds with δ(t) = t−

p
n in the case p = 1, that is,

H

(

h
(

t−
1
n

)

t + ϕ
(

t−
1
n

)1−n
)

≤ CHt for all t ≥ 0.

Then we obtain with every function h that

lim
t→0+ tn H

(
1

ϕ(t)n−1

)

≤ lim
t→0+ tn H

(

h(t)t−n + ϕ(t)1−n
)

≤ lim
t→∞ t−1 H

(

h
(

t−1/n
)

t + ϕ
(

t−
1
n

)1−n
)

≤ CH .

Next we study the modified Riesz potential in R
n .

Theorem 6.5. Let ε, δ, β ≥ 0 and let α ∈ [1, 1 + 1/(n − 1)). Let 1 ≤ p <

n/(n − α(n − 1)) be given. Let ϕ : (0,∞) → R and H : [0,∞) → R be the
functions

ϕ(t) = tα

logβ(e + t−1)
and H(t) =

(
t

logβ(n−1)−δ(m + t)

) np
αp(n−1)+n(1−p) +ε

,

where m ≥ e. If ε > 0 or δ > 0, then there exists a sequence of functions (uk) in
L p(Rn) such that ‖uk‖L p(Rn) ≤ C and

∫

Rn
H

(∫

Rn

|uk(z)|
ϕ(|x − z|)n−1 dz

)

dx → ∞ as k → ∞.
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Proof. Let A > 0. We will fix f ∈ L p(Rn) later. By changing the variables we
obtain

‖A n
p f (Ax)‖L p(G) =

(∫

Rn
An| f (Ax)|p dx

) 1
p

=
(∫

Rn
| f (y)|p dy

) 1
p = ‖ f ‖L p(Rn).

On the other hand, by changing the variables, Ax = z and Ay = ω, we obtain

∫

Rn
H

(
∫

Rn

|A n
p f (Ax)|

ϕ(|x − y|)n−1 dx

)

dy

=
∫

Rn
H

(
∫

Rn

A
n
p | f (z)|

Anϕ
(| zA − y|)n−1 dz

)

dy

=
∫

Rn
A−nH

(

A
n
p −n

∫

Rn

| f (z)|
ϕ(A−1|z − ω|)n−1 dz

)

dω.

Thus, by Fatou’s lemma

lim
A→∞

∫

Rn
H

(∫

Rn

|A n
p f (Ax)|

ϕ(|x − y|)n−1 dx

)

dy

≥
∫

Rn
lim
A→∞ A−nH

(

A
n
p −n

∫

Rn

| f (z)|
ϕ(A−1|z − ω|)n−1 dz

)

dω.

Let f (x) = 1when x ∈ B(0, 2) and let f (x) = 0 otherwise. Hence, by substituting
ϕ(t) = tα

logβ(e+t−1)
we obtain that for every ω ∈ B(0, 1)

A−nH

(

A
n
p −n

∫

Rn

| f (z)|
ϕ(A−1|z − ω|)n−1 dz

)

= A−nH

(

A
n
p −n

∫

Rn

| f (z)| logβ(n−1)(e + A/|z − ω|)
A−α(n−1)|z − ω|α(n−1)

dz

)

≥ A−nH

(

A
n
p −n+α(n−1)

∫

B(ω, 12 )

logβ(n−1)(e + A)

|z − ω|α(n−1)
dz

)

.

Since
∫

B(ω, 12 )
1

|z−ω|α(n−1) dz ≥ C > 0 for every ω ∈ B(0, 1) and H is an increasing
function, we may estimate

lim
A→∞ A−nH

(

A
n
p −n

∫

Rn

| f (z)|
ϕ(A−1|z − ω|)n−1 dz

)

≥ lim
A→∞ A−nH

(

CA
n
p −n+α(n−1) logβ(n−1)(e + A)

)

.
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By substituting H ,

H(t) =
(

t

logβ(n−1)−δ(m + t)

) np
αp(n−1)+n(1−p) +ε

,

we obtain

lim
A→∞ A−nH

(

A
n
p −n

∫

Rn

| f (z)|
ϕ(A−1|z − ω|)n−1 dz

)

= lim
A→∞CAε( np −n+α(n−1))

×
⎛

⎝
logβ(n−1)(e + A)

logβ(n−1)−δ
(

CA
n
p −n+α(n−1) logβ(n−1)(e + A)

)

⎞

⎠

np
αp(n−1)+n(1−p) +ε

.

Note that 1 ≤ p < n/(n − α(n − 1)) implies that n
p − n + α(n − 1) > 0. If ε > 0,

then Aε( np −n+α(n−1)) → ∞ as A → ∞, and thus the last limit is infinite for every
ω ∈ B(0, 1). If δ > 0 (and β ≥ 0), then the term in the brackets tends to infinity
as A → ∞, and thus the last limit is infinite for every ω ∈ B(0, 1). Hence, in both
cases we obtain

lim
A→∞

∫

Rn
H

(∫

Rn

|A n
p f (Ax)|

ϕ(|x − y|)n−1 dx

)

dy = ∞.


�
Remark 6.6. By Theorem 6.5 the exponents np

αp(n−1)+n(1−p) and β(n−1) in Corol-
lary 5.10 are the best possible in the sense that our method based on the use of the
modified Riesz potential cannot give a better exponent.
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