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Abstract. Exponentially harmonic maps and harmonic maps are different. In this paper, we
derive the first and second variations of the exponential energy of a smooth map between
Finsler manifolds. We show that a non-constant exponentially harmonic map f from a unit
m-sphere S™ (m > 3) into a Finsler manifold is stable in case |d f |2 > m — 2, and is unstable
in case [df|*> <m — 2.

1. Introduction

Exponentially harmonic maps between Riemannian manifolds were first explored
by Eells and Lemaire [11]in 1990. Afterwards, Duc and Eells [10], Hong [14], Hong
and Yang [15], Chiang et al. [3—8], Cheung and Leung [9], Zhang et al. [24], and
others also investigated exponentially harmonic maps. In 2002, Kanfon et al. [16]
discovered the applications of exponential harmonic maps on Friedmann—Lemaitre
universe, and considered some new models of exponentially harmonic maps which
are coupled with gravity based on a generalization of Lagrangian for bosonic strings
coupled with diatonic field. In 2011-2012, Omori [18,19] obtained results about
Eells—Sampson’s existence theorem and Sacks—Uhlenbeck’s existence theorem for
harmonic maps via exponentially harmonic maps.

Exponentially harmonic maps and harmonic maps (cf. [12]) are different. There
are exponentially harmonic maps which are not harmonic maps, and there are har-
monic maps which are not exponentially harmonic maps either (cf. [15]). Cheung
and Leung [9] showed that the identity map from any compact manifold M™ into
itself is always stable as an exponentially harmonic map, which is contrast to such
an identity as a harmonic map [22] unstable. They also showed that an isometric
and totally geodesic immersion of S into S” is an unstable exponentially harmonic
map if m # n, and is stable if m = n. Moreover, Chiang and Yang [8] proved that if
f is an exponentially harmonic map from a Riemannian manifold into another Rie-
mannian manifold with non-positive sectional curvature, then f is stable. Chiang
[3] also obtained a theorem asserted as follows: If f is an exponentially harmonic
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map from a compact Riemannian manifold M into the unit n-sphere S (n > 3)
with |df|?> < n — 2, then f is unstable.

The structure of a Finsler manifold is different from the structure of a Rieman-
nian manifold. Recently, Mo [17], He et al. [13,20,23], Shen [21] and others inves-
tigated harmonic maps of Finsler manifolds. In this paper, we study exponentially
harmonic maps between Finsler manifolds. We derive the first and second varia-
tions of exponential energy between Finsler manifolds in Theorems 3.4 and 4.1.
We then apply Theorem 4.1 to show that a non-constant exponentially harmonic
map f from a unit m-sphere S” (m > 3) into a Finsler manifold is stable in case
|df|?> = m — 2, and is unstable in case |df|> < m — 2, in Theorem 5.4.

2. Finsler manifold

Let M be an m-dimensional smooth manifold and & : TM — M be the natural
projection from its tangent bundle. Let (x, y) be a pointin TM withx e M, y €
T.M and let (x, y') be its local coordinates in TM with y = y' % A Finsler
metric on M is a function F : TM — [0, oo) satisfying the following properties:

(i) Regularity: F(x, y) is smooth in T M\ {0};
(i) Positive homogeneity: F(x, Ay) = AF (x, y) for A > 0;
(iii) Strong convexity: The fundamental quadratic form g = g;;dx’ ® dx/ is
positive definite, where g;; = ;32(F2)/ayfayf.

A Finsler manifold is a C* manifold M with a Finsler metric F (cf. [1,2]).
Let SM be the projective sphere bundle of M with canonical projection map 7 :
SM — M given by (x, y) — x, and let S; M = 7~ (x) be the projective sphere
at x. Denote the pull-backs of TM and T*M by 7*T M and n*T*M, respectively,
and consider these as vector bundles (with m-dimensional fibres) over the (2m — 1)-
dimensional base SM.

Let (M, F)beanm-dimensional Finsler manifold. Given local coordinates (x/)
on M, we write any y € Ty M as y' % This generates local coordinates (x?, y')
on SM. At each point of SM, the fiber of 7*T M has a basis { } Therefore, F
inherits the Hilbert form and the Cartan tensor as follows:

dF ; ; k 9gij
w = gdx A= Ajjrdx' @dx) @ dx", Ajjx = B_yk’
where 1 <1, j, k < m.Itis well- known that there exists gunique Chern connection
V (cf. [1]) on 7*T M with V o = w! -% and w} = I'/,dx* such that

axl 3 i
sy*
dgij — giwly — gjrwf = 244k = 2.1
where 8y’ = dy’ —i—N’dx/ N’ = y]ky —FA]ky,fly”yl andy’:k are the Christoffel

symbols of the second kind for g;;. Since Ve, = 8} &9,{ with e, = 2 -2 (2.1)

Foaxt>
is equivalent to

XU, V)=(VxU, V)+ (U, VxV)+2C(U, V, Vx(Fey)), 2.2)
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where A;jx = FCjjpand X, U,V e T'(w*TM).
The curvature 2-forms of the Chern connection V are

. . ) 1 1 .
wh —wh Aw] = Q) = R dx* Adx! + Plydx* syl (23)

2

Choose a g-orthonormal frame {¢; = u/ 9} with e, = yflﬁ for each fibre of

i 9xJ
7*TM and {w'} its dual coframe. The collection {w’, wj'n} forms an orthonor-
mal basis for 7*(T M \{0}) with respect to the Sasaki-type metric g;;dx’ ® dx/ +
gij8yi ® 8y/. The pull-back of the Sasaki metric from 7M\{0} to SM is a Rie-
mannian metric

g = gijdx' @ dx’ + Sapwl, @ wh, 2.4)

where 1 < a,b,c < m — 1. Set Pype := Ppape- Pape is called the Landberg
curvature (cf. [21]). It follows from [2] that

Puap =0, ZPaab:_ZAaab»
a a

where the dot denotes the covariant derivative along the Hilbert form.

Lemma 2.1. For ¢ = p;w' € T'(x*T*M), we have

divge = Z Bili + Y $aPrva = (Vo d)ei + ) daPobas

a,b a,b

where | denotes the horizontal covariant differential with respect to the Chern
; H _ J3§ _ d _ nkD
connection, e = u; 55 = U; I (2 57 — N 7 3y =) is the horizontal part of e; and

Pppg = hba (Cf [2D).

For any fixed x € M, SxM = {y € TyM|F (y) = 1} has a natural Riemannian
metric

Py = 26’,‘2 ® O Op = Wy ls.M-
Lemma 2.2. For ¢ = vi;dy', we have
div; = F2ug"[y],; — mvny',

where v = \/det(g;j) and [;],; = %wi (cf. [13]).
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3. Exponentially harmonic maps of Finsler manifolds

Letf: M" — M" be a non-constant smooth map between two Finsler manifolds.
The exponential energy density of f is the function from SM to R defined by

. ij o 2B A PN
ee(F)(x, y) = 2P = 387 NI D) G.1)

where df (;5) = fe sz and § = 39 3% =y fe3, 1 <i, j<m, 1<a, B <

n. The exponential energy of f is given by
1
E.(f)=- ee(f)dvsm, (3.2)
¢ Jsm

where dvsy = Qdt Adx, Q = det(g;j/F), dt = Y ;(=DI"lyldy! Ao A
dyin---dy™, dx = dx' A - Adx™, and ¢ denotes the volume of the unit sphere
sm=1,

Let V be the pullback Chern connection on T (f _ITM), and let Q be the
curvature form of the pullback connection V.

Lemma 3.1. We have

() X(dfU, dfV) = (Vx(dfU), df V) + (dfU, Vx(dfV))
+2C(dfU, dfV, Vx(dfF,,)), (3.3)

- N F -
() Q%(Ua V) = Rg(dea afv) + ;Pg(de, Vydfen)
F -
where R% = Iégyad)?y ® dx° and PY = ﬁgyad)?y Qdx°.

Proof. (1) follows from (2.2) with df (F,,) = l:"én, and (2) follows from (2.3). O

Lemma 3.2. We obtain
G df . GhdfP
S| (Vondr—, e are gy
; SM i ot

ol (aeterarye

~ 0 -
$263P 8 (af 2 dfer, TndfF,)]

+ E 2 f—, P, d .
an e 31 fea)Paab jdvsm
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Proof. Set ¢ = e3ldf? (df%, dfe;)w'. Lemma 2.1 implies that
. - d Ligrp J -~ LigrP
divzg = <Velf,df§’ e2ldf dfe,->+<df§, Vel.H(eQ‘ /1 dfei)>
~ 0 - 0 - .
202 P E(af o dfer, Vopdf o, ) + e df = dfep) (T pwe
e ge 9
+ )P df = dfes)Puas
a,b
~ ) L7512 a ~ L2
— 2 ,aldf] . _ 2ldf1 .
= (Vs =, HP e+ df - (Tpet P ar e
NP e(arl dfe (% Ydf 2
2¢ C(dfat,dfe,, (Ve[de)Fem)—FXb:ez (df dfeb> -
(3.5)
Integrating (3.5), we conclude the result. O

Likewise, let ¢ = e%ldf‘zé’(dfe,-, dfe;, %)me which is a global section on
T*(SyM). We arrive at the following lemma due to P, = 0.

Lemma 3.3.

d
ZfSMezldf\ ¢ <dfel dfei, Vien df>deM
= —Zf [(vF yetl )¢ (dfel, dfe;. f) + 2P (T €

d
(dfe,, dfe;, —{)
A f = d
+26%\df|2C <vFe,’,'l’df€i’ dfe;, d—{)]deM. (3.6)

Amap f : M — M is exponentially harmonic iff it is a critical point of the
exponential energy. Let { f;} be a smooth variation of f with fy = f and fi|ap =
flam- It induces a vector field V along f with

0
V="mo=V—, V =0.
a7 =0 YT lom

Theorem 3.4. Amap f : M — M between two Finsler manifolds is exponentially
harmonic if and only if

/ (V. 7o () dvsy = 0, 3.7)
SM

for any vector field V € F(f_lTM).
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Proof. Applying Lemmas 3.2 and 3.3, we obtain

Sk =+ ) [ (Saarrr dra)+ E(are afe. Frodn ) v

%Xi:‘/SMe%Idf-P[(ﬁeﬁdf%, dfei>+ Cldfe;, dfe;, (@Fegdf)z—{ﬂdy”[

1 df
- ——f EL ernavsu, (3.8)

where

“h =30, net T dpe; + 3 2021978 @, dfer, Vgdf Fen)é

l o
+ (Ve e? ) Cdfer dfer. ea)ea + 2T (Vpu C)dfer, dfer, Ea)éa

1 A~ PN 1 N A
+2e2UFE(Tppdfer. dfe;, ea>ea] + e G, df ep)ea Paas.
a,b

(3.9)

O

4. Second variation

In this section, we apply a few auxiliary lemmas to derive the second variation of
the exponential energy of a smooth map between Finsler manifolds as follows.

Theorem 4.1. If f : M — M is a non-constant smooth map between two Finsler
manifolds, then

d2
LV, V)= E(fr)le—A+B+C+D+E+G

where
1 d A - 2
*f e?! f‘ (V,uV, dfe)) + C(dfe;, dfe;, VFe,,,V)] dvspy, 4.1)
CJsm ¢
1 3
f/ ez"f’f‘2 ViV, Vi Vidosu, (4.2)
CJsm
1
- ez'df‘ 4C(V udV. dfe;, Vie, V) + (VyuC)dfei, dfei, Ve, V)
¢ Jsm
+Cdfer, dfe; Vre, V. Vre, V)]deM (see Cin Lemma 4.2), (4.3)

! SarR[ _ g BV (S

D=~ [ ez [— (R(dfer, VIV, dfe) + = BV, (Tudf)em)V, dfer)
CJsm F
F
~ Z{Pfer, Vg VIV, dfen dvsw, (44)
1 . )

E= f/ e%'df‘z[ — C(dfei, dfe;, R(df Fep, V)V)
CJsm
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C(dfei, dfei, P(V, (VFe,df)em)V)

>\ﬁﬁ>\ﬁ

C(dfei, dfei, P(df Fen, V HV)V)]deM,

1 ~
G=-1 / (T V. 1)) dvsyr.
CJsm

Firstly, we obtain from Lemma 3.1 (2) that

4.5)

(4.6)

%))

.~ 0 -~ =~ d
V%V)iﬁdfg — VeiHV%dfa
R d a F 4 - d
= — R(dfe,-, df—)df— + —AP(de, (veidf)em>df5
5 df
—P(dfe,, dt)df
where R = RY. -2 ®d+P ®@diY ®dz° and P = ngcra 2 QdiP @drY @di°.

Byo 93¢
In Lemma2.1,settmg¢>=e7|df‘ (Vagdfy, dfe;j)w' we get
t

- 0 -
divyp = § ez'W(v HVadf dfei>+<vaidf5, (Veae%'df‘zdf)ei>
1 t 1

+22ez'd~f" é(%%df%, dfe;, %el_ydfFem)
+Ze2'df'( 2df o dfes)Pua.

It implies that

.9
S df L (5 gerldf?
1
D A )~ 0 -
+22e%‘d-f|2C<V%de, dfe;, Vel_deFem)
i
117402~ d
+ 3BT, df . dfes)Paas Jdvsu.

Similarly, we have

/ e%'dflzé(dfe,-, dfe;, ?eHVa;ldfFem)deM
SM "o

C 1 2\ A 5 9
= —/SM {(VFeZeﬂdf\ )C(dfei, dfe;, Vi%dfa)

(4.8)

4.9)
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1172 =~ A ~ d
e P Vg O (dfer.dfer. Vg df o)
NarP e (s & e
42¢2 C(VFedeei,dfei,Va@dfa) dvsy. (4.10)
m I3
Combining (4.9) and (4.10), we arrive at
/ {e%'df"z(% Vo f ,dfe; >+ez'df‘ c(dfe, dfei, Vadf— )}de
SM i

~ J _
- _/SM<V%de, te(f)>dst = —/SM (Vdf%dfg, ‘L’e(f)>deM.

4.11)
Lemma 4.2.
L (e A - df Liafi2 e " - df
ezldf| (V%C><dfei, dfe;, vFemE) — ¢2ldf] (V%HC)<dfei, dfe;, vFemE)
Lif2 A - df -~ d
+ezldf] C(dfei, dfe;, Vre, d{ VEen d]:)
where C = C ®diP @ dx? ® dx° (C“ = aéi
/3)/08 « Bryo T 3y° °

el . o .
Proof. Due to ‘% =y %, we obtain

(6% é) (dfei, dfei, Ve, %)

aC - df . - df 9V® @
= VO (dfer dfer, Vra, 50+ C(dfer, dfer, Vro, oo ¥ S ).

(4.12)
and

(6%H6)(dfei, dfe;, 6Fem%) = 6‘/0( Ng(ﬁ,)é(dfei’ dfe;, ﬁFem%)

aC df\  « - df .o D
= V7 U(dfe,, dfei. Vre, < )—c(dfe,», dfei. Vre, 5o, VINZ )

axT
(4.13)
Moreover, we have
N ~ df -~ df o ~ df ;9vV? 9
C(dfe;, dfe;, VFemEa VFemE) = (C<df€i, dfe;, VFemEa » oxT 977
0
+VIRE ). (4.14)

We conclude the result by applying (4.12), (4.13) and (4.14). ]
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Lemma 4.3.
1/SMez‘dflzd (Ve,df— dfe,)deM - %/SMeéldflz[(veiH(ﬁ%df%), dfei>

L gp2 = [~ ~ df
df| 9 . ar
4202 C(Veiydfat, dfe;. Ve, dt)]dv5M+B+D.
Proof. Tt follows from (4.7) that
1 N 1 .
f/ P LG ar Y dfedvsy = —/ AP d - dfer)
SM ' at c Jsm o Ci dt

dt
+<6eiﬂdf3, 6%dfe,->+2é(6eﬁdf%, dfei, Vs df Fen) dvs

1 /SMEIWFR@ ,H%oi f%! dfe,»>—<1§(dfei, df%, dfei)df%,
afe) - (P (dfe Gpany.. dfe)

d fei>

2 {P(arg Gudpren)is s

%,df%) n 26(@#%, dfei, Ve, %{)]de, (4.15)

.
+<Velydf§,
[

which completes the proof.

Lemma 4.4.

1 L2 d T A - df

z 3ldf [ . . ]
/SMez o c(dfe,, dfei, Vre, dt) dvsy

:l/SM WP E (dfei, dfer, vpemw%)

e d . d
—2C(veiﬂd—{, dfe;, vFemd—{)]deM +C+E (416

Proof. We have
1/5Me%'df'2di[é(dfei, dfei, Wem%)]duw
L A (50) e a0 0
+20(V s dfer, dfe;. wem%) +C(dfer, dfe, 6%%%%)]de
_ éﬁMe%\dflz[(ﬁ%é)(dfei, dfe;, %em%)

e df - df\  » .. df
+2C(vel_ﬁz, dfe;, vFemE) +c(dfe,, dfei, Vre, Vs E)

é(dfe,, dfei, (dfFem’ df%)”%)
% (arei. dfei. (df%, (Wemdf%ym)df%)
—%é(dfei, dfe;, ﬁ(dfFem, @elydf%)df%)]dvszu.

The result follows from (4.17) and Lemma 4.2.

4.17)
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Proof of Theorem4.1. Applying (4.11), Lemma 4.3 and Lemma 4.4, we obtain
42
2 Ee(f)

- %%/SMe%\dﬂz[(ﬁeﬁdf%, df€i>+é(dfei, dfe;, 6F6m%)]de
= %/SMe%'dflz[Wedei, dfei) + é(dfe, dfei, Ve, ilif>]2dv5M

+%/SMezldf|2{d <V€ldf Ldfer)+ [ (afei. dfei, 6Fem%)]}dv_w
—A+B+C+D+E+G.

5. Stability

We consider that the domain is a unit m-sphere S™ in this section. Let {e;} be the
orthonormal frame of S, and {E{, ..., E;,+1} be the constant orthonormal basis
in Rm*L Set vV, = (Ey,ei)ei, v=1,...,m+ 1.Based on [2], we have

VxVy = —(Ev, emt1)X. (6.1

Applying Theorem4.1, the second variation of an exponentially harmonic map
f 8™ — M" can be expressed as

> L(@dfVi, dfV))=A+B+C+D+E+G,
;
where
A= ?i/m l‘dle[(@eimifvv, dfei>+é‘<d_fei, dfe;, wemdfvv)]zde,
B = Xv:i/SMeéde(%eﬁdfvv, V,ndf Vi dvsir,
c=> %/

+ (Viapvyn O)dfei, dfei, Vie,df Vy)
+Cdfei, dfei, Ve, df Vy, 6Fe,,,dfvv)i|deMa (5.2)

L [46(%{de%, dfe, %gmdfvv)

D=2 S [ H— (kape df vods v, dfe)
2P (df Vi, (T ren)df Vi, dfer)
F
~L{prer. Sydrvodrv, dreavs,
F

E= Z f ez‘f‘f' — C(dfe;, dfei, R(df Fep, df V,)df Vi)
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+=C(dfei, dfei, P(AfVy, (VEe,df)en)df Vy)

|

~ = Cfes, dfei, PdfFen, Veg df Vdf Vi) |dusw,

1 ~
G =— 7/ (VagvdfV,t.(f))dvsm.

¢ Jsm

Referring to [1], we obtain

(VyuVzdf)Y = —dfR(X,Y)Z + (VyuVzdf)X
+ (Vydf)(Nyu Z) — (Vxdf)(Vyu Z)

+RAfX,dfY)dfZ + gﬁ(dfx, Ve, df)Y)df Z

—%ﬁ(de, (Ve df)X)dfZ. (5.3)

Letting X = Z =V, Y = ¢; in (5.3), we have
~(R(dfe;. dfV)fV, dfe;) + %(ﬁ(de, (Vedfem)df V. dfei)
F A -
- F(P(dfei, (Ve dIV)AfV, dfei)
—(df R(ei. V)V. dfei) + (VyuVvdf)e;. dfe) = (Vou Vvdf)V). dfe;)
— (Ve df)(Vyu V). dfer) + (Vvdf) (Vo V). dfe;). (5.4)
In order to prove Theorem5.4, we require the following useful lemmas.

Lemma 5.1.
D= Z / eSUIF[ — (af Ries, Vo Vi dfer) = (V,n[(Vy, df) V), dfei)
+(Vynl(Vy,df)eil, dfei) — (Vv,df)(Vyne), df€i>:|dUSM-

Proof. Due to the fact v 2V, =0and (5.1), we have
ayt

D VyaVy =Y Vv, = Z viymHle =0, (5.5)
v v
where v, = (E,, ¢;). Therefore,
YV dN(V, V) =Y (Vi df)(Ve Vo) = = D ol (Ve df)e = 0,
v vV vV

(5.6)
Y (VuVy,df)Ve = 3 Vnl(Vyd)Vil = (Vy,df)(V,n Vi)

=V u[(Vv,df)Vy, (5.7
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Y (VynVy,dfei =Y Vyul(Vy,df)eil — (Vy,dfe)(Vyne).  (5.8)

Hence, the result follows from (5.5)—(5.8). |

Likewise, we also have the following by Vye,, = 0:
1 A .
E=Y o[ S| Cwrse dfen dfR(Fen VoV,
o CJsm

—C(dfei, dfei, Vpnl(Vv,d IV D) + Cdfei, dfe;, %y[(%vdf)vub}de.

(5.9)
Lemma 5.2.
_XU:/SM {e%ldflz(ﬁeﬁ[(ﬁv‘}df)vv], dren
+ P Cdfer, dfe;, m,g((%vvdf)vv)}de LG =0
Proof. Set ¢ = eéldf‘zé(dfeiv dfe;, (6vvdf)Vv)Fw’". It follows from

Vyn Fw™ = 0 and Lemma 2.1 that

divgd = (Vre, et V) C(dfer, dfei, (Ty,df)Vy) + e3P (T, €)
x(dfe;,dfe;, (Vy,df)Vy)
+2e2 P C( Vg, dfer, dfei, (Vy,df)Vy) + 2P Cdfe;, dfer,
Vi [(Vy,df)Vi]). (5.10)

Integrating (5.10), we have

1 2 A ~ ~
> f eI C(dfe;, dfei, Vip,n[(Vy,df)Vil)dvsu
o Jsm

- _Z/ [(ﬁFe,{je%ldflz)é(dfei, dfe;, (Vy,df)Vy)
~ Jsm

+ 2P (T n CYdfer, dfer, (Vv,df)Vy)
+2e%'d«f'26(%enﬁldfe,-, dfe;, (w,df)vv)]de. (5.11)
Putting ¢ = ¢2'4/ > (Vy, df)V,, dfe;)w!, we obtain
divzg = ez ldf P (v, H[(vvvdf) dfe;) + ((Vy,df)V,, V H(ez'df' dfe;))
4 2ezldfP C((Vy,df)V,, dfe;, Vudf Fep) T e2ldfP
X ((Vv,df)Vo, dfej)(Vonw!)e;
= M0 [, d VAL, dfei) + (Vvdf)Ve, (Vpne? P df)e;)

4 2e3ldfP C((Vy,df)Vy, dfei, V,udf Fey). (5.12)
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It implies that

Z/ eI (Vn[(Vy,df)Vo), dfer)dvsy
——Z/ AP [(Fydf) Vi, (Toget U Pa)e)
+2C((Vy,df)Vy, dfei, Ve_deFem)]deM. (5.13)

Since f is exponentially harmonic, it follows from (5.11) and (5.13) that

_Z/ e%ldflz[é(dfei, dfe;, @eg[(@vvdf)vv])
~ Jsm
+ (6651 [(ﬁvudf)vv], df€i>]dU5M +G

= Z[S (VydfV —VapvdfV, t.(f))dvsy = 0. (5.14)
) M

Using the fact (R(ey, ei)e;, ej) = 8j and df (Fep) = ﬁén, we get

> Cdfei. dfei, df R(Fey, V,)V,) = 0. (5.15)

We obtain from (5.9), (5.15) and Lemmas 5.1 and 5.2 that

D+E+G= Z / XUIP] — (af Reei, VO Vo, dfer) + (Fyu (v, df e, dfei)
— (v, df)(Fynen, dfe) + Cldfei, dfei, Ty (v df Fen) [dvsy.  (5.16)

0
Lemma 5.3.

> ! /S . eIV (G, ul(Vy,df)ei). dfei)dvsy + B

= % / [ = > Fuped 0 Gy (Vv der, dfes) + 3 dfe;, dfer)
SM >
~ YU df (Vyner)., (Vy,df)er) — Y 2039 PC((Fy,dfer,

dfe;, 6vadfFem)}dst-
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Proof. Set ¢ = Zw.eéldf‘z((%vvdf)vv,dfei>v£wf with vl = (E,, e;). We
obtain

~ 1 -2 ~ 1 2~ ~
divgd = 3 [V e ) (v dpres, dfen) + e (@0 (T dpen, dfer)
Vv
Sldf P (5 5 df P 5
+e2 AV, df)ei, Vyndfen) +2e2500 C(Vy,dfe;, dfei, Vypdf Fem)
— 2P Ty, dfrer, dfepy ]

= Y[y (S dprer, dfen +e2 U (9 By, d e, dfe)
v

+ e P ( Gy, dfrer, (Fypdpen) + 20297 E @y dpe, dfer. ypdf Few)]
(5.17)

Integrating (5.17), we arrive at
Z/ (Vyul(Vy,df)eil, dfe;)dvsy
~ Jsm Y
== [ [y PGy dner, dfen + e Gy dner, Typare)
" SM v v
+2e%‘df|zé((@vvdf)ei, dfe;, 6VUdeFem)]dUSM- (5.18)
Furthermore, we have
1 LaFR (5 3 =
B = Z < Js e2 AV mdf)Vy +df (V,u Vi), (Ve df)Vy +df (Ve, Vi))dvsu
" M 1 1
! Yar[ S
=Y = | AU pdf )V, (VedfIVa) + (df e, dfen)|dvsu
— ¢ Jsm i
! YarP[ :
=Y = | e Gyuaren. (v dfen)
L € Jsm !

— (df (Vype), (Vv,df)e;) + (dfei, dfe))|dvs. (5.19)
Hence, we conclude the result by (5.18) and (5.19). O

Theorem 54. If f : S — N (m > 3) is a non-constant exponentially harmonic
map from the unit sphere S™ to a Finsler manifold, then it is stable in case |df|* >
m — 2, and is unstable in case |df|*> < m — 2.

Proof. Applying Lemma 5.3 to (5.16), we obtain

1
B+D+E+G = —/ [ = DBt Rees, ViV dfer)
¢ Jsm "

+e24 dfe;, dfe;)
> Vyuer P (Vv dfre;. dfer)
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+ "M Cdfer, dfei. Vypl(Vy,df)Fen))
v
2031 G (% . %
— Y 22 C(Vy,dfei, dfei, Vyndf Fen) |dvsu.
v
(5.20)

Setting ¢ = e%W‘QCA‘(dfe,-, dfe;, 6‘/” Fem)vljwk, we get

divgd = (V, [e%'dflzé(dfei, dfe;, (Wvdf)Fem]v"
+e31UT Cdfei dfer. (Vv,df)Fen) Ve, (' w))lex
= (Vype?WYE(dfei, dfer, (Vv,df) Few)
+e2 P (GynC)(df e, dfer, (Vy,df) Few)
+2e2 U1 C(Vypdfer, dfei, (Vy,df)Fen)
+e2 P C(dfer, dfei, Vynl(Vy,df) Fen)). (5.21)

Integrating (5.21), we arrive at
1 A ~ -
> - f P dfer, dfei, VyplVy,df FenDdvsy
¢ Jsm !
v

- _Zlf [(6vﬁe%'df‘2)é(dfe,-, dfei, (Vv,df)Fen)
. € Jsm b

+e2 P Gy C)dfer. dfer, Vv,df Fey)

+2e3PE(Vyndfe;. dfer, (Vv,d f)Fem)]deM. (5.22)
Moreover, it follows from (5.1) that
> eI (G uC)dfer. dfer. (Vy,df)Fen)
;
=Yy uCydfer, dfei. Vre, (df Vi) — df (Vre, Vi)
5

=3 PGy uCydfer, dfei Vre, df Vi), (5.23)

and

227 E(Vypdfe;. dfer, (Vy,df) Few)
= 2e%'df'26(6vﬂd fei,dfei, (Nre,df)Vy). (5.24)
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Substituting (5.23) and (5.24) into (5.22), we obtain
! Yidf12 ¢ & S
Do | T Cfei, dfei, Vyul(Vy,df) FenDdvsy
" SM

! 7 m el 1P ¢ =
- _Z_ I:(v\/”e2 )C(dfei, dfe;i, Vv, df Fey)
o € Jsm v
1 2~ ~ 5
+e2 Gy uCdfer, dfei, (Vre,df)Vy)
+ Ze%ldf\zé(ﬁvvydfei ,dfe, (6Femdf) Vv):l . (5.25)
By a calculation, we have
3 2034 E(y,dfer dfer, (Vyndf)Fen)
v

=322 WP E(V, (df V). dfer, Ve, df V). (5.26)

Substituting (5.25) and (5.26) into (5.20), we arrive at

1
B+D+E+G= —/ [ = > eBrP s Rees, Vi Vi dfer)
SM >

c

+e? P (dfe;, dfer)
— S Tyt I (T, df e, dfes)

— S Vet IP\Cdfer, dfe;. Vv,df Fen)
v
_ L ARV, : v
> e Wy uCydfei, dfei, (Vie,df)Vy)
v
Tty : ¥
— 3 42U E(Vy,dfer, dfer, VvvndfFem)]dng.
v

(5.27)

Lemma 4.2 implies that

L ARV, : e (d
Y e (VynCydfei, dfei, Vie, (df Vi)

v

1762 =~ ~ -
=2 [ Capvn Odfei, dfei, Vre,df Vi)
v

NP Cfer, dfer, Ve dfV, 528
+e (fel’ feh Femf W) |- (5.28)
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Combining (5.27), (5.28) and (5.2), we obtain

1
B+C+D+E+G=—/ [—Ze%'df‘zufR(e,-,VU)VV,dfen
CJsm

+ e dfe dfe;)
> et Iy (Tyndfrer dfe) =Y (TyperdIT)

Cdfes, dfei, Ve, df Vi) |dvsu

= 1/ [ = 2B MIParReer, Vo) Vi dfen) + 24P (s er, dfer)
SM D

c

— S SRV ndf)e: +df (Vypen. dfer) + C(dfe;, dfer,

Ve, @fVOI((Vy, e, df ;)
+C(dfe;. dfe. wemdfvv)]]de

_ 1f [ = 2B warRees, Vi Vi dfen) + 240 (g er, dfer)
SM v

C
Hdf1 e . . A . Ry 2
- Zez ((Vyndf)ei, dfe;) + Cdfei, dfei, VEe, (dfV)))] ]dUSM-
(5.29)

Furthermore, we have
1 -
A=Y [ ARG dr v+ df 9. dfen
¢ Jsm

N ~ 2
+C(dfer, dfei Vyp(dfFen)| dvsu
L[ bl s : : ’
=Y - | A [(Dodf Vi dfe) +Cdfer. dfer. Vyp(df Fen) | dvsy
5 SM
1
+ f/ eIyt dfe; dfer) dvsy
¢ Jsm
! Y1arP[ 2 : 2
=Y - | [V df Vi dfe) +Cdfer. dfer. Typ(df Few) | dvsy
> sM

1
_|_Zf/ 6%‘d-f|2|df|4dv5M. (5.30)
—~ ¢ Jsm
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Applying (5.29) and (5.30), we obtain

2 1edf Vo, df Vi) = %/SM [ = > 2P ar Reer, Vi Vi df er)

. 1 .
+e3 P dfer, dfer) + 2P laf [ |dusy

1
- '/ MA@~ m) + df P)dvsy.
¢ Jsm
(5.31)
Consequently, we conclude the result. O
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