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Abstract. This paper considers the theory of higher-order divergence-form elliptic differ-
ential equations. In particular, we provide new generalizations of several well-known tools
from the theory of second-order equations. These tools are the Caccioppoli inequality, Mey-
ers’s reverse Hölder inequality for gradients, and the fundamental solution. Our construction
of the fundamental solution may also be of interest in the theory of second-order opera-
tors, as we impose no regularity assumptions on our elliptic operator beyond ellipticity and
boundedness of coefficients.

1. Introduction

In this paper we will study divergence-form elliptic operators L of order 2m, given
formally by

(Lu) j = (−1)m
N∑

k=1

∑

|α|=m

∑

|β|=m

∂α
(
A jk

αβ∂βuk
)

and in particular systems of equations of the form

(Lu) j = (−1)m
∑

|α|=m

∂αFj,α.

(We will write this system of equations as Lu = divm Ḟ.)
The theory of second-order operators, that is, operators with m = 1, has a

long and celebrated history. Important tools in the theory of second-order elliptic
systems include the Caccioppoli inequality, Meyers’s reverse Hölder inequality for
derivatives, and the fundamental solution.

The boundary Caccioppoli inequality states that, if Lu = div Ḟ in some domain
Ω for some second-order elliptic operator L , and if either u = 0 or ν · A∇u = 0
on ∂Ω ∩ B(x0, r), where ν is the unit outward normal vector, then the gradient of
u may be controlled by u and the inhomogeneous term Ḟ, asˆ

B(x0,r)∩Ω

|∇u|2 ≤ C

r2

ˆ
B(x0,2r)∩Ω

|u|2 + C
ˆ
B(x0,2r)∩Ω

|Ḟ|2. (1)

A. Barton (B): Department of Mathematical Sciences, 309 SCEN, University of Arkansas,
Fayetteville, AR 72701, USA e-mail: aeb019@uark.edu

Mathematics Subject Classification:35J48 · 31B10 · 35C15

DOI: 10.1007/s00229-016-0839-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-016-0839-x&domain=pdf
http://orcid.org/0000-0002-3243-2401


376 A. Barton

Meyers’s reverse Hölder estimate (see [34]) states that, if Lu = div Ḟ in some
ball B(x0, 2r), then ∇u satisfies the reverse Hölder estimate
(ˆ

B(x0,r)
|∇u|p

)1/p

≤ C

rd/2−d/p

(ˆ
B(x0,2r)

|∇u|2
)1/2

+ C

(ˆ
B(x0,2r)

|Ḟ|p
)1/p

(2)

for some p > 2 depending only on the operator L . With some care, Meyers’s
estimate may also be extended to the boundary case, at least in relatively nice
domains. Both of these inequalities have been used extensively in the literature.

Much less is known in the case of higher-order elliptic systems in the rough
setting. In the case of continuous coefficients and Cm domains, some regularity
results are available; see [1]. In the interior case the Caccioppoli inequality

ˆ
B(x0,r)

|∇mu|2 ≤
m−1∑

j=0

C

r2m−2 j

ˆ
B(x0,2r)

|∇ ju|2 + C
ˆ
B(x0,2r)

|Ḟ|2 (3)

was established in [9] for general bounded and strongly elliptic coefficients. It
would of course be preferable to establish this bound with only a norm of u, and
not of ∇ ju, on the right-hand side. In [5], the boundˆ

B(x0,r)
|∇mu|2 ≤ C(ε)

r2m

ˆ
B(x0,2r)

|u|2 + ε

ˆ
B(x0,2r)

|∇mu|2 (4)

was established for solutions u to the equation Lu = 0 in B(x0, 2r), where ε is an
arbitrary positive number andC(ε) a constant depending on ε. Either of the bounds
(3) or (4) suffices to generalize Meyers’s estimate (2) to the higher-order case, and
in fact this was done in both [5,9].

The boundary Caccioppoli inequality in the case of rough domains has not been
established; we mention that some pointwise estimates were established in [30,31]
in the case where L = Δ2 is the biharmonic operator.

In Sect. 3, we will establish the higher-order Caccioppoli inequality with no
terms involving derivatives of u on the right-hand side; we will also establish this
inequality in the Dirichlet and Neumann boundary cases. The main results of this
section are Lemma 16 and Corollaries 22 and 23. In Sect. 4, we will provide bound-
ary versions and some refinements to the generalization of Meyers’s inequality (2),
and in particular will carefully state the consequences for the lower-order deriva-
tives of the solution u. The main results of this section are Theorems 24 and 36.

Another important tool in the second-order case is the fundamental solution
EL(x, y). This solution is a (matrix-valued) distribution defined on R

d × R
d such

that, formally, LEL( · , y) = Iδy , where δy denotes the Dirac mass and I denotes
the identity matrix. In Sect. 5 we will construct the fundamental solution for higher-
order elliptic systems.

The fundamental solution was constructed for second-order equations with real
coefficients (that is, if N = m = 1, Aαβ real) in [29] (in the case of symmetric
coefficients Aαβ = Aβα), in [23] (in dimension d ≥ 3) and in [28] (in dimension
d = 2). In dimension d = 2 these results were extended to the case of complex
coefficients in [4]; as observed in [15] their strategy carries over to the case of
systems with d = 2, m = 1 and N ≥ 1.
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In the case of second-order systems (that is,m = 1 and N ≥ 1), the fundamental
solution was constructed in the papers [14,21,24,40] under progressively weaker
conditions on the operator L .

Specifically, the paper [40] constructs the fundamental solution for the operator
L under the assumption that, if Lu = 0 in some ball B(x, r), then u is continuous
in B(x, r) and satisfies the local boundedness estimate

|u(x)| ≤ C

(
1

rd

ˆ
B(x,r)

|u|2
)1/2

(5)

for some constant C depending only on L and not on u, X or r . This assumption is
not true for all elliptic operators; see [19].

All of the above papers made the same or stronger assumptions. Specifically,
[14,21] constructed the fundamental solution in the case of systemswith continuous
coefficients, for which the bound (5) is always valid; see [36, Theorem 6.4.8] or [14,
Section 3]. [24] constructed the fundamental solution using the stronger assumption
of local Hölder continuity of solutions. The papers [23,28,29] considered only the
case N = m = 1with real coefficients; in this case the bound (5) was established by
Moser in [37]. The paper [4] constructed the fundamental solution in dimension d =
2. In this caseMeyers’s estimate (2) implies that solutionsu locally satisfy∇u ∈ L p

for some p > d; Morrey’s inequality then implies that solutions are necessarily
locally Hölder continuous. The papers [10,15,27] investigate the related topic of
Green’s functions in domains; they too require local boundedness of solutions
(either as an explicit assumption or by virtue of working in dimension d = 2).

Fewer results are available in the case of higher-order equations. In the case
of the polyharmonic operator L = (−Δ)m we have an explicit formula for the
fundamental solution, and this solution has been used extensively in the theory
of biharmonic and polyharmonic functions. The fundamental solution in the case
of general constant coefficients has also been studied and used; see, for example,
[12,13,20,32,33,39,41], or the survey paper [38] and the references therein. In the
case of variable analytic coefficients the fundamental solution was constructed in
[25], and in the case of smooth coefficients the Green’s function in domains was
constructed in [16].

Our initial construction of the fundamental solution will require solutions to be
continuous and satisfy the local bound (5). Again by Morrey’s inequality and the
higher-order generalizations of the Caccioppoli inequality (1), this is true whenever
the elliptic operator L is of order 2m > d. Thus, we will begin by constructing the
fundamental solution in the case of low dimension or high order. Then, given an
operator L of order 2m ≤ d, we will construct an appropriate auxiliary operator
L̃ of order 2m̃ > d and construct the fundamental solution EL for L from the
fundamental solution E L̃ for L̃ . This technique was used in [3] in the proof of
the Kato conjecture for higher-order operators. Our main results concerning the
fundamental solution are summarized as Theorem 62 and the following remarks.

This paper may be of some interest to the reader interested only in second-order
operators (in the case d ≥ 3 and in the case of complex coefficients or systems)
as our construction extends to the case of operators whose solutions do not satisfy
local bounds.
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2. Definitions

Throughoutweworkwith a divergence-form elliptic systemof N partial differential
equations of order 2m in dimension d.

We will often use multiindices in N
d . If γ = (γ1, . . . , γd) is a multiindex, then

|γ | = γ1 + γ2 + · · · + γd . If δ = (δ1, . . . , δd) is another multiindex, then we say
that δ ≤ γ if δi ≤ γi for all 1 ≤ i ≤ d, and we say that δ < γ if in addition the
strict inequality δi < γi holds for at least one such i .

We will routinely consider arrays Ḟ = (
Fj,γ

)
indexed by integers j with

1 ≤ j ≤ N and by multiindices γ with |γ | = k for some k. In particular, if ϕ is a
vector-valued function with weak derivatives of order up to k, then we view ∇kϕ

as such an array, with

(∇kϕ) j,γ = ∂γ ϕ j .

The L2 inner product of two such arrays of numbers Ḟ and Ġ is given by

〈
Ḟ, Ġ

〉 =
N∑

j=1

∑

|γ |=k

Fj,γ G j,γ .

If Ḟ and Ġ are two arrays of L2 functions defined in a measurable set Ω ⊆ R
d ,

then the inner product of Ḟ and Ġ is given by

〈
Ḟ, Ġ

〉
Ω

=
N∑

j=1

∑

|γ |=k

ˆ
Ω

Fj,γ G j,γ .

If E ⊂ R
d is a set of finite measure, we let

ffl
E f = 1

|E |
´
E f , where |E | denotes

Lebesgue measure. We let ek be the unit vector in R
d in the kth direction. We let

ė j,γ be the “unit array” corresponding to the multiindex γ and the number j ; thus,〈
ė j,γ , Ḟ

〉 = Fj,γ . We let L p(U ) and L∞(U ) denote the standard Lebesgue spaces
with respect to Lebesgue measure.

The inhomogeneous and homogeneous Sobolev spaces are denoted as

W p
k (U ) =

{
u : ‖u‖W p

k (U ) =
k∑

j=0

‖∇ j u‖L p(U ) < ∞
}
,

Ẇ p
k (U ) =

{
u : ‖u‖Ẇ p

k (U ) = ‖∇ku‖L p(U ) < ∞
}
.

(Elements of Ẇ p
k (U ) are then defined only up to adding polynomials of order k−1.)

In Sects. 3 and 4, we will use only the inhomogeneous Sobolev spaces W p
k , while

in Sect. 5, we will use only the homogeneous spaces Ẇ p
k .

We say that u ∈ L p
loc(U ) or u ∈ Ẇ p

k,loc(U ) if u ∈ L p(V ) or u ∈ Ẇ p
k (V ) for

every bounded set V with V ⊂ U .
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2.1. Elliptic operators

Let A = (
A jk

αβ

)
be an array of measurable coefficients defined on R

d , indexed by
integers 1 ≤ j ≤ N , 1 ≤ k ≤ N and by multtiindices α, β with |α| = |β| = m. If
Ḟ = (

Fj,α
)
is an array, then AḞ is the array given by

(AḞ) j,α =
N∑

k=1

∑

|β|=m

A jk
αβFk,β .

Throughout we consider coefficients that satisfy the bound

‖A‖L∞(Rd ) ≤ Λ (6)

for some Λ > 0. In our construction of the fundamental solution in Sect. 5, we will
consider only operators that satisfy the strict Gårding inequality

Re
〈∇mϕ, A∇mϕ

〉
Rd ≥ λ‖∇mϕ‖2L2(Rd )

(7)

for all ϕ with ∇mϕ ∈ L2(Rd) and for some λ > 0 independent of ϕ. In Sect. 3 we
will consider weaker and stronger versions of the Gårding inequality.

We let L be the 2mth-order divergence-form operator associated with A. That
is, we say that Lu = divm Ḟ in Ω in the weak sense if, for every ϕ smooth and
compactly supported in Ω , we have that

〈∇mϕ, A∇mu
〉
Ω

= 〈∇mϕ, Ḟ
〉
Ω

, (8)

that is, we have that

N∑

j=1

N∑

k=1

∑

|α|=|β|=m

ˆ
Ω

∂αϕ̄ j A
jk
αβ ∂βuk =

N∑

j=1

∑

|α|=m

ˆ
Ω

∂αϕ̄ j Fj,α.

In particular, if the left-hand side is zero for all such ϕ then we say that Lu = 0.
If A is such an array of coefficients, we let the adjoint array A∗ be given by

(A∗) jkαβ = Akj
βα; we then let L∗ be the operator associated with A∗.

Throughout the paper we will let C denote a constant whose value may change
from line to line, butwhichdepends onlyon thedimensiond, the ellipticity constants
λ and Λ in the bounds (6) and (7) (or variants thereof), and the order 2m of the
operator L . Any other dependencies will be indicated explicitly.

3. The Caccioppoli inequality

In this sectionwewill generalize theCaccioppoli inequality (1) to the case of higher-
order elliptic systems. Because the Caccioppoli inequality involves norms both of
the solution u and its gradient ∇mu, in this section we will use the inhomogeneous
Sobolev spaces

W p
k (U ) =

{
u :

k∑

j=0

‖∇ ju‖L p(U ) < ∞
}
.
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The first step in our generalization of the Caccioppoli inequality is the following
lemma.

Lemma 9. Let L be the operator of order 2m associated to the coefficients A, where
A satisfies the bound (6) and the weak Gårding inequality

Re
〈∇mϕ, A∇mϕ

〉
Rd ≥ λ‖∇mϕ‖2L2(Rd )

− δ‖ϕ‖2L2(Rd )
(10)

for some λ > 0 and some δ ≥ 0, and for all smooth, compactly supported func-
tions ϕ.

Let x0 ∈ R
d and let R > 0. Suppose that u ∈ W 2

m(B(x0, R)), that Ḟ ∈
L2(B(x0, R)), and that one of the following two conditions holds.

Lu = divm Ḟ in Ω = B(x0, R), or (11)

Lu = divm Ḟ in some domain Ω � B(x0, R), and u lies in the closure in

W 2
m(B(x0, R)) of {ϕ ∈ C∞(Rd) : ϕ ≡ 0 in B(x0, R)\Ω}. (12)

Then, for any 0 < r < R, we have that
ˆ

Ω∩B(x0,r)
|∇mu|2

≤
m−1∑

i=0

C

(R − r)2m−2i

ˆ
Ω\B(x0,r)

|∇ iu|2 + C
ˆ

Ω

|Ḟ|2 + Cδ

ˆ
Ω

|u|2 (13)

where C is a constant depending only on the dimension d, the order 2m of the
elliptic operator L and the numbers λ and Λ in the bounds (6) and (10).

In Theorem 18 we will strengthen this lemma by replacing the sum on the
right-hand side by the i = 0 term alone. Our Theorem 18 will thus be stronger than
the bound (4) of [5]; we have chosen to follow the example of [5] and establish the
Caccioppoli inequality for operators that satisfy the weak Gårding inequality (10),
as well as operators that satisfy the strong Gårding inequality (7).

Lemma 9 was proven in [9] in the interior case (11) for coefficients A that
satisfy the strong pointwise Gårding inequality

Re
〈
η̇, A(x)η̇

〉 ≥ λ
〈
η̇, η̇

〉
for almost every x ∈ R

d and any array η̇. (14)

Thus the main new result of Lemma 9 is the case (12), which corresponds to zero
Dirichlet boundary values.

In the higher-order case, the condition that u have zero Neumann boundary
values along ∂Ω ∩ B(x0, R) may best be expressed by the following condition.

u ∈ W 2
m(B(x0, R)), and the equation

〈∇mϕ, Ḟ
〉
Ω

= 〈∇mϕ, A∇mu
〉
Ω

(15)

is true for all ϕ smooth and supported in B(x0, R), not only all ϕ supported
in Ω .
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We refer the reader to the author’s survey paper with SvitlanaMayboroda [8] for
a discussion of the meaning of Neumann boundary data for higher order operators.
See also the papers [2,7,11,35,42,43], which treat various special cases of the
Neumann problem.

Lemma 16. If Lu = divm Ḟ inΩ ⊂ B(x0, R) and u satisfies the Neumann bound-
ary condition (15), then the conclusion (13) of Lemma 9 is still true provided that
the coefficients A associated with the operator L satisfy the bound (6) and the local
Gårding inequality

Re
〈∇mϕ, A∇mϕ

〉
Ω

≥ λ‖∇mϕ‖2L2(Ω)
− δ‖ϕ‖2L2(Ω)

(17)

for all ϕ ∈ W 2
m(B(x0, R)).

Notice that the pointwise ellipticity condition (14) implies the local Gårding
inequality (17) with δ = 0.

In all cases we assume that u is defined in the ball B(x0, R); equivalently, we
assume thatwemay extendu fromΩ to the ball. This extension is very natural in the
interior or Dirichlet cases but must be explicitly assumed in the Neumann case. IfΩ
is a Lipschitz domain and ∇mu ∈ L2(Ω), then by a well-known result of Calderón
and Stein, an extension of u to B(x0, R) (indeed, to R

d ) exists. Such extensions
are also guaranteed to exist under weaker conditions on Ω; see, for example, [26].
Notice further that in the interior and Neumann cases (11) and (15) the conclusion
(13) remains valid if we modify u by adding a polynomial of orderm−1; however,
this is not true in the Dirichlet case (12), as in this case we must maintain the
condition u ≡ 0 in B(x0, R)\Ω .

Proof (Proof of Lemmas 9 and 16). Let ϕ be a smooth, real-valued test function
with 0 ≤ ϕ ≤ 1, supported in B(x0, R) and identically equal to 1 in B(x0, r). We
require |∇kϕ| ≤ Ck(R − r)−k .

Observe that ψ = ϕ4mu is a function supported in B(x0, R) with ∇mψ ∈
L2(B(x0, R)). By definition of Lu or condition (15), and by density of smooth
functions, we have that

〈∇m(ϕ4mu), Ḟ
〉
Ω

= 〈∇m(ϕ4mu), A∇mu
〉
Ω

.

Observe that for all suitably differentiable functions v and w,

∂α(w v) =
∑

γ≤α

α!
γ !(α − γ )!∂

γ w ∂α−γ v

where γ ! = γ1!γ2! . . . γd !. Let aα,γ = α!/γ !(α − γ )!. Notice that aα,0 = aα,α = 1.
By definition of the inner product, we have that

∣∣〈∇m(ϕ4mu), Ḟ
〉
Ω

∣∣ =
∣∣∣∣

N∑

j=1

∑

|α|=m

ˆ
Ω

∂α(ϕ4mū j )Ḟ j,α

∣∣∣∣.
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Then

∣∣〈∇m(ϕ4mu), Ḟ
〉
Ω

∣∣ ≤
∣∣∣∣

N∑

j=1

∑

|α|=m

ˆ
Ω

∂α(ϕ2mū j ) ϕ2mFj,α

∣∣∣∣

+
∣∣∣∣

N∑

j=1

∑

|α|=m

∑

γ<α

aα,γ

ˆ
Ω

∂α−γ (ϕ2m) ∂γ (ϕ2mū j )Ḟ j,α

∣∣∣∣.

Thus
∣∣〈∇m(ϕ4mu), Ḟ

〉
Ω

∣∣ ≤ ‖∇m(ϕ2mu)‖L2(Ω)‖Ḟ‖L2(Ω)

+ C
m−1∑

i=0

‖∇ i u‖L2(Ω\B(x0,r))

(R − r)m−i
‖Ḟ‖L2(Ω).

We now consider the right-hand side. We have that

〈∇m
(
ϕ4mu

)
, A∇mu

〉
Ω

=
∑

j,k,α,β

ˆ
Ω

∑

γ<α

aα,γ ∂α−γ (ϕ2m)∂γ
(
ϕ2mū j

)
A j,k

αβ ∂βuk

+
∑

j,k,α,β

ˆ
Ω

ϕ2m∂α
(
ϕ2mū j

)
A j,k

αβ ∂βuk

where the sums are taken over all j , k, α, β with 1 ≤ j ≤ N , 1 ≤ k ≤ N and
|α| = |β| = m. Now, we may write

∑

γ<α

aα,γ ∂α−γ (ϕ2m)∂γ
(
ϕ2mū j

)
=

∑

ζ<α

ϕ2mΦα,ζ ∂
ζ ū j

for some functions Φα,ζ supported in B(x0, R)\B(x0, r) with |Φα,ζ | ≤ C(R −
r)|ζ |−|α|. Therefore

〈∇m
(
ϕ4mu

)
, A∇mu

〉
Ω

=
∑

j,k,α,β

ˆ
Ω

∂α
(
ϕ2mū j

)
A j,k

αβ

(
ϕ2m∂βuk

)

+
∑

j,k,α,β

ˆ
Ω\B(x0,r)

∑

ζ<α

Φα,ζ ∂
ζ ū j A

j,k
αβ (ϕ2m∂βuk).

We rewrite the two terms ϕ2m∂βuk to see that
〈∇m(ϕ4mu), A∇mu

〉
Ω

= 〈∇m(ϕ2mu), A∇m(ϕ2mu)
〉
Ω

+
∑

j,k,α,β

ˆ
Ω

∑

ζ<α

Φα,ζ ∂ζ ū j A
j,k
αβ ∂β

(
ϕ2muk

)

−
∑

j,k,α,β

ˆ
Ω

∑

γ<β

aβ,γ ∂α
(
ϕ2mū j

)
A j,k

αβ ∂β−γ
(
ϕ2m

)
∂γ uk

−
∑

j,k,α,β

ˆ
Ω

∑

γ<β

aβ,γ

∑

ζ<α

Φα,ζ ∂ζ ū j A
j,k
αβ ∂β−γ

(
ϕ2m

)
∂γ uk .
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Observe that the integrands in the second and third terms are zero in B(x0, r).
By the Gårding inequality (10) or (17),

λ

ˆ
Ω

|∇m(ϕ2mu)|2 ≤ Re
〈∇m(ϕ2mu), A∇m(ϕ2mu)

〉
Ω

+ δ‖ϕ2mu‖2L2(Ω)
.

Thus

λ

ˆ
Ω

|∇m(ϕ2mu)|2 ≤ |〈∇m(ϕ4mu), A∇mu
〉
Ω

| + δ‖u‖2L2(Ω)

+ C‖∇m(ϕ2mu)‖L2(Ω)

m−1∑

i=0

‖∇ i u‖L2(Ω\B(x0,r))

(R − r)m−i

+
m−1∑

i=0

C

(R − r)2m−2i ‖∇ i u‖2L2(Ω\B(x0,r))
.

Recalling that

|〈∇m(ϕ4mu), A∇mu
〉
Ω

| = |〈∇m(ϕ4mu), Ḟ
〉
Ω

|
≤ ‖∇m(ϕ2mu)‖L2(Ω)‖Ḟ‖L2(Ω)

+ C
m−1∑

i=0

‖∇ i u‖L2(Ω\B(x0,r))

(R − r)m−i
‖Ḟ‖L2(Ω)

we may derive the desired bound on ‖∇mu‖L2(Ω∩B(x0,r)). �
We nowwish to improve this inequality to a bound in terms of ‖u‖L2 rather than

in terms of all of the lower-order derivatives. This will be done by the following
theorem and its corollaries.

Theorem 18. Let x0 ∈ R
d and let R > 0. Let u ∈ W 2

m(B(x0, R)) be a function
that satisfies the inequality

ˆ
B(x0,ρ)

|∇mu|2 ≤
m−1∑

i=0

C0

(r − ρ)2m−2i

ˆ
B(x0,r)\B(x0,ρ)

|∇ iu|2 + F (19)

whenever 0 < ρ < r < R, for some number F > 0.
Then �u satisfies the stronger inequality

ˆ
B(x0,r)

|∇mu|2 ≤ C

(R − r)2m

ˆ
B(x0,R)\B(x0,r)

|u|2 + CF (20)

for some constant C depending only on m, the dimension d and the constant C0.
Furthermore, if 0 ≤ j ≤ m, then u satisfies

ˆ
B(x0,r)

|∇ ju|2 ≤ C

(R − r)2 j

ˆ
B(x0,R)

|u|2 + CR2m−2 j F. (21)
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Notice that in the bound (20), the right-hand side involves the quantity |u|2
integrated over an annulus B(x0, R)\B(x0, r), while in the bound (21) |u|2 is inte-
grated over the full ball B(x0, R). It is possible to use the Poincaré inequality and
the bound (20) to improve the bound (21) to an estimate involving the integral of
|u|2 over an annulus, but this comes at a cost of introducing powers of (R − r)/r ,
and so we have chosen to state the bound (21) as above.

Combined with Lemma 9, we immediately have the following corollaries.

Corollary 22. Let x0 ∈ R
d and let R > 0. Suppose that Lu = divm Ḟ in B(x0, R),

for some operator L of order 2m that satisfies the bounds (6) and (10), some
u ∈ W 2

m(B(x0, R)), and some Ḟ ∈ L2(B(x0, R)). If 0 < r < R and 0 ≤ j ≤ m,
then

ˆ
B(x0,r)

|∇ ju|2 ≤ C

(R − r)2 j

ˆ
B(x0,R)

|u|2 + CR2m−2 j
ˆ
B(x0,R)

(|Ḟ|2 + δ|u|2),
ˆ
B(x0,r)

|∇mu|2 ≤ C

(R − r)2m

ˆ
B(x0,R)\B(x0,r)

|u|2 + C
ˆ
B(x0,R)

(|Ḟ|2 + δ|u|2).

Recall that if we allow a term of the form ε‖∇mu‖2
L2(B(x0,R))

on the right-hand
side, then this corollary was proven in [5] in the homogeneous case Lu = 0.

Corollary 23. Let x0 ∈ R
d and let R > 0, and let Ω ⊂ B(x0, R). Suppose that

Lu = divm Ḟ in Ω , for some operator L of order 2m that satisfies the bounds (6)
and (10), some u ∈ W 2

m(Ω), and some Ḟ ∈ L2(Ω). Suppose in addition that umay
be extended by zero to all of B(x0, R), in the sense of condition (12) of Lemma 9.

If 0 < r < R and 0 ≤ j ≤ m, then

ˆ
B(x0,r)∩Ω

|∇ ju|2 ≤ C

(R − r)2 j

ˆ
Ω∩B(x0,R)

|u|2 + CR2m−2 j
ˆ

Ω

(|Ḟ|2 + δ|u|2),
ˆ
B(x0,r)∩Ω

|∇mu|2 ≤ C

(R − r)2m

ˆ
Ω∩B(x0,R)\B(x0,r)

|u|2 + C
ˆ

Ω

(|Ḟ|2 + δ|u|2).

Our methods will not allow us to improve upon Lemma 16 in the case of
Neumann boundary data.

Proof (Proof of Theorem 18). Let A(r, ζ ) denote either the annulus B(x0, r +
ζ )\B(x0, r − ζ ), or simply the ball B(x0, r + ζ ), depending on whether we are
establishing the bound (20) on ∇mu or the bound (21) on ∇ku.

Consider the following claim.

Claim. If 1 ≤ k ≤ m, and if R/2 < r < R and 0 < ζ < min(R − r, r), then

ˆ
A(r,ζ )

|∇ku|2 ≤
k−1∑

i=0

Ck

(ξ − ζ )2k−2i

ˆ
A(r,ξ)

|∇ iu|2 + R2m−2k F.
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If this claim is true for all such k, then clearly the bound (21) is valid. To establish
the bound (20), we combine the above claim with the assumed bound (19); it is this
that allows us to bound ∇mu by the integral of |u|2 over an annulus rather than a
ball.

Thus we need only prove the claim. That the claim is true for k = m follows
by our assumption (19). We work by induction. Suppose that the claim is true for
some k + 1 ≤ m; we will show that it is valid for k as well.

Let A j = A(r, ρ j ), where ζ = ρ0 < ρ1 < · · · < ξ for some sequence {ρ j }∞j=0

to be chosen momentarily. Let δ j = ρ j+1 − ρ j , and let Ã j = A(r, ρ j + δ j/2), so
A j ⊂ Ã j ⊂ A j+1. Let ϕ j be smooth, supported in Ã j , and identically equal to 1
in A j ; we may require that ‖∇ϕk‖ ≤ C/δ j and ‖∇2ϕk‖ ≤ C/δ2j for some absolute
constant C .

Now, for any j ≥ 0,ˆ
A j

|∇ku|2 ≤
ˆ
Ã j

|∇(ϕ j∇k−1u)|2.

By Plancherel’s theorem, if f ∈ W 2
2 (Rd) then

‖∇ f ‖2L2(Rd )
≤ C‖∇2 f ‖L2(Rd )‖ f ‖L2(Rd ).

We will apply this inequality to f = (ϕ j∇k−1u); it is this step that fails in the case
of Neumann boundary data. We have that
ˆ
A j

|∇ku|2 ≤ C

(ˆ
Ã j

|∇2(ϕ j∇k−1u)|2
)1/2(ˆ

Ã j

|ϕ j∇k−1u|2
)1/2

≤ C

(ˆ
Ã j

|∇k+1u|2 + |∇ku|2
δ2j

+ |∇k−1u|2
δ4j

)1/2(ˆ
Ã j

|∇k−1u|2
)1/2

.

Applying the claim to bound |∇k+1u|2, we see that
ˆ
A j

|∇ku|2 ≤
( k∑

i=0

Ck

δ2k+2−2i
j

ˆ
A j+1

|∇ iu|2 + CR2m−2k−2F

)1/2

×
(ˆ

Ã j

|∇k−1u|2
)1/2

.

We move a factor of Ck/δ
2
j from the first term to the second, and then use the

inequality
√
a
√
b ≤ (1/2)a + (1/2)b to see that

ˆ
A j

|∇ku|2 ≤ 1

2

k∑

i=0

1

δ2k−2i
j

ˆ
A j+1

|∇ iu|2 + 1

2
R2m−2k F + Ck

δ2j

ˆ
Ã j

|∇k−1u|2.

Separating out the term i = k, we see that

ˆ
A j

|∇ku|2 ≤ Ck

k−1∑

i=0

1

δ2k−2i
j

ˆ
A j+1

|∇ iu|2 + 1

2
R2m−2k F + 1

2

ˆ
A j+1

|∇ku|2.
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This bound is valid for all j > 0. We may iterate to see that

ˆ
A0

|∇ku|2 ≤
∞∑

j=0

2− j
(
Ck

k−1∑

i=0

1

δ2k−2i
j

ˆ
A j+1

|∇ iu|2 + 1

2
R2m−2k F

)

≤ Ck

k−1∑

i=0

( ∞∑

j=0

2− j 1

δ2k−2i
j

) ˆ
A∞

|∇ iu|2 + R2m−2k F.

Now, choose ρ j = ζ + (ξ − ζ )(1− τ)
∑ j

i=1 τ i for some 0 < τ < 1. Then ρ0 = ζ

and lim j→∞ ρ j = ξ . So

ˆ
A0

|∇ku|2 ≤ Ck,τ

k−1∑

i=0

( ∞∑

j=1

1

(2τ 2k−2i ) j

1

(ξ − ζ )2k−2i

) ˆ
A∞

|∇ iu|2 + R2m−2k F.

Choosing τ so that 2τ 2k > 1 and τ < 1, we see that the sum in j converges and
the proof is complete. �

4. Meyers’s reverse Hölder inequality for gradients

In this section we will generalize Meyers’s reverse Hölder inequality (2) to the
higher-order case. We will use many of the techniques of the second-order case.
As in Sect. 3, we will use the inhomogeneous Sobolev spaces

W p
k (U ) =

{
u :

k∑

j=0

‖∇ ju‖L p(U ) < ∞
}
.

The main result of this section in the interior and Dirichlet boundary case is the
following theorem; the Neumann boundary version is Theorem 36 below.

Theorem 24. Let L be an operator of order 2m that satisfies the bounds (6)
and (10). Let cΩ > 0. Then there is some number p+ = p+

L > 2 depending only
on the standard constants and the number cΩ such that the following statement is
true.

Let x0 ∈ R
d and let R > 0. Suppose that u ∈ W 2

m(B(x0, R)), that Ḟ ∈
L2(B(x0, R)), and that either

(25) Lu = divm Ḟ in Ω = B(x0, R), or
(26) Lu = divm Ḟ in some domain Ω � B(x0, R), and u lies in the closure in

W 2
m(B(x0, R)) of {ϕ ∈ C∞(Rd) : ϕ ≡ 0 in B(x0, R)\Ω}. Furthermore,

if x ∈ ∂Ω and ρ > 0, then |B(x0, ρ)\Ω| ≥ cΩρd , where |E | denotes the
Lebesgue measure of E.
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Suppose that 0 < p ≤ 2 < q < p+. Then
(ˆ

B(x0,r)∩Ω

|∇mu|q
)1/q

≤ C(cΩ, p, q)

(R − r)d/p−d/q

(ˆ
Ω

|∇mu|p
)1/p

+ C(cΩ, p, q)

(ˆ
Ω

|Ḟ|q + δq/2|u|q
)1/q

(27)

for some constant C(cΩ, p, q) depending only on p, q, cΩ and the standard para-
meters.

We may also bound the lower-order derivatives. Suppose that m − d/2 <

m − k < m and that 0 ≤ m − k. Let 0 < p ≤ 2 ≤ q < min(p+
L , d/k). Then

(ˆ
B(x0,r)∩Ω

|∇m−ku|qk
)1/qk

≤ C(cΩ, p, q)

(R − r)d/pk−d/qk

(ˆ
Ω

|∇m−ku|pk
)1/pk

+ C(cΩ, p, q)Rk
(ˆ

Ω

|Ḟ|q + δq/2|u|q
)1/q

(28)

where qk = q d/(d − k q) and pk = p d/(d − k p). (Notice that the condition
0 < p ≤ 2 ≤ q < min(p+

L , d/k) is equivalent to the condition 0 < pk ≤ 2k ≤
qk < p+

k , where 2k = 2 d/(d − 2k) and p+
k = p+

L d/(d − k p+
L ) if d > k p+

L and
p+
k = ∞ if d ≤ k p+

L .)
Finally, if 0 ≤ m − k ≤ m − d/2 and 0 < p < ∞, then ∇m−ku is Hölder

continuous and satisfies the bound

sup
B(x0,r)∩Ω

|∇m−ku| ≤ C(p, q)

(R − r)d/p

(ˆ
Ω

|∇m−ku|p
)1/p

+ C(p, q)Rk−d/q
(ˆ

Ω

|Ḟ|q + δq/2|u|q
)1/q

(29)

provided that 0 < p ≤ ∞ and that either q ≥ 2 and k > d/2 or q > 2 and
k ≥ d/2.

Of course if p > q, then we may use Hölder’s inequality to bound ‖∇m−ku‖Lq

by ‖∇m−ku‖L p ; however, we then no longer have the coefficient (R − r)d/q−d/p.
In the interior case Ω = B(x0, R), the bound (27) with p = 2 was proven in [5]
in the homogeneous case Lu = 0, and in [9] under the strong pointwise Gård-
ing inequality; the lower-order bounds (28) and (29) are relatively straightforward
consequences of the bound (27) but it will be convenient later to have them stated
explicitly.

We will prove Theorem 24 as in the second-order case; we will need the fol-
lowing lemmas. The first two given lemmas are standard in the theory of Sobolev
spaces; see, for example, [17, Section 5.6.3].

Lemma 30. (The Gagliardo–Nirenberg–Sobolev inequality in balls). Let x0 ∈ R
d

and let ρ > 0. Suppose that 1 ≤ q < d, that 1 ≤ k < d/q, and that ∇kv ∈
Lq(B(x0, ρ)). Let qk = q d/(d − k q).
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Then v ∈ Lqk (B(x0, ρ)). More precisely,

‖v‖Lqk (B(x0,ρ)) ≤ C(q, k)
k∑

i=0

ρi−k‖∇ iv‖Lq (B(x0,ρ)).

Lemma 31. (Morrey’s inequality). Suppose that 1 ≤ q ≤ ∞, that k > d/q, and
that ∇kv ∈ Lq(B(x0, ρ)) for some ball B(x0, ρ) ⊂ R

d .
Then v is Hölder continuous in B(x0, ρ). Furthermore, v satisfies the local

bound

‖v‖L∞(B(x0,ρ)) ≤ C(q, k)
k∑

i=0

ρi−d/q‖∇ iv‖Lq (B(x0,ρ)).

The next lemma comes from the book [22], where it was used for a relatively
straightforward proof of Theorem 24 in the second-order case.

Lemma 32. ([22, Chapter V, Theorem 1.2]). Let Q ⊂ R
d be a cube and let g and

f be two nonnegative, locally integrable functions defined on Q. Suppose that, for
any x ∈ Q, we have that

sup
0<r<dist(x,∂Q)/2

 
B(x,r)

gp ≤ b

(
sup
0<r

 
B(x,r)

g

)p

+ sup
0<r

 
B(x,r)

f p

for some constant b > 0 and some p > 1. Then there is some ε > 0 depending only
on b, p and the dimension d, such that if p < q < p + ε and f ∈ L p(B(x0, R)),
then

( 
(1/2)Q

gq
)1/q

≤ C(b, p, q)

( 
Q
gp

)1/p

+ C(b, p, q)

( 
Q

f q
)1/q

where (1/2)Q is the cube concentric to Q with side-length half that of Q.

The following lemma was established in [18, Section 9, Lemma 2] in the case
of harmonic functions. We must now generalize it.

Lemma 33. Let 0 < p0 < q ≤ ∞. Let x0 ∈ R
d and let R > 0. Suppose that

u ∈ Lq(B(x0, R)) is a function with the property that, whenever 0 < ρ < r < R,
we have the bound

(ˆ
B(x0,ρ)

|u|q
)1/q

≤ C0

(r − ρ)d/p0−d/q

(ˆ
B(x0,r)

|u|p0
)1/p0

+ F (34)

for some constants C0 and F depending only on u.
Then for every p with 0 < p ≤ p0, there is some constant C(p, q), depending

only on p, p0, q and C0, such that for any such ρ and r,

(ˆ
B(x0,ρ)

|u|q
)1/q

≤ C(p, q)

(r − ρ)d/p−d/q

(ˆ
B(x0,r)

|u|p
)1/p

+ C(p, q) F.
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Proof. Let ρ = ρ0 < ρ1 < ρ2 < · · · < r for some ρk to be chosen momentarily,
and let Bk = B(x0, ρk). If 0 < τ < 1, then

‖u‖L p0 (Bk ) =
(ˆ

Bk
|u|p0

)1/p0
=

(ˆ
Bk

|u|τp0 |u|(1−τ)p0

)1/p0
.

If 0 < τ ≤ p/p0, then p/τp0 ≥ 1 and so we may apply Hölder’s inequality to see
that

‖u‖L p0 (Bk ) ≤ ‖u‖τ
L p(Bk )

‖u‖1−τ
Lγ (Bk )

where γ satisfies 1/p0 = τ/p + (1 − τ)/γ . Choose τ so that γ = q; observe that
this means that τ = (p/p0)(q − p0)/(q − p), and thus if 0 < p < p0 < q then τ

does satisfy the condition 0 < τ < p/p0.
In order for our estimates to scale correctly, we rewrite this estimate as

‖u‖L p0 (Bk )

(r − ρ)d/p0
≤

( ‖u‖L p(Bk )

(r − ρ)d/p

)τ( ‖u‖Lq (Bk )

(r − ρ)d/q

)1−τ

. (35)

By the bound (34),

‖u‖Lq (Bk )

(r − ρ)d/q
≤ C(p0, q)‖u‖L p0 (Bk+1)

(ρk+1 − ρk)β(r − ρ)d/q
+ C(p0) F

(r − ρ)d/q

where we have set β = d/p0 − d/q . Notice β > 0.
Recall that ρ0 = ρ. Let ρk+1 = ρk + (r − ρ)(1 − σ)σ k for some constant

0 < σ < 1 to be chosen momentarily. Notice that limk→∞ ρk = r . Because
σ−kβ > 1 > (1 − σ)β , we have that

‖u‖Lq (Bk )

(r − ρ)d/q
≤ C(p0, q) F

(r − ρ)d/q
+ σ−kβ C(p0, q)‖u‖L p0 (Bk+1)

(1 − σ)β(r − ρ)d/p0

≤ C(p0, q, σ )σ−kβ
(

F

(r − ρ)d/q
+ ‖u‖L p0 (Bk+1)

(r − ρ)d/p0

)
.

By the bound (35) and Young’s inequality, we have that

‖u‖L p0 (Bk )

(r − ρ)d/p0
≤ τC(p0, q, σ )σ−kβ(1−τ)/τ ‖u‖L p(Bk )

(r − ρ)d/p
+ (1 − τ)

F

(r − ρ)d/q

+ (1 − τ)
‖u‖L p0 (Bk+1)

(r − ρ)d/p0
.

Applying this bound to k = 0 and iterating, we have that for any integer K ≥ 1,

‖u‖L p0 (B0)

(r − ρ)d/p
≤

K∑

k=0

(1 − τ)k
(

τC(p0, q, σ )σ−kβ(1−τ)/τ ‖u‖L p(Bk )

(r − ρ)d/p

)

+
K∑

k=0

(1 − τ)k
(

(1 − τ)
F

(r − ρ)d/q

)

+ (1 − τ)K+1 ‖u‖L p0 (BK+1)

(r − ρ)d/p0
.
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We want to take the limit as K → ∞. Choose σ so that (1− τ) < σβ(1−τ)/τ < 1;
then the sums converge and we have that

‖u‖L p0 (B(x0,r))

(r − ρ)d/p
≤ C(p0, p, q)

‖u‖L p(B(x0,r))

(r − ρ)d/p
+ C(p0, p, q)

F

(r − ρ)d/q
.

This completes the proof. �

Proof (Proof of Theorem 24). We begin with the bound (27).
Let x1 ∈ R

d and let ρ > 0 be such that B(x1, 2ρ) ⊂ B(x0, R). By Lemma 9,

 
B(x1,ρ)

∣∣∇mu
∣∣2 ≤

m∑

j=1

C

ρ2 j

 
B(x1,(3/2)ρ)

∣∣∇m− ju
∣∣2 + C

 
B(x1,(3/2)ρ)

h2

where h(x) = |Ḟ(x)| + δ1/2|u(x)|. (Recall that u = 0 in B(x0, R)\Ω; we may
also take Ḟ = 0 in B(x0, R)\Ω .)

If B(x1, (3/2)ρ) ⊂ Ω , then we normalize u by adding polynomials, so thatffl
B(x1,(3/2)ρ)

∇ iu = 0 for all 0 ≤ i ≤ m−1; if Lu = divm Ḟ in all of B(x1, (3/2)ρ)

then the above bound is still valid. We may then apply the Poincaré inequality to
control the integral of ∇m− ju by the integral of ∇m−1u. Thus,

 
B(x1,ρ)

∣∣∇mu
∣∣2 ≤ C

ρ2

 
B(x1,(3/2)ρ)

∣∣∇m−1u
∣∣2 + C

 
B(x1,(3/2)ρ)

h2.

Now, let 2′
1 = 2d/(d + 2). By Lemma 30,

( 
B(x1,(3/2)ρ)

∣∣∇m−1u
∣∣2

)1/2

≤ Cρ

( 
B(x1,(3/2)ρ)

∣∣∇mu
∣∣2′

1

)1/2′
1

+ C

( 
B(x1,(3/2)ρ)

∣∣∇m−1u
∣∣2′

1

)1/2′
1

.

Using the Poincaré inequality and the assumption that
ffl
B(x1,2ρ)

∇m−1u = 0, we
may control the second term on the right-hand side by the first; we thus have the
bound

( 
B(x1,ρ)

∣∣∇mu
∣∣2

)1/2

≤ C

( 
B(x1,(3/2)ρ)

∣∣∇mu
∣∣2′

1

)1/2′
1

+ C

( 
B(x1,(3/2)ρ)

h2
)1/2

.

If B(x1, (3/2)ρ) �⊂ Ω , then there is some x2 ∈ ∂Ω ∩ B(x1, (3/2)ρ). By our
assumption on Ω ,

2−dcΩρd ≤ |B(x2, ρ/2)\Ω| ≤ |B(x1, 2ρ)\Ω|.
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Then ∇m− ju = 0 in the substantial set B(x1, 2ρ)\Ω for all j . Thus, we may use
the Poincaré inequality in B(x1, 2ρ) without renormalizing u. Arguing as before
we have the bound

( 
B(x1,ρ)

∣∣∇mu
∣∣2

)1/2

≤ C

( 
B(x1,2ρ)

∣∣∇mu
∣∣2′

1

)1/2′
1 + C

( 
B(x1,2ρ)

h2
)1/2

.

Observe that 2′
1 < 2. Thus we have established a reverse Hölder inequality. In

particular, the bound (27) is valid for R = 2r = 2ρ, for q = 2 and for p = 2′
1.

We now use Lemma 32 to improve to q > 2. Observe that we may cover
B(x0, r) by a grid of cubes Q j , 1 ≤ j ≤ J , with side-length �(Q j ) = (R−r)/2c0,
with pairwise-disjoint interiors. If we choose c0 large enough (depending on the
dimension), then 2Q j ⊂ B(x0, R) for all j . We then have that, for any p,

ˆ
B(x0,r)

|∇mu|p ≤
J∑

j=1

ˆ
Q j

|∇mu|p.

Fix some j . Let g(x) = |∇mu(x)|2′
1 , and let f (x) = h(x)2

′
1 . Let p = 2/2′

1;
notice p > 1.

If x1 ∈ Q j , and if 0 < ρ < dist(x1, ∂Q j )/2, then 
B(x1,ρ)

gp =
 
B(x1,ρ)

|∇mu(x)|2

≤ C

( 
B(x1,2ρ)

∣∣∇mu
∣∣2′

1

)2/2′
1 + C

 
B(x1,2ρ)

h2

= C

( 
B(x1,2ρ)

g

)p

+ C
 
B(x1,2ρ)

f p.

Thus Lemma 32 applies, and so there is some q+ > 2 such that
( 

Q j

|∇mu|q
)1/q

≤ C(q)

( 
2Q j

|∇mu|2
)1/2

+ C(q)

( 
2Q j

hq
)1/q

for all q with 2 < q < q+. Thus,
ˆ
B(x0,r)

|∇mu|q ≤
J∑

j=1

ˆ
Q j

|∇mu|q

≤
J∑

j=1

C(q)

�(Q j )dq/2−d

(ˆ
2Q j

|∇mu|2
)q/2

+ C(q)

J∑

j=1

ˆ
2Q j

hq .

Recall that �(Q j ) = (R − r)/2c0. Observe that almost every x ∈ B(x0, R) is in at
most 2d of the cubes 2Q j ; thus,

ˆ
B(x0,r)

|∇mu|q ≤ C(q)

(R − r)dq/2−d

(ˆ
B(x0,R)

|∇mu|2
)q/2

+ C(q)

ˆ
B(x0,R)

hq

as desired.
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Applying Lemma 33, we see that we may replace the exponent 2 by any expo-
nent p with 0 < p < 2; this completes the proof of the bound (27).

Now, suppose that 0 < k < d/2. We wish to prove the bound (28). We apply
Lemma 30 to v a component of ∇m−ku. This gives us the bound

(ˆ
B(x1,ρ)

|∇m−ku|qk
)1/qk

≤ C
k∑

i=0

ρ−i
(ˆ

B(x1,ρ)

|∇m−iu|q
)1/q

.

We have that
(ˆ

B(x1,ρ)

|∇m−iu|q
)1/q

≤
(ˆ

B(x1,ρ)

|∇m−iu − ffl
B(x1,ρ)

∇m−iu|q
)1/q

+ Cρd/q |fflB(x1,ρ)
∇m−iu|

and so by the Poincaré inequality

(ˆ
B(x1,ρ)

|∇m−iu|q
)1/q

≤ Cρ

(ˆ
B(x1,ρ)

|∇m−i+1u|q
)1/q

+ Cρd/q−d
ˆ
B(x1,ρ)

|∇m−iu|.

Iterating, we see that

(ˆ
B(x1,ρ)

|∇m−ku|qk
)1/qk

≤ C

(ˆ
B(x1,ρ)

|∇mu|q
)1/q

+ C
k∑

i=0

ρ−i+d/q−d
ˆ
B(x1,ρ)

|∇m−iu|.

Applying the known results for ∇mu and Corollary 22 or 23, we see that

(ˆ
B(x1,ρ)

|∇m−ku|qk
)1/qk

≤ C(q)

ρd/2−d/q+m

(ˆ
B(x1,(3/2)ρ)

|u|2
)1/2

+ C(q)

(ˆ
B(x1,(3/2)ρ)

hq
)1/q

.

As before, we either normalize u in B(x1, (3/2)ρ) by adding polynomials of
degree m − k − 1 or observe that u and all its derivatives are zero on a substantial
subset of B(x1, 2ρ); in either case we may use the Poincaré inequality to control u
by ∇m−ku. This yields the bound

(ˆ
B(x1,ρ)

|∇m−ku|qk
)1/qk

≤ C(q)

ρd/2−d/q+k

(ˆ
B(x1,2ρ)

|∇m−ku|2
)1/2

+ C(q)

(ˆ
B(x1,2ρ)

hq
)1/q

.



Gradient estimates and the fundamental solution for higher-order elliptic systems 393

By Hölder’s inequality wemay replace the exponent 2 by the exponent pk provided
pk ≥ 2.Using standard covering lemmas, if qk ≥ max(pk, q) thenwemay improve
to the estimate

(ˆ
B(x1,ρ)

|∇m−ku|qk
)1/qk

≤ C(q)

(r − ρ)d/pk−d/q+k

(ˆ
B(x0,r)

|∇m−ku|pk
)1/pk

+ C(q)

(ˆ
B(x0,r)

hq
)1/q

.

By Lemma 33 this inequality is still valid for 0 < pk < 2.
Identical arguments, usingLemma31 in place of Lemma30, establish the bound

(29) on sup|∇m−ku| in the case k > d/q. �
In some domains we may also prove a boundary reverse Hölder estimate in the

Neumann case.

Theorem 36. Let Ω be a Lipschitz graph domain, that is, a domain of the form

Ω = {(x ′, t) : x ′ ∈ R
d−1, t > ϕ(x ′)}

for some function ϕ : R
d−1 �→ R with ‖∇ϕ‖L∞(Rd−1) = M < ∞.

Let L be an operator of order 2m that satisfies the bound (6) and the bound
(17) in Ω .

Then there is some number p+ = p+
L > 2 depending only on the standard

constants and the number M = ‖∇ϕ‖L∞(Rd−1) such that the following statement
is true.

Let x0 ∈ ∂Ω and let R > 0. Suppose that u ∈ W 2
m(B(x0, R)), that Ḟ ∈

L2(B(x0, R)), and that
〈∇mϕ, A∇mu

〉
Ω

= 〈∇mϕ, Ḟ
〉
Ω

for all smooth functions ϕ supported in B(x0, R).
Then

(ˆ
B(x0,r)∩Ω

|∇mu|q
)1/q

≤ C(M, p, q)

(R − r)d/p−d/q

(ˆ
B(x0,R)∩Ω

|∇mu|p
)1/p

+ C(M, p, q)

(ˆ
B(x0,R)∩Ω

|Ḟ|q + δq/2|u|q
)1/q

(37)

for some constant C(M, p, q) depending only on p, q, M and the standard para-
meters.

Proof. If x1 = (x ′
1, t1) ∈ R

d and ρ > 0, then let Q(x1, ρ) be the Lipschitz cylinder

Q(x1, ρ) = {(x ′, t) : |x ′ − x ′
1| < ρ, ϕ(x ′) + t1 − ρ < t < ϕ(x ′) + t1 + ρ}.

Using either covering lemmas or a bilipschitz change of variables, we see that
many results stated in terms of balls are valid in Lipschitz cylinders. In particu-
lar, Lemma 16, the Poincaré inequality, and the first-order Gagliardo–Nirenberg–
Sobolev inequality

‖v‖Lq1 (Q(x0,ρ)) ≤ C‖∇v‖Lq (Q(x0,ρ)) + Cρ‖v‖Lq (Q(x0,ρ)),
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Lemma 32, and Lemma 33 are valid in Lipschitz cylinders.
We now proceed much as in the proof of the estimate (27) of Theorem 24. Let

x1 ∈ R
d and let ρ > 0 be such that Q(x1, 2ρ) ⊂ B(x0, R). By Lemma 16,

( 
Q(x1,ρ)

1Ω

∣∣∇mu
∣∣2

)1/2

≤
m∑

j=1

C

ρ2 j

( 
Q(x1,(3/2)ρ)

1Ω

∣∣∇m− ju
∣∣2

)1/2

+ C

( 
Q(x1,(3/2)ρ)

h2
)1/2

where h(x) = |Ḟ(x)| + δ1/2|u(x)| in Ω and is zero outside Ω .
Notice that we may normalize u by adding polynomials, regardless of whether

Q(x1, (3/2)ρ) is contained in Ω . If Q(x1, (3/2)ρ) ⊂ Ω , then may establish the
reverse Hölder inequality

( 
Q(x1,ρ)

1Ω

∣∣∇mu
∣∣2

)1/2

≤ C

( 
Q(x1,(3/2)ρ)

1Ω

∣∣∇mu
∣∣2′

1

)1/2′
1

+ C

( 
Q(x1,(3/2)ρ)

h2
)1/2

as in the proof of Theorem 24. If Q(x1, (3/2)ρ) �⊂ Ω , either Q(x1, (3/2)ρ) ∩
Ω = ∅ and so this reverse Hölder inequality is trivially true, or Q(x1, 2ρ) ∩ Ω is
substantial. Specifically, in this final case there exists some cwith 4/3 < c < 8 such
that the map (x, t) �→ (x, ct) sends Q(x1, 2ρ) ∩ Ω to a Lipschitz cylinder. Thus,
Lemma 30 and the Poincaré inequality are valid in Q(x1, 2ρ) ∩ Ω with constants
independent of x1 and ρ, and so we see that

( 
Q(x1,ρ)

1Ω

∣∣∇mu
∣∣2

)1/2

≤ C

( 
Q(x1,2ρ)

1Ω

∣∣∇mu
∣∣2′

1

)1/2′
1

+ C

( 
Q(x1,2ρ)

h2
)1/2

.

This establishes a reverse Hölder inequality with q = 2 and p = 2′
1; as in the proof

of Theorem 24, we may use Lemmas 32 and 33 and covering lemmas to improve
to arbitrary p, q and to return to balls of radii r and R. �

5. The fundamental solution

In this section we will construct the fundamental solution for elliptic systems of
arbitrary order 2m ≥ 2 in dimension d ≥ 2. As in [23,24], we will construct
the fundamental solution as the kernel of the solution operator to the equation
Lu = divm Ḟ.

Specifically, in Sect. 5.1 we will construct this solution operator using the Lax-
Milgram lemma and will discuss its adjoint. In Sect. 5.2 we will construct a pre-
liminary version of the fundamental solution in the case of operators of high order.
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In Sect. 5.3 we will refine our construction to produce some desirable additional
properties, and finally in Sect. 5.4 we will extend these results to operators of arbi-
trary even order. A summary of the principal results concerning the fundamental
solution is collected at the beginning of Sect. 5.4.

An important estimate in this section will be the norm estimate

λ‖u‖2
Ẇ 2

m (Rd )
≤ Re

〈∇mu, A∇mu
〉
Rd .

This estimate is valid if the coefficients A are elliptic in the sense of the bound (7)
[not the weaker sense of the bound (10)] and if we take the norm of u in a homoge-
neous space. Thus, in this section, we will work with strongly elliptic coefficients
and with the homogeneous Sobolev spaces

Ẇ p
k (U ) =

{
u : ‖∇ku‖L p(U ) < ∞

}
.

5.1. The Newton potential

In this section we will construct the Newton potential, that is, the operator whose
kernel is the fundamental solution. The Newton potential u = �L Ḟ is defined as
the solution to Lu = divm Ḟ in R

d . If Ḟ ∈ L2(Rd), then we may construct �L Ḟ
as follows.

Recall the (complex) Lax-Milgram lemma:

Theorem 38. ([6, Theorem 2.1]). Let H1 and H2 be two Hilbert spaces, and let B
be a bounded bilinear form on H1 × H2 that is coercive in the sense that

sup
w∈H1\{0}

|B(w, v)|
‖w‖H1

≥ λ‖v‖H2 , sup
w∈H2\{0}

|B(u, w)|
‖w‖H2

≥ λ‖u‖H1

for every u ∈ H1, v ∈ H2, for some fixed λ > 0. Then for every linear functional T
defined on H1 there is a unique uT ∈ H2 such that B(v, uT ) = T (v). Furthermore,
‖uT ‖H2 ≤ 1

λ
‖T ‖H ′

1
.

Let L be an operator of order 2m that is elliptic in the sense that the coefficients
satisfy the conditions (6) and (7). Suppose that Ḟ = {Fj,α : 1 ≤ j ≤ N , |α| = m}
is an array of functions all lying in L2(Rd). Then TḞ(v) = 〈

Ḟ,∇mv
〉
Rd is a

bounded linear operator on the Hilbert space Ẇ 2
m(Rd). We choose B(w, v) =〈∇mw, A∇mv

〉
Rd ; by our ellipticity conditions (6) and (7), B is bounded and coer-

cive on Ẇ 2
m(Rd). Let�L Ḟ be the element uT of Ẇ 2

m(Rd) given by theLax-Milgram
lemma. Then

〈∇mϕ, A∇m(�L Ḟ)
〉
Rd = 〈∇mϕ, Ḟ

〉
Rd (39)

for all ϕ ∈ Ẇ 2
m(Rd �→ C

N ).
We will need some properties of the Newton potential�L . First, by the unique-

ness of solutions provided by the Lax-Milgram lemma, �L is a well-defined oper-
ator; furthermore, �L is linear and bounded L2(Rd) �→ Ẇ 2

m(Rd).
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Next, observe that if � ∈ Ẇ 2
m(Rd �→ C

N ), then by uniqueness of solutions to
Lu = divm Ḟ,

�L(A∇m�) = � (40)

as Ẇ 2
m(Rd �→ C

N )-functions, that is, up to adding polynomials of order m − 1.
Next, we wish to show that the adjoint (∇m�L)∗ to the operator ∇m�L is

∇m�L∗
. To prove this we will need the following elementary result; this will let

us identify vector fields that arise as mth-order gradients.

Lemma 41. Let
(
fα

)
|α|=m be a set of functions in L1

loc(Ω), where Ω is a simply
connected domain. Suppose that whenever α + ek = β + e j , we have that

〈
∂ jϕ, fβ

〉
Ω

= 〈
∂kϕ, fα

〉
Ω

for all ϕ smooth and compactly supported in Ω .
Then there is some function f ∈ Ẇ 1

m,loc(Ω) such that fα = ∂α f for all α.

Proof. If m = 1 and the functions fα are C1, then this lemma is merely the
classical result that irrotational vector fields may be written as gradients. We begin
by generalizing to the case m = 1 and the case fα ∈ L1

loc(Ω). We let f j = fe j .
Let η be a smooth, nonnegative function supported in B(0, 1)with

´
η = 1, and

let ηε(x) = ε−dη(x/ε). Let f ε
j = f j ∗ ηε, so that f ε

j is smooth. By assumption,

∂k f ε
j (x) = ∂ j f ε

k (x) provided ε < dist(x,ΩC ). Let B be a ball with B ⊂ Ω ,

and assume that ε < dist(B,ΩC )/2. Then there is some function f ε such that
∂ j f ε = f ε

j in B.

Now renormalize f ε so that
´
B f ε = 0. By Lemma 30, because∇ f ε ∈ L1(B),

we have that f ε ∈ L p(B), uniformly in ε, for some p > 1. Since L p(B) is weakly
sequentially compact, we have that some subsequence f εi has a weak limit f .

If ϕ is smooth and supported in B, then
〈
∂ jϕ, f

〉
B = lim

i→∞
〈
∂ jϕ, f εi

〉
B = − lim

i→∞
〈
ϕ, f εi

j

〉
B = −〈

ϕ, f j
〉
B

and so f j is the weak derivative of f in the j th direction for all 1 ≤ j ≤ d.
We may cover any compact subset V ⊂ Ω by such balls B; renormalizing f

again, so as to be defined compatibly on different balls, we see that we may extend
f to a function in L1

loc(Ω).
Now we work by induction. Suppose that the theorem is true for m = 1 and for

m = M − 1. We wish to show that the theorem is true for m = M as well.
Fix some γ with |γ | = M − 1, and let f j = fγ+e j . By assumption

〈
∂kϕ, f j

〉
Ω

= 〈
∂kϕ, fγ+e j

〉
Ω

= 〈
∂ jϕ, fγ+ek

〉
Ω

= 〈
∂ jϕ, fk

〉
Ω

for all appropriate test functions ϕ.
Because the theorem is valid for m = 1, there is some f = fγ ∈ Ẇ 1

1,loc(Ω)

such that ∂ j fγ = fγ+e j in the weak sense.
If |γ | = |δ| = M − 1, and γ + e j = δ + ek , then

〈
∂ jϕ, fγ

〉
Ω

= −〈
ϕ, fγ+e j

〉
Ω

= −〈
ϕ, fδ+ek

〉
Ω

= 〈
∂kϕ, fδ

〉
Ω
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and so the array
(
fγ

)
|γ |=M−1 satisfies the conditions of the theorem with m =

M − 1. Because the theorem is true for m = M − 1, we have that there is some
f ∈ Ẇ 1

M−1,loc(Ω) such that fγ = ∂γ f for all |γ | = M−1; because ∂k fγ = fγ+ek
we have that fα = ∂α f for all |α| = m, and so the theorem is true for m = M as
well. This completes the proof. �

We now consider the adjoint operator to the Newton potential.

Lemma 42. The adjoint (∇m�L)∗ to the operator ∇m�L is ∇m�L∗
.

Proof. Observe that ∇m�L is bounded on L2(Rd) and so (∇m�L)∗ is as well;
that is, (∇m�L)∗ Ḟ is an element of L2(Rd). We first show that it is an element of
the subspace of gradients of Ẇ 2

m(Rd)-functions, that is, that there is some function
u ∈ Ẇ 2

m(Rd) such that (∇m�L)∗ Ḟ = ∇mu.
By Lemma 41, it suffices to show that if 1 ≤ i ≤ N , if ϕ is smooth and

compactly supported in Ω , and if α + ek = β + e j , then

〈
∂ jϕ ėi,β , (∇m�L)∗ Ḟ

〉
Ω

= 〈
∂kϕ ėi,α, (∇m�L)∗ Ḟ

〉
Ω

.

That is, we seek to show that

〈∇m�L(∂ jϕ ėi,β − ∂kϕ ėi,α), Ḟ
〉
Ω

= 0.

But
〈∇mη, ∂ jϕ ėi,β − ∂kϕ ėi,α

〉
Rd = 0 for all η smooth and compactly supported,

and so �L(∂ jϕ ėi,β − ∂kϕ ėi,α) = 0.
Let u satisfy∇mu = (∇m�L)∗ Ḟ. We now show that u = �L∗

Ḟ. Choose some
ϕ smooth and compactly supported in R

d . Then

〈∇mϕ, A∗∇mu
〉
Rd = 〈

A∇mϕ, (∇m�L)∗ Ḟ
〉
Rd

= 〈∇m�L(A∇mϕ), Ḟ
〉
Rd .

By formula (40), we have that ∇m�L(A∇mϕ) = ∇mϕ. Thus

〈∇mϕ, A∗∇mu
〉
Rd = 〈∇mϕ, Ḟ

〉
Rd

for all ϕ smooth and compactly supported. Because �L∗
Ḟ is the unique element

of Ẇ 2
m(Rd) with this property, we must have that u = �L∗

Ḟ and the proof is
complete. �

We conclude this section by showing that the Newton potential is bounded on
a range of L p spaces.

Lemma 43. Let L be an operator of order 2m that satisfies the bounds (6) and (7),
and let p+

L be as in Theorem 24. Let 1/p+
L + 1/p−

L = 1. If p−
L∗ < p < p+

L , then
�L extends to an operator that is bounded L p(Rd) �→ Ẇ p

m (Rd).
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Proof. Suppose first that 2 < p < p+
L . Let Ḟ ∈ L2(Rd) ∩ L p(Rd) and let u =

�L Ḟ. By Theorem 24,

(ˆ
B(x0,r)

|∇mu|p
)1/p

≤ C(p)

rd/2−d/p

(ˆ
B(x0,2r)

|∇mu|2
)1/2

+ C(p)

(ˆ
B(x0,2r)

|Ḟ|p
)1/p

.

By taking the limit as r → ∞, we see that ‖∇m�L Ḟ‖L p(Rd ) ≤ C(p)‖Ḟ‖L p(Rd ),
and so �L extends to an operator that is bounded L p(Rd) �→ Ẇ p

m (Rd).
By a similar argument ∇m�L∗

is bounded L p′
(Rd) �→ L p′

(Rd) for all
2 < p′ < p+

L∗ ; thus by duality ∇m�L is bounded L p(Rd) �→ L p(Rd) for all
p−
L∗ < p < 2, as desired. �

5.2. The fundamental solution for operators of high order

This section will be devoted to the proof of the following theorem.

Theorem 44. Let L be an operator of order 2m > d whose coefficients satisfy
the bounds (6) and (7). For each z0 ∈ R

d and each r > 0, there exist functions
EL

j,k,z0,r
(x, y) with the following properties.

First, if x ∈ R
d and |β| = m, then f (y) = ∂

β
y EL

j,k,z0,r
(x, y) lies in L2(Rd),

and if Ḟ ∈ L2(Rd), then for all 1 ≤ j ≤ N, we have that

Π L
j Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂β
y E

L
j,k,z0,r (x, y) Fk,β(y) dy (45)

as Ẇm
2 (Rd)-functions, that is, up to adding polynomials of order m − 1.
Next, for any x0 and y0, we have the bounds

ˆ
B(x0,r)

ˆ
B(y0,r)

|∇m
x ∇m

y EL
j,k,z0,r (x, y)|2 dy dx ≤ C, r = |x0 − y0|/3. (46)

If 1 ≤ j ≤ N, 1 ≤ k ≤ N, and if α, β are multiindices with |α| = |β| = m, then

∂α
x ∂β

y E
L∗
j,k,z0,r (x, y) = ∂

β
y ∂α

x E
L
k, j,z0,r

(y, x). (47)

Finally, if |x0 − z0| = |y0 − z0| = |x0 − y0| = 3r , then we have the bounds

ˆ
B(x0,r)

ˆ
B(y0,r)

|∇m−q
x ∇m−s

y EL
j,k,z0,r (x, y)|2 dy dx ≤ Cr2q+2s (48)

whenever 0 ≤ q ≤ m and 0 ≤ s ≤ m.



Gradient estimates and the fundamental solution for higher-order elliptic systems 399

By uniqueness of the Newton potential �L Ḟ in Ẇ 2
m(Rd), the array of highest-

order derivatives ∇m
x ∇m

y EL
j,k(x, y) is unique; however, there are many possible

normalizations of the lower-order derivatives ∇m−q
x ∇m−s

y EL
j,k(x, y). In Sect. 5.3

we will discuss some natural normalization conditions. In Sect. 5.4 we will extend
this theorem to operators of order 2m ≤ d.

We will now prove Theorem 44. We begin by constructing a fundamental solu-
tion EL(x, y). For our preliminary argument, we will need �L Ḟ(x) to be well-
defined for any specified x ; that is, we will need to assume that �L Ḟ is always
continuous. By Lemma 31 if ∇m�L Ḟ ∈ L2(Rd) and m > d/2 then �L Ḟ is
continuous. It is for this reason that we begin with operators of order 2m > d.

Recall that even if �L Ḟ is continuous, it is still defined only up to adding
polynomials of order m − 1. We will fix a normalization of �L Ḟ as follows.
Choose some points h1, h2, …hq ∈ R

d with |hi | = 1, where q is the number of
multiindices γ with |γ | ≤ m − 1. If the hi s are chosen appropriately, then for any
numbers ai , there is a unique polynomial P(x) = ∑

|γ |≤m−1 pγ xγ , of order atmost
m−1, such that P(hi ) = ai for all 1 ≤ i ≤ p. Furthermore, there is some constant
H depending only on our choice of hi such that the bound |pγ | ≤ H supi |ai | is
valid.

Now, choose some z0 ∈ R
d and some r > 0. We fix an additive normalization

of �L = �L
z0,r by requiring �L

z0,r Ḟ(z0 + r hi ) = 0 for all 1 ≤ i ≤ q.
Let x ∈ R

d . Define Sx Ḟ = �L
z0,r Ḟ(x). Then Sx is a linear operator. We will

use the Riesz representation theorem to construct the fundamental solution as the
kernel of Sx ; to do this, we will need to establish boundedness of Sx .

We will use the following lemma with u(x) a component of �L Ḟ(x) = Sx Ḟ.

Lemma 49. Let u be a function such that ∇mu ∈ L2(Rd) and such that u(z0 +
r hi ) = 0 for all 1 ≤ i ≤ q.

Then

|u(x)| ≤ C

(
R

r

)m−1

Rm−d/2‖∇mu‖L2(Rd ), where R = |x − z0| + r.

Proof. By Lemma 31,

|u(x)| ≤ C

( m∑

k=0

R2k
 
B(z0,2R)

|∇ku|2
)1/2

.

Let P(x) be the polynomial of degree at most m − 1 such that
 
B(z0,2R)

∂γ P(x) dx =
 
B(z0,2R)

∂γ u(x) dx

for all |γ | ≤ m − 1. Then

|u(x)| ≤ C

( m∑

k=0

R2k
 
B(z0,2R)

|∇ku − ∇k P|2 +
m∑

k=0

R2k
 
B(z0,2R)

|∇k P|2
)1/2

.
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If k ≤ m − 1, then by the Poincaré inequality

R2k
 
B(z0,2R)

|∇ku − ∇k P|2 ≤ R2m
 
B(z0,2R)

|∇mu|2.

Therefore,

|u(x)| ≤ CRm−d/2
(ˆ

B(z0,2R)

|∇mu|2
)1/2

+ C

( m∑

k=0

R2k
 
B(z0,2R)

|∇k P|2
)1/2

.

By Lemma 31 and the above bounds on ∇ku − ∇k P , if 1 ≤ i ≤ q then

|P(z0 + r hi )| = |P(z0 + r hi ) − u(z0 + r hi )| ≤ CRm−d/2‖∇mu‖L2(B(z0,2R)).

Let P(x) = Q((x − z0)/r), so that Q(hi ) = P(z0 + r hi ). By construction of Q
and hi , we have that

Q(x) =
∑

|γ |≤m−1

qγ xγ for some qγ with |qγ | ≤ CRm−d/2‖∇mu‖L2(B(z0,2R)).

Then

∂δP(x) =
∑

γ≥δ

r−|γ |qγ

γ !
(γ − δ)! (x − z0)

γ−δ

where γ ! = γ1!γ2! . . . γd !. Thus, if x ∈ B(z0, 2R), then

|∇k P| ≤ C

(
R

r

)m−1

R−k sup
γ

|qγ | ≤ C

(
R

r

)m−1

Rm−k−d/2‖∇mu‖L2(B(z0,2R)).

Combining these estimates, we have that

|u(x)| ≤ C

(
R

r

)m−1

Rm−d/2‖∇mu‖L2(B(z0,2R))

as desired. �
We apply the lemma to the function u = �L

z0,r Ḟ. Recall that∇m�L is bounded
on L2(Rd), and so

|Sx Ḟ| ≤ CRm−d/2
(
R

r

)m−1

‖Ḟ‖L2(Rd ), R = |x − z0| + r.

By the Riesz representation theorem, there is some array EL such that

(
�L

z0,r Ḟ
)

j
(x) = (Sx Ḟ) j =

N∑

k=1

∑

|β|=m

ˆ
Rd

E L
j,k,β,z0,r (x, y) Fk,β(y) dy.
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Furthermore, EL satisfies the bound

‖EL
j,k,β,z0,r (x, · )‖L2(Rd ) ≤ C Rm−d/2

(
R

r

)m−1

, R = r + |x − z0|. (50)

As in the proof of Lemma 42, we may use Lemma 41 to see that there is some func-
tion EL

j,k,z0,r
such that EL

j,k,β,z0,r
(x, y) = ∂

β
y EL

j,k,z0,r
(x, y). Again EL

j,k,z0,r
(x, y)

is not unique; we may fix a normalization by requiring that

EL
z0,r (x, z0 + r hi ) = 0 for all x ∈ R

d and all 1 ≤ i ≤ q.

Notice that by construction of EL
z0,r ,

∂β
y E

L
z0,r (z0 + r hi , y) = 0 for all 1 ≤ i ≤ p

as an L2(Rd)-function; thus P(y) = EL
z0,r (z0 + r hi , y) is a polynomial in y of

order m − 1, and because it is equal to zero at the points y = z0 + r hi we have
that

EL
z0,r (z0 + r hi , y) = 0 for all y ∈ R

d and all 1 ≤ i ≤ p.

We also observe that by Lemma 49 and the bound (50), we have that

|EL
z0,r (x, y)| ≤ Cr2m−d

(
1 + |y − z0|

r

)2m−d/2−1(
1 + |x − z0|

r

)2m−d/2−1

.(51)

We have established the existence of EL and the relation (45). To complete
the proof of Theorem 44, we must show that the derivatives ∂

ζ
x ∂

ξ
y EL

j,k,z0,r
(x, y)

exist in the weak sense and satisfy the bounds (46) and (48), and must establish the
symmetry property (47).

Let η be a smooth cutoff function, that is,
´
Rd η = 1, η ≥ 0 and η ≡ 0 outside

of the unit ball B(0, 1). Let ηε(x) = ε−dη(x/ε). We will let ∗x denote convolution
in the x variable, that is,

ηε ∗x EL
j,k,z0,r (x, y) =

ˆ
Rd

ηε(x̃) E
L
j,k,z0,r (x − x̃, y) dx̃ .

For the sake of symmetry we will consider the function ηδ ∗x EL
j,k,z0,r

(x, y) ∗y ηε

for some ε, δ > 0.
For any multiindices ζ and ξ , let

EL
j,k,ζ,ξ,δ,ε(x, y) = ∂ζ

x ∂ξ
y (ηδ ∗x EL

j,k,z0,r (x, y) ∗y ηε).

We will then construct ∂
ζ
x ∂

ξ
y EL

j,k(x, y) as the weak limit of EL
j,k,ζ,ξ,δ,ε(x, y) as

ε → 0, δ → 0.
We begin with the derivatives of highest order. Let |α| = |β| = m. Observe

that

EL
j,k,α,β,δ,ε(x, y) = (∂αηδ) ∗x EL

j,k,β,z0,r (x, y) ∗y ηε.
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Now, we have thatˆ
Rd

E L
j,k,α,β,δ,ε(x, y) F(y) dy = (∂αηδ) ∗x

ˆ
Rd

E L
j,k,β,z0,r (x, y) (ηε ∗ F)(y) dy

= ηδ ∗ ∂αΠ L
j (ηε ∗ F ėk,β)(x).

The operator F �→ ηδ ∗ ∂αΠ L
j (ηε ∗ F ėk,β)(x) is bounded L2(Rd) �→ C, albeit

with a bound depending on δ. Thus by the Riesz representation theorem, K (y) =
EL

j,k,α,β,δ,ε(x, y) is the kernel of this operator, and so does not depend on z0 and r .
Furthermore, by Lemma 42,

EL
j,k,α,β,δ,ε(x, y) = EL∗

k, j,β,α,ε,δ(y, x).

In order to establish the bounds (46) and (48), we would like to use the Caccioppoli
inequality in both x and y; it will be helpful to have a similar symmetry relation
for EL

z0,r (x, y) as well as its highest derivatives.

Lemma 52. We have that EL
j,k,z0,r

(x, y) = EL∗
k, j,z0,r

(y, x).

Proof. Because EL
j,k,α,β,δ,ε(x, y) = EL∗

k, j,β,α,ε,δ(y, x), we have that

∇m
x EL

j,k,0,β,δ,ε(x, y) = ∇m
x EL∗

k, j,β,0,ε,δ(y, x).

Thus EL
j,k,0,β,δ,ε(x, y) and EL∗

k, j,β,0,ε,δ(y, x) differ by a polynomial in x of order
m − 1. But observe that

EL
j,k,0,β,δ,ε(z0 + r hi , y) = 0 = EL∗

k, j,β,0,ε,δ(y, z0 + r hi )

for all 1 ≤ i ≤ q; by construction of the points hi , this implies that

EL
j,k,0,β,δ,ε(x, y) = EL∗

k, j,β,0,ε,δ(y, x).

By a similar argument,

EL
j,k,0,0,δ,ε(x, y) = EL∗

k, j,0,0,ε,δ(y, x).

By Morrey’s inequality EL is continuous. Taking the limits as ε → 0 and δ → 0
completes the proof. �

We now wish to establish an L2 bound on EL
j,k,ζ,ξ,δ,ε, independent of δ and ε;

this will allow us to prove the bounds (46) and (48), and also to construct the
derivatives by taking the limits as δ, ε → 0.We will use the Caccioppoli inequality.

The first step is to show that EL
z0,r is a solution in some sense. Recall that

if ϕ ∈ Ẇ 2
m(Rd), then by formula (40) ϕ j (x) = Π L

j (A∇mϕ)(x), and so by our

construction of EL ,

ϕ j (x) =
N∑

k=1

∑

|β|=m

ˆ
Rd

∂β
y E

L
j,k,z0,r (x, y)

N∑

�=1

∑

|γ |=m

Ak�
βγ ∂γ ϕ�(y) dy
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as Ẇ 2
m functions; if ϕ(z0 + r hi ) = 0 for all 1 ≤ i ≤ q, then this equation is true

pointwise for all x . Thus, we have that for any x , j , z0, r , the function v(y) given
by vk(y) = EL

j,k,z0,r
(x, y) is a solution to L∗v = 0 in R

d\{x}\B(z0, r).

Fix some x0, y0. We wish to bound EL
j,k,ζ,ξ,δ,ε. Choose z0 and r so that

|x0 − y0| = |x0 − z0| = |y0 − z0| = 8r .
For any x ∈ B(x0, r), we have by Corollary 22, if ε is small compared to r thenˆ
B(y0,r)

|EL
ζ,ξ,δ,ε(x, y)|2 dy =

ˆ
B(y0,r)

|ηε ∗y (∂ξ
y (∂

ζ ηε ∗x EL
z0,r (x, y))|2 dy

≤
ˆ
B(y0,2r)

|(∂ξ
y (∂

ζ ηε ∗x EL
z0,r (x, y))|2 dy

≤ C

r2|ξ |

ˆ
B(y0,4r)

|(∂ζ ηε ∗x EL
z0,r (x, y))|2 dy.

Again by Corollary 22 and by the bound (51),ˆ
B(x0,r)

|(∂ζ ηε ∗x EL
z0,r (x, y))|2 dx =

ˆ
B(x0,r)

|(ηε ∗x ∂ζ
x E

L∗
z0,r (y, x))|2 dx

≤
ˆ
B(x0,2r)

|∂ζ
x E

L∗
z0,r (y, x)|2 dx

≤ Cr4m−d−2|ζ |.

Thusˆ
B(x0,r)

ˆ
B(y0,r)

|EL
ζ,ξ,δ,ε(x, y)|2 dy dx

≤ C

r2|ξ |

ˆ
B(y0,4r)

ˆ
B(x0,r)

|(∂ζ ηε ∗x EL
z0,r (x, y))|2 dx dy ≤ Cr4m−2|ζ |−2|ξ |.

So EL
ζ,ξ,δ,ε is in L2(B(x0, r) × B(y0, r)), uniformly in δ, ε; thus there is a weakly

convergent subsequence as δ, ε → 0. Observe that the weak limit must be the
partial derivative ∂

ζ
x ∂

ξ
y EL

z0,r (x, y), as desired.

5.3. Natural normalization conditions for the fundamental solution

Recall that our normalization of EL , in the construction given in Sect. 5.2, is highly
artificial and depends on our choice of the normalization points z0 + r hi . In this
section we will construct a somewhat more natural normalization of at least the
higher derivatives of EL .

Our normalizationwill, loosely speaking, be a requirement that the higher-order
derivatives of EL decay at infinity. Thus, we begin with a decay result.

Lemma 53. Let A(x0, R) denote the annulus B(x0, 2R)\B(x0, R). Let p+ =
min(p+

L , p+
L∗), where p+

L is as in Theorem 24. If 0 < ε < d(1 − 2/p+), then
there is some constant C = C(ε) such that if x0 ∈ R

d and R > 4r > 0, thenˆ
A(x0,R)

ˆ
B(x0,r)

|∇m
x ∇m

y EL(x, y)|2 dy dx ≤ C(ε)

(
r

R

)ε

.
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Proof. Let ηδ be a smooth approximate identity, as in Sect. 5.2; we will establish
a bound on ηδ ∗x ∇m

x ∇m
y EL(x, y), uniform in δ, and then let δ → 0.

Fix some δ > 0, x ∈ R
d , and some j and α with 1 ≤ j ≤ N and |α| = m. Let

vδ
k(y) = ηδ ∗x ∂α

x E
L
j,k(x, y).

As in Sect. 5.2, we begin by showing that vδ is a solution to an elliptic equation. By
the bound (46), we have that vδ ∈ Ẇ 2

m,loc. Suppose that ϕ is smooth and compactly
supported. If dist(x, suppϕ) > δ, then by formula (40) and formula (45),

0 = ηδ ∗ ∂αϕ j (x)

=
N∑

k=1

N∑

�=1

∑

|β|=|γ |=m

ˆ
Rd

ηδ ∗x ∂α
x ∂β

y E
L
j,k(x, y) A

βγ

k� (y)∂γ ϕ�(y) dy.

So L∗vδ = 0 in R
d\B(x, δ), and so Theorem 24 applies.

Let p be such that ε = d(1 − 2/p); notice that 2 < p < p+. By Hölder’s
inequality, we have that

ˆ
B(x0,r)

|∇m
y v

δ(y)|2 dy ≤ Crε

(ˆ
B(x0,r)

|∇m
y v

δ(y)|p dy
)2/p

.

Because R > 4r , we may replace the second integral by an integral over the
ball B(x0, R/4). We then apply Theorem 24. This yields the boundˆ

B(x0,r)
|∇m

y v
δ(y)|2 dy ≤ C

rε

Rε

ˆ
B(x0,R/2)

|∇m
y v

δ(y)|2 dy

uniformly in δ. Taking the limit as δ → 0 and applying the bound (46), we see thatˆ
A(x0,R)

ˆ
B(x0,r)

|∇m
x ∇m

y EL(x, y)|2 dy dx

≤ Crε

Rε

ˆ
A(x0,R)

ˆ
B(x0,R/2)

|∇m
x ∇m

y EL(x, y)|2 dy dx ≤ Crε

Rε

as desired. �
Because L∗ is also elliptic, a similar bound is valid for EL∗

. Notice that by for-

mula (47), we have that ∇m
x ∇m

y EL
j,k(x, y) = ∇m

x ∇m
y EL∗

k, j (y, x). Thus, a similar

bound on EL is valid with the roles of x and y reversed.
Next, we use this bound to produce natural normalizations of certain higher-

order derivatives.

Lemma 54. Suppose that E is a function such that, for some v ≥ 0, c > 0, ε > 0
and t < d + ε, the decay estimate

ˆ
y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇m
x ∇v

y E(x, y)|2 dx dy ≤ cRt
(
r

R

)ε

is true for all x0 ∈ R
d and all R > 4r > 0.
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Then there is an array of functions pγ such that, if

Ẽ(x, y) = E(x, y) +
∑

m+t/2−d/2−ε/2<|γ |≤m−1

pγ (y) xγ

then there is a constant C = C(ε) depending only on ε such that, for all integers
q with 0 ≤ q ≤ m and q < d/2 + ε/2 − t/2, we have thatˆ

y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇m−q
x ∇v

y Ẽ(x, y)|2 dx dy ≤ C(ε) c Rt+2q
(
r

R

)ε

(55)

for all x0 ∈ R
d and all R > 4r > 0.

Furthermore, pγ (y) is unique up to adding polynomials of order v − 1.

By Lemma 53, if E = EL
j,k is a component of the fundamental solution for

some elliptic operator L , then E satisfies the conditions of Lemma 53 for v = m
and t = 0; we will shortly need the lemma for v < m as well.

Proof (Proof of Lemma54).Webeginwith uniqueness. Suppose that therewere two
such arrays p and p̃. Let Pγ (y) = pγ (y) − p̃γ (y). If m + t/2 − d/2 − ε/2 < |γ |
and |γ | ≤ m − 1, then the difference Pγ (y) xγ must satisfy the bound (55) for
q = m − |γ |. Thus, for any x0 ∈ R

d and any R > 4r > 0, we have thatˆ
y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇|γ |
x ∇v

y (Pγ (y) xγ )|2 dx dy ≤ C(r, ε) c Rt+2m−2|γ |−ε.

Butˆ
y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇|γ |
x ∇v

y (Pγ (y) xγ )|2 dx dy = CRd
ˆ
B(x0,r)

|∇v
y Pγ (y)|2 dy.

Because m + t/2 − d/2 − ε/2 < |γ |, we have that 2m + t − 2|γ | − ε < d and
so Rd grows faster than R2m+t−2|γ |−ε. Thus, the only way that both conditions
can hold is if ∇v

y Pγ (y) = 0 almost everywhere in B(x0, r). Since x0 and r were
arbitrary this means that Pγ is a polynomial of order v − 1, as desired.

We now construct an appropriate array of functions pγ (y). We work by induc-
tion; notice that by assumption, the bound (55) is valid in the case q = 0.

Choose some q > 0 satisfying the conditions of the lemma, and suppose that
we have renormalized E so that the bound (55) is valid if we replace q by q − 1.
Choose some multiindices γ and ζ with |γ | = m − q and |ζ | = v.

Let Ai = B(x0, 2i )\B(x0, 2i−1), and define

Ei (y) =
 
Ai

∂
γ
x ∂ζ

y E(x, y) dx .

For any constant ci we have the bound

|Ei (y) − Ei+1(y)| =
∣∣∣∣
 
Ai

∂
γ
x ∂ζ

y E(x, y) dx −
 
Ai+1

∂
γ
x ∂ζ

y E(x, y) dx

∣∣∣∣

≤
∣∣∣∣
 
Ai

∂
γ
x ∂ζ

y E(x, y) dx − ci

∣∣∣∣ +
∣∣∣∣
 
Ai+1

∂
γ
x ∂ζ

y E(x, y) dx − ci

∣∣∣∣

≤ C
 
Ai∪Ai+1

|∂γ
x ∂ζ

y E(x, y) − ci | dx .
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Choosing ci appropriately, by Poincaré’s inequality,

|Ei (y) − Ei+1(y)| ≤ C2−i(d−1)
ˆ
Ai∪Ai+1

|∇m−q+1
x ∇v

y E(x, y)| dx .

Thus by Hölder’s inequality
ˆ
B(x0,r)

|Ei (y) − Ei+1(y)|2 dy

≤ C

22i(d−1)

ˆ
B(x0,r)

(ˆ
Ai∪Ai+1

|∇m−q+1
x ∇v

y E(x, y)| dx
)2

dy

≤ C

2i(d−2)

ˆ
B(x0,r)

ˆ
Ai∪Ai+1

|∇m−q+1
x ∇v

y E(x, y)|2 dx dy.

Recall that we assumed that we had the desired decay estimates for q − 1; this
implies that

ˆ
B(x0,r)

|Ei (y) − Ei+1(y)|2 dy ≤ C c 2i(t−d+2q−ε)rε.

Thus, by our conditions on q, E∞(y) = limi→∞ Ei (y) exists as an L2(B(x0, r))-
function. As usual we may use Lemma 41 to see that there is some pγ (y) such
that E∞(y) = γ ! ∂ζ pγ (y), where γ ! = γ1!γ2! . . . γd !. Let Ẽ(x, y) = E(x, y) −
pγ (y) xγ .

We construct an Ẽi from Ẽ , similar to our construction of Ei ; then Ẽi satisfies
the same bounds as above and converges to zero as i → ∞. Because geometric
series converge, we have that

ˆ
B(x0,r)

|Ẽi (y)|2 dy ≤ C(ε) c 2i(t−d+2q−ε)rε.

By the Poincaré inequality
ˆ
B(x0,r)

ˆ
Ai

|∂γ
x ∂ζ

y Ẽ(x, y)|2 dy dx

≤ C
ˆ
B(x0,r)

ˆ
Ai

|∂γ
x ∂ζ

y Ẽ(x, y) − Ẽi (y)|2 dx dy + C(ε) c 2i(t+2q−ε)rε

≤ C22i
ˆ
B(x0,r)

ˆ
Ai

|∇m−q+1
x ∂ζ

y Ẽ(x, y)|2 dx dy + C(ε) c 2i(t+2q−ε)rε

≤ C(ε) c 2i(t+2q−ε)rε

as desired. Repeating this construction for all γ with |γ | = m − q, we complete
the proof. �

ByLemmas 53 and 54, there is a unique appropriately normalized representative
of ∇m−q

x ∇m
y EL(x, y). Recall that by formula (47), we have that EL(x, y) satisfies

the conclusion of Lemma 53 with the roles of x and y reversed. We may thus
find a unique additive normalization of ∇m

x ∇m−q
y EL(x, y). Also notice that by
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formula (47), applying the same procedure to EL∗
, we see that this normalization

preserves the relations

∇m−q
x ∇m

y EL
j,k(x, y) = ∇m−q

x ∇m
y EL∗

k, j (y, x),

∇m
x ∇m−q

y EL
j,k(x, y) = ∇m

x ∇m−q
y EL∗

k, j (y, x).

We are now interested in the mixed derivatives, that is, in the case where we
take fewer than m derivatives in both x and y.

Observe first that if q < d(1 − 1/p+) and if x0 ∈ R
d , y0 ∈ R

d , thenˆ
B(y0,R)

ˆ
B(x0,R)

|∇m
x ∇m−q

y EL(x, y)|2 dx dy ≤ CR2q , R = |x0 − y0|/3.

As in the proof of Lemma 53, we may use Hölder’s inequality and Theorem 24 to
see thatˆ

x∈A(x0,R)

ˆ
y∈B(x0,r)

|∇m−q
y ∇m

x EL(x, y)|2 dy dx ≤ C(ε)R2q
(
r

R

)ε

for all 0 < ε < d(1−2/p+
q ), where p+

q = p+d/(d −q p+) in the case q < d/p+
and p+

q = ∞ if d/p+ ≤ q < d/p−. We may rewrite this requirement as 0 < ε <

min(d, d(1 − 2/p+) + 2q).
We may thus apply Lemma 54 with v = m − q and t = 2q. Hence, if q and ε

are as above, and if s < d/2+ε/2−q, then there is a unique additive normalization
of ∇m−q

y ∇m−s
x EL(x, y) such that

ˆ
B(x0,r)

ˆ
A(x0,R)

|∇m−s
x ∇m−q

y EL(x, y)|2 dx dy ≤ C(ε)R2q+2s
(
r

R

)ε

. (56)

We remark that we may find an appropriate ε if and only if q and s satisfy the
conditions 0 ≤ q ≤ m, 0 ≤ s ≤ m, q < d/p−, s < d/p−, and q + s < d.

We will establish one more bound on the fundamental solution. Specifically,
notice that ∇m

x ∇m
y EL(x, y) is only locally integrable away from the diagonal

{(x, y) : x = y}. The lower-order derivatives, however, are locally integrable
even near x = y.

Lemma 57. Let q and s be such that 0 < q + s < d and such that the bound (56)
is valid for all x0 ∈ R

d and all R > 4r > 0.
Suppose that p < d/(d − (q + s)) and that p ≤ 2. We then have the local

estimateˆ
B(x0,r)

ˆ
B(x0,r)

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy ≤ Cr2d−p(d−s−q).

Proof. Let Q0 be the cube of sidelength �(Q0) = 2r with B(x0, r) ⊂ Q0, so thatˆ
B(x0,r)

ˆ
B(x0,r)

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy

≤
ˆ
Q0

ˆ
2Q0

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy.
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We divide Q0 as follows. Let G j be a grid of dyadic subcubes of Q0 of sidelength
21− j r . Notice that G0 = {Q0} and that G j contains 2 jd cubes.

If y ∈ B(x0, r), let Q j (y) be the cube that satisfies y ∈ Q j (y) ∈ G j . If
Q ∈ G j+1, let P(Q) be the unique cube with Q ⊂ P(Q) ∈ G j . If Q is a cube, let
2Q be the concentric cube with side-length �(2Q) = 2�(Q). Then

ˆ
Q0

ˆ
2Q0

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy

=
ˆ
Q0

∞∑

j=0

ˆ
2Q j (y)\2Q j+1(y)

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy

=
∞∑

j=0

∑

Q∈G j+1

ˆ
Q

ˆ
2P(Q)\2Q

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy.

We apply Hölder’s inequality to see that
ˆ
Q

ˆ
2P(Q)\2Q

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy

≤ C�(Q)d(2−p)
(ˆ

Q

ˆ
2P(Q)\2Q

|∇m−s
x ∇m−q

y EL(x, y)|2 dx dy
)p/2

and the bound (56) to see that
ˆ
Q

ˆ
2P(Q)\2Q

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy ≤ C�(Q)d(2−p)+(q+s)p.

Combining these estimates and recalling that there are 2 jd cubes Q ∈ G j , we see
that

ˆ
Q0

ˆ
2Q0

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy ≤ Cr2d−(d−q−s)p
∞∑

j=0

2− jd+ j (d−q−s)p.

If p < d/(d − (q + s)), then the geometric series converges, as desired. �
Wehave renormalized the fundamental solution so thatwemaybound its higher-

order derivatives. This renormalization will not affect the bound (46), and because
our renormalization is unique it maintains the symmetry condition (47).

Theorem 44 had one more conclusion, the formula (45). This states that

Π L
j Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂β
y E

L
j,k,z0,r (x, y) Fk,β(y) dy as Ẇ 2

m(Rd)-functions.

We would like to consider in what sense this equation is still true after renormal-
ization. To address this, we will also need natural normalizations of the left-hand
side �L Ḟ involving decay at infinity; this normalization is given by the following
lemma.
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Lemma 58. (The Gagliardo–Nirenberg–Sobolev inequality in R
d ). Let u lie in the

space Ẇ p
m (Rd) for some 1 ≤ p < d. Let 0 < k < d/p be an integer, and let

pk = p d/(d − p k).
Then there is a unique additive normalization of ∇m−ku in L pk (Rd).

See, for example, Section 5.6.1 in [17].Weuse this lemma to address the relation
between the Newton potential and the renormalized fundamental solution.

Lemma 59. Let p− < p < min(d, p+), let γ be a multiindex with m − d/p <

|γ | ≤ m − 1, and let q > d/(m − |γ |). Let 1 ≤ j ≤ N.
Suppose that we have normalized EL as above. We normalize the lower-order

derivatives of �L Ḟ as in Lemma 58. If Ḟ lies in L p(Rd) and in Lq
loc(R

d), then

∂γ Π L
j Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k(x, y) Fk,β(y) dy (60)

for almost every x ∈ R
d .

Proof. Let us define

Π L
j,γ Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k(x, y) Fk,β(y) dy

where EL is the fundamental solution normalized to obey the bound (56). We
begin by showing that Π L

j,γ is a bounded operator in some sense. Specifically, let

B(x0, r) ⊂ R
d be a ball. We will show that Π L

j,γ is bounded Lq(B(x0, 2r)) ∩
L p(Rd) �→ L1(B(x0, r)).

First, we see thatˆ
B(x0,r)

|Π L
j,γ Ḟ(x)| dx ≤ C

ˆ
B(x0,r)

ˆ
B(x0,2r)

|∇|γ |
x ∇m

y EL(x, y)| |Ḟ(y)| dy dx

+ C
∞∑

i=1

ˆ
B(x0,r)

ˆ
Ai

|∇|γ |
x ∇m

y EL(x, y)| |Ḟ(y)| dy dx

where Ai = B(x0, 2i+1r)\B(x0, 2i r). If 1/q + 1/q ′ = 1, then q ′ < d/(d − (m −
|γ |)), and so by Lemma 57 and Hölder’s inequality, the first integral is at most

Crd−d/q+m−|γ |‖Ḟ‖Lq (B(x0,2r)).

We control the second integral as follows. Fix some i ≥ 1. Then by Hölder’s
inequality,

ˆ
B(x0,r)

ˆ
Ai

|∇|γ |
x ∇m

y EL(x, y)| |Ḟ(y)| dy dx

≤ Crd/p
(ˆ

B(x0,r)

ˆ
Ai

|∇|γ |
x ∇m

y EL(x, y)|p′
dy dx

)1/p′

‖Ḟ‖L p(A(x0,2i r)).
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Notice that p′ < p+. Arguing as in the proof of Lemma 53, we use Theorem 24 to
show that

(ˆ
B(x0,r)

ˆ
Ai

|∇|γ |
x ∇m

y EL(x, y)|p′
dy dx

)1/p′

≤ C2i(d/p′−d/2)r2d/p′−d
(ˆ

B(x0,r)

ˆ
Ã(x0,2i r)

|∇|γ |
x ∇m

y EL(x, y)|2 dy dx
)1/2

where Ã(x0, 2i r) is the enlarged annulus B(x0, 2i+2r)\B(x0, (3/4)2i r).
By the bound (56),

(ˆ
B(x0,r)

ˆ
Ai

|∇|γ |
x ∇m

y EL(x, y)|p′
dy dx

)1/p′

≤ C(ε)2i(d/p′−d/2+m−|γ |−ε/2)r2d/p′−d+m−|γ |

for all 0 < ε < min(d, d(1 − 1/p+) + 2m − 2|γ |). Let θ = θ(ε) = −d/p′ +
d/2 − m + |γ | + ε/2. We remark that by our assumptions on γ and p, we may
always find an ε that satisfies the above conditions and such that θ > 0.

Thus,
ˆ
B(x0,r)

|Π L
j,γ Ḟ(x)| dx ≤ Crm−|γ |+d/q ′ ‖Ḟ‖Lq (B(x0,2r))

+ C(θ)rm−|γ |+d/p′
∞∑

i=1

2−iθ‖Ḟ‖L p(A(x0,2i r))

and by convergence of geometric series, we have thatΠ L
j,γ is bounded as an operator

from Lq(B(x0, 2r)) ∩ L p(Rd) to L1(B(x0, r)), as desired.
We may now work in a dense subspace of L p(Rd) ∩ Lq

loc(R
d); we will work

with Ḟ bounded and compactly supported.
In particular, suppose that Ḟ is supported in some ball B(y0, r). Let z0 be such

that |y0 − z0| = 3r , and consider the fundamental solution EL
z0,r of Theorem 44;

as in Sect. 5.2 we will let

Π L
j,z0,r Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂β
y E

L
j,k,z0,r (x, y) Fk,β(y) dy.

Begin with the case |γ | = m − 1. We will show that there is some constant c
such that Π L

j,γ Ḟ(x) = ∂γ Π L
j,z0,r

Ḟ(x) + c for almost every x ∈ R
d ; it will then be

straightforward to establish thatΠ L
j,γ Ḟ decays and somust equal the normalization

of Lemma 58.
Observe that our renormalization of EL preserves the relation

∇m
x ∇m

y EL(x, y) = ∇m
x ∇m

y EL
z0,r (x, y).
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Thus by Lemma 54, for every β with |β| = m and every j , k, there is a unique
function p such that

∂
γ
x ∂β

y E
L
j,k(x, y) = ∂

γ
x ∂β

y E
L
j,k,z0,r (x, y) + p(y).

In particular, while p may depend on γ , β, j , k, z0 and r , once these parameters
are fixed, p cannot depend on x . It will be convenient to write p = pk,β and leave
the remaining dependencies implied.

Let x0 satisfy |x0 − y0| = |x0 − z0| = 3r . Notice that
ˆ
B(y0,r)

|pk,β |2 =
ˆ
B(y0,r)

∣∣∣∣
 
B(x0,r)

pk,β(y) dx

∣∣∣∣
2

dy

≤
ˆ
B(y0,r)

 
B(x0,r)

∣∣∂γ
x ∂β

y E
L
j,k(x, y) − ∂

γ
x ∂β

y E
L
j,k,z0,r (x, y)

∣∣2 dx dy

and so, using the bounds (56) and (48), we see that pk,β ∈ L2(B(y0, r)) with
‖pk,β‖L2(B(y0,r)) ≤ Cr2−d .

Thus,

Π L
j,γ Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k,z0,r (x, y) Fk,β(y) + pk,β(y) Fk,β(y) dy.

Notice that, by Lemma 57, ∂
γ
x ∂

β
y EL(x, y) ∈ L1(U × B(y0, r)) for any bounded

set U . If U = B(x0, r), then the inclusion ∂
γ
x ∂

β
y EL

z0,r (x, y) ∈ L1(U × B(y0, r))

follows from the bound (48); because ∂
γ
x ∂

β
y EL

j,k(x, y) = ∂
γ
x ∂

β
y EL

j,k,z0,r
(x, y) +

pk,β(y), we may extend this second inclusion to all bounded sets U . Thus

Π L
j,γ Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k,z0,r (x, y) Fk,β(y) dy

+
ˆ
Rd

pk,β(y) Fk,β(y) dy.

Observe that the second integral is convergent and also is independent of x . Fur-
thermore, we may apply Fatou’s lemma to the first integral to see that

Π L
j,γ Ḟ(x) = c1 + ∂

γ
x

N∑

k=1

∑

|β|=m

ˆ
Rd

∂β
y E

L
j,k,z0,r (x, y) Fk,β(y) dy

= c1 + ∂
γ
x Π L

j,z0,r Ḟ(x).

Because �L
z0,r is an additive normalization of �L , this means that Π L

j,γ Ḟ(x) =
c2 + ∂

γ
x Π L

j Ḟ(x) where ∂
γ
x Π L

j Ḟ(x) is normalized as in Lemma 58. We must now

establish that c2 = 0, that is, that Π L
j,γ Ḟ decays at infinity. But by the bound (56),

we have that

lim
R→∞

 
A(y0,R)

|Π L
j,γ Ḟ(x)|2 dx = 0
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and this can only be true for one additive normalization of ∂γ Π L
j Ḟ; it is this

normalization that is chosen by Lemma 58, as desired.
We now consider |γ | < m − 1; we still work only with bounded, compactly

supported functions Ḟ. If |γ + ζ | ≤ m − 1, then by Fatou’s lemma �L
ζ+γ Ḟ =

∂ζ �L
γ Ḟ, and if |γ + ζ | = m − 1 then by the above results �L

ζ+γ Ḟ = ∂ζ+γ �L Ḟ.

Thus ∂γ �L Ḟ = �L
γ Ḟ up to adding polynomials. But again by the bound (56), we

have that

lim
R→∞

 
A(y0,R)

|Π L
j,γ Ḟ(x)|2 dx = 0

whenever m − d/p− < |γ | ≤ m; thus, ∂γ �L Ḟ = �L
γ Ḟ, as desired. �

Remark 61. We have established decay results and the relation (60) only for the
higher-order derivatives. We expect the lower-order derivatives to be problematic.
As an example, consider the case of the polyharmonic operator L = (−Δ)m ; we
may normalize the fundamental solution so that, for some constant Cm,d ,

E (−Δ)m (x, y) =
{
Cm,d |x − y|2m−d , d odd or d > 2m,

Cm,d |x − y|2m−d log|x − y|, d even and d ≤ 2m.

Notice that ∂
ζ
x ∂

ξ
y E (−Δ)m (x, y) decays at infinity only if |ζ | + |ξ | > 2m − d.

Furthermore, if |ζ |+|ξ | = 2m−d, then no natural normalization condition applies;
the fundamental solution given above must be normalized using deeper symmetry
properties of the Laplacian and a choice of length scale for the logarithm.

In the case of more general operators, these symmetry properties are not avail-
able, and it is not apparent whether dimensionally-appropriate decay estimates are
valid unless min(|ζ |, |ξ |) > m − d + d/p+. Thus, in general, we do not have a
unique normalization of the fundamental solution for operators of higher order.

We will see that we can construct a fundamental solution for operators of lower
order and retain the above decay estimates, and in that case we will have a unique
normalization of EL provided 2m < d. (If 2m = d then we will have unique
normalizations of ∇x EL(x, y) and ∇yEL(x, y), and hence a normalization of EL

that is unique up to additive constants.)

5.4. The fundamental solution for operators of lower order

Consider the following theorem. In the casewhere 2m > d, validity of the following
theorem was established in Sects. 5.2 and 5.3. In this section we will show that
Theorem 62 is still valid even if 2m ≤ d.

Theorem 62. Let L be an operator of order 2m that satisfies the bounds (6) and
(7). Then there exists an array of functions EL

j,k(x, y)with the following properties.
Let q and s be two integers that satisfy q + s < d and the bounds 0 ≤ q ≤

min(m, d/2), 0 ≤ s ≤ min(m, d/2).
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Then there is some ε > 0 such that if x0 ∈ R
d , if 0 < 4r < R, if A(x0, R) =

B(x0, 2R)\B(x0, R), and if q < d/2 then

ˆ
y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇m−s
x ∇m−q

y EL(x, y)|2 dx dy ≤ Cr2q R2s
(
r

R

)ε

. (63)

If q = d/2 then we instead have the bound

ˆ
y∈B(x0,r)

ˆ
x∈A(x0,R)

|∇m−s
x ∇m−q

y EL (x, y)|2 dx dy ≤ C(δ) r2q R2s
(
R

r

)δ

(64)

for all δ > 0 and some constant C(δ) depending on δ.
We also have the symmetry property

∂
γ
x ∂δ

y E
L
j,k(x, y) = ∂

γ
x ∂δ

y E
L∗
k, j (y, x) (65)

as locally L2 functions, for all multiindices γ , δ with |γ | = m−q and |δ| = m− s.
If in addition q+s > 0, then for all p with 1 ≤ p ≤ 2 and p < d/(d−(q+s)),

we have that
ˆ
B(x0,r)

ˆ
B(x0,r)

|∇m−s
x ∇m−q

y EL(x, y)|p dx dy ≤ C(p) r2d+p(s+q−d) (66)

for all x0 ∈ R
d and all r > 0.

Finally, there is some ε > 0 such that if 2−ε < p < 2+ε then∇m�L extends
to a bounded operator L p(Rd) �→ L p(Rd). If γ satisfies m − d/p < |γ | ≤ m − 1
for some such p, then

∂
γ
x Π L

j Ḟ(x) =
N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k(x, y) Fk,β(y) dy for a.e. x ∈R

d (67)

for all Ḟ ∈ L p(Rd) that are also locally in L P (Rd), for some P > d/(m − |γ |).
In the case of |α| = m, we still have that

∂αΠ L
j Ḟ(x) =

N∑

k=1

∑

|β|=m

ˆ
Rd

∂α
x ∂β

y E
L
j,k(x, y) Fk,β(y) dy for a.e. x /∈ supp Ḟ

(68)

for all Ḟ ∈ L2(Rd) whose support is not all of R
d .

Validity of the condition (67) requires that we normalize �L Ḟ by decay at infinity,
as in Lemma 58.

Before proving Theorem 62 in the case 2m ≤ d, we mention two important
corollaries.

First, we have the following uniqueness result.
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Lemma 69. Let EL
j,k be the fundamental solution given by Theorem 62. Let m −

d/2 ≤ |γ | ≤ m, let |β| = m, and let 1 ≤ j ≤ N, 1 ≤ k ≤ N. Let U and V be two
bounded open sets with U ∩V = ∅. Suppose that for some Ẽ L

j,k,γ,β ∈ L2(U ×V ),

∂γ Π L
j (1V F ėk,β)(x) =

ˆ
V
Ẽ L

j,k,γ,β(x, y) F(y) dy as L2(U )-functions

for all Ḟ ∈ L2(V ).
Then Ẽ L

j,k,γ,β(x, y) = ∂
γ
x ∂

β
y EL

j,k(x, y) as L
2(U × V )-functions.

In particular, if E L
j,k and Ẽ L

j,k both satisfy the conditions of Theorem 62, then

Ẽ L
j,k(x, y)=EL

j,k(x, y)+
∑

|γ |<m−d/2

(
fγ (x) yγ +gγ (y) xγ

) +
∑

|ζ |=|ξ |=m−d/2

cζ,ξ x
ζ yξ

for some functions fγ and gγ and some constants cζ,ξ . (Notice that if the dimension
d is odd, then the final sum is empty, and if 2m < d then Ẽ L = EL without
modification.)

Second, recall that if ϕ ∈ Ẇ 2
m(Rd), then ϕ = �L(A∇mϕ) as Ẇ 2

m(Rd)-
functions. Thus, if Ḟ = A∇mϕ and γ satisfy the conditions of formula (67),
then

∂γ ϕ j (x) =
N∑

k=1

N∑

�=1

∑

|α|=|β|=m

ˆ
Rd

∂
γ
x ∂α

y E
L
j,k(x, y) A

αβ
k� (y) ∂βϕ�(y) dy (70)

for almost every x ∈ R
d .

Proof (Proof of Theorem 62).
Let L be an operator of order 2m for somem ≤ d/2. Construct the operator L̃ as

follows. Let M be large enough that m̃ = m + 2M > d/2, and let L̃ = ΔML ΔM .
That is, if u ∈ Ẇ 2

m̃(Ω), then

〈
ϕ, L̃u

〉
Ω

= 〈
ΔMϕ, LΔMu

〉
Ω

for all smoothϕ supported in Ω.

Then L̃ is a bounded and elliptic operator of order 2m̃, and so a fundamental solution
E L̃

j,k exists.

There exist constants aζ such that ΔMϕ = ∑
|ζ |=2M aζ ∂

ζ ϕ for all smooth
functions ϕ. Let

EL
j,k(x, y) =

∑

|ζ |=2M

∑

|ξ |=2M

aζ aξ ∂ζ
x ∂ξ

y E
L̃
j,k(x, y).

We claim that EL
j,k satisfies the conditions of Theorem 62.

First, notice that the symmetry formula (65) and the bounds (63), (64) and (66)
follow immediately from the corresponding formulas for E L̃ .
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We are left with formulas (67) and (68); that is, we must now show that
∂

γ
x ∂

β
y EL

j,k(x, y) is the kernel of the Newton potential. Choose some bounded, com-

pactly supported function Ḟ and some multiindex γ withm−d/2 ≤ |γ | ≤ m, and
let

F̃k,β̃ =
∑

|ξ |=2M, ξ<β̃

aξ Fk,β̃−ξ , for all |β̃| = m̃.

Let

v j (x) =
N∑

k=1

∑

|β|=m

ˆ
Rd

∂
γ
x ∂β

y E
L
j,k(x, y) Fk,β(y) dy.

We have that

v j (x) =
∑

|ζ |=2M

aζ

N∑

k=1

∑

|β|=m

ˆ
Rd

∑

|ξ |=2M

∂
γ+ζ
x ∂β+ξ

y E L̃
j,k(x, y) aξ Fk,β(y) dy

=
∑

|ζ |=2M

aζ

N∑

k=1

∑

|β̃|=m̃

ˆ
Rd

∂
γ+ζ
x ∂β̃

y E
L̃
j,k(x, y)F̃k,β̃ (y) dy.

Formulas (67) and (68) are valid for E L̃ ; thus we have that

v j (x) =
∑

|ζ |=2M

aζ ∂
γ+ζ
x �L̃

j
˙̃F(x) = ∂

γ
x ΔM�L̃

j
˙̃F(x).

Thus, it suffices to show that ΔM�L̃ ˙̃F = �L Ḟ.
Choose some ϕ ∈ Ẇ 2

m(Rd); then there is some ϕ̃ ∈ Ẇ 2
m̃(Rd) with ϕ = ΔM ϕ̃.

Then
〈∇mϕ, A∇m(ΔM�L̃ ˙̃F)

〉
Rd = 〈

ϕ, L(ΔM�L̃ ˙̃F)
〉
Rd

= 〈
ΔM ϕ̃, L(ΔM�L̃ ˙̃F)

〉
Rd .

But by definition of L̃ ,
〈
ΔM ϕ̃, L(ΔM�L̃ ˙̃F)

〉
Rd = 〈

ϕ̃, L̃(�L̃ ˙̃F)
〉
Rd

and by definition of �L̃ ,
〈
ϕ̃, L̃(�L̃ ˙̃F)

〉
Rd = 〈∇m̃ ϕ̃,

˙̃F〉
Rd .

Writing out the sums in the inner product and using the definition of F̃ , we see that

〈∇m̃ ϕ̃,
˙̃F〉

Rd =
N∑

k=1

∑

|β̃|=m̃

〈
∂β̃ ϕ̃k, F̃k,β̃

〉
Rd

=
N∑

k=1

∑

|β̃|=m̃

∑

|δ|=2M, δ<β̃

〈
∂β̃ ϕ̃k, aδ Fk,β̃−δ

〉
Rd .
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Interchanging the order of summation, we see that

〈∇m̃ ϕ̃,
˙̃F〉

Rd =
N∑

k=1

∑

|β|=m

∑

|δ|=2M

〈
aδ∂

δ+βϕ̃k, Fk,β
〉
Rd

and recalling the definitions of aδ and ϕ̃, we see that

〈∇m̃ ϕ̃,
˙̃F〉

Rd =
N∑

k=1

∑

|β|=m

〈
∂βΔM ϕ̃k, Fk,β

〉
Rd

=
N∑

k=1

∑

|β|=m

〈
∂βϕk, Fk,β

〉
Rd = 〈∇mϕ, Ḟ

〉
Rd .

Thus,

〈∇mϕ, A∇m(ΔM�L̃ ˙̃F)
〉
Rd = 〈∇mϕ, Ḟ

〉
Rd .

By uniqueness of �L Ḟ, this implies that ΔM�L̃ ˙̃F = �L Ḟ, as desired. �
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