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Abstract. In this manuscript, we consider uncoupled Dirac-harmonic maps from Kéhler
spin manifolds to Kdhler manifolds and prove an existence theorem. Moreover, we construct
some new uncoupled Dirac-harmonic maps from Riemann surfaces to Kédhler manifolds.

1. Introduction

Motivated by the supersymmetric o -model of quantum field theory, Dirac-harmonic
maps were introduced by Chen et al. in [2,3]. They replaced the anticommut-
ing spinor field of that model, which takes values in a Grassmannian algebra and
makes the model supersymmetric, by a commuting field. Nevertheless, they pre-
serve important symmetries, in particular conformal invariance. Mathematically,
they can be seen as an extension of the harmonic map problem as they couple a
harmonic map type field with a spinor field. Since all the fields are ordinary, com-
muting variables, we may apply the methods of the geometric calculus of variations.
A technical difficulty, however, arises from the fact that the underlying action func-
tional is not bounded from below, in contrast to standard harmonic maps where it
is nonnegative.

First, we present the mathematical definitions. A spin manifold M is an oriented
Riemannian manifold with a spin structure on its tangent bundle. Moreover, if
M is spin, then the spin structures on M are 1-1 correspondence with elements
of H'(M,Z5). 1t is well known that a complex manifold is spin if and only if
its first Chern number is even. In this special case, the spin structures are 1-1
correspondence with the holomorphic square roots of the canonical bundle K =
A™OT*M of M, where m = dimc M. Fixed a holomorphic square root L of Ky,
ie., Kyy = L ® L, the spin bundle ¥ M of M which is determined by L can be
identified with A%*L ([5]), i.e.,

M =A"*"T*M @ L.
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The classical connection V on XM induced from the Levi—Civita connection on
T M is compatible with the hermitian metric (-, -) on ¥ M. The associated Dirac
operator is

d:=e; - Ve, = «/5(5L + 5;) .

@ 9

Here stands for the Clifford multiplication on ¥ M and {e;} is a local orthonor-
mal frame of M. The Einstein’s summation convention will be used if there is no
confusion.

Let N be a closed Riemannian manifold (e.g., a Kihler manifold) and ¢ ' TN
be the pull-back bundle of TN by ¢ where ¢ : M — N is a smooth map.
We also denote the metric induced from the metrics on M and ¢~ ' TN on the
twisted bundle XM ® ¢_1 TN by (-, -). Likewise, we also denote the connection
on XM ® ¢~ 'TN induced from those on ¥M and ¢~ 'TN by V. Therefore,
MR qﬁ’] T N becomes a Dirac bundle, a bundle of left modules over the Clifford
bundle C1(M) together with a Riemannian metric and connectionon SM®¢ ' TN
such that

(X -o01,02) + {01, X - 02) =0,
Vig-0)=(Vg)-0+¢- (Vo)
forall X e T'(TM), ¢ € I'(CI(M)), 01,072 ando € ['(ZM).

A cross-section ¥ of EM ®¢ ' T N can be locally written as = Yo VO ®04,
where {/*} are local cross-sections of XM, and {6,} are local cross-sections of
¢~ T N. We always use the standard summation convention. The Dirac operator
along the map ¢ s

B*Yi=e; - Ve
= Wfa ®0y +e- lﬂa by Ve,-ea,
where {e;} is a local orthonormal frame on M. We say that y is harmonic
along the map ¢ it P®y = 0. We will identify SM ® ¢~ 'TN with M ®

¢ 'CTN since ¥M is a complex vector bundle. Then every cross-sections
Y el (EM ® (])_ITN) can be rewritten as follows:

1/f=1ﬂa®9a,

where 6, are local cross-sections of ¢ " !CTN.
The action functional of the theory is

L@on =5 [ (19l + (. *v).

which couples the harmonic map type field ¢ with the spinor field i, because
the Dirac operator n? depends on ¢. We see this coupling also from the Euler—
Lagrange equations for L (¢, ¥) that critical points (¢, ¥) have to satisfy (c.f. [2]):

1 _
(@) =5 (v, e ¥P) RN Gy, Op) (i),
»?y =0,

(1.1)
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where RN (X, Y):=[Vy, Vy] — Vix,v1. VX, Y € I'(T N) stands for the curvature
operator of N, and 7(¢) is the tension field of ¢, i.e.,

T(¢):=(Ve;d0) ().

Therefore, solutions of (1.1) are called Dirac-harmonic maps from M to N. We
say that a Dirac-harmonic map (¢, ) is uncoupled if the underlying map ¢ is a
harmonic map while is coupled otherwise.

There are two type of trivial solutions in the sense that the map part is trivial or
the spinor part is trivial:

e ¢ is a harmonic map and ¥ = 0.
e ¢ is a constant map and ¢ = ¥* ® 6, with ¥ is a harmonic spinor.

Ammann and Ginoux [1] studied uncoupled Dirac-harmonic maps using the
index theoretical tools and obtained some existence theorems. Chen et al. [4]
also proved some existence theorems of uncoupled Dirac-harmonic maps between
closed Riemann surfaces using Riemann—Roch theorem.

Our first main result is as follows:

Theorem 1.1. Let M be a closed Kiihler spin manifold with a fixed spin structure,
and N be a closed Kihler manifold such that mo(N) = 0. If m > 1, assume
additionally there is a positive strictly convex function p on the universal covering
N of N with the following growth condition: for some constant C,

l~ 1/m
p(y) < Cexp 4d(y) ,

where d is the distance Sfunction of N Jfrom some fixed point yy € N. Then for every
smooth map ¢o : M —> N, there exists a harmonic map ¢ : M —> N which is
homotopic to ¢o and a complex vector space V (consisting of some pairs (¢, V))
with complex dimension

)

2 Hq&(’)"ch(N) : A(M)} [M]

such that every (¢, ) € V is an uncoupled Dirac-harmonic map.

The first nontrivial solution, which appears in [3] for M = N = S? and then in
[6] for general Riemann surface M and general Riemannian manifold N, couples a
harmonic map ¢ with a harmonic spinor ¥4 , along the map ¢ defined by a twistor
spinor n on M as follows:

Yo ni= e - N Q ds(e;).

We say that 1 is a twistor spinor if it satisfies the following twistor equation (in the
case that M is a Riemann surface)

1
Vin+ 5 X =0, VX eTM. (1.2)
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Yang [13] and Chen et al. [4] proved that for Riemann surfaces M, N, if a smooth
map ¢ : M —> N satisfies

gy =0, gm < |deg(d)| + 1,

then every Dirac-harmonic map (¢, ¥) from M to N can be constructed in this
way with n possibly having isolated singularities, i.e., n is smooth except some
finite points and satisfies the twistor Eq. (1.2) except these points. Moreover, the
map part is (anti-)holomorphic. This is so called the structure theorem of Dirac-
harmonic maps. For more details, we would like to refer the reader to [13] for
M = N = S?,deg(¢) # 0 and [4] for the remaining case.

Finally, we will construct new uncoupled Dirac-harmonic maps from Riemann
surface M to Kéhler manifold N. Let n, ¢ € I' (¥ M), define a spinor &45,,7’; along
the map ¢ as follows:

Kzfzp,n,gi: ei N @ ¢ule) +ei -t @ IVpiler),

where JV is the complex structure of N.
The following theorem is our second main result.

Theorem 1.2. Let (M, g) be a closed Riemann surface with a fixed spin structure,
N be a Kihler manifold and ¢ : M —> N be a harmonic map. Then for every
two twistor spinors n, ¢ satisfying Re (X -n,¢) = 0 for all X € TM, the pair
(o, 1}¢,n,;) constructed above is an uncoupled Dirac-harmonic map from M to N.

As an immediate consequence, if ¢ is neither holomorphic nor anti-holomorphic,
then the structure theorem of Dirac-harmonic maps between closed Riemann sur-
faces (c.f. [4,13]) is false in general.

The author would like to thank the referee for his/her careful reading of our
paper and the constructive and helpful comments.

2. Hitchin representation

Recall the Kéhler form w
oX,Y)=g(UX,V)=(JX,Y).

Let {eA}i”Ll = {e;, Je;}{"_ | be alocal orthonormal frame of M and denote wap =
w(ea, ep). As an endomorphism of the spinor bundle, the Kahler form w acts on
spinors as follows:

-y = ZwAB€A~€B'¢

A<B

1
=E<J€A,€B)€A'€B"/f

1
—_eq-Jeqa -
2€A ea-y
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1 1
=5€i'J€i'1/f—§J€i'€i'1/f
=€i-J€i'1//.

In other words,

2m

m
w:%ZeA~JeA:Zei~Jei.
A=1

i=1
Fixed i, j, define
1

1
3 (ej —\/—1Jej) R éj = 5 (ej —i—\/—l]ej) s

wj = —8]'8]', and wj = —8j8j.

€j

We will omit the symbol “-” for convenience if there is no confusion. It is easy to
check that

giej = —€j&i, EEj = —&j&, &8 +Ej& =¢E&gj+Ej& = —bjj.
Hence,
wi+w =1,
*

w; =w;, ©

wiwj = Wjw;, 5),‘(1_)]' = J)j&),‘, a),-c?)j = cZ)ja),-, a),-c?),- =0.
Rewrite the Kéhler form w as follows:
m
w = «/-12@ — ;).
i=1
Notice that
- 1
— m . _. _— — =
l_ni:l (w1+wz)—zr!(m_r)! Z wjwyj,
r=0 |I|=r,|J|=m—r
where
O] = W Wi, W, Wy =W0jwj, - ~c7)jq,
I=(i19i2’~-‘yip)’ J=(j17j2"°"jq)’ P=|I|,CI=|J|
Define

1 -
Hrzm Z wiwyj.

I =r,|J|=m—r
Then 7,’s are globally defined and

« _ _
Vr, =0, n)=mn,, may=20805Tr, &M, =75, EjTy =Tr_1E;.
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Moreover,
wn, =/ —12r —m)m,,
i.e., T, - XM is the eigenvector space associated to the eigenvalue /—1(2r — m).
The above calculations can be found in [5,7].
Under the action of the Kéhler form w, the spinor bundle splits into the orthog-
onal sum of holomorphic subbundles (c.f. Lemma 1 in[11], so-called Hitchin rep-
resentation)

M =A"T"MQL 2.1

which is associated to the decomposition

A" T*M QL =mn,-£M, rankc (7, - SM) = (m>
r

Denote
AT oL = P A*T*MeL= @ m- M,
kis odd kis odd
AO,evenT*M®L: @ AO»kT*M®L: @ T XM.
k is even kis even

Consider the volume form G = (\/ - l)m T e; - Je;-. Itis easy to check that
as an endomorphism of the spinor bundle,

G’=1, G'=G, VG=0,and X-G=-G-X, VXeTM.

As a consequence, G has the eigenvalues 1 and —1 with the corresponding
eigenspaces

SM=X"TM®x M. (2.2)
Rewrite G as follows:
G = nlm:l (J)i - a)i).

We know that Grr, = (—1)". In particular, comparing the decompositions (2.1)
and (2.2), we have

StM = A" T* oL, 2 M=A"T* L.
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3. Proof of the main results

In this section, we will give the proof of the main results. First, we have

Lemma 3.1. Let M be a Kdhler manifold with a fixed spin structure, N be
a Kdhler manifold. Suppose ¢ : M —> N is a harmonic map and €
r (EiM ® ¢_1T1,0N) ory € T (EiM ®¢_1T0,1N) is harmonic along the
map ¢, then (¢, V) is an uncompled Dirac-harmonic map from M to N.

Proof. Notice that for every tangent vector X, we have
X:S*M — SFTM, ¥y X-y.

Therefore, for each ¢ € T (S*M ® ¢! T1 oN) or y € T (M ® ¢~ Ty, N),
we have

%(w“, ¢i - YP) R (6, Op) s (ei) = 0.
Thus, (¢, ¥) is Dirac-harmonic if and only if
T(¢) =0,
{ Dy =0,
i.e., ¢ is a harmonic map and  is harmonic along the map ¢. O

Second, we need the following existence theorem of harmonic maps.

Theorem 3.2. Suppose M™ (m > 3) is a closed Riemannian manifold and N is a
compact Riemannian manifold such that there is a positive strictly convex function
p on the universal covering N of N with the following growth condition: for some
constant C,

1~
p(y) < Cexp (Zd(y)z/’”> ,

where d is the distance function of N from some fixed point yo € N. Then every
smooth map ¢o : M —> N has a harmonic representative in its homotopy class,
i.e., ¢o is homotopic to a harmonic map.

Proof. According to the work of Lin and Wang (c.f. Theorem D [10]), we know
that if there is no harmonic sphere S'in N for2 <! < m—1andno quasi-harmonic
sphere from S'in N for 3 <[ < m, then the harmonic map heat flow is smooth.
Moreover, under the same assumption, Li and Zhu [9] claimed that the heat flow
subconverges in C2 norm to a smooth harmonic map at infinity.

Recently, Li and the author [8] proved that if the universal covering N of N
admits a positive strictly convex function p with the following exponential growth:
for some constant C

1~
p(y) < Cexp (Zd@)z/"’) ,
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then there is no quasi-harmonic sphere S™ in N. Also, there is no quasi-harmonic
sphere S'in N for 3 <[l < m — 1 and no harmonic sphere S!in N for 2 <l <
m — 1. Hence, there is a harmonic map ¢ : M —> N in the homotopy class of
¢o: M — N. i

Remark 3.1. Ifm = 2and 72 (N) = 0, the same resultholds (c.f. [12]). In particular,
the same result holds if N admits a strictly convex function.

Theorem 3.3. Let M be a closed Kdhler manifold with a fixed spin structure, N be
a closed Kdihler manifold, and ¢ : M —> N is smooth. Then

dimg {harmonic spinors along the map ¢} > 2 ‘ {q‘)*ch(N) . A(M)} [M]‘ .

Proof. Considertheoperator By : T (S*M @ ¢! T1 oN) — T (S M@ ¢!
TioN ) The index theorem (c.f. Theorem 13.10 [7]) gives the following formula

ind(D}) = {eh(™' 71 0N) - A | (M)
=[o*ehv) - A | (a1,
Similarly, we get
ind(B ) =(=1)" {#*ch(V) - A | (M1,

where P, : T (S*M ® ¢~ Ty 1N) — T' ("M ® ¢~ T,1 N). Now this the-
orem follows from

ker B? > |ind B y| + |ind B, ] .
O

Before the proof of Theorem 1.1, we give some applications. The first applica-
tion is to consider the Dirac-harmonic maps from a closed Riemann surface M. In
this case, c1 (M) = 2(1 — gyr) is of course an even number and hence M is a spin
manifold. Now

[#rehvy - A | m) = {grer v} (1),

since A(M ) = 1. In particular, if N is a Riemann surface (this case was considered
in [4]), then

{o7ch(V) - AW | 1M1 = deg(@)x (V) = 2deg(@)(1 = gw).

The second application is to consider the Dirac-harmonic maps from a complex
surface. Suppose M* is a Kihler manifold whose the first Chern number c{ (M) is
even. Then A(M) =1—-piM)/24=1— (c%(M) —2¢3(M)) /24 where pq is the
first Pontryagin class. Thus,
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{grenav) - A | 11 = {#7en? () = Zpran) | ()

— 1 *2N *cn (N n ZM n M) M
—{Efﬁ ci(N) =@ ca( )—ﬂcl( )+§Cz( )}

1 N
= {§¢*C%(N) - ¢*02(N)} [M]+nA(M).

Therefore, if N is a Riemann surface, then ¢o(N) = 0, c%(N ) = 0, which implies
that

{¢*ch(N) -A(M)} [M] = A(M).
If N is a complex surface, i.e., dim¢c N = 2, then
{¢*ch(N) : A(M)} [M] = —12deg(@)A(N) + 2A(M).

Summarizing this analysis and applying Theorem 3.3, we obtain the following
Corollary.

Corollary 3.4. Suppose M>" be a closed Kéhler spin manifold with a fixed spin
structure, N*" be a closed Kiihler manifold, and ¢ : M —> N be a smooth map.
Then

() If m = 1, then the harmonic spinors along the map ¢ form a complex vector
space with complex dimension at least

2 |{p*cr ()} [M1]].

In particular, if N is a Riemann surface, then the harmonic spinors along the
map ¢ forms a complex vector space with complex dimension at least

4 |deg(¢)(1 — gn)I,

where gy is the genus of N.
(2) If m = 2, then the complex dimension of the harmonic spinor along the map ¢
is at least

2 ‘ { %qb*c%(zv) - ¢*cz(N)} [M] + nA(M)‘ .
Therefore, ifn = 1, then
2 ‘ { %q&*c%(N) - qb*cz(N)} [M] + nA(M)‘ -2 ’A(M)’ .
Ifn =2, then
2 H%q&*c%(N)—qb*cz(N)} [M]+nA(M)‘ ) ‘—12 deg(¢)A(N)+2A(M)( .

Now we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. According to Theorem 3.2 and Remark 3.1, we first choose
a harmonic map ¢ : M — N which is homotopic to ¢9 : M — N. Consider

Vien={w €T (E*M @@ 10N ) : v is harmonic]

@ {lﬂ el <E+M ®¢_1To,1N) T is harmonic} ,
Veven = [Vf er (E_M ®¢_1T1,0N> Dy s harmonic}

@ {¢ el (E*M ®¢71T0,1N) DY is harmonic} ,
V()-ig_[d = {¢ el <E+M ®¢_1T1,0N> D is harmonic}

[4>) {I// el <E_M ®¢>_1T0,1N) 2 s harmonic} ,
Voda = {W er (27M ®¢71T1,0N> D is harmonic}

® {1// el <E+M ®¢_1T0,1N) s harmonic} .

Thanks to Lemma 3.1, we know that (¢, ¥) is Dirac-harmonic if ¢ belongs to
either V£, or Vj; 4- According to the proof of Theorem 3.3, we know that if m is

even, then either

dime V3, > 2“¢*ch(1v) .A(M)} |, or

dime Vi = 2 |{@*ch(V) - A | ()]
while if m is odd, then either

dimg Vi, > 2H¢*ch(1v) -A(M)} |, or

dime Vo, > 2 qu*ch(N) .A(M)} [M]’ .

Thus, we can find a complex linear space V, consisting of some uncoupled Dirac-
harmonic maps, with complex dimension at least 2 ‘ {q)*ch(N ) - A(M )} [M] ‘ ]

Finally, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Choose a local orthonormal frame {¢;} of T M such that
Ve; = 0 at the point where the computation is done. A direct computation implies
D*Vpnc =i VeV
=ej- e Ve, @ dule)) +ej e -n® (Ve;dd) (€))
+ejei Ve, £ ® IV (er)+ej-ei @IV (Ve,do) (ei)
=—¢-€j Ve @ Pulei) —2Ven @ ¢u(ei)
+ej-ei-n® (Ve,dp) ()
—ei-ej Vet @ IV puler) — 2Vt ® TN gu(er)



A Note on the uncoupled Dirac-harmonic maps 207

+ej-€-CR® JN (Vejd(p) (ei)

1
=2 (Ve,-n + € an) ® Ps(e;) —n Q@ t(P)
1
-2 (ve,-; + e ac) ® IN¢i(e) — ¢ @ N7 ().

Here we used the fact that JV is parallel. Since 7, ¢ are twistor spinors and ¢ is a
harmonic map, we obtain

ID¢1Z¢,;7,; =0.

To complete the proof of the theorem, we need only to check that the curvature
term appearing in the first Eq. (1.1) equals to zero, i.e.,

{ei - ex-ej-n) RN (puler), pule)))puler)
+ei-¢.en e o) RN (TN puler), TV dule)) s (ex)
+(ei -nex-ej - C) RN (Buler), TN dule))puler)
+{ei - ¢.ex-ej ) RN (TN (e, dule;))puler)
=0.
In fact, choose {e1, €2} such that (¢ (e1), ¢p«(e2)) = 0 at a considering point. Then
(ei - m.ex-ej - n) RN (puler). pu(e)))puler)
=(ler - ex-ex-n) —(ex-m.ex-er - 1) RN (@s(er), pule2))duler)
=({e1-n.e1-ex-n) —(e2-m.e1-er-n) RV (ps(er), pule2))psler)
+ (ler - n ex-ex-m) —(ea-m, e+ er - 1) RN (@uler). ps(e2))dulen)
= ((n,e2-n) + (e2- 0. 1) RV (ps(e1), ps(e2))Puler)
+ (= (e1 - n,n) — (. e1 - 1) RV (ps(e1), ps(e2))P(e2)
=0.
Similarly,
(ei - ¢.ex-ej-¢) RN (TN guler). TV pile;))pslexr) = 0.
Finally,
(ei - m.ex-ej- )RV (dulei), TN pule))duler)
+ei - ¢.ewej ) RN (TN pua(er), pule;))ps(ex)
= ((ei-mex-ei &) — (e - ¢ ex-ei - n) RN (@uler), TN dpuler) s (ex)
=2Re ((¢; 1. ek - €; - £)) RN (Bulei), TV ilei)) s (ex)
= 2Re ({1, (—ex + 28ixei) - ) RV (ps(ei), TN () (e
=0.

The last identity follows from the assumption that Re (X - n, ¢) = O for all X €
™. O
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