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Abstract. This paper considers the theory of higher-order divergence-form elliptic differ-
ential equations. In particular, we provide new generalizations of several well-known tools
from the theory of second-order equations. These tools are the Caccioppoli inequality, Mey-
ers’s reverse Holder inequality for gradients, and the fundamental solution. Our construction
of the fundamental solution may also be of interest in the theory of second-order opera-
tors, as we impose no regularity assumptions on our elliptic operator beyond ellipticity and
boundedness of coefficients.

1. Introduction

In this paper we will study divergence-form elliptic operators L of order 2m, given
formally by

N
(Lw; = D" > > o7 (AlfoPur)

k=1 |a|=m |B|=m
and in particular systems of equations of the form

(Lu)j = (=1)" D" 8“Fjq.

lo|=m

(We will write this system of equations as Lu = div,, F.)

The theory of second-order operators, that is, operators with m = 1, has a
long and celebrated history. Important tools in the theory of second-order elliptic
systems include the Caccioppoli inequality, Meyers’s reverse Holder inequality for
derivatives, and the fundamental solution.

The boundary Caccioppoli inequality states that, if Lu = div F in some domain
§2 for some second-order elliptic operator L, and if eitheru =0 orv- AVu =0
on a2 N B(xg, ), where v is the unit outward normal vector, then the gradient of
u may be controlled by u and the inhomogeneous term F, as

C .
[ =g wl+c [ R
B(xo,r)N2 = JB(xo,2r)N$2 B(x0,2r)N$2
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Meyers’s reverse Holder estimate (see [34]) states that, if Lu = div F in some
ball B(xg, 2r), then Vu satisfies the reverse Holder estimate

1/p c A2 O\
|Vll|p) E—(/ [Vul ) +C(/ |F|p) )
(/B(xo,r) rd2=d/p \ [ pxo.20) B(x0,2r)

for some p > 2 depending only on the operator L. With some care, Meyers’s
estimate may also be extended to the boundary case, at least in relatively nice
domains. Both of these inequalities have been used extensively in the literature.
Much less is known in the case of higher-order elliptic systems in the rough
setting. In the case of continuous coefficients and C™ domains, some regularity
results are available; see [1]. In the interior case the Caccioppoli inequality

m—1
C - .
|V™a|? < —_/ |V/ul +C/ |F| 3)
/B(xo,r) j;o r2m=2 | p(xo.2r) B(x0,2r)

was established in [9] for general bounded and strongly elliptic coefficients. It
would of course be preferable to establish this bound with only a norm of u, and
not of V/u, on the right-hand side. In [5], the bound

C(e
/ v < €& ul? + e / vu? 4)
B(xo,r) M) B(xo,2r) B(x0,2r)

was established for solutions u to the equation Lu = 0 in B(xg, 2r), where ¢ is an
arbitrary positive number and C (¢) a constant depending on ¢. Either of the bounds
(3) or (4) suffices to generalize Meyers’s estimate (2) to the higher-order case, and
in fact this was done in both [5,9].

The boundary Caccioppoli inequality in the case of rough domains has not been
established; we mention that some pointwise estimates were established in [30,31]
in the case where L = A? is the biharmonic operator.

In Sect. 3, we will establish the higher-order Caccioppoli inequality with no
terms involving derivatives of u on the right-hand side; we will also establish this
inequality in the Dirichlet and Neumann boundary cases. The main results of this
section are Lemma 16 and Corollaries 22 and 23. In Sect. 4, we will provide bound-
ary versions and some refinements to the generalization of Meyers’s inequality (2),
and in particular will carefully state the consequences for the lower-order deriva-
tives of the solution u. The main results of this section are Theorems 24 and 36.

Another important tool in the second-order case is the fundamental solution
E™(x, y). This solution is a (matrix-valued) distribution defined on R¢ x R? such
that, formally, LE L( -, ¥) = I3y, where §, denotes the Dirac mass and I denotes
the identity matrix. In Sect. 5 we will construct the fundamental solution for higher-
order elliptic systems.

The fundamental solution was constructed for second-order equations with real
coefficients (that is, if N = m = 1, Ayg real) in [29] (in the case of symmetric
coefficients Agg = Apq), in [23] (in dimension d > 3) and in [28] (in dimension
d = 2). In dimension d = 2 these results were extended to the case of complex
coefficients in [4]; as observed in [15] their strategy carries over to the case of
systems withd =2,m =l and N > 1.
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In the case of second-order systems (thatis,m = 1and N > 1), the fundamental
solution was constructed in the papers [14,21,24,40] under progressively weaker
conditions on the operator L.

Specifically, the paper [40] constructs the fundamental solution for the operator
L under the assumption that, if Lu = 0 in some ball B(x, r), then u is continuous
in B(x, r) and satisfies the local boundedness estimate

1 1/2
lu(x)| < c(—d / |u|2) (5)
™ JB(x,r)

for some constant C depending only on L and not on u, X or r. This assumption is
not true for all elliptic operators; see [19].

All of the above papers made the same or stronger assumptions. Specifically,
[14,21] constructed the fundamental solution in the case of systems with continuous
coefficients, for which the bound (5) is always valid; see [36, Theorem 6.4.8] or [14,
Section 3]. [24] constructed the fundamental solution using the stronger assumption
of local Holder continuity of solutions. The papers [23,28,29] considered only the
case N = m = 1 withreal coefficients; in this case the bound (5) was established by
Moser in [37]. The paper [4] constructed the fundamental solution in dimensiond =
2. In this case Meyers’s estimate (2) implies that solutions u locally satisfy Vu € L?
for some p > d; Morrey’s inequality then implies that solutions are necessarily
locally Holder continuous. The papers [10,15,27] investigate the related topic of
Green’s functions in domains; they too require local boundedness of solutions
(either as an explicit assumption or by virtue of working in dimension d = 2).

Fewer results are available in the case of higher-order equations. In the case
of the polyharmonic operator L = (—A)™ we have an explicit formula for the
fundamental solution, and this solution has been used extensively in the theory
of biharmonic and polyharmonic functions. The fundamental solution in the case
of general constant coefficients has also been studied and used; see, for example,
[12,13,20,32,33,39,41], or the survey paper [38] and the references therein. In the
case of variable analytic coefficients the fundamental solution was constructed in
[25], and in the case of smooth coefficients the Green’s function in domains was
constructed in [16].

Our initial construction of the fundamental solution will require solutions to be
continuous and satisfy the local bound (5). Again by Morrey’s inequality and the
higher-order generalizations of the Caccioppoli inequality (1), this is true whenever
the elliptic operator L is of order 2m > d. Thus, we will begin by constructing the
fundamental solution in the case of low dimension or high order. Then, given an
operator L of order 2m < d, we will construct an appropriate auxiliary operator
L of order 2/ > d and_construct the fundamental solution E L for L from the
fundamental solution E* for L. This technique was used in [3] in the proof of
the Kato conjecture for higher-order operators. Our main results concerning the
fundamental solution are summarized as Theorem 62 and the following remarks.

This paper may be of some interest to the reader interested only in second-order
operators (in the case d > 3 and in the case of complex coefficients or systems)
as our construction extends to the case of operators whose solutions do not satisfy
local bounds.
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2. Definitions

Throughout we work with a divergence-form elliptic system of N partial differential
equations of order 2m in dimension d.

We will often use multiindices in N¢. If y = (¥1, ..., VYq) is amultiindex, then
lYI=y1+y2+-+yqa. 18 = (81, ..., 84) is another multiindex, then we say
that 8 < y if §; < y; forall 1 <i < d, and we say that § < y if in addition the
strict inequality 6; < y; holds for at least one such i.

We will routinely consider arrays F = (F j,y) indexed by integers j with
1 < j < N and by multiindices y with |y | = k for some k. In particular, if ¢ is a
vector-valued function with weak derivatives of order up to k, then we view vk 17
as such an array, with

(V') =7 p;.
The L? inner product of two such arrays of numbers F and G is given by

N

(F.G)=2 > FiyGjy

J=lly|=k

If F and G are two arrays of Lz_functions defined in a measurable set 2 € RY,
then the inner product of F and G is given by

LRI 35 3 Koron

j=llyl=k

If E C R is a set of finite measure, we let fE f= % fE f, where | E| denotes

Lebesgue measure. We let e be the unit vector in R? in the kth direction. We let
¢, ,, be the “unit array” corresponding to the multiindex y and the number j; thus,
(éj.y. F) = F;,.Welet LP(U) and L*®(U) denote the standard Lebesgue spaces
with respect to Lebesgue measure.

The inhomogeneous and homogeneous Sobolev spaces are denoted as

k

WEW) = {u lulyp ) = DIV ullow) < oo},
j=0

WE W) = {u: Nl gy = IV¥ullr) < o0

(Elements of W,f (U) are then defined only up to adding polynomials of order k —1.)
In Sects. 3 and 4, we will use only the inhomogeneous Sobolev spaces Wkp , while
in Sect. 5, we will use only the homogeneous spaces W,f .

We say that u € LIIZ)C(U) oru € Wk[floc(U) ifu e LP(V)oru € Wkp(V) for
every bounded set V with V C U. '
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2.1. Elliptic operators

Let A = (Aé];) be an array of measurable coefficients defined on R¢, indexed by
iptegers 1<j<N,1<k< N and by multtiindices «, g with |«| = |B] = m. If
F = (Fjq) is an array, then AF is the array given by

N
AF)jo=> D" AliFip.

k=1|Bl=m
Throughout we consider coefficients that satisfy the bound
Al Loqey < A ©6)

for some A > 0. In our construction of the fundamental solution in Sect. 5, we will
consider only operators that satisfy the strict Garding inequality

Re(V"@, AV"@)ps = 1IV" @172 g, ™

for all @ with V"¢ € L?(R?) and for some A > 0 independent of ¢. In Sect. 3 we
will consider weaker and stronger versions of the Garding inequality.

We let L be the 2mth-order divergence-form operator associated with A. That
is, we say that Lu = div,, F in £2 in the weak sense if, for every ¢ smooth and
compactly supported in £2, we have that

V"o, AV™), = (V"0 F),. ®)

that is, we have that

N N ' N
> 3 [ewnapotu=3 % [ 0.
j=1 k=1 |a|=|Bl=m j=1 lal=m 7
In particular, if the left-hand side is zero for all such ¢ then we say that Lu = 0.

If A is such an array of coefficients, we let the adjoint array A* be given by
(A*)(JX]/; = A;{x; we then let L* be the operator associated with A*.

Throughout the paper we will let C denote a constant whose value may change
from line to line, but which depends only on the dimension d, the ellipticity constants
A and A in the bounds (6) and (7) (or variants thereof), and the order 2m of the
operator L. Any other dependencies will be indicated explicitly.

3. The Caccioppoli inequality

In this section we will generalize the Caccioppoli inequality (1) to the case of higher-
order elliptic systems. Because the Caccioppoli inequality involves norms both of
the solution u and its gradient V""u, in this section we will use the inhomogeneous
Sobolev spaces

k

WP (U) = {u SVl < oo}.
j=0
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The first step in our generalization of the Caccioppoli inequality is the following
lemma.

Lemma 9. Let L be the operator of order 2m associated to the coefficients A, where
A satisfies the bound (6) and the weak Gdrding inequality

Re (V" @, AV")rs = MV 9117 ga) — 8110172 g, (10)

for some ) > 0 and some § > 0, and for all smooth, compactly supported func-
tions @.

Let xo € R? and let R > 0. Suppose that u € W,%L(B(xo, R)), that F €
L%(B(x9, R)), and that one of the following two conditions holds.

Lu = div,, F in 2 = B(xo, R), or (11)
Lu = div,, F in some domain 2 C B(xg, R), andu lies in the closure in
W2 (B(x0, R)) of {¢ € C®(R?) : ¢ = 0in B(xo, R)\£2}. (12)

Then, for any 0 < r < R, we have that

/ V"2
22N B(xq,r)
m—1
<> G ),
— R-1) 2

where C is a constant depending only on the dimension d, the order 2m of the
elliptic operator L and the numbers A and A in the bounds (6) and (10).

|viu|2+C/|F|2+C<s/|u|2 (13)
\B(xq,r) 2 22

In Theorem 18 we will strengthen this lemma by replacing the sum on the
right-hand side by the i = 0 term alone. Our Theorem 18 will thus be stronger than
the bound (4) of [5]; we have chosen to follow the example of [5] and establish the
Caccioppoli inequality for operators that satisfy the weak Garding inequality (10),
as well as operators that satisfy the strong Garding inequality (7).

Lemma 9 was proven in [9] in the interior case (11) for coefficients A that
satisfy the strong pointwise Garding inequality

Re(i), A(x)iy) > A(ﬁ, 27) for almost every x € R? and any array ). (14)

Thus the main new result of Lemma 9 is the case (12), which corresponds to zero
Dirichlet boundary values.

In the higher-order case, the condition that u have zero Neumann boundary
values along 952 N B(xp, R) may best be expressed by the following condition.

uec W,%(B (x0, R)), and the equation
(Vmgo, F)_(2 = (Vm(p, AV’”u)_(2 (15)

is true for all ¢ smooth and supported in B(xg, R), not only all ¢ supported
in £2.
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We refer the reader to the author’s survey paper with Svitlana Mayboroda [8] for
a discussion of the meaning of Neumann boundary data for higher order operators.
See also the papers [2,7,11,35,42,43], which treat various special cases of the
Neumann problem.

Lemma 16. If Lu = div,, Fin 2 c B(xo, R) andu satisfies the Neumann bound-
ary condition (15), then the conclusion (13) of Lemma 9 is still true provided that
the coefficients A associated with the operator L satisfy the bound (6) and the local
Gadrding inequality

Re(V" @, AV" ), > A|V" 0|3, (17)

2
(2) - 8||¢||L2(Q)
for all ¢ € W2 (B(xo, R)).

Notice that the pointwise ellipticity condition (14) implies the local Garding
inequality (17) with § = 0.

In all cases we assume that u is defined in the ball B(xg, R); equivalently, we
assume that we may extend u from £2 to the ball. This extension is very natural in the
interior or Dirichlet cases but must be explicitly assumed in the Neumann case. If §2
is a Lipschitz domain and V"u € L?(£2), then by a well-known result of Calderén
and Stein, an extension of u to B(xg, R) (indeed, to Rd) exists. Such extensions
are also guaranteed to exist under weaker conditions on §2; see, for example, [26].
Notice further that in the interior and Neumann cases (11) and (15) the conclusion
(13) remains valid if we modify u by adding a polynomial of order m — 1; however,
this is not true in the Dirichlet case (12), as in this case we must maintain the
condition u = 0 in B(xp, R)\ 2.

Proof (Proof of Lemmas 9 and 16). Let ¢ be a smooth, real-valued test function
with 0 < ¢ < 1, supported in B(xp, R) and identically equal to 1 in B(xp, ). We
require |VEp| < Cr(R — )7,

Observe that ¥ = ¢*"u is a function supported in B(xp, R) with V"¢ €
L%(B(xg, R)). By definition of Lu or condition (15), and by density of smooth
functions, we have that

(V" (@*™w), F), = (V" (¢*"0), AV"),,.

Observe that for all suitably differentiable functions v and w,

ol
o — Yo 99—V
“(wv) = E y!(a_y)!a w o v

y=a

where y! = y1!y! .. yq!l. Letay,, = a!/y!(a — y)!. Notice that ay 0 = ag,o = 1.
By definition of the inner product, we have that

N
> > /Qa“(ga“'"ﬁj)Fj,a

j=1a|=m

(V" ("), F)g| =




382 A. Barton

Then

N
Z Z /Qaa(@2m—])(p2mF]a

J=1la|=m

N
Sy Zaw/ 95 () 07 (™)) F |

j=1|a|l=my<«a

|<Vm(¢4mu)’ F>Q‘ =

+

Thus

(V" ("™ ), F), | < V" (@*" W 200 I F Il 1202)

m—1
I\ uII
+C Z L2(2\B(x0.r))

)ml

1F12(2)-

We now consider the right-hand side. We have that

(v (<p4mu),AV”’ = /Zaa 99~ V(cpz'")aV( 2y ) ALK 3Py

J.k,o, B y<a
+ Z / 2m8a ZmMJ) A]ﬂ 8/314]{
Jik.a,B

where the sums are taken over all j, k, o, B with1 < j < N,1 <k < N and
|| = |B] = m. Now, we may write

> a3 (@07 (0i) = D 6P B0
Yy <a §‘<(x

for some functions @y ¢ supported in B(xg, R)\B(xp, ) with [®y | < C(R —
r)!¢1=lel Therefore

(Vm (¢4mu) Vm Z / 80[ m AJk ((pZmBﬂuk)
ik
+ > / D @ 0% ALy (07" ).

Jok,a,p £2\B(xo, r)§<a

We rewrite the two terms ¢ 3% uy to see that
(vm ((/14’” ll), AV u)g — (vm ((/)2mll) AV ((p2mu))

—+ Z /2450,;3 uj A ( uk)

J.ka,B <a

- Z/Zaﬂya my )A’ 087 (™) 8%

RNH:}

_ Z / Zaﬂyzq)agaguJAJﬂ 9B~ V( 2m) 7 up.

jkap?Py<p <



Gradient estimates and the fundamental solution for higher-order elliptic systems 383

Observe that the integrands in the second and third terms are zero in B(xg, ).
By the Gérding inequality (10) or (17),

A / V" (@*"w)* < Re(V" (9*"w), AV (97" W), + 8ll9™™ w75 -
2
Thus
» / V" (@ W] < (V" (¥ w), AV |+ 8lull72 o)
2

IV ull 22\ B(xg.r))
(R—r)"= i

+ CIV™ (™" W) 12002 Z

m—1
i 2
T Z (R — r)2m=2i IV 212 0\ Bexg.ry)-
i=0
Recalling that
(V" (" w), AV™u), | = |(V" ("), F),|
< ||V'"<so2’"u>||Lz(m||F||Lz(9)

LV u||L2(.Q\B( Ny
CZ i 1Pl

we may derive the desired bound on [[V™ull12(2np(xy.r))- |

We now wish to improve this inequality to a bound in terms of || || ; > rather than
in terms of all of the lower-order derivatives. This will be done by the following
theorem and its corollaries.

Theorem 18. Let xo € R? and let R > 0. Let u € Wn% (B(xg, R)) be a function
that satisfies the inequality

|V"u|? < / IViu>? + F  (19)
/B(xo,p) Z )2’” 21 J B\ Bxo.p)

whenever 0 < p < r < R, for some number F > 0.
Then u satisfies the stronger inequality

C
/ |V™al? < —2/ lu®> + CF (20)
B(xo,r) (R = 1) J B(xo, R\ B(x0,7)

for some constant C depending only on m, the dimension d and the constant C\.
Furthermore, if 0 < j < m, then u satisfies

C .
/ |V/u|? < —/ lul> + CR*™-2 F. (1)
B(xo.r) (R —1)% [y, p)
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Notice that in the bound (20), the right-hand side involves the quantity |u|?
integrated over an annulus B(xg, R)\ B(xo, r), while in the bound (21) |u|2 is inte-
grated over the full ball B(xp, R). It is possible to use the Poincaré inequality and
the bound (20) to improve the bound (21) to an estimate involving the integral of
|u|? over an annulus, but this comes at a cost of introducing powers of (R — r)/r,
and so we have chosen to state the bound (21) as above.

Combined with Lemma 9, we immediately have the following corollaries.

Corollary 22. Let xg € RY and let R > 0. Suppose that Lu = div,, F in B(xg, R),
for some operator L of order 2m that satisfies the bounds (6) and (10), some
ue W,%(B(xo, R)), and some F € L*(B(xg, R)). If0 <r < Rand0 < j < m,
then

. C . .
Via? < —— / lu)® + CRZ’”_ZJ/ |F|? + 8ul?),
/B(x(),r) (R—=1)% [ p) B(xo,R)( )

C .
/ |V™u|? < —Zm/ lul® + C/ (IF|* + 8[ul?).
B(x0,r) (R—r) B(x0, R)\B(x0,r) B(x0,R)

2
L2(B(x0,R))
side, then this corollary was proven in [5] in the homogeneous case Lu = 0.

Recall that if we allow a term of the form || V" ul|| on the right-hand

Corollary 23. Let xo € RY and let R > 0, and let 2 C B(xg, R). Suppose that

Lu = div,, F in 2, for some operator L of order 2m that satisfies the bounds (6)

and (10), someu € Wn% (£2), and some Fe Lz(.Q). Suppose in addition that u may

be extended by zero to all of B(xo, R), in the sense of condition (12) of Lemma 9.
If0<r < Rand0 < j < m, then

4 C . .
|Viu? < —/ lu> + CRZ'HJ/ |F)? + 8lu?),
/B(xo,r)m.o (R =1 Jonpuo.R) .Q( )
C .
/ |[V™u)? < —Zm/ lul® + c/ (IF? + 8[ul?).
B(x0,r)NS2 (R—r) 20B(x0, R)\B(x0,r) 2

Our methods will not allow us to improve upon Lemma 16 in the case of
Neumann boundary data.

Proof (Proof of Theorem 18). Let A(r, ¢) denote either the annulus B(xq,r +
2\B(xg,r — &), or simply the ball B(xg, r + ¢), depending on whether we are
establishing the bound (20) on V""u or the bound (21) on Vku.

Consider the following claim.

Claim. If1 <k <m,andif R/2 <r < Rand (0 < ¢ <min(R — r, r), then

k—1

Ck i 02 2m—2k
[Viu|? < —/ [Viul> + R¥" 2k F.
/A(r,;) g(; E =72 Jare)
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If this claim is true for all such &, then clearly the bound (21) is valid. To establish
the bound (20), we combine the above claim with the assumed bound (19); it is this
that allows us to bound V™ u by the integral of [u|?> over an annulus rather than a
ball.

Thus we need only prove the claim. That the claim is true for k = m follows
by our assumption (19). We work by induction. Suppose that the claim is true for
some k + 1 < m; we will show that it is valid for £ as well.

Let Aj = A(r, pj), where { = pg < p1 < --- < & for some sequence {,oj}oo_0
to be chosen momentarily. Let 6; = p;j4+1 — p;, and let A] = A(r,pj +6;/2),s0
A; C A C Ajt1. Let g be smooth supported in A; j» and identically equal to 1
in Aj ; we may require that |V || < C/§; and V2| < C/(SJ2 for some absolute
constant C.

Now, for any j > 0,

/|V"u|25/~|V(¢jV"*‘u)|2.
Aj Aj

By Plancherel’s theorem, if f € W22 (R9) then
IV £ 172 ey < CIVE Fll 2@y £l 22y

We will apply this inequality to f = (¢, V*=lu); it is this step that fails in the case
of Neumann boundary data. We have that

1/2 1/2
/ |VFul? < C(/ |V2(¢,~Vk—1u>|2) (/ |¢,vk—1u|2)
Aj Aj Aj
Vkll 2 Vk_lll 25\ 1/2 1/2
< C(/ﬁ, |Vk+1u|2 + | 2| + | . | ) (/~ |Vk_1u|2) .
Aj 8 5 Aj

J

Applying the claim to bound |V *1u|?, we see that

k
|Vku| Cy \Viuf + CR¥%-2F 12
82k+2 2
Aj+1

i=0 “j

172

(L)
Aj

We move a factor of Cy /8? from the first term to the second, and then use the
inequality \/E\/E < (1/2)a + (1/2)b to see that

C
/ |Vku|2 < _Z(SZk 21/ Vl |2 R2m 2kF+ k/ |Vk 1
AJ

i=0"j

Separating out the term i = k, we see that

1
/ |Vku|2<CkZ o 21/ |Via)? + R2’" 2kF+2/ |VEul?.

i=0 ] Aj+1
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This bound is valid for all j > 0. We may iterate to see that

/|Vku|2<22 f(ckz — 21/ |Viu|? 4 RZ'" ZkF)

10]

<Ckz(22— 82k 21)/ | lu|2+R2m—2kF

j=0

Now, choose p; = ¢+ (¢ —¢)(1—1) Z}‘i:1 7l forsome 0 < 7 < 1. Then pg = ¢
and lim; . p; = &. So

k—1

o0
1 1 .
k.12 2 2m—2k
[ vt sckfz(z G ) [, IV R

i=0

Choosing 7 so that 27%f > 1 and r < 1, we see that the sum in j converges and
the proof is complete. O

4. Meyers’s reverse Holder inequality for gradients

In this section we will generalize Meyers’s reverse Holder inequality (2) to the
higher-order case. We will use many of the techniques of the second-order case.
As in Sect. 3, we will use the inhomogeneous Sobolev spaces

k

Wl (U) = {u : Z||V-iu||Lp(U) < oo}.

j=0

The main result of this section in the interior and Dirichlet boundary case is the
following theorem; the Neumann boundary version is Theorem 36 below.

Theorem 24. Let L be an operator of order 2m that satisfies the bounds (6)
and (10). Let co > 0. Then there is some number p™ = pZ > 2 depending only
on the standard constants and the number cg such that the following statement is
true.

Let xo € R? and let R > 0. Suppose that u € anl(B(xo, R)), that F €
L?(B(xg, R)), and that either

(25) Lu = div,, F in 2 = B(xg, R), or

(26) Lu = div,, F in some domain 2 C C B(xp, R), and u lies in the closure in
W2(B(x0, R)) of {9 € C®(RY) : (o = 0 in B(xo, R)\82}. Furthermore,
ifx € 982 and p > 0, then |B(xo, p)\2| > cop?, where |E| denotes the
Lebesgue measure of E.
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Suppose that ) < p <2 < q < p*. Then

1/q C 1/p
(/ Ivmu|‘f) < (mdi’ qj/ (/ IV’"uI‘")
B(xo,r)N$2 (R V) P 4
. 1/q
+c<c9,p,q)(/Q|F|‘f+5‘1/2|u|‘1) (27)

for some constant C(cg, p, q) depending only on p, q, co and the standard para-
meters.

We may also bound the lower-order derivatives. Suppose that m — d/2 <
m—k<mandthatO <m —k. Let0 < p <2 <gq < min(p'[,d/k). Then

ket 1/qxk Clco, p.q) - 1/ pk
vk ) s ([ 9
B(x0,r)N$2 (R — r)d/Pk=d/qk

. 1/
+Clca, p. ) R* (/Q|F|q + aq/2|u|q) (28)

where qx = qd/(d — kq) and pr = pd/(d — k p). (Notice that the condition
O<p<2<gc< min(pz, d/k) is equivalent to the condition 0 < p; < 2k <
qrx < p;, where 2 =2d/(d — 2k) and p;' = p} d/(d —k p}) ifd > k p] and
pi =o0ifd <kpj.)

Finally, if0 <m —k <m —d/2 and 0 < p < oo, then V" *u is Holder
continuous and satisfies the bound

C 1/p
sup V" k| < (p, qd)/ (/ v kulp)
B(x0,r)N$2 (R —r)4/p
. 1/q
+C<p,q)R"—d/q( / |F|q+aq/2|u|q) (29)
2

provided that 0 < p < oo and that either ¢ > 2 and k > d/2 or ¢ > 2 and
k>d/2.

Of course if p > ¢, then we may use Hélder’s inequality to bound ||V *u/ 14
by || V"~*u||1»; however, we then no longer have the coefficient (R — ryd/a—d/p.
In the interior case £2 = B(xg, R), the bound (27) with p = 2 was proven in [5]
in the homogeneous case Lu = 0, and in [9] under the strong pointwise Gard-
ing inequality; the lower-order bounds (28) and (29) are relatively straightforward
consequences of the bound (27) but it will be convenient later to have them stated
explicitly.

We will prove Theorem 24 as in the second-order case; we will need the fol-
lowing lemmas. The first two given lemmas are standard in the theory of Sobolev
spaces; see, for example, [17, Section 5.6.3].

Lemma 30. (The Gagliardo—Nirenberg—Sobolev inequality in balls). Let xo € R?
and let p > 0. Suppose that 1| < q < d, that 1 < k < d/q, and that Vv €
L(B(xo, p))- Let g = qd/(d — k q).



388 A. Barton

Then v € L% (B(xq, p)). More precisely,

k
Vil Lk (B(xo,p)) < C(q, k) Z O IV Lo (Bxg.p)-
i=0

Lemma 31. (Morrey’s inequality). Suppose that 1 < g < oo, that k > d/q, and
that V¥v € L1(B(xq, p)) for some ball B(xq, p) C R

Then v is Holder continuous in B(xq, p). Furthermore, v satisfies the local
bound

k
o]l Lo Bexg.on < Cq. 5 D p" NV V]| La(Bxg.n) -
i=0

The next lemma comes from the book [22], where it was used for a relatively
straightforward proof of Theorem 24 in the second-order case.

Lemma 32. ([22, Chapter V, Theorem 1.2]). Let Q C R? be a cube and let g and
f be two nonnegative, locally integrable functions defined on Q. Suppose that, for
any x € Q, we have that

p
sup ][ gl < b(sup][ g) + supf fr
O<r<dist(x,00)/2 J B(x,r) O<r J B(x,r) O<r J B(x,r)

for some constant b > 0 and some p > 1. Then there is some ¢ > 0 depending only
on b, p and the dimension d, such that if p < g < p+ ¢ and f € LP(B(xg, R)),

then
1/q 1/p 1/q
(][ g") < C(b,p,q)(][ g”) +C(b,p,q)(][ fq)
(1/2)Q 0 (9]

where (1/2) Q is the cube concentric to Q with side-length half that of Q.

The following lemma was established in [18, Section 9, Lemma 2] in the case
of harmonic functions. We must now generalize it.

Lemma 33. Ler 0 < pg < g < oc. Let xg € R? and let R > 0. Suppose that
u € L1(B(xg, R)) is a function with the property that, whenever 0 < p <r < R,
we have the bound

1/q Co 1/po
) s o ([ wm) T er o
(/B(xo,p) (r— p)d/pofd/q B(xo,r)

for some constants Cy and F depending only on u.
Then for every p with 0 < p < po, there is some constant C(p, q), depending
only on p, po, q and Cy, such that for any such p andr,

1/q C( l/p
P, q)
Iulq) 5—(/ |M|p) +C(p,q) F.
(/B(xo,p) (r— p)d/pfd/q B(xq,r)



Gradient estimates and the fundamental solution for higher-order elliptic systems 389

Proof. Let p = pg < p1 < p2 < --- < r for some p; to be chosen momentarily,
and let By = B(xg, px). If 0 < t < 1, then

1/po 1/po
lullro sy = (/ |u|P0) = ( |M|TP0|M|(]T)170) '
B By

If0 < v < p/po, then p/tpo > 1 and so we may apply Holder’s inequality to see
that

1—
[|u ||L”0(Bk) < lu ||2p(3k) [|ue ”LVEBk)

where y satisfies 1/pp = t/p + (1 — 7)/y. Choose T so that y = g; observe that
this means that T = (p/po)(g — po)/(q — p), and thus if 0 < p < pg < g then t
does satisfy the condition 0 < t < p/po.

In order for our estimates to scale correctly, we rewrite this estimate as

1—

llull Lro By _ lullery \* ( Nullecsy) r' (35)
(r —p)d/ro =\ (r — )@/ ) \(r — p)i/a

By the bound (34),

llullLa By - C(po, @ llullLro By C(po) F
r =)~ (o1 — p)P(r — p)d/a — (r — p)d/a

where we have set 8 = d/py — d/q. Notice g > 0.

Recall that pg = p. Let pry1 = pr + (r — p)(1 — o)a* for some constant
0 < o < 1 to be chosen momentarily. Notice that limy_, o, px = r. Because
o~ >~ 1> (1 —0)P, we have that

leloy _ CP0@) F 5 Cpo. )l
r=p)4 = (= pyia (1= 0)P(r — p)i/m

_ F lull Lro By
< C(po,q,0)a P kil
=Clro-a.) ((r — o)1 " = pyilm

By the bound (35) and Young’s inequality, we have that

lullLro By —kB(1— lullLr (B
Mullzrowo oo pa—oyc Mlleresy v F
r— pyiim = TC P00 - PTG
el .ro By 1)
| —7)————&
e i

Applying this bound to k = 0 and iterating, we have that for any integer K > 1,

K
llell ro (By) k —kp(i—y/r lullLr By
(r—p)d/l’ < ;(1 —'C) TC(p()’ q’U)U (r—p)d/P

£ F
k
DI ((1 ph p)d/q)

ke Lo By
+(1-1) i
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We want to take the limit as K — 0o. Choose o so that (1 — ) < c#0-0/7 < 1;
then the sums converge and we have that

lell Lpo (B(xo,r)) lullLr (B(xo,r))
————F= <C(po, p. Q) ————7+= +C(po, p,. ) ————7--
(r —p)¥/r (r —p)/r (r — p)¥a

This completes the proof. O

Proof (Proof of Theorem 24). We begin with the bound (27).
Let x; € R? and let p > 0 be such that B(x, 2p) C B(xo, R). By Lemma 9,

][ V| Z = ][ vm‘f'u]2+C][ K2
B(x1,p) 1 JB(x1,3/2)p) B(x1,(3/2)p)

where h(x) = |F(x)| + 8'/2|u(x)|. (Recall that u = 0 in B(xg, R)\§2; we may
also take F = 0 in B(xo, R)\£2.)

If B(x1, (3/2)p) C §2, then we normalize u by adding polynomials, so that
JCB(xl 3/2)p) Viu=0forall0 <i <m—1;if Lu = div,, F inall of B(x;, (3/2)p)
then the above bound is still valid. We may then apply the Poincaré inequality to
control the integral of V" ~/u by the integral of V"~ !u. Thus,

C
][ |V’”u|2 <= !V’"*lu|2+C][ h2.
B(x1,p) P~ JB(x1,(3/2)p) B(x1.(3/2)p)

Now, let 2] = 2d/(d + 2). By Lemma 30,

1/2 N 1/2)
() <l )
B(x1,(3/2)p) B(x1,(3/2)p)

+c(][ yvm—lu\zl) .
B(x1,(3/2)p)

Using the Poincaré inequality and the assumption that fB(xl 2) v"=lu = 0, we

may control the second term on the right-hand side by the first; we thus have the

bound
1/2 A /2
() (o)
B(x1,p) B(x1,(3/2)p)
1/2
+C(][ hz) )
B(x1,(3/2)p)

If B(x1,(3/2)p) ¢ $2, then there is some x; € 382 N B(x1, (3/2)p). By our
assumption on §2,

27cop? < |B(x2, p/2\R2]| < |B(x1,20)\82|.
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Then V”~/u = 0 in the substantial set B(x;, 2p)\$2 for all j. Thus, we may use
the Poincaré inequality in B(x1, 2p) without renormalizing u. Arguing as before
we have the bound

5 1/2 . 1/2] 1/2
(][ |Vl ) < C(][ V"l ') +c(f h2) .
B(x1,p) B(x1,2p) B(x1,2p)

Observe that 2] < 2. Thus we have established a reverse Holder inequality. In
particular, the bound (27) is valid for R = 2r = 2p, for ¢ = 2 and for p = 2’1.

We now use Lemma 32 to improve to ¢ > 2. Observe that we may cover
B(xg,r)byagridofcubes Q;,1 < j < J, withside-length £(Q;) = (R—r)/2c,
with pairwise-disjoint interiors. If we choose c( large enough (depending on the
dimension), then 20 ; C B(xp, R) for all j. We then have that, for any p,

J
[y [
B(xq,r) j=1 Q_/'

Fix some j. Let g(x) = |[V™u(x)|*1, and let f(x) = h(x)?. Let p = 2/2;
notice p > 1.
Ifx; € Qj,andif 0 < p < dist(x1, dQ;)/2, then

][ gl = ][ V" u(x)[?
B(x1,p) B(x1,p)

o 2/2)
gc(][ V™| ') +Cf h?
B(x1,2p) B(x1,2p)
p
= C(][ g) + C][ fP.
B(x1,2p) B(x1,2p)

Thus Lemma 32 applies, and so there is some g > 2 such that

1/q 1/2 1/q
( |V'”u|'f) SC(Q)(][ |V’”u|2) +C(q><][ h‘f)
Q; 20 20;

forall ¢ with2 < ¢ < ¢ ™. Thus,

J
JRRRAETEED 3 M
B(xo,r) =1 [0

J

@ ([ 2)‘“2 3 /
V™| +C(g) hi
ZZ(Q )dq/z d 20; ; 20;

Recall that £(Q ;) = (R —r)/2cp. Observe that almost every x € B(xop, R) isin at
most 29 of the cubes 2Qj; thus,

C q/2
/ DA T —— ( / |vmu|2) +C(g) h
B(x0,r) (R —r)% B(xo,R) B(x0,R)

as desired.
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Applying Lemma 33, we see that we may replace the exponent 2 by any expo-
nent p with 0 < p < 2; this completes the proof of the bound (27).

Now, suppose that 0 < k < d/2. We wish to prove the bound (28). We apply
Lemma 30 to v a component of V" ~¥u. This gives us the bound

1/qxk
(/ |V’"‘ku|‘1k) <C
B(x1.p)

We have that

) 1/q ) ] 1/q
([ ) "= ([ 9 gy, 9
B(x1,p) B(x1,p)

+ CoY f V"l

k

. . 1/q
20 (/ IV’”"urf) .
~ B(x1,p)

i

and so by the Poincaré inequality

. 1/q ) 1/q
(/ |Vm—1u|q> S Cp(/ |Vm—l+lu|q)
B(x1.p) B(x1.p)

+ de/q_d/ V" ).
B(x1,p)

Iterating, we see that

1/qk 1/q
(L) e,
B(x1,p) B(x1,p)

k
+ Czp7i+d/q7d/ |Vm7iu|.

i=0 B(x1,p)

Applying the known results for V""u and Corollary 22 or 23, we see that

1 1/2
(/ |Vm—ku|4k) fa < &(/ |u|2) /
B(x1.p) P2 14 m N J gy 312)0)
1/q
+ C(q)(/ hq) )
B(x1.3/2)p)

As before, we either normalize u in B(x1, (3/2)p) by adding polynomials of
degree m — k — 1 or observe that u and all its derivatives are zero on a substantial
subset of B(x1, 2p); in either case we may use the Poincaré inequality to control u
by V”*u. This yields the bound

1 1/2
|Vm—ku|qk /qk < C(Q) |Vm_ku|2 /
e = pd/2=d/q+k
1,0) B(x1,2p)

1/q
+ C(q)(/ h‘[) .
B(x1,2p)
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By Holder’s inequality we may replace the exponent 2 by the exponent py provided
Pk > 2. Using standard covering lemmas, if ¢y > max(py, ¢) then we may improve
to the estimate

1/qx 1/ pk
([ ) e S ()
B(x1.p) (r — p)4/Pe=d/atk \ [ (o )

1/q
+ C(q)(/ hq) .
B(xo,r)

By Lemma 33 this inequality is still valid for 0 < p; < 2.
Identical arguments, using Lemma 31 in place of Lemma 30, establish the bound
(29) on sup| V™ ¥ u| in the case k > d/q. O

In some domains we may also prove a boundary reverse Holder estimate in the
Neumann case.

Theorem 36. Let §2 be a Lipschitz graph domain, that is, a domain of the form
Q={"0):x eR 1> o)

for some function ¢ : RY~! +— R with Vol pooga-1y = M < oo.

Let L be an operator of order 2m that satisfies the bound (6) and the bound
(17) in £2.

Then there is some number p* = pZ‘ > 2 depending only on the standard
constants and the number M = ||V | oo ra-1y such that the following statement
is true.

Let xg € 052 and let R > 0. Suppose that u € W,%(B(xo, R)), that F e
L2(B(xg, R)), and that

(V”‘(p, AVmu)_Q = (qu), F)Q

for all smooth functions ¢ supported in B(xg, R).
Then

1/q cC(M 1/p
(/ IV’”uI”) < W pq) ’dl;’?;/ (/ IV’”ulp)
B(x0,r)NS2 (R — )4/ P=44 \ J B(xo, R)NQ

1/q
+C(M, p, q)( / |F|7 + WW) (37)
B(xo,R)NQ2
for some constant C(M, p, q) depending only on p, q, M and the standard para-
meters.
Proof. Ifx1 = (x{, 1) € R4 and p > 0,thenlet Q(x1, p) be the Lipschitz cylinder
OWx1, p) ={(x,0) X' = xj| < p, p(X) +11 —p <t <o) + 11 + p}.

Using either covering lemmas or a bilipschitz change of variables, we see that
many results stated in terms of balls are valid in Lipschitz cylinders. In particu-
lar, Lemma 16, the Poincaré inequality, and the first-order Gagliardo—Nirenberg—
Sobolev inequality

lvllLa1 (0 (xo,p0) < CIIVVIILa(Q(x0,0)) + CPNVIILI(Q(x0.0))>



394 A. Barton

Lemma 32, and Lemma 33 are valid in Lipschitz cylinders.
We now proceed much as in the proof of the estimate (27) of Theorem 24. Let
x1 € R? and let p > 0 be such that Q(x1,2p) C B(xp, R). By Lemma 16,

A2 T e A2
(£, talvmal) <> S(f talvmiuf)
Q(x1.p) o P N owep

Q(Xla(3/2)/7)

where h(x) = |F(x)| + 8/?Ju(x)| in £2 and is zero outside £2.

Notice that we may normalize u by adding polynomials, regardless of whether
Q(x1, (3/2)p) is contained in 2. If Q(x1, (3/2)p) C £2, then may establish the
reverse Holder inequality

172 N 12
(][ 19|V”‘u|2) sc(][ 19|vmu\21)
Q(x1,p) Q(x1,(3/2)p)
172
+C(][ hz)
0(x1,(3/2)p)

as in the proof of Theorem 24. If Q(x1, (3/2)p) ¢ £2, either Q(x1, (3/2)p) N
§2 = ¥ and so this reverse Holder inequality is trivially true, or Q(x1, 2p) N £2 is
substantial. Specifically, in this final case there exists some ¢ with4/3 < ¢ < 8such
that the map (x, t) — (x, ct) sends Q(xg, 2p) N £2 to a Lipschitz cylinder. Thus,
Lemma 30 and the Poincaré inequality are valid in Q(x1, 2p) N §2 with constants
independent of x; and p, and so we see that

2,1) 1/2]

172
(][ 1va’"u\2) gc(][ 1o|V"u
0@1.0) 0(x1.20)
172
+C(][ h2) .
0(x1,2p)

This establishes a reverse Holder inequality with ¢ = 2 and p = 2/ ; as in the proof
of Theorem 24, we may use Lemmas 32 and 33 and covering lemmas to improve
to arbitrary p, ¢ and to return to balls of radii  and R. O

5. The fundamental solution

In this section we will construct the fundamental solution for elliptic systems of
arbitrary order 2m > 2 in dimension d > 2. As in [23,24], we will construct
the fundamental solution as the kernel of the solution operator to the equation
Lu = div, F.

Specifically, in Sect. 5.1 we will construct this solution operator using the Lax-
Milgram lemma and will discuss its adjoint. In Sect. 5.2 we will construct a pre-
liminary version of the fundamental solution in the case of operators of high order.
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In Sect. 5.3 we will refine our construction to produce some desirable additional
properties, and finally in Sect. 5.4 we will extend these results to operators of arbi-
trary even order. A summary of the principal results concerning the fundamental
solution is collected at the beginning of Sect. 5.4.
An important estimate in this section will be the norm estimate
’\”“”%'V,%AR") <Re(V"u, AV™u)p,.

This estimate is valid if the coefficients A are elliptic in the sense of the bound (7)
[not the weaker sense of the bound (10)] and if we take the norm of u in a homoge-
neous space. Thus, in this section, we will work with strongly elliptic coefficients
and with the homogeneous Sobolev spaces

Wl (U) = {u VRl @y < oo}

5.1. The Newton potential

In this section we will construct the Newton potential, that is, the operator whose
kernel is the fundamental solution. The Newton potential u = ITX F is defined as
the solution to Lu = div,, F in RY. If F € L?(RY), then we may construct ntr
as follows.

Recall the (complex) Lax-Milgram lemma:

Theorem 38. ([6, Theorem 2.1]). Let Hy and Hj be two Hilbert spaces, and let B
be a bounded bilinear form on H; x H» that is coercive in the sense that

|B(w, v)| |B(u, w)|

sup  ———— > Allvllg,,  sup

> Mull g
wer\0} WA, wem\(0) Wl

foreveryu € Hy, v € Hy, for some fixed ). > 0. Then for every linear functional T
defined on Hj there is a unique ut € Hy such that B(v, ur) = T (v). Furthermore,

1
lurlla, < 51T |y

Let L be an operator of order 2m that is elliptic in the sense that the coefficients
satisfy the conditions (6) and (7). Suppose that F= {(Fjo:1<j<N,la| =m}
is an array of functions all lying in L%(R%). Then Tp(v) = <F, V’”V)Rd is a
bounded linear operator on the Hilbert space W,%l (R4). We choose B(W,V) =
(V™w, AV™y),; by our ellipticity conditions (6) and (7), B is bounded and coer-
cive on Wn% (Rd ). Let ITX F be the element ut of Wn% (Rd ) given by the Lax-Milgram
lemma. Then

(V", AV"(MFF))py = (V" 0, F)py (39)

forall ¢ € W,%(Rd — CM)y.

We will need some properties of the Newton potential IT”. First, by the unique-
ness of solutions provided by the Lax-Milgram lemma, IT is a well-defined oper-
ator; furthermore, I1% is linear and bounded L2(RY) W,% (R9).
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Next, ob_serve that if ® € Wn% (R? > CV), then by uniqueness of solutions to
Lu =div, F,

ntAv"®) = @ (40)

as W,%, (R4 - CN)-functions, that is, up to adding polynomials of order m — 1.

Next, we wish to show that the adjoint (V"*TIL)* to the operator V"I is
VLS | L ) prove this we will need the following elementary result; this will let
us identify vector fields that arise as mth-order gradients.

Lemma 41. Let (f“)|a|:m be a set of functions in Llloc(.Q), where $2 is a simply

connected domain. Suppose that whenever o + e, = B + €, we have that

(aj‘/” fﬂ):z = <3k<p, fa)g

Jfor all ¢ smooth and compactly supported in §2.
Then there is some function f € Wr}l (£2) such that fo = 3% f forall a.

Joc

Proof. If m = 1 and the functions f, are C', then this lemma is merely the
classical result that irrotational vector fields may be written as gradients. We begin
by generalizing to the case m = 1 and the case f, € L}OC(SZ). We let fj = fe;.

Let n be a smooth, nonnegative function supported in B(0, 1) with [ n = 1, and
let s (x) = e~ 9n(x/e). Let fjs = f} * 1, so that fjs is smooth. By assumption,
O f7(x) = 8/ i (x) provided & < dist(x, £2°). Let B be a ball with B C £2,
and assume that ¢ < dist(B, £22€)/2. Then there is some function f¢ such that
a/ f¢ = ff in B.

Now renormalize f* so that fB & = 0. By Lemma 30, because V /¢ € L' (B),
we have that f¢ € LP(B), uniformly in ¢, for some p > 1. Since L?(B) is weakly
sequentially compact, we have that some subsequence f* has a weak limit f.

If ¢ is smooth and supported in B, then

(070, flp = lim (070, f); = = lim (¢, 7"), = —{0. [

and so f; is the weak derivative of f in the jth direction forall 1 < j <d.

We may cover any compact subset V C §2 by such balls B; renormalizing f
again, so as to be defined compatibly on different balls, we see that we may extend
f to a function in Llloc(.Q).

Now we work by induction. Suppose that the theorem is true for m = 1 and for
m = M — 1. We wish to show that the theorem is true for m = M as well.

Fix some y with [y| = M — 1, and let f; = f} 4¢;. By assumption

<3k907 fj)g = <3k<p, fV+ej):z = (3jg0, fy+ek)g = (aj‘% fk).(z

for all appropriate test functions ¢.

Because the theorem is valid for m = 1, there is some f = f, € Wll,l o (§2)
such that 9; f), = fyte; in the weak sense.

If|y|=18| =M —1,and y +e; = + ¢, then

(31"?’ f)/)_(z = —((p, fV+ej>.Q = —((p, f8+ek>.rz = <ak¢7 f5>9
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and so the array ( fy)l)/l: v satisfies the conditions of the theorem with m =

M — 1. Because the theorem is true for m = M — 1, we have that there is some
fe WA,[_UOC(.Q) suchthat f,, = 97 f forall |y| = M —1;because ¢ f,, = fy+e;
we have that f, = 0% f for all |«| = m, and so the theorem is true for m = M as
well. This completes the proof. O

‘We now consider the adjoint operator to the Newton potential.
Lemma 42. The adjoint (V" TIL)* to the operator V' IIL is V' IIL".

Proof. Observe that VI is bounded on L?(R?) and so (V"IIX)* is as well;
that is, (V" TI1X)* F is an element of L2(R?). We first show that it is an element of
the subspace of gradients of W,% (R9)-functions, that is, that there is some function
ue W,%,(Rd) such that (V"IIL)*F = v™u.

By Lemma 41, it suffices to show that if I < i < N, if ¢ is smooth and
compactly supported in §2, and if o« + ¢, = 8 + €}, then

(9j9 éip, (V'Y F) = (09 i, (VI F) .
That is, we seek to show that
(V"IE (09 i p — kg éia), F)p = 0.

But (V"'1, ;¢ éj.p — 0k &i.a)ga = O for all n smooth and compactly supported,
and so X (3¢ & p — kg éia) = 0.

Letu satisty V""u = (V" ML)* F. We now show thatu = IL" F. Choose some
@ smooth and compactly supported in R?. Then

(V" A*V"u)p, = (AV" @, (V" TT)* F)p,
= (V"II" (AV"9), F)p,.
By formula (40), we have that V" TIX (AV" @) = V" ¢. Thus
(V"@, A*V™Mu)p, = (V0. F)Rd

for all ¢ smooth and compactly supported. Because ML F s the unique element
of W2 (R?) with this property, we must have that u = ITX"F and the proof is
complete. O

We conclude this section by showing that the Newton potential is bounded on
arange of L” spaces.

Lemma 43. Let L be an operator of order 2m that satisfies the bounds (6) and (7),
and let p'L" be as in Theorem 24. Let l/pZ' +1/p; =1 1Ifp. <p< pz, then
ML extends to an operator that is bounded LP (R?) Wh(RY).
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Proof. Suppose first that 2 < p < p;.Let F € L2 (R?) N LP(R?) and let u =
I F. By Theorem 24,

1/p c 172
(o) <2l )
B(x0.7) r P \J B(xo,2r)
. I/p
+c<p>(/ |F|f’).
B(x0,2r)

By taking the limit as r — oo, we see that | V" TILF|| ;pgay < C(P)IF | 1o ga),
and so I extends to an operator that is bounded L7 (RY) > WP (RY).

By a similar argument Vv"IL" is bounded LP,(Rd) > LP/(Rd) for all
2 < p' < pj.; thus by duality V"II” is bounded LP(R?) + LP(R?) for all
P+ < p <2, as desired. O

5.2. The fundamental solution for operators of high order

This section will be devoted to the proof of the following theorem.

Theorem 44. Let L be an operator of order 2m > d whose coefficients satisfy
the bounds (6) and (7). For each zo € R? and each r > 0, there exist functions

Eik’zo’r(x, y) with the following properties.

First, if x € R? and |B| = m, then f(y) = afEé (x, y) lies in L*(RY),

J.k,z0.7r

and ifF € L>(R?Y), then forall 1 < j < N, we have that

N
Ly L
I F(x) = E z /Rd WET, . (x,y) Frp(y)dy (45)

k=11Bl=m

as Wz’” (RY)-functions, that is, up to adding polynomials of order m — 1.
Next, for any xo and yo, we have the bounds

/ / VPVIEL, (ny)Pdydx < C. 1= lxo — ol/3. (46)
B(xo,r) J B(yo.r)

If1 <j<N,1<k<N,andifa, B are multiindices with |a| = |B| = m, then

Al EL, L (xy) = 0f00EE (v x). (47)

k,j.z0.r

Finally, if |xo — zol = |yo — zo| = |xo0 — yo| = 3r, then we have the bounds
/B< ) /B< VI EL o Pdyde < €PN )
X0, Yo,r

whenever 0 < g <mand(0 <s <m.
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By uniqueness of the Newton potential IT- F in W,%l (RY), the array of highest-

. . L . . . .
order derivatives V7 V;” E i (X, y) is unique; however, there are many possible

normalizations of the lower-order derivatives Vy' 7 V;"_“ E jL «(x, y). In Sect. 5.3
we will discuss some natural normalization conditions. In Sect. 5.4 we will extend
this theorem to operators of order 2m < d.

We will now prove Theorem 44. We begin by constructing a fundamental solu-
tion EL(x, y). For our preliminary argument, we will need ITX F (x) to be well-
defined for any specified x; that is, we will need to assume that MEF is always
continuous. By Lemma 31 if V'"ILF € L2(RY) and m > d/2 then nLF is
continuous. It is for this reason that we begin with operators of order 2m > d.

Recall that even if I F is continuous, it is still defined only up to adding
polynomials of order m — 1. We will fix a normalization of IIXF as follows.
Choose some points Ay, ha, ...h,; € RY with |hi| = 1, where ¢ is the number of
multiindices y with |y| < m — 1. If the h;s are chosen appropriately, then for any
numbers a;, there is aunique polynomial P (x) = zlyl <m—1 Py x7, of order at most
m — 1, such that P(h;) = a; forall 1 <i < p.Furthermore, there is some constant
H depending only on our choice of /; such that the bound |p, | < H sup;|a;]| is
valid.

Now, choose some zg € R4 and some r > 0. We fix an additive normalization
of ML = Hﬁo’, by requiring Hg(),rF(ZO +rh;)=0foralll <i <gq.

Let x € RY. Define SxF = HZLOV,F(x). Then S, is a linear operator. We will
use the Riesz representation theorem to construct the fundamental solution as the
kernel of Sy ; to do this, we will need to establish boundedness of Sy.

We will use the following lemma with u(x) a component of ML F(x) =S, F.

Lemma 49. Let u be a function such that V"u € L*(R?) and such that u(zo +
rhi)=0foralll <i <gq.
Then
R m—1
lu(x)| < C(—) R'"_d/2||Vmu||L2(Rd), where R = |x — zo| + 1.
r

Proof. By Lemma 31,

()| = C(ZRZ"][
k=0 B

Let P(x) be the polynomial of degree at most m — 1 such that

][ Y P(x)dx =][ 0% u(x)dx
B(z0,2R) B(z0,2R)

for all |y| <m — 1. Then

)| < C(Z r
k=0 B

1/2
|Vku|2) .
(z0.2R)

m 1/2
k., <gkp|2 2k k 2/
Vi — VEPP+ > R vEpR2) .

(z0,2R) k=0 B(z0,2R)
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If kK < m — 1, then by the Poincaré inequality

Rzk][ |VEu — VEP)? < RZ’"][ V" ul?.
B(z0,2R) B(20,2R)

Therefore,

1/2 m 1/2
lu(x)] < CR"”W(/ |vmu|2) +C(ZR2"][ |V"P|2) .
B(z0.2R) B(z0.2R)

k=0
By Lemma 31 and the above bounds on Viu —vEkpPifl <i < q then
|P(z0 +7hi)l = |P(z0 + 7 hi) — u(zo +r h)l < CR™ 21V ull 1250 20

Let P(x) = Q((x — z0)/r), so that Q(h;) = P(zo + r h;). By construction of Q
and h;, we have that

Q(x)= > gqyx forsome gy with|g,| < CR™ V" ull 12 2r))-

lyl<m—1

Then

! _
PPx) = Zrilquy—y ‘(x —z0)7 7?0
=y (y — 9!

where y! = y1lya!. ..yl Thus, if x € B(zo, 2R), then
R\ R\
IVEP| < 0(7) R suplay| < 0(7) R A2V ] 23y 2y
Combining these estimates, we have that
u@)| < C(E)mlRmd”HV’”un J
= , L=(B(z20,2R))

as desired. O

We apply the lemma to the function u = TZ | F. Recall that V" IT* is bounded
on L2(R%), and so

. o (R\"! .
IScF| < CR™ ‘1/2(7) IFll2@®ay, R=I|x—2zol+r.

By the Riesz representation theorem, there is some array E” such that

N
(HZL,O,,F)]m =S => > /]R CEfkpagr(9) Fep(y)dy.

k=1|B|=m
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Furthermore, EL satisfies the bound

B R m—1
1Eftpozgur & ey < CR™ "/2(7) . R=r+lx—zl (50

As in the proof of Lemma 42, we may use Lemma 41 to see that there is some func-
tion E]Lk Zour such that E] k.Boz0 r(x y) = 8’3 ] k20, ~(x,y). Again E]L’k’zo)r(x, y)
is not unique; we may fix a normahzatlon by requiring that

(x,zo+rhj) =0 forallx e RY andall 1 <i <gq.

Z()r

Notice that by construction of EL 0.7

WEL (zo+rhi,y)=0 foralll <i<p

20,7

as an L2(R9)-function; thus P(y) = EZ0 ,(zo +rh;,y) is a polynomial in y of
order m — 1, and because it is equal to zero at the points y = zo + r h; we have
that

(zo+7rhi,y)=0 forally e RYandalll <i < p.

ZOV

We also observe that by Lemma 49 and the bound (50), we have that

_ 2m—d/2—1 B 2m—d2—1
B o) = ot (14 DR (1 BT )
r

r

We have established the existence of EL and the relation (45). To complete
the proof of Theorem 44, we must show that the derivatives 8§ 85 E 5‘ . ZO’r(x, y)
exist in the weak sense and satisfy the bounds (46) and (48), and must establish the
symmetry property (47).

Let 1 be a smooth cutoff function, that is, fRd n=1,n> 0and n = 0 outside
of the unit ball B(0, 1). Let 7, (x) = ¢ % (x/¢). We will let s, denote convolution
in the x variable, that is,

Ne *x Eﬁk,zo,r(x, y) = /Rd Ne (%) Eﬁk,zo,r(x — X, y)dx.

For the sake of symmetry we will consider the function ns *, E ]L kozo.r X5 Y) %y 1e
for some g, § > 0.
For any multiindices ¢ and &, let

Eftcese(y) = 0505 (ns % E,ﬁk,zo,,(x, ¥) %y 7e).

aaaaa

e— 0,6 = 0.
We begin with the derivatives of highest order. Let |c| = |8| = m. Observe
that

ETpapse(t:y) = @%ns) se Efp g (X, ) %y 7.
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Now, we have that

/Rd Efp wps.e(6y) F(y) dy = (3%15) %y /Rd E%y pooor ) (e % F)(y) dy
= s % 0° T} (ne x F &y p)(x).

The operator F +— ng * S“Hf(ng * F e g)(x) is bounded L%(R?) > C, albeit
with a bound depending on §. Thus by the Riesz representation theorem, K (y) =
E jL koo, f.8.6 (x, y) is the kernel of this operator, and so does not depend on zg and r.
Furthermore, by Lemma 42,

L _ L*
Ej’k,a’ﬁ’s’g('x’ y) = Ek’j,/g’a,g)g(y» X).

In order to establish the bounds (46) and (48), we would like to use the Caccioppoli
inequality in both x and y; it will be helpful to have a similar symmetry relation
for E ZLO’,(x, y) as well as its highest derivatives.

L L*
Lemma 52. We have that Ej,k’zoﬁr(x, y) = Ek’j,zo’r(y, X).
Proof. Because EjL,k,a,,B,a,e(x’ y) = Elf;,ﬂ,a,e,(ﬁ(y’ x), we have that
L L*
V)’[’,‘lEj’kyO’ﬂ,(S’g(x’ y) = V;nEij)ﬂ 0.¢ 5()’, X).

s Uh &y

*

Thus Eﬁk,o,ﬂ,a,s(x’ y) and E,f’j’ﬂ)o’g)s(y, x) differ by a polynomial in x of order
m — 1. But observe that

E/l‘:k’()’/g,g’g(ZO +rhy, y) = 0= E]i;,ﬂ’o,g’g()): z0 +1hi)

for all 1 <i < g; by construction of the points 4;, this implies that

L L*
E.j,k,(),ﬂ,s,g(x, y) = Ekyj’ﬁ’oyg’a(y? x).

By a similar argument,

L _ oL
E 10,08, Y) = Ep 00050 %).

By Morrey’s inequality E” is continuous. Taking the limits as ¢ — 0 and § — 0
completes the proof. O

We now wish to establish an L2 bound on E JL K.CE5.e independent of § and ¢;
this will allow us to prove the bounds (46) and (48), and also to construct the
derivatives by taking the limits as §, ¢ — 0. We will use the Caccioppoli inequality.

The first step is to show that E ZLO)r is a solution in some sense. Recall that

if o € W,%, (R%), then by formula (40) ¢;(x) = HJ.L (AV™@)(x), and so by our
construction of EL,

N N
pi)=> > /R W EF @y D0 D7 A8 eu(y) dy

k=1 |B|=m {=1|yl=m
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as W,%l functions; if @(zo +r h;) = 0 forall 1 <i < g, then this equation is true
pointwise for all x. Thus, we have that for any x, j, zo, r, the function v(y) given
by vk (y) = E]‘Lk,m,r(x’ y) is a solution to L*v = 0 in R\ {x}\ B(zo, r).

X0 — Yol = [xo —z0l =Iyo —z0l =8r.
For any x € B(xg, r), we have by Corollary 22, if € is small compared to r then

/ |EL ;5.0 0P dy = / ne %y (353 e xc EL (x, y)*dy
B(yo,r) B(yo,r) i

IA

/ (059" ne ¢ EL L (x, ) > dy
B(y0,2r)

C / L 2
< - [0 ne *x EL .(x, y)|*dy.
r2|$| B(y0.,4r) ey <0.r

Again by Corollary 22 and by the bound (51),

| i@ BL o0y = [ s 0B ) P
B(xo,r) B(xo,r)

< / 10SEL (v, x)|*dx
B(x0,2r)

< Cr4m—d—2|;‘|.

Thus

/ / |E§,s,a,e(x,y)lzdy dx
B(xo,r) 7 B(y0,7)
C -
= 2 /B( 4 )/B( )|(a<“ng *x EZLO,r(xv w2 dx dy < CrAm—2181=2181
Yo,4ar Xx0,7

So E?,S,ﬁ,s is in L?(B(xo, r) x B(yo, r)), uniformly in 8, &; thus there is a weakly
convergent subsequence as §, ¢ — 0. Observe that the weak limit must be the

partial derivative 8§ 85 E g‘w(x, y), as desired.

5.3. Natural normalization conditions for the fundamental solution

Recall that our normalization of E”, in the construction given in Sect. 5.2, is highly
artificial and depends on our choice of the normalization points zo + 7 4;. In this
section we will construct a somewhat more natural normalization of at least the
higher derivatives of EL.

Our normalization will, loosely speaking, be a requirement that the higher-order
derivatives of E” decay at infinity. Thus, we begin with a decay result.

Lemma 53. Let A(xo, R) denote the annulus B(xg,2R)\B(xg, R). Let pt =
min(p;f, sz*), where sz is as in Theorem 24. If 0 < & < d(1 —2/p™), then
there is some constant C = C(¢) such that if xo € R? and R > 4r > 0, then

&
[ ] wrepEteeopPayar < c<e)(1) .
A@o.R) J B(xo.r) R
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Proof. Let ns be a smooth approximate identity, as in Sect. 5.2; we will establish
a bound on 55 x, VI V;” E*(x, y), uniform in 8, and then let § — 0.

Fix some 8 > 0, x € R4, and some j and @ with 1 < j < N and |«| = m. Let
V() = s % OFE S (x, ).

As in Sect. 5.2, we begin by showing that v9 is a solution to an elliptic equation. By
the bound (46), we have that v* € Wn% Joc+ Suppose that ¢ is smooth and compactly
supported. If dist(x, supp ¢) > &, then by formula (40) and formula (45),

0=ns*0%;(x)

N N
B /R nn e EOPEL () AT (007 9 (0)

k=1 t=1|B|=|y|=m

So L*v® = 0 in R\ B(x, §), and so Theorem 24 applies.
Let p be such that ¢ = d(1 — 2/p); notice that 2 < p < p*. By Holder’s
inequality, we have that

2/p
/ |v;f’v3<y>|2dysc1ra( / |v;"v5(y>|"dy) .
B(x0,7) B(xo,r)

Because R > 4r, we may replace the second integral by an integral over the
ball B(xp, R/4). We then apply Theorem 24. This yields the bound

ré‘

/ ViV (y)|Pdy < C IV () dy
B(xo,r)

RE JB(xo,R/2)

uniformly in §. Taking the limit as § — 0 and applying the bound (46), we see that

/ / VIV E" (x, y)* dy dx
AGxo.R) J B(xo.r)
Crf Crt
<G [ [ wrepEteonPdydr = G
R Jao.R) J B(xo.R/2) R

as desired. m]

Because L* is also elliptic, a similar bound is valid for E L* Notice that by for-
mula (47), we have that V;”V;“,’Eﬁk(x, y) = V)’C"V;"E,f; (v, x). Thus, a similar
bound on E’ is valid with the roles of x and y reversed.

Next, we use this bound to produce natural normalizations of certain higher-
order derivatives.

Lemma 54. Suppose that E is a function such that, for somev > 0,¢c > 0, & > 0
andt < d + ¢, the decay estimate

£
/ / |VI'VYE(x, y)[Pdxdy < cR’(i)
yeB(xg,r) JxeA(xo,R) R

is true for all xo € R? and all R > 4r > 0.
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Then there is an array of functions p,, such that, if

E(x,y)=E(x,y) + > py () x”
Mt [2—d ) 2—e)2<|y | <m—1

then there is a constant C = C(¢) depending only on ¢ such that, for all integers
gwith0 <q <mandq <d/2+¢e/2 —t/2, we have that

&
/ / VI IVYE @, v dxdy < C(e)cR’“q(i) (55)
y€B(xo,r) JxeA(xo,R) R

forall xo € R and all R > 4r > 0.
Furthermore, p, (y) is unique up to adding polynomials of order v — 1.

By Lemma 53, if £ = EJL « 1s a component of the fundamental solution for
some elliptic operator L, then E satisfies the conditions of Lemma 53 for v = m
and r = 0; we will shortly need the lemma for v < m as well.

Proof (Proof of Lemma 54). We begin with uniqueness. Suppose that there were two
such arrays p and p. Let P, (y) = p, (y) — p,(»). m +1t/2—-d/2 —g/2 < |y]|
and |y| < m — 1, then the difference P, (y)x” must satisfy the bound (55) for
g =m — |y|. Thus, for any xo € R? and any R > 4r > 0, we have that

/ / \VYIVE (P, (y) x7) P dx dy < C(r,€) ¢ RIF2"2I1=e,
y€B(x0,r) Jx€A(x0,R) :
But

[ e e Pdxdy=crY [ 9ip00Rdy.
yeB(xg,r) J xeA(xgp,R) B(xo,r)

Because m +t/2 — d/2 — ¢/2 < |y|, we have that 2m +t — 2|y| — e < d and
so R? grows faster than R?"+/=2¥I=¢ Thus, the only way that both conditions
can hold is if V;{ P, (y) = 0 almost everywhere in B(xo, r). Since xo and r were
arbitrary this means that P, is a polynomial of order v — 1, as desired.

We now construct an appropriate array of functions p,, (y). We work by induc-
tion; notice that by assumption, the bound (55) is valid in the case ¢ = 0.

Choose some g > 0 satisfying the conditions of the lemma, and suppose that
we have renormalized E so that the bound (55) is valid if we replace g by ¢ — 1.
Choose some multiindices y and ¢ with |[y| =m — g and |{| = v.

Let A; = B(xo, 2))\B(xo, 2!~ 1), and define

Ei(y) = ][ S E(x, y)dx.

i

For any constant ¢; we have the bound

|Ei(y) — Eiv1(V)] = ‘][ 3};3§E(x,y)dx —][ 3I3§E(x,y)dx
A A

i+1

< +

][ WO E(x, y)dx — ¢

i

][ 8}:8§E(x,y)dx—c,-
Ait+

< C][ 0705 E(x, y) — cil dx.
AjUA; 1
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Choosing ¢; appropriately, by Poincaré’s inequality,

|Ei(3) — Erj1 ()] < €2716@=D / Ve E(x, y)l dx.
AijUA; 1

Thus by Holder’s inequality

/ |Ei(y) — Eip1(»)*dy
B(xq,r)

5 S U |
_— \Y% VYE(x,y)|dx ) dy
226D [ \Jauas, '

C / / m—q+1 2
<— VY ITIVYE(x, y)|*dx dy.
2642 g Jaua, !

Recall that we assumed that we had the desired decay estimates for g — 1; this
implies that

/ Ei(y) — i1 (0)dy < € c2l0-4+24-0) e,
B(xo,r)

Thus, by our conditions on ¢, Exo(y) = lim;_, oo E;(y) exists as an L?(B(xo, r))-
function. As usual we may use Lemma 41 to see that there is some p,, (y) such
that Ex(y) = y! 8§py(y), where y! = y1!y!. . yql. Let E(x,y) = E(x,y) —
py(y)x”. _ _ _

We construct an E; from E, similar to our construction of E;; then E; satisfies
the same bounds as above and converges to zero as i — 00. Because geometric
series converge, we have that

/ ()P dy < Cle) 2104426
B(xo,r)

By the Poincaré inequality

/ /|a§a§E(x,y)|2dydx
B(xo,r) J Aj

< C/ / 07 5 E(x, y) — Ex(y)|*dx dy + C(e) ¢ 2/ +247)
B(xo.r) J A;

< c22"/ / |v;"“1“a§1§(x, WI2dxdy + C(g) ¢ 210+2a=8)¢
B(xo,r) J A;
S C(S)Czi(l-‘qu—&‘)rS

as desired. Repeating this construction for all y with |y| = m — g, we complete
the proof. O

By Lemmas 53 and 54, there is a unique appropriately normalized representative
of VI IVI'E L(x, y). Recall that by formula (47), we have that EL (x, y) satisfies
the conclusion of Lemma 53 with the roles of x and y reversed. We may thus

find a unique additive normalization of V"V, EL(x, y). Also notice that by
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formula (47), applying the same procedure to E L*we see that this normalization
preserves the relations

VYOIV ED (v, y) = VETIVIEL (v, %),

s

VIVYTER (k. y) = VIV ER (9, %)

We are now interested in the mixed derivatives, that is, in the case where we
take fewer than m derivatives in both x and y.
Observe first that if ¢ < d(1 — 1/pT) and if xg € R?, yo € R, then

/ / VIVTTEL (x, P dx dy < CR¥, R = |xo — yol/3.
B(yo,R) v B(xo,R)

As in the proof of Lemma 53, we may use Holder’s inequality and Theorem 24 to
see that

&
- r

/ / VY IV ER (x, y)[*dydx < C(e)R™ (_)
xeA(xo,R) JyeB(xo,r) R

forall0 < & < d(1—2/p)), where p} = p*d/(d—q p*)inthecaseq < d/p™
and p;- = o0 ifd/p™ < q < d/p~. We may rewrite this requirement as 0 < & <
min(d, d(1 —2/p™) + 2q).

We may thus apply Lemma 54 with v = m — ¢ and t = 2q. Hence, if ¢ and ¢

are as above, and if s < d/24¢/2—q, then there is a unique additive normalization
of Vy' IV =S EL(x, y) such that

&
/ / VISV ER (x, y) P dx dy < C(e)qu”S(i) . (56)
B(xo,r) J A(xo,R) R

We remark that we may find an appropriate ¢ if and only if ¢ and s satisfy the
conditions0 < g <m,0<s <m,q <d/p~,s <d/p ,andg +s < d.

We will establish one more bound on the fundamental solution. Specifically,
notice that V;”V;”EL(x, y) is only locally integrable away from the diagonal
{(x,y) : x = y}. The lower-order derivatives, however, are locally integrable
even near x = y.

Lemma 57. Let g and s be such that 0 < q + s < d and such that the bound (56)
is valid for all xo € R and all R > 4r > 0.

Suppose that p < d/(d — (g + s)) and that p < 2. We then have the local
estimate

/ / |V)’C”*SV;1_‘]EL(x, WP dxdy < Cr¥d—rd=s—a),
B(xo,r) J B(xo,r)

Proof. Let Qg be the cube of sidelength £(Qo) = 2r with B(xg,r) C Qy, so that

/ / |V;”_‘YV;1_‘1EL(x,y)|pdxdy
B(xo,r) v B(xo,r)

<[ [ v et dxdy.
Qo /200
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We divide Qy as follows. Let G; be a grid of dyadic subcubes of Qg of sidelength
21=Jr. Notice that Go = {Qo} and that G contains 274 cubes.

If y € B(xo,r), let Q;(y) be the cube that satisfies y € Q;(y) € G;. If
0O € Gjy1,let P(Q) be the unique cube with Q C P(Q) € G;.If Q is a cube, let
20 be the concentric cube with side-length £(2Q) = 2¢(Q). Then

|| ey mta i dsdy
Q0 /200

o0
=/ Z/ |V Sy 1 EL (x, y)|P dx dy
Q0 =0 720;(M\2Q+1(»)

o
> S [ e sy
Q0 J2P(Q)\20

j=0 0eG;

We apply Holder’s inequality to see that

L] e e i dxdy
0 J2P(0)\20

r/2
SCE(Q)””“’)(/ / |V£1sv;1‘qEL<x,y>|2dxdy)
0 J2P(Q)\20

and the bound (56) to see that
L] v Bl drdy < CeQ) e,
0 J2P(0)\2Q0

Combining these estimates and recalling that there are 274 cubes Qeg j» We see
that

00
/ / |V)rcn—sv;"*f1EL(x’ y)|p dxdy < Cr2d—(d—q—s)p Zz—jd-i-j(d—q—s)p'
Qo /200 =0

If p <d/(d — (g + s)), then the geometric series converges, as desired. m|

We have renormalized the fundamental solution so that we may bound its higher-
order derivatives. This renormalization will not affect the bound (46), and because
our renormalization is unique it maintains the symmetry condition (47).

Theorem 44 had one more conclusion, the formula (45). This states that

N

HJ-LF(x) = Z Z /]Rd 85Eﬁkﬁzoyr(x, ) Frg(y)dy as W,ﬁ (Rd)—functions.
k=1 |Bl=m

We would like to consider in what sense this equation is still true after renormal-
ization. To address this, we will also need natural normalizations of the left-hand
side ITX F involving decay at infinity; this normalization is given by the following
lemma.
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Lemma 58. (The Gagliardo—Nirenberg—Sobolev inequality in RY). Let u lie in the
space Wh(RY) for some 1 < p < d. Let 0 < k < d/p be an integer, and let

px=pd/(d—pk).
Then there is a unique additive normalization of V'™ u in LPk(R?).

See, for example, Section 5.6.1 in [17]. We use this lemma to address the relation
between the Newton potential and the renormalized fundamental solution.

Lemma 59. Let p~ < p < min(d, p™V), let y be a multiindex withm — d/p <
lyl <m—1,andletq > d/(m — |y|). Let 1 < j < N.

Suppose that we have normalized E* as above. We normalize the lower-order
derivatives of NLF as in Lemma 58. IfF lies in LP(R?) and in LY. (R?), then

loc

N
Ly, _ YaB L
O ITEF (x) = kZ}mlz /Rd Y 9P EL (x, ) Fip(y) dy (60)
= =m

for almost every x € R.

Proof. Let us define

N
i =3 3 [ el ) R dy

k=1 |B|=m

where E” is the fundamental solution normalized to obey the bound (56). We
begin by showing that I7 ]L v is a bounded operator in some sense. Specifically, let

B(xp, ) C R? be a ball. We will show that nﬁy is bounded L7 (B(xg, 2r)) N
LP(R?) +— LY(B(xo, 1))
First, we see that

/ [T}, F(x)|dx < C/ / VYV EL (x, )| [F ()| dy dx
B(xo,7) B(xo,r) J B(x0,2r)
o0

+CZ/ /|VJ!'V;"EL<x,y>||F<y>|dydx
i=1 B(xo,r) J A;

where A; = B(xg, 2t r)\B(xo, 2r). If 1/g + 1/¢' = 1, then ¢’ < d/(d — (m —
|¥1)), and so by Lemma 57 and Holder’s inequality, the first integral is at most

Cra=atm= I F |l La(gxg 20 -

We control the second integral as follows. Fix some i > 1. Then by Holder’s
inequality,

/( )/A|vxyv;1EL<x,y>||F<y>|dydx
B(xq,r i

’ l/p, .
< Crd/p(/ / \VIIVIEL (x, )| dy dx) 1L axo.2ry)-
B(xo,r) v A;
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Notice that p’ < p*. Arguing as in the proof of Lemma 53, we use Theorem 24 to
show that

, 1/p'
(/B( )/A VIV EL 2, )1 dydx)
X0, i

) , , 1/2
< Czl(d/p 7d/2)r2d/p d( /~ . |V)|CV|V;HEL(X,y)|2dydx)
B(xg,r) JA(xg,2'r)

where A(x, 2/r) is the enlarged annulus B(xq, 2:72r)\ B(xo, (3/4)2'r).
By the bound (56),

, 1/p
(/B( [ererta ay dx)
X0,7 i

< C(g)zi(d/P'—d/Z-i-m—IV|—€/2)r2d/17'—d+m—\y\

forall 0 < ¢ < min(d,d(1 — 1/p*) +2m —2|y|). Let 0 = 0(s) = —d/p’ +
d/2 —m + |y| + &/2. We remark that by our assumptions on y and p, we may
always find an ¢ that satisfies the above conditions and such that 6 > 0.

Thus,

/ [TF, F ()| dx < Crm VR | g g om)
B(xo,r)

o
+ C@)rmlvIrd/p 22_19 ||F||Lp(A<x0,2fr))

i=1

and by convergence of geometric series, we have that /7 jL , s bounded as an operator
from L9 (B(xg, 2r)) N L?(RY) to L' (B(x, r)), as desired.

We may now work in a dense subspace of LP(RY) N L;]OC(Rd ); we will work
with F bounded and compactly supported.

In particular, suppose that F is supported in some ball B(yy, r). Let zg be such
that |yg — zo| = 3r, and consider the fundamental solution E fo,r of Theorem 44,
as in Sect. 5.2 we will let

N
L 3 L
mj, Foo=20 3 /]R JWET 2 (03) Fep(y)dy.

k=1 |B|=m

Begin with the case |y| = m — 1. We will show that there is some constant ¢

such that HjLVF(x) = 8VHJ,LZOyrF(x) + ¢ for almost every x € R?; it will then be

straightforward to establish that /7 /Ly F decays and so must equal the normalization
of Lemma 58. ’
Observe that our renormalization of EZ preserves the relation

VIVIE" (x,y) = VI'VI'EL | (x.y).

20,7
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Thus by Lemma 54, for every 8 with || = m and every j, k, there is a unique
function p such that

WAPEL (x,y) =0 L ET, . (x,9) + p(y).

In particular, while p may depend on y, 8, j, k, zo and r, once these parameters
are fixed, p cannot depend on x. It will be convenient to write p = py g and leave
the remaining dependencies implied.

Let x¢ satisfy |xo — yo| = |xo — zo| = 3r. Notice that

/ | Pkl =/ ][ Pr.p(y)dx
B(yo,r) B(yo,r) 1V B(xo,r)

2
<[ jaER G - o Eh oy dxdy
B(yo.r) J B(xo,r)

2
dy

and so, using the bounds (56) and (48), we see that p; g € L2(B(y0, r)) with

||Pk,/3||L2(B(y0,r)) <Cr¥d,
Thus,

N
ok Fx=> > /]R JOWPEFy o (. 3) Fep(y) + pip(y) Fip(y) dy.
k=1|Bl=m

Notice that, by Lemma 57, 8} a;?EL(x, y) € LY(U x B(yo, r)) for any bounded
set U. If U = B(xo, ), then the inclusion axyafEL (x,y) € L'(U x B(yo,71))

20,7

follows from the bound (48); because 37 8) EL (x.y) = 8] o) EL, . (x.y) +

s J.k,zo.r
Pk,p(y), we may extend this second inclusion to all bounded sets U. Thus

N
L 7 L
arFx=> > /Rd WIPET o (6. 3) Frp(y)dy
k=1 |Bl=m

+/ Pi.s(y) Fr.g(y)dy.
Rd

Observe that the second integral is convergent and also is independent of x. Fur-
thermore, we may apply Fatou’s lemma to the first integral to see that

N
L 7 L
I F(x) = c1 + 14 E E /]Rd Bij’k’zo’r(x, y) Fr p(y) dy
k=1 |B|=m

=ci+o{ M}, F(x).
0.7 .
c+oln ]L F(x) where 8 IT ]L F (x) is normalized as in Lemma 58. We must now
establish that ¢ = 0, that is, that [T jL Y F decays at infinity. But by the bound (56),
we have that

Because ITX | is an additive normalization of ITZ, this means that IT ijF (x) =

lim |}, F(x)dx =0
R—>00 JA(yo.R)
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and this can only be true for one additive normalization of 97 IT jLF ; it is this
normalization that is chosen by Lemma 58, as desired.

We now consider |y| < m — 1; we still work only with bounded, compactly
supported functions F. If |y 4+ ¢| < m — 1, then by Fatou’s lemma IX F =

. A
Bfl'lyF, and if |y + ¢| = m — 1 then by the above results §+VF =93STYILF.
Thus 9Y TIEF = l'[)e F up to adding polynomials. But again by the bound (56), we

have that

lim [Tr Fx))Pdx =0
R—o0 Jag,R) 7

whenever m — d/p~ < |y| < m; thus, AYIEF = H]I;F, as desired. m|

Remark 61. We have established decay results and the relation (60) only for the
higher-order derivatives. We expect the lower-order derivatives to be problematic.
As an example, consider the case of the polyharmonic operator L = (—A)™; we
may normalize the fundamental solution so that, for some constant Cy, 4,

ECA" (v yy = | Cmalx = yme, doddord > 2m,
' Cpalx — y|*"4loglx —y|, devenandd < 2m.

Notice that 8585 ECA" (x, y) decays at infinity only if [¢] + €] > 2m — d.
Furthermore, if | |+|&| = 2m —d, then no natural normalization condition applies;
the fundamental solution given above must be normalized using deeper symmetry
properties of the Laplacian and a choice of length scale for the logarithm.

In the case of more general operators, these symmetry properties are not avail-
able, and it is not apparent whether dimensionally-appropriate decay estimates are
valid unless min(|¢[, |£]) > m — d + d/p™. Thus, in general, we do not have a
unique normalization of the fundamental solution for operators of higher order.

We will see that we can construct a fundamental solution for operators of lower
order and retain the above decay estimates, and in that case we will have a unique
normalization of EX provided 2m < d. (If 2m = d then we will have unique
normalizations of VXEL(x, y) and VyEL(x, v), and hence a normalization of EL
that is unique up to additive constants.)

5.4. The fundamental solution for operators of lower order

Consider the following theorem. In the case where 2m > d, validity of the following
theorem was established in Sects. 5.2 and 5.3. In this section we will show that
Theorem 62 is still valid even if 2m < d.

Theorem 62. Let L be an operator of order 2m that satisfies the bounds (6) and
(7). Then there exists an array of functions E ]L « (X, y) with the following properties.

Let g and s be two integers that satisfy ¢ + s < d and the bounds 0 < q <
min(m,d/2),0 <s < min(m, d/2).
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Then there is some ¢ > 0 such that if xo € R?, if 0 < 4r < R, if A(xo, R) =
B(xp,2R)\B(x0, R), and if g < d /2 then

&
/ / |V;"—SV;1—qEL(x’ y)|2 dxdy < Cr2qR2s (L) ) (63)
YEB(xp.r) Jx€A(xg,R) R

If ¢ = d /2 then we instead have the bound

o — Sy R 6
/ / VP VY B (e )P dxdy < C(8) ¥R (f) “
y€B(xq,r) Jx€A(x0,R) 4

forall 6 > 0 and some constant C(8) depending on 4.
We also have the symmetry property

YO EL (x, y) = 0V OIEL (3, %) (65)
as locally L? functions, for all multiindices y, 8 with |y| = m —q and |§| = m —s.

Ifin additionq+s > O, then forall pwithl < p <2andp <d/(d—(q+5)),
we have that

/ / Ve VYT E (e 1P dady < C(p) r2TPEHD(66)
B(xo,r) J B(x0,r)

forall xo € R and all r > 0.

Finally, there is some ¢ > 0 such that if2—¢ < p < 2+¢ then V"I extends
to a bounded operator LP (R?) +— LP(RY). If y satisfiesm —d/p < |y| <m —1
for some such p, then

N
YrrL iy Y aB L d
oy 11 F(x)—kzllﬁlz /Rdaxaij’k(x,y)Fk,,g(y)dy fora.e.xeR* (67)
= =m

for all Fe LP(RY) that are also locally in LY (RY), for some P > d/(m — |y|).
In the case of |a| = m, we still have that

N
M} F(x) = Z Z /Rd LIPET (x,y) Frp(y)dy fora.e x ¢ supp F
k=1 |Bl=m

(68)
forall F € L2(RY) whose support is not all of RY.

Validity of the condition (67) requires that we normalize ITX F by decay at infinity,
as in Lemma 58.

Before proving Theorem 62 in the case 2m < d, we mention two important
corollaries.

First, we have the following uniqueness result.
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Lemma 69. Let E jL « be the fundamental solution given by Theorem 62. Let m —
d/2 <|y| <m,let|B| imimdletl <j<N, 1<k< ]X.LetUandVbetwo
bounded open sets with U NV = (. Suppose that for some E]L,k’%ﬂ e L2 (U x V),

SVH/.L(IVF erp)(x) = / Eﬁk’y’ﬁ(x, y) F(y)dy as L2(U)—functi0ns
' 1%

forall F e L2(V).
Then Eﬁkyy’ﬁ(x, y) = BISijL’k(x, y) as LU x V)-functions.
In particular, if E JL © and E /L « both satisfy the conditions of Theorem 62, then

ELn=ELn+ > (FOy+ema)+ D cexty
lyl<m—d/2 [¢|=I§1=m—d /2

Jfor some functions f,, and g,, and some constants c¢ ¢. (Notice that if the dimension
d is odd, then the final sum is empty, and if 2m < d then EL = EL without
modification.)

Second, recall that if ¢ € W2 (R?), then ¢ = ML (AV™@) as W2 (RY)-
functions. Thus, if F = AV"¢ and y satisfy the conditions of formula (67),
then

N N
e =33 3 /R CAEL ) A ) P e dy (70)

k=1 ¢=1 |a|=|f|=m
for almost every x € RY.

Proof (Proof of Theorem 62).

Let L be an operator of order 2m for some m < d /2. Construct the operator L as
follows. Let M be large enough that m = m +2M > d /2, and let L=AML AM,
That is, if u € W2(£2), then

((p, Zu)(2 = (AM(p, LAMu>_Q for all smooth ¢ supported in £2.
Then L isabounded and elliptic operator of order 2/, and so a fundamental solution
E ]L ¢ EXists.

There exist constants a; such that AMy = ZI ¢l=2m ¢ 3% ¢ for all smooth
functions ¢. Let

Eﬁk(xay) = Z Z ag ag 3§3§Ejlf’k(x,y).

|¢|=2M |&|=2M

We claim that £ ]L i satisfies the conditions of Theorem 62.
First, notice that the symmetry formula (65) and the bounds (63), (64) and (66)
follow immediately from the corresponding formulas for EL.
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We are left with formulas (67) and (68); that is, we must now show that
878‘9 EL 1 (x, y) is the kernel of the Newton potential. Choose some bounded, com-
pactly supported function F and some multiindex y withm —d/2 < |y| < m, and
let

Fk’g: Z ag Fy g_g, forall |B| = .
&|=2M, §<f
Let
b= Y [ HEL G Fp)d.
k=1|Bl=m
‘We have that
v = 2 “cz Z/ > OOl EL (v y) ag Fip(7)dy
lg1=2M k= llﬂl—m lg|=2M

= Z a;z Z/ V—HaﬁELk(x Y)Fkﬂ()’)dy

[C1=2M k=1 |B|=m
Formulas (67) and (68) are valid for E Z; thus we have that

v = D> agdl T IEF (o) = ) aAMIEF (x).
=17

Thus, it suffices to show that AMILE — L F. .
Choose some ¢ € Wn% (R9); then there is some @ € W% (RY) with ¢ = AM.
Then

(Vg, AV (AMTIEF))y, = (o, LAMTEF))y,
= (AMG, L(AMTEF)),,
But by definition of L ,
(AMG, LAMTIEF))y, = (3, LATEF))g,
and by definition of n- ,
(7. L By = (V75 Fle
Writing out the sums in the inner product and using the definition of F, we see that

. N _
(V"6 Flga =D > (051, Fy glga

k=1|B|=m

ZZ > (0750 Pl

\Bl=i |8|=2M, §<F
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Interchanging the order of summation, we see that
~ ~ N
(V7@ Flpa =D > > (a0 G, Fi g
k=1 |Bl=m |§|=2M
and recalling the definitions of as and @, we see that
~ ~ N
(V'@ Flga =D > (8P AY G, Fiplga
k=1|B|=m
N
= Z (0P . Fiplpa = (V" 0. F)pa.
k=1 |Bl=m
Thus,
(V"o, AV (AMTIEF))py = (V" 0. F)gy.
By uniqueness of ITX F7, this implies that AMTILF = TT- F, as desired. O
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