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Abstract. Let �r,d be the space of smooth rational curves of degree d in P
r of maximal

regularity. Then the automorphism group Aut(Pr ) = PGL(r + 1) acts naturally on �r,d and
thus the quotient �r,d/PGL(r + 1) classifies those rational curves up to projective motions.
In this paper, we show that �r,d is an irreducible variety of dimension 3d + r2 − r − 1. The
main idea of the proof is to use the canonical form of rational curves of maximal regularity
which is given by the (d − r + 2)-secant line. Also, through the geometric invariant theory,
we discuss how to give a scheme structure on the PGL(r + 1)-orbits of rational curves.

1. Motivation and results

Rational curves in projective varieties have played useful roles in algebraic geome-
try. Their moduli spaces have been studied in the view point of birational geometry
([3–6]). The main purpose of this paper is to study the space which parameterizes
projective curves with a fixed regularity condition. Due to Mumford ([19]), a non-
degenerate irreducible projective curve C ⊂ P

r is said to be m-regular if its sheaf
of ideal IC satisfies the vanishing

Hi (Pr , IC (m − i)) = 0 for all i ≥ 1.

The Castelnuovo–Mumford regularity (or simply the regularity) of C , denoted by
reg(C), is defined as the least integer m such that C is m-regular. The regularity
of curves (or more general, one dimensional subschemes) contained in a projective
space gives an essential role for the construction of Hilbert scheme ([15, The-
orem 1.5]). Another interest of this notion stems partly from the fact that C is
m-regular if and only if for every j ≥ 0 the minimal generators of the j-th syzygy
module of the homogeneous ideal I (C) of C occur in degree ≤ m + j ([7]). In
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particular, I (C) is generated by forms of degree ≤ m. In their fundamental paper
([10]) Gruson, Lazarsfeld and Peskine have shown that

reg(C) ≤ d − r + 2

where d denotes the degree of C . Nowadays, C is called a curve of maximal regu-
larity if reg(C) takes the maximally possible value d − r + 2. In the same paper, it
is also shown that if d ≥ r + 2, then C is a curve of maximal regularity if and only
if it is a smooth rational curve with a (d − r + 2)-secant line ([10, Theorem 3.1]),
which wewill call an extremal secant line to C . LaterM. Brodmann and P. Schenzel
investigate various algebraic properties of curves of maximal regularity by using
their extremal secant lines ([1,2]). Recently, their results are partially extended to
the next case by the second named author of the present paper ([16]).

In this paper, we study the set Rd−r+2
r,d of all maximal regularity curves in Pr of

degree d. There is a natural group action of the automorphism group PGL(r + 1)
of Pr on Rd−r+2

r,d . Moreover the set

�d−r+2
r,d := Rd−r+2

r,d /PGL(r + 1)

classifies all maximal regularity curves of degree d in P
r , up to projective equiva-

lence. Recall that two projective subvarieties X and Y of Pr are said to be projec-
tively equivalent if there exists an automorphism of Pr which maps X onto Y . To
state our results precisely, we require some notation. Let Rr,d be the set of all non-
degenerate smooth rational curves of degree d in Pr . A natural scheme structure on
Rr,d is obtained by regarding it as a subscheme of theHilbert scheme Hilbdn+1(Pr )

of all subschemes with Hilbert polynomial dn + 1. It is easy to see that Rr,d is a
smooth quasi-projective variety of dimension (r + 1)(d + 1) − 4 (for details, see
Sect. 3). For each m ≥ 3, consider the subset

Rm
r,d := {C ∈ Rr,d | reg(C) ≥ m}

of Rr,d . Note that Rm
r,d is locally closed since it is the locus of all members in Rr,d

satisfying the non-vanishing condition H1(Pr , IC (m − 2)) �= 0. Thus we obtain a
stratification of the quasi-projective variety Rr,d by its locally closed subsets:

Hilbdn+1(Pr ) ⊇ Rr,d ⊇ R2
r,d ⊇ R3

r,d ⊇ R4
r,d ⊇ · · · ⊇ Rd−r+1

r,d ⊇ Rd−r+2
r,d .

Furthermore, PGL(r + 1) acts naturally on Rm
r,d and the corresponding set

�m
r,d := Rm

r,d/PGL(r + 1)

of orbits classifies all (m − 1)-irregular nondegenerate smooth rational curves of
degree d, up to projective equivalence.

The main result of this paper is the following:

Theorem 1.1. Under the above assumption and notations,

(1) the variety Rd−r+2
r,d is irreducible of dimension 3d + r2 − r − 1 and
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(2) the stabilizer groupAut(C,Pr ) of a rational curve [C] ∈ Rd−r+2
r,d is finite where

the rational curve C meets the extremal secant line with at least four distinct
points.

Remark 1.2. (1) The first part of Theorem 1.1 tells us that the deepest strata Rd−r+2
r,d

achieves the explict minimal bound in [12, Lemma 2.4].
(2) The finiteness of the groupAut(C,Pr ) in Corollary 2.3 provides us that the quo-

tient space [Rd−r+2
r,d /PGL(r +1)] exists as an algebraic stack and its dimension

is 3(d − r) − 1 ([17, §11]).

For the proof of Theorem 1.1, see Theorem 3.5 and Corollary 2.3. Indeed, we
provide a canonical form of curves of maximal regularity by using the (d − r + 2)-
secant line (see Sect. 2.1). This enables us to consider the geometric properties of
the moduli space of such curves of maximal regularity.

To give a scheme structure on the space�d−r+2
r,d , one can consider the geometric

invariant theoretic (GIT) quotient of theHilbert scheme Hilbdn+1(Pr ) (or theChow
variety) by the reductive group PGL(r+1) (For detail, see [18,20] and compare the
Kapranov’s definition of Chow quotient [13, Definition 0.1.7]). The main obstacle
to do this is to check the stability of the rational curves with given regularity. As
a clue, we show that each point in Rd−r+2

r,d is the Chow linearly unstable (cf. [20,
Theorem 4.12] and [18, Corollary 3.5]). For details, see Proposition 4.1. In Sect. 4,
we discuss how to give a scheme structure on the set�d−r+2

r,d by using the principal
of “reduction in stages" about the good quotients (cf. [13, §2.2] and [8, §1]). The
canonical formof rational curves studied inSect. 2 leads us to consider the parameter
space M = P(Cr+1 ⊗ Symd(C2)) which parameterizes all of the rational curves
in P

r . For details, see Sect. 3. One can give natural commutative group actions
on M by PGL(r + 1) and PGL(2). So we take the quotient of M by PGL(r + 1)
firstly and PGL(2) secondly. Then, one can easily check that M//PGL(r + 1) ∼=
Gr(r + 1, d + 1). By taking further the quotient on Gr(r + 1, d + 1) by the
group PGL(2), we obtain the GIT-quotient space Gr(r + 1, d + 1)//PGL(2). By
using the numerical criterion ([21]), one can easily see that the general points in
the Grassimanian are stable with respect to the action PGL(2). Specifically, our
rational curves of maximal regularity are stable with some open condition. In this
way, one can give a scheme structure on the set of the PGL(r + 1) orbits in �m

r,d
(Proposition 4.5). Throughout this paper wework over the complex number fieldC.

2. Some results on curves of maximal regularity

For r ≥ 3 and d ≥ r + 2, let C ⊂ P
r be a non-degenerate integral curve of degree

d whose regularity reg(C) takes the maximal possible value d − r + 2. In their
fundamental paper (cf. [10]) Gruson, Lazarsfeld and Peskine have shown that

(i) C is a smooth rational curve and
(ii) C admits a (d − r + 2)-secant line.

The aim of this section is to prove a few interesting geometric properties ofC which
are caused by the above two properties of C .



508 K. Chung et al.

2.1. Uniqueness of extremal secant line

Let C ⊂ P
r be as above. We say that a line L in Pr is an extremal secant line to C

if length(C ∩L) = d − r +2. It is known that C has only one such extremal secant
line with one exceptional case. For lack of suitable references we give a brief proof
here.

Proposition 2.1. Either C has a unique extremal secant line or else r = 3 and C
is contained in a smooth quadric surface whose divisor class is (1, d − 1).

Proof. This is an immediate consequence of degree considerations. Suppose r ≥ 4
and there are two such secant lines. They either span a P3 or they intersect. In the
former case, the P3 they span intersects the curve with length at least 2d − 2r + 4.
We can take r − 4 additional points on the curve to span a Pr−1. Since the curve is
non-degenerate, we get the inequality 2d − r ≤ d. In other words, d ≤ r , which
contradicts d ≥ r + 2. In the latter case, the two secant lines may intersect at a
point of the curve, so the P2 intersects the curve with length at least 2d − 2r + 3.
Now we can choose (r − 3) points to get a Pr−1 and the same argument applies.
If r = 3, and there are two (d − 1) secant lines, the lines have to be skew since
d > 4. Choose three additional points on the curve. There exists a quadric surface
containing the two lines and the three points. By Bezóut, the quadric must contain
the curve since it contains 2d + 1 points of the curve. If the quadric surface is
singular, thenC must be arithmetically Cohen-Macaulay. But ourC is non-linearly
normal. This shows that the quadric surface is smooth. Furthermore, one can see
that C has a class (1, d−1) on the quadric, and hence there is a 1-parameter family
of such secant lines. ��

2.2. A canonical parametrization

Let T := C[s, t] be the homogeneous coordinate ring of P1. For each k ≥ 1, we
denote by Tk the k-th graded component of T . Since C is a rational curve, there
exists a subset { f0, f1, . . . , fr } ⊂ Td of C-linearly independent forms of degree d
such that

C = {[ f0(P) : f1(P) : · · · : fr (P)] | P ∈ P
1}. (2.1)

By using (ii) at the beginning of this section and an appropriate projective coordinate
change of Pr , we can simplify the parametrization in (2.1).

Proposition 2.2. Let C ⊂ P
r and T be as above. Then there are forms f0, f1 ∈ Td

and f ∈ Td−r+2 such that C is projectively equivalent to the curve

C ′ := {[ f0(P) : f1(P) : f sr−2(P) : f sr−3t (P) : . . . : f tr−2(P)] | P ∈ P
1} ⊂ P

r .

(2.2)

Proof. The parametrization in the above (2.1) comes from the embedding

ϕ : P1 → P
r , P �→ [ f0(P) : f1(P) : · · · : fr (P)]
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of P1 into Pr . Now, let S = C[x0, x1, . . . , xr ] be the homogeneous coordinate ring
of Pr and assume that L = V(x2, . . . , xr ) is an extremal secant line to C . Thus we
have ϕ−1(C ∩ L) = V( f2, . . . , fr ). Since L is a (d − r + 2)-secant line to C , we
can write

f2 = f g2, . . . , fr = f gr

for someC-linearly independent forms g2, . . . , gr ∈ Tr−2. Obviously {g2, . . . , gr }
is a basis of Tr−2. Therefore, after an appropriate coordinate change of the subspace
V(x0, x1) = P

r−2 of Pr , we can choose gi = sr−i t i−2 for all 2 ≤ i ≤ r . ��
Corollary 2.3. Let C ⊂ P

r be as above which has a unique (d − r + 2)-secant
line, say L, and let � = C ∩ L. If the number |�| of distinct points of � satisfies
the condition |�| ≥ 4, then Aut(C,Pr ) is a finite group.

Proof. LetAut(�,L) be the group of automorphisms ofLwhichmaps� onto itself.
Our assumption |�| ≥ 4 implies that the order of this group is finite. Now, observe
that any elementψ in Aut(C,Pr )maps L and � respectively onto themselves. This
follows from the uniqueness of the extremal secant line L of C . Thus we have a
natural map π : Aut(C,Pr ) → Aut(�,L). Finally, this map π is injective since
Aut(C,Pr ) is a subgroup of Aut(C) = PGL(2) (because of the non-degeneracy of
C) and any element in PGL(2) is uniquely determined by its action on three points
of C . ��

2.3. Construction of the maximal regularity curve

Recall that T = C[s, t] is the homogeneous coordinate ring of P1 and Tk denotes
its k-th component of T .

Definition 2.4. Let r ≥ 3 and d ≥ r + 2. We define a nonempty open subset Ur,d

of Td × Td × Td−r+2 as

Ur,d := {( f0, f1, f ) | f0, f1 and f are all nonzero}.
Also for each ( f0, f1, f ) ∈ Ur,d , we defineC( f0, f1, f ) ⊂ P

r as the parameterized
curve

C( f0, f1, f ) := {[ f0(P) : f1(P) : f2(P) : · · · : fr (P)] | P ∈ P1 \ V( f0, f1, f )}
where fi (s, t) = sr−i t i−2 f (s, t) for all 2 ≤ i ≤ r .

Proposition 2.2 says that any curve of maximal regularity is projectively equiv-
alent to C( f0, f1, f ) for some ( f0, f1, f ) ∈ Ur,d . Conversely, it is natural to ask
for a criterion determining whether the curveC( f0, f1, f ) coming from an element
( f0, f1, f ) ∈ Ur,d is a curve of maximal regularity or not. In this vein, we have

Proposition 2.5. For an element ( f0, f1, f ) ∈ Ur,d , let � := {P1, . . . , P�} be
the set of all distinct zeros of f on P

1. Then the following three conditions are
equivalent:
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(α) { f0, f1, f sr−2, f sr−3t, . . . , f tr−2} spans an r-dimensional very ample linear
system on P

1;
(β) C( f0, f1, f ) ⊂ P

r is a nondegenerate curve with reg(C( f0, f1, f )) = d −
r + 2;

(γ ) the following two conditions hold:
(a) The determinant of every (2 × 2)-minor of the matrix

A :=
[
f0(P1) f0(P2) · · · f0(Pl)
f1(P1) f1(P2) · · · f1(Pl)

]

is nonzero;
(b) OrdP ( f1(P) f0 − f0(P) f1) = 1 for all P ∈ � with OrdP ( f ) ≥ 2.

Proof. Let ϕ : P1 ��� C( f0, f1, f ) be the rational map defined by sending P to the
point [ f0(P) : f1(P) : f2(P) : · · · : fr (P)] for all P ∈ P

1 \V( f0, f1, f ). Also, let
V be the linear system on P

1 spanned by { f0, f1, . . . , fr } where fi = f sr−i t i−2

for 2 ≤ i ≤ r .
(α) ⇐⇒ (β) : Condition (α) means that ϕ is an isomorphism and hence

C( f0, f1, f ) is a nondegenerate curve of degree d in P
r . Furthermore, for the

line L = V(x2, . . . , xr ) we have ϕ−1(C( f0, f1, f ) ∩ L) = Proj(T/〈 f 〉) which is
a finite scheme of length d − r + 2. Therefore L is a (d − r + 2)-secant line to
C( f0, f1, f ). This completes the proof that reg(C( f0, f1, f )) = d−r +2 by The-
orem 3.1 in [10]. Conversely, condition (β) implies that C( f0, f1, f ) is a smooth
curve of degree d and hence (α) is true by Proposition 2.2.

(α) ⇐⇒ (γ ) : First we see that if condition (γ ) holds then { f0, f1, . . . , fr } is
linearly independent. Indeed, suppose that u0 f0 + u1 f1 + u2 f2 + · · · + ur fr = 0
for some u0, . . . , ur ∈ C. If |�| ≥ 2 and, u0 or u1 is non-zero then one can easily
see that the rank of A is strictly less than 2. If |�| = 1 and, u0 or u1 is non-zero
then

OrdP ( f1(P) f0 − f0(P) f1) = OrdP ( f ) ≥ 2 for P ∈ �.

Thus u0 = u1 = 0 and hence u2 = . . . = ur = 0. Nowwe show that the conditions
(a) and (b) are respectively equivalent to the two conditions in [11, Remark 7.8.2,II],
in turn. First suppose that |�| ≥ 2 and take two distinct points P, Q ∈ P

1. If at
least one of them is outside ofV( f ), then 〈 f0, f1, . . . , fr 〉 separates P and Q since
it includes { f sr−2, f sr−3t, . . . , f tr−2}. On the other hand, if P, Q ∈ V( f ) then
the two points ϕ(P) = [ f0(P) : f1(P) : 0 : . . . : 0] and ϕ(Q) = [ f0(Q) :
f1(Q) : 0 : . . . : 0] are different if and only if the determinant of the submatrix[
f0(P) f0(Q)

f1(P) f1(Q)

]
of A is nonzero. Thus we conclude that the condition (1) in [11,

Remark 7.8.2] is equivalent to the (a). If |�| = 1, then the condition (1) in [11,
Remark 7.8.2] holds automatically. Now it remains to show that (b) is equivalent to
the condition (2) in [11, Remark 7.8.2]. Let P ∈ P

1. If P /∈ V( f ) (resp. P ∈ V( f )
and OrdP ( f ) = 1), then there exists an element h ∈ Tr−2 such that OrdP (h) = 1
(resp. OrdP (h) = 0) and hence for each case we have Ordp( f h) = 1. Finally, if
P ∈ V( f ) and OrdP ( f ) ≥ 2 then 〈 f0, f1, . . . , fr 〉 separates tangent vectors at P
if and only if

OrdP ( f1(P) f0 − f0(P) f1) = 1.
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Thus (b) is exactly the condition that 〈 f0, f1, . . . , fr 〉 separates tangent vectors. ��
Example 2.6. Let {[0 : 1], [1 : 1], [2 : 1], [1 : 2], [3 : 1]} be the set of the secant
points which are determined by the form

f = (s)(s − t)(s − 2t)(2s − t)(s − 3t).

Also, let us choose f0, f1 such that all of the determinants of (2× 2)-minors of the
matrix A in Proposition 2.5.(γ ) are not zero. For example,

f0 = s7 + st6, f1 = s6t + t7.

Then, by the computer algebra system “Singular”[9], one can easily check that the
canonical curve C = C( f0, f1, f ) ⊂ P

4 has the maximal regularity reg(C) = 5
as follows:

i β1,i β2,i β3,i β4,i
1 3 2 0 0
2 1 0 0 0
3 1 6 5 1
4 1 3 3 1

3. Parameter space of smooth rational curves

Suppose that r ≥ 3 and d ≥ r + 2. Let us define

M = P(Cr+1 ⊗ Symd(C2))

be the space of (d+1)×(r+1)matrices up to the scalar multiplication. An element
α ∈ M is represented by the (r + 1)-tuples of homogenuous bivariate polynomials
of degree d. Also the reductive groups PGL(r + 1) and PGL(2) naturally act on M
in the obvious fashion. From the canonical evaluation map

Symd(C2)∗ ⊗ (Cr+1 ⊗ Symd(C2)) −→ C
r+1

we obtain a family of rational maps parameterized by M into the projective space
P
r

φ : M × P
1���Pr

↓
M.

(3.1)

The rational map φ is well-defined morphism from P
1 whenever the (r + 1)-

tuples of homogenuous polynomials is base point free. Let Mns be the locus of
(r+1)-tuples α such that the rational map φα : P1 → P

r is a non-degenerate closed
embedding into Pr . Since all of the conditions are open, one can easily see that the
locus Mns is a smooth quasi-projective variety of dimension (r + 1)(d + 1) − 1.
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On the other hand, the PGL(2)-quotient

Rr,d := Mns//PGL(2)

parameterizes all nondegenrate smooth rational curves of degree d in Pr . Note that
every point in Mns is stable with respect to the PGL(2)-action ([14, §5]). The space
Rr,d is naturally embedded into the Hilbert scheme

i : Rr,d ↪→ Hilbdn+1(Pr ),

defined by [φα : P1 → P
r ] �→ C = φα(P1) ⊂ P

r . Obviously the map i is an
injective map. Furthermore, TC Rr,d = H0(TPr |C )/H0(TC ) ∼= H0(C, NC/Pr ) ∼=
Hom(IC ,OC ) = TCHilbdn+1(Pr ). Hence the map i is an embedding. For each m,
3 ≤ m ≤ d − r + 2, let Rm

r,d := {C ∈ Rr,d | reg(C) ≥ m}. Then, by the upper
semi-continuity theorem ([11]), there exist a locally closed stratification of Rr,d as
follow:

Rr,d ⊇ R2
r,d ⊇ R3

r,d ⊇ R4
r,d ⊇ · · · ⊇ Rd−r+1

r,d ⊇ Rd−r+2
r,d .

The automorphism group Aut(Pr ) ∼= PGL(r + 1) acts naturally on M and thus on
each Rm

r,d . Let
�m

r,d := Rm
d,r/Aut(P

r )

be the set of orbits of this action. Then �m
d,r is a set which classifies all (m − 1)-

irregular nondegenerate smooth rational curves, up to projective equivalence. In
this paper, we focus on the deepest orbit space �d−r+2

r,d . In this section, we will

show that the orbit space Rd−r+2
r,d is irreducible and pure dimensional. In Sect. 4,

we will discuss how to give the scheme structure by using the reduction in a stage
with the group actions. To do this, let us start by describing the locus of matrices
in M for which curve represented by the matrix is of maximal regularity. Let us
recall that the space Ur,d is the set of triples ( f0, f1, f ) ∈ Td × Td × Td−r+2 such
that f0, f1 and f are all nonzero. From Definition 2.4, we obtain a map

ϕ : Ur,d −→ M, ( f0, f1, f ) �→ ( f0(s, t), f1(s, t), f2(s, t), . . . , fr (s, t))

where fi (s, t) = f (s, t)sr−i t i−2 for all 2 ≤ i ≤ r . Recall that every curve in P
r

of maximal regularity is projectively equivalent to a canonical curve C( f0, f1, f )
for some ( f0, f1, f ) ∈ Ur,d (Proposition 2.2).

Lemma 3.1. Let Wr,d be the sub-locus of the triples ( f0, f1, f ) ∈ Ur,d such that
the canonical curve C( f0, f1, f ) is of maximal regularity. The variety Wr,d is a
non-empty open subset of the affine space Td × Td × Td−r+2 ∼= C

3d−r+5.

Proof. Let us consider the map

ϕ : Ur,d −→ M

and the image ( f0(s, t), f1(s, t), f2(s, t), . . . , fr (s, t)) of ( f0, f1, f ). Then the
condition that the canonical curve C( f0, f1, f ) corresponds to ( f0, f1, f ) is of
maximal regularity is equivalent to the condition that { f0(s, t), f1(s, t), f2(s, t),
. . . , fr (s, t)} spans an r -dimensional very ample linear system on P

1 (Proposi-
tion 2.5) and hence the image ( f0(s, t), f1(s, t), f2(s, t), . . . , fr (s, t)) is an ele-
ment of Mns . This guarantees that the inverse image ϕ−1(Mns) of the open subset
Mns ⊂ M is exactly Wr,d . ��
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3.1. Irreducibility of Rd−r+2
r,d

In this subsection, we prove the irreducibility of the space �r,d := Rd−r+2
r,d . The

key idea is to use the uniqueness of (d − r + 2)-secant line. To do this we closely
investigate the fiber of the natural morphism �r,d −→ Gr(2, r + 1), so called the
secant map, which associates curve to its secant line.

Proposition 3.2. Let �r,d ⊂ Hilbdn+1(Pr ) be the locus of the smooth rational
curves of maximal regularity. Then there exists a surjective morphism

�r,d −→ Gr(2, r + 1)

associating the curve C to its secant line L.

Proof. Let W = π−1(�r,d) be the inverse image of �r,d where π : Mns −→
Mns//PGL(2) ⊂ Hilbdn+1(Pr ) is the quotient map. From the diagram (3.1),
there exists a flat family of degree d closed embedding map

φ : W × P
1−→P

r

↓
W

parameterized by W . The construction of the secant line in [10, Theorem 3.1]
can be relativized on W . Note that, since our curves are smooth, we do not need
to normalize the rational curve. Let M ′ be the kernel of the sheaf homomorphism
O⊕r+1

W×P1 � OW×P1(1, d) defined by the map φ. Let A = q∗OP1(d−r) be the pull-

back where q : W × P
1 → P

1 is the projection. Then the sheaf homomorphism
v in the proof of [10, Theorem 3.1] is defined on (P1 × W ) × P

r . Let us denote
the cokernel of v byF1. By taking the push-forward of the sheaf homomorphism v

into the factorW ×P
r , one defines the higher direct image sheaf G := R1(p23)∗F1

onW ×P
r . Here p23 : (P1 ×W )×P

r → W ×P
r is the projection map. Since the

support of the sheaf Gw for each w ∈ W is a line in P
r ([10, Theorem 3.1]), there

exists a natural morphism

W −→ Gr(2, r + 1).

Clearly, this map is PGL(2)-invariant and thus it descents to the quotient

W//PGL(2) = �r,d −→ Gr(2, r + 1).

��
Remark 3.3. In the proof of the above proposition, the locus W consists of the
(r + 1)-tuples of homogenous polynomials of degree d in the matrix space M =
P(Cr+1 ⊗ Symd(C2)) where the representing curves have the maximal regularity.

Lemma 3.4. The locus W ⊂ M is an irreducible variety of dimension 3d + r2 −
r + 2.
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Proof. Because of the technical reason, we do the work on the affine setting. Let
V = C

r+1 ⊗ Symd(C2) \ {0}. Let j : V −→ V/C∗ := M be the canonical
C

∗-quotient map. Now let W̃ = j−1(W ) be the inverse image of W . Let us denote
the composition map by

κ = π ◦ j : W̃ −→ Gr(2, r + 1),

where π : W → Gr(2, r +1) is the secant map. Obviously the map κ is surjective.
Let L ∈ Gr(2, r + 1) be a line. We show that the fiber is isomorphic to

κ−1(L) ∼= (Wr,d × GL(r − 1))/C∗,

where the group C∗ diagonally acts onWr,d ×GL(r − 1) by ( f0, f1, f ) × (g) �→
( f0, f1, α f )×(α−1g). HereWr,d is the set of the triples of ( f0, f1, f ) such that the
canonical curve C( f0, f1, f ) is of maximal regularity (see Lemma 3.1). In detail,
let us define the map φ : Wr,d × GL(r − 1) → κ−1(L) ⊂ W by ( f0, f1, f ) ×
(g) �→ ( f0, f1, f · g). If φ(( f0, f1, f ) × (g)) = φ(( f ′

0, f ′
1, f ′) × (g′)), then

f0 = f ′
0, f1 = f ′

1 and f · g = f ′ · g′. But if f �= k f ′ for some k ∈ C
∗, then all

g′
i has the non-constant common factor f/gcd( f, f ′). This contradicts the choice

of g′ ∈ GL(r − 1). So the map φ : Wr,d × GL(r − 1) → κ−1(L) factors through
the quotient (Wr,d × GL(r − 1))/C∗. Obviously the desecent map φ is injective.
Furthermore the map φ is an embedding. To see this, we construct an local inverse
map of φ. For an element ( f0, f1, α1, α2, · · · , αr−1) ∈ W , we know that {αi }
has the common factor f for all i . Without loss of generality, one can assume
that the coefficient of sr−2 in α1/ f is 1. For this one we have the inverse map
( f0, f1, α1, α2, · · · , αr−1) �→ ( f0, f1, f ) × (αi/ f ). Hence, W is irreducible and

dim(W ) = dim(Gr(2, r + 1)) + dim(Wr,d × GL(r − 1)/C∗) − dim(C∗)
= 2(r − 1) + (3d − r + 5) + (r − 1)2 − 1 − 1 = 3d + r2 − r + 2.

��
Theorem 3.5. The space�r,d is an irreducible variety of dimension 3d+r2−r−1.

Proof. Since �r,d = W//PGL(2) and the stabilizer of any point in W is trivial
with respect to the action PGL(2) ([14]), we obtain the result by Lemma 3.4. ��

3.2. Space curves of maximal regularity

When r = 3, the space �3,d consists of two types of rational curves as follows.

(1) Type 1: dimH0(IC (2)) = 0, there is a unique line (d − 1)-secant Ld−1. Or
else,

(2) Type 2: dimH0(IC (2)) = 1, rational curves in the rational normal surface
scroll S(1, 1) with numerical type H + (d − 2)F , where H and F are respec-
tively the hyperplane divisor and a ruling of S(1, 1). In this case, all ruling
lines are the (d − 1)-secant lines to C .
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Proposition 3.6. The space �3,d is an irreducible variety.

Proof. Using the same argument in the proof of Proposition 3.2, one can show that
the locus of rational curves consisting of Type 1 is irreducible. Also, the locus of
curves in Type 2 is a boundary of Type 1.Without loss of generality, one can assume
that the rational curve defined by [g(s, t)s : g(s, t)t : f (s, t)s : f (s, t)t] ⊂ P

3 be
a general point of Type 2 where g = g(s, t), f = f (s, t) ∈ Td−1. Let us consider
a flat family of rational curves

Cα := {[gs + α f t, gt, f s, f t] |} ⊂ C × P
3 → C

parameterized by α ∈ C. For each α ∈ C
∗, one can easily check that the curve Cα

is of Type 1 by using Proposition 2.5. So the claim is proved. ��

4. Toward GIT-quotient of the space of maximal regularity curves

To find the underlying parameter space of the PGL(r + 1)-orbits in �r,d , one can
consider the Chow (or Hilbert) stability in the sense of [20]. But it seems too hard
to check the stability of the general points in �r,d . In fact,

Proposition 4.1. Any curve parameterized by the closed points in �r,d is linearly
unstable.

Proof. Let C ⊂ P
r be a rational curve of maximal regularity d − r + 2 with

(d − r + 2)-secant line L. Now consider the projection πL : Pr \ L → P
r−2 and

let C ′ := πL(C \ (C ∩ L)). Then C ′ ⊂ P
r−2 is a rational normal curve of degree

r − 2 and hence πL extends to a unique isomorphism π ′ : C → C ′. Thus one can
see that

d

r
= reddeg(C) > reddeg(πL(C)) = reddeg(C ′) = 1.

Hence, the curve C is linearly unstable. For details, we refer to the reader to [20,
Definition 2.16]. ��
This implies that one can not directly apply Theorem 4.12 in [20]. So, in this
section, we will discuss a method to give a scheme structure on the set of the orbits
by using the principle of “reduction in stages". Let us denote Xss (resp. Xs) by
the semistable (resp. stable) locus of the reductive group action G on a projective
variety X . The group PGL(r + 1) and PGL(2) commutatively acts on the space
M = P(Cr+1 ⊗ Symd(C2)) as a obvious fashion.

Lemma 4.2. Under the above assumption, there is a natural isomorphism

Mss//
(
PGL(r + 1) × PGL(2)

) ∼= (M//PGL(r + 1))ss//PGL(2).

Proof. It suffice to show that, if α ∈ M is semi-stable with respect to the prod-
uct group PGL(r + 1) × PGL(2), then α is an injective map. Let us apply
the Hilbert-Mumford criterion ([21]). If α is not injective, then one can assume
that the first row is zero, then let us choose the 1-parameter family λ : t �→
(diag(1, t, t, . . . , t), Id) ∈ PGL(r + 1) × PGL(2). Then limλ(t) · α = 0 and so M
is not semistable. ��
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From this lemma, to study the semistable points in M with respect to the reduc-
tive group PGL(r + 1) × PGL(2) it is enough to study the semistable points in the
Grassmannian variety

P(Cr+1 ⊗ Symd(C2))//PGL(r + 1) ∼= Gr(r + 1, Symd(C2)).

By Proposition 2.5, each point in W is stable with respect to the group action
PGL(r + 1) and W is invariant under the PGL(r + 1)-action. Hence the GIT-
quotient W̄ := W//PGL(r + 1) exists as a variety. Now, by applying the Hilbert-
Mumford criterion ([21]), we will prove that some open subvariety of W̄ is stable
by the action PGL(2). In Proposition 3.1, for a canonical form ( f0, f1, f ) ∈ Wr,d ,
let us define

α := ( f0(s, t), f1(s, t), f2(s, t), . . . , fr (s, t))

where fi (s, t) = f (s, t)sr−i t i−2 for all 2 ≤ i ≤ r . Note f0, f1, . . . , fr are C-
linearly independent, α ∈ Mss . Let us denote [α] ∈ W̄ by its image of the quotient
map W → W//PGL(r + 1).

Lemma 4.3. Under the above notation, for the general [α] ∈ W̄ ⊂ Gr(r +
1, Symd(C2)) [α] is stable with respect to the group action PGL(2).

Proof. Let us apply the Hilbert-Mumford criterion ([21]). Under the Plücker

embeddingGr(r+1, Symd (C2)) ⊂ P
N into the projective space, let {

[
ua 0
0 u−a

]
|u

∈ C
∗} be a maximal torus in PGL(2) ∼= SL(2). Then the weights are given by the

determinants of (r + 1) × (r + 1)-minors of

[α] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · ad−r+2 ad−r+3 · · · ad
b0 b1 · · · bd−r+2 bd−r+3 · · · bd
c0 c1 · · · cd−r+2 0 · · · 0
0 c0 · · · cd−r+1 cd−r+2 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · c0 c1 · · · cd−r+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where f0(s, t) = ∑d
i=0 ai s

d−i t i , f1(s, t) = ∑d
i=0 bi s

d−i t i , and f (s, t) =∑d−r+2
i=0 ci sd−r+2−i t i .Wheneverwe choose the points [α] such that thefirst and last

maximal minor of thematrix are not zero, then the weights has the positive/negative
one and thus the point [α] is stable. ��
Example 4.4. Let us consider the curve in Example 2.6. As a point in W̄ ,

[α] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
2 −13 28 −23 6 0 0 0
0 2 −13 28 −23 6 0 0
0 0 2 −13 28 −23 6 0

⎤
⎥⎥⎥⎥⎦ .

Since both of the first and the last maximal minors of the matrix are not zero, [α]
is a stable point in W̄ .
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LetWgen ⊂ W̄ be the sub-locus satisfying the conditions in the proof of Lemma
4.3.

Proposition 4.5. The GIT-quotient W̄//PGL(2) is an irreducible, 3(d − r) − 1-
dimensional variety.

Proof. Irreducibility of the quotient space W̄//PGL(2) directly comes from that
of W (see Proposition 3.4). Also, the locus Wgen is an open subset of the stable
locus W̄ s . The dimension is given by

dim(W̄//PGL(2))=dim(W ) −dim(PGL(r+1)) −dim(PGL(2))= 3(d− r)− 1.

��
Remark 4.6. Like other geometric invariant theoretic quotient, it seems to be a very
interesting problem to determine for which points in W̄ are (semi)stable.
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