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Abstract. We consider evolutionary problems associated with a convex integrand f : �T ×
R
Nn → [0, ∞), which is α-Hölder continuous with respect to the x-variable and satisfies

a non-standard p, q-growth condition. We prove the existence of weak solutions u : �T →
R
N , which solve

∂t u − div ∂ζ f (x, t, Du) = 0

weakly in �T . Therefore, we use the concept of variational solutions, which exist under a
mild assumption on the gap q − p, namely

2n

n + 2
< p ≤ q < p + 1.

For

2n

n + 2
< p ≤ q < p + min{2, p} α

n + 2
,

weprove that the spatial derivative Du of a variational solution u admits a higher integrability
and is accordingly a weak solution.

1. Introduction and statement of the results

In this paper we are interested in the existence of solutions of parabolic systems
with p, q-growth of the type

∂t u − div ∂ζ f (x, t, Du) = 0 in �T . (1.1)

The corresponding stationary problem has been studied extensively in the past,
where the papers [18,19] of Marcellini have been the starting point. In these papers
aW 1,∞-bound forminimizers or respectivelyweak solutions is shown. The strategy
therein is, to regularize the problemby adding the q-energy ε|Du|q . The regularized
problem, which satisfies a standard q-growth condition, exhibits solutions uε ∈

T. Singer (B): Fachbereich Mathematik, Universität Salzburg, Hellbrunner Strasse 34,
5020 Salzburg, Austria
e-mail: thomas.singer@sbg.ac.at

Mathematics Subject Classification: 35A01, 35A15, 35D30, 35K59

DOI: 10.1007/s00229-016-0827-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-016-0827-1&domain=pdf


88 T. Singer

W 1,q
loc , that possess an uniform W 1,∞-bound and sub-converge to a W 1,∞

loc -solution
of the original p, q-growth problem. For more details we refer to [5,8,9,18–21].

In the elliptic setting, a second approach was introduced in [12]. Therein, reg-
ularity results for functionals of the form

F(u) :=
∫

�

f (Du)dx

with a convex integrand f : R
Nn → [0,∞), satisfying a non-standard p, q-

growth, are established. Due to the coercivity of the integrand, the gradient of the
minimizer u lies in L p. The aim is to establish, that minimizers admit a gradient in
Lq
loc. Therefore, one tests the corresponding Euler–Lagrange system with a finite

difference of u and obtains a fractional differentiability of Du. At this stage it
is not clear that the minimizer is also a solution to the Euler–Lagrange system.
Hence one has to perform an approximation procedure. By using fractional Sobolev
embeddings and a finite iteration, the desired higher integrability of Du can be
deduced. Initially, this results holds only for the regularized problem, but it is
possible to show, that these minimizers sub-converge to a minimizer of the original
functional.

In [13], this method was extended for functionals, where the integrand f can
additionally depend on x . It is assumed that f is α-Hölder continuous with respect
to the x-variable, but not differentiable. Again fractional Sobolev spaces are used,
to obtain a higher integrability for the gradient of the minimizer. Although it is not
possible to differentiate the integrand, the Hölder continuity of f provides a certain
kind of fractional differentiability for the gradient of minimizers u. Of course, a
stronger assumption, depending on α, on the difference between p and q as in [12]
is needed to show the desired higher integrability of Du. For more information to
this topic we refer to [7,16,24,25].

Here we are interested in existence and regularity results for parabolic sys-
tems with p, q-growth. In this setting a variational approach was developed in [4].
Therein, the notion of variational solutions, which was introduced by Lichnevsky
and Temam in [15] in the context of evolutionary minimal surface equations, is
adapted. The advantage of these solutions is, that the existence can be established
under mild assumptions on the convex integrand, which is independent on x and t ,
and on p and q, namely

2n

n + 2
< p ≤ q < p + 1.

After having the existence at hand, a parabolic version of fractional Sobolev spaces
is used to achieve the higher integrability property Du ∈ Lq

loc in the case p ≥ 2.
Moreover, higher integrability results via differentiability and interpolation

in the parabolic case are obtained in [2]. Therein, Lipschitz regular integrands
f (x, Du) with p(x, t)-growth are considered and the a priori estimates are proven
only by using the fact that the vector fields satisfies a p, q-growth condition. The
method of fractional differentiability for parabolic systems has also been used in
[11].
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The aim of this paper is to establish the existence of weak solutions to parabolic
systems of the form (1.1), where the integrand f satisfies a non-standard p, q-
growth condition and is only Hölder continuous with respect to the x-variable.
Note that besides measurability, we do not need any other assumption for the time
variable. Existence results for variational solutions, can be gained in the sameway as
in [4]. The main effort of this works persists in proving a higher integrability result
for the spatial gradient. This is accomplished by proving a suitable Caccioppoli
type inequality for the regularized problem, and afterwards the higher integrability
is gained by the parabolic fractional Sobolev embedding, where the condition

2n

n + 2
< p ≤ q < p + min {2, p} α

n + 2

is required. We also treat the singular case 2n
n+2 < p < 2. To deal with it, we

have to overcome some problems. First, the Caccioppoli inequality can not directly
be applied to the spatial gradient. Here, we have to make use of the V -function,
which interpolates between quadratic and p-growth. The second problem is the
appearance of quadratic terms of Du. Since p < 2, it is not clear that Du ∈ L2

loc
holds. But with the help of an interpolation argument it is possible to absorb the
quadratic term and to handle these problems.

1.1. The setting

We consider Cauchy–Dirichlet problems of the type

{
∂t u − div ∂ζ f (x, t, Du) = 0 in �T

u = g on ∂P�T ,
(1.2)

where u : �T ⊂ R
n+1 → R

N with n ≥ 2 and N ≥ 1, can be a vector valued
function. Here, � denotes a bounded domain in R

n with n ≥ 2 and for T > 0,
�T := �× (0, T ) denotes the space-time cylinder. The parabolic boundary of �T

is denoted by ∂P�T := [∂� × (0, T )] ∪ [� × {0}]. Points in Rn+1 are termed z =
(x, t). With Du we mean the spatial gradient, and ∂t u stands for the differentiation
with respect to the time variable. The function f : �T ×R

Nn → R is supposed to
be a Carathéodory-function with

⎧⎪⎪⎨
⎪⎪⎩

ν|ζ |p ≤ f (x, t, ζ ) ≤ L (1 + |ζ |)q ,∣∣∂2ζ f (x, t, ζ )
∣∣ ≤ L(1 + |ζ |)q−2;〈

∂2ζ f (x, t, ζ )η, η
〉 ≥ ν|ζ |p−2|η|2,

| f (x1, t, ζ ) − f (x2, t, ζ )| ≤ L|x1 − x2|α(1 + |ζ |)q
(1.3)

for almost every (x, t) ∈ �T , ζ, η ∈ R
Nn , α ∈ (0, 1) and 0 < ν ≤ 1 ≤ L < ∞

with

2n

n + 2
< p < q < p + min{2, p} α

n + 2
. (1.4)
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It is an easy consequence, that also
{ |∂ζ f (x, t, ζ )| ≤ c(q)L(1 + |ζ |)q−1;

|∂ζ f (x1, t, ζ ) − ∂ζ f (x2, t, ζ )| ≤ c(q)L|x1 − x2|α(1 + |ζ |)q−1 (1.5)

holds (c.f. [18, Lemma 2.1]). For the boundary data g we assume that the following
regularity assumptions hold true:

{
g ∈ L

p
p−1+q

(
0, T ;W 1, p

p−1+q (�T ,RN )
) ∩ C0

([0, T ]; L2(�,RN )
)

∂t g ∈ L p′(
0, T ;W−1,p′

(�T ,RN )
)
,

(1.6)

where p′ = p
p−1 denotes the Hölder conjugate of p. Note that p′(q − 1) > q. In

the following we will use the notation u ∈ L p(0, T ;W 1,p
g (�,RN )), if u − g ∈

L p(0, T ;W 1,p
0 (�,RN )) holds.

1.2. The main result

Now,we state our existence result for the parabolic Cauchy–Dirichlet problem (1.2)
and start with the definition of a weak solution, which has been already used in a
similar way in [4]:

Definition 1.1. A function

u ∈ L p(0, T ;W 1,p
g (�,RN )

) ∩ Lq
loc

(
0, T ;W 1,q

loc (�,RN )
) ∩ L∞(0, T ; L2(�,RN )

)
,

with u(·, 0) = g(·, 0), is called a weak solution of the parabolic system (1.2) if and
only if

∫
�T

u · ∂tϕ − 〈
∂ζ f (x, t, Du), Dϕ

〉
dz = 0

holds true whenever ϕ ∈ C∞
0 (�T ,RN ).

For weak solutions in the sense of Definition 1.1, we prove the following exis-
tence result:

Theorem 1.2. Suppose that the integrand f : �T × R
Nn → [0,∞) satisfies (1.3)

and (1.4) and further, that g is as in (1.6). Then there exists a weak solution

u ∈ L p(0, T ;W 1,p
g (�,RN )

) ∩ Lq
loc

(
0, T ;W 1,q

loc (�,RN )
) ∩ L∞(0, T ; L2(�,RN )

)
,

with u(·, 0) = g(·, 0) of the parabolic system (1.2). Moreover, there exist constants
χ = χ(n, p, q, α) and χ̃ = χ̃ (n, p, q, α) such that for any cylinder QR(z0) � �T

the quantitative estimate
∫
Q R

2
(z0)

|Du|q dz ≤ c
(
Mz0,R

)χ
,
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holds for p ≥ 2 and for p < 2 we have
∫
Q R

2
(z0)

|Du|q dz ≤ c
(
Mz0,R + Nz0,R

)χ̃

with

Mz0,R := sup
t∈(t0−R2,t0)

∫
BR(x0)

|u(·, t)|2dx +
∫
QR(z0)

1 + |u|p + |Du|pdz

and

Nz0,R :=
(∫

QR(z0)
1 + |Du|pdz

) 4−(2−p)n
p(n+2)−2n

and a constant c = c(n, q, p, L , ν, α, R).

Remark 1.3. Now, we compare the elliptic bound for the difference between p and
q with the parabolic bound for p ≥ 2. In the stationary case in [13], the assumption

q < p
n + α

n
= p + αp

n

is needed for all p > 1, while for evolutionary problems

q < p + 2α

n + 2
= p + αp

n + 2
· 2
p

is required for p ≥ 2. This seems to be the natural bound, since one must replace n
by n+2 and must take the parabolic deficit 2

p for p ≥ 2 into account. However, for
p < 2 an interesting phenomena appears. If we take the scaling deficit 2p/(p(n +
2) − 2n), the maximal difference would be α(pn + 2p − 2n)/(2(n + 2)), which
is smaller than αp/(n + 2). However, we can prove the better bound, which is also
stable for p ↗ 2.

The first step of the proof is to show that there exists a variational solution
u ∈ L∞(0, T ; L2(�,Rn)) ∩ L p(0, T ;W 1,p(�,RN )) in the sense of Definition
3.2. The existence of such solutions can be established under the assumption

2n

n + 2
< p ≤ q < p + 1,

cf. Theorem 3.4. For more details, we refer to Sect. 3.

1.3. Model examples

Here, we give some examples for integrands f , which are discussed in this paper.
For instance, we can consider functions
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f (x, ζ ) = a(x)h(ζ ),

where

ν|ζ |p ≤ h(ζ ) ≤ L(1 + |ζ |)q
holds and a(x) is α-Hölder continuous with 0 < ν ≤ a(x) ≤ L . For the function
h, we can take for example

h(ζ ) = |ζ |p log(1 + |ζ |).
We could also consider functions with anisotropic growth, i.e.

f (x, ζ ) =
n∑

i=1

ai (x)|ζi |pi ,

where 0 < ν ≤ ai (x) ≤ L is Hölder continuous and p = p1 ≤ p2 ≤ · · · ≤ pn = q
holds.

For integrands of the form

f (x, ζ ) = |ζ |p + a(x)|ζ |q ,
we require only the weaker assumption 0 ≤ a(x) ≤ L , where a is again a α-Hölder
continuous function.

2. Preliminaries

Here, we state some usefull tools, that will be needed throughout the paper.

2.1. Auxiliary tools and notations

With

Bρ(x0) := {
x ∈ R

n : |x − x0| < ρ
}

we denote the open ball in Rn with centre x0 and radius ρ, and

Qρ(z0) := Bρ(x0) × (t0 − ρ2, t0)

is the parabolic standard cylinder.
In order to absorb certain terms, we will use the following iteration Lemma,

which can be found for instance in [14, Lemma 6.1].

Lemma 2.1. Let φ(ρ) be a bounded, non-negative function on 0 ≤ R0 ≤ ρ ≤ R1
and assume for R0 ≤ ρ < r ≤ R1 there holds

φ(ρ) ≤ ϑφ(r) + A

(r − ρ)α
+ B

(r − ρ)β
+ C

for some fixed non-negative constants A, B,C, α ≥ β ≥ 0 and ϑ ∈ (0, 1). Then
there exists a constant c = c(ϑ, α) such that for all R0 ≤ ρ0 < r0 ≤ R1 we have

φ(ρ0) ≤ c

(
A

(r0 − ρ0)α
+ B

(r0 − ρ0)β
+ C

)
.
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The next Lemma can be found in [1, Lemma 2.1] and [22, Lemma 2.1].

Lemma 2.2. Let k ∈ N. For every σ ∈ (−1/2,∞) there exists a constant c =
c(σ ) ≥ 1 such that the following estimate holds true:

c−1(μ2 + |A|+|B|2)σ ≤
∫ 1

0
(μ2 + |A + s(B − A)|2)σ ds

≤ c(μ2 + |A|2 + |B|2)σ

for any μ ≥ 0 and A, B ∈ R
k , not both zero if μ = 0 and σ < 0.

We need the auxiliary function V : RNn → R
Nn .

V (ζ ) := |ζ | p−2
2 ζ,

and from the last Lemma, we can conclude (cf. [1, Lemma 2.2]):

Lemma 2.3. For any p ∈ (1, 2) and μ ∈ [0, 1] there holds

1

c(p, n)

|ζ − η|
(
μ2 + |ζ |2 + |η|) 2−p

4

≤ |V (ζ ) − V (η)|

≤ c(p, n)
|ζ − η|

(
μ2 + |ζ |2 + |η|2) 2−p

4

for arbitrary ζ, η ∈ R
n, not both zero if μ = 0.

Another important tool is the next interpolation inequality, which is a conse-
quence of Gagliardo-Nirenberg’s inequality (see [23, Lemma 3.2] ).

Lemma 2.4. Assume that the function v : Qr (z0) → R
k satisfies

v ∈ L∞(t0 − r2, t0; L2(Br (x0),R
k)
) ∩ L p(t0 − r2, t0;W 1,p(Br (x0),R

k)
)

for some exponents 1 ≤ p < ∞. Then there holds, for every radius ρ ∈ (r/2, r),

∫
Qρ(z0)

|v|p n+2
n dz

≤ cr p
(

sup
s∈(t0−r2,t0)

∫
Br (x0)

|v(x, s)|q dx
)p/n ∫

Qr (z0)

(
|Dv|p + |v|p

(r − ρ)p

)
dz

with a constant c depending on n, k, p and q.
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2.2. Fractional Sobolev spaces

Nowwe state some results for parabolic fractional Sobolev spaces. The embedding
for such spaces will play a crucial part in the proof, since it provides higher inte-
grability properties. We will only be concerned with the parabolic case, for more
information for elliptic fractional Sobolev spaces see for instance [3,6].

We say that u ∈ L p(0, T ;Wk,p(�,RN ))with 1 ≤ p < ∞, k ∈ N0,μ ∈ (0, 1)
belongs to the parabolic fractional Sobolev space L p(0, T ;Wk+μ,p(�,RN )) if the
parabolic Gagliardo semi-norm

[Dβu]p
μ,0,p;�T

:=
∫ T

0

∫
�

∫
�

|Dβu(x, t) − Dβu(y, t)|p
|x − y|n+μp

dxdydt

is finite for any multiindex β ∈ N0 with |β| = k. Analogous to the elliptic setting
we define the norm

‖u‖k+μ,0,p;�T := ‖u‖L p(0,T ;Wk,p(�,RN )) +
∑
|β|=k

[Dβ f ]μ,0,p;�T ,

which makes L p(0, T ;Wk+μ,p(�,RN )) to a Banach-space.
The next Lemma provides an embedding result for fractional parabolic Sobolev

spaces and is proved in [4, Lemma 6.5].

Lemma 2.5. Let Bρ(x0) × (t1, t2) ⊂ R
n+1 be a general space-time cylinder with

0 < ρ ≤ 1 and θ, μ ∈ (0, 1), 1 < p, r < s < ∞ parameters such that

(s − p)
(
1 − μ + n

r

)
≤ θp.

Further assume that u ∈ L p(t1, t2;W 1+θ,p(Bρ(x0)))∩L∞(t1, t2;Wμ,r (Bρ(x0))).
Then Du ∈ Ls(Bϑ(x0)×(t1, t2)) for any 0 < ϑ < ρ andmoreover, the quantitative
estimate

‖Du‖Ls (Bϑ (x0)×(t1,t2)) ≤ c‖u‖
p
s
L p(t1,t2;W 1+θ,p(Bρ(x0)))

sup
t∈(t1,t2)

‖u(·, t)‖
s−p
s

Wμ,r (Bρ(x0))

holds true with a constant c = c(n, μ, θ, r, p, s, 1/(ρ − ϑ)).

Finally we need an elliptic and parabolic version of the embedding of Nikolskii
spaces into fractional Sobolev spaces (cf. [4, Lemma 6.6]).

Lemma 2.6. Let k ∈ N, �̃ � �, θ ∈ (0, 1) and 0 ≤ t1 < t2 ≤ T .

(1) Assume that u ∈ L∞(0, T, L2(�,Rk)) satisfies

sup
t∈(t1,t2)

∫
�̃

|u(x + hei , t) − u(x, t)|2dx ≤ M |h|2θ

for every i ∈ {1, . . . , n} and h ∈ R with |h| ≤ min
{
dist(�̃, ∂�), A

}
, where

A, M > 0. Then for every α ∈ (0, θ) and O � �̃ there exists a constant
c = c(n, θ, α, A, dist(O, ∂�̃), dist(�, �̃)) such that

sup
t∈(t1,t2)

∫
O

∫
O

|u(x, t) − u(y, t)|2
|x − y|n+2α dxdy ≤ cM.
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(2) Assume that u ∈ L p(�T ,Rk) satisfies

∫ t2

t1

∫
�̃

|u(x + hei , t) − u(x, t)|pdxdt ≤ M |h|θp

for every i ∈ {1, . . . , n} and h ∈ R with |h| ≤ min
{
dist(�̃, ∂�), A

}
, where

A, M > 0. Then for every γ ∈ (0, θ) and O � �̃, there exists a constant
c = c(n, θ, γ, A, dist(O, ∂�̃), dist(�, �̃)) such that

∫ t2

t1

∫
O

∫
O

|u(x, t) − u(y, t)|p
|x − y|n+pγ

dxdydt ≤ cM.

3. Existence of variational solutions

In this section, we prove the existence of variational solutions. In [4] such a result
has already been shown for integrands, which do not depend on x or t . But the
techniques are applicable in our case, too. Thus we will only describe the notion of
variational solutions and give a sketch of the proof.

The existence of variational solutions can be shown under much weaker as-
sumptions, than the existence of weak solutions. Here, the integrand f must only
fulfil the following growth conditions:
{

0 ≤ f (x, t, ζ ) ≤ L (1 + |ζ |)q ,〈
∂ζ f (x, t, ζ ) − ∂ζ f (x, t, η), ζ − η

〉 ≥ ν
(
μ2 + |ζ |2 + |η|2) p−2

2 |ζ − η|2,
(3.1)

whenever ζ, η ∈ R
Nn and for some 0 < ν ≤ 1 ≤ L and μ ∈ [0, 1].

To give the precise definition of variational solutions, we introduce a notion of
weaker continuity with respect to time.

Definition 3.1. Let X be a Banach space. A function u ∈ L∞(0, T ; X) belongs to
the function space Cω([0, T ]; X) of weakly continuous functions from [0, T ] to X
if u(·, t) ∈ X for any t ∈ [0, T ] and

t → 〈ψ, u(t)〉X is continuous for any ψ ∈ X ′.

Here 〈·, ·, 〉 denotes the duality pairing between X ′ and X .

Now we are able to give a definition of variational solutions to the Cauchy–
Dirichlet problem (1.2) (cf. [4, Definition 2.2.]).

Definition 3.2. Suppose f : �T ×R
Nn → [0,∞) is an integrand satisfying (3.1).

Furthermore, assume that the Cauchy–Dirichlet datum g fulfils (1.6). We identify
a map

u ∈ L p(0, T ;W 1,p
g (�,RN )

) ∩ Cω

([0, T ]; L2(�,RN )
)
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as a variational solution of the Cauchy–Dirichlet problem (1.2) if and only if
u(·, 0) = g(·, 0) and, further, the variational inequality

∫ τ

0
〈∂tv, v − u〉W 1,p(�,RN )dt +

∫
�τ

[ f (x, t, Dv) − f (x, t, Du)]dz

≥ 1

2
‖(v − u)(·, τ )‖2L2(�,RN )

− 1

2
‖(v − g)(·, 0)‖2L2(�,RN )

(3.2)

holds true, whenever v ∈ L p(0, T ;W 1,p
g (�,RN )) with ∂tv ∈ L p′

(0, T ;W−1,p′

(�,RN )) and τ ∈ (0, T ].
Remark 3.3. Avariational solution belonging to the space Lq

loc(0, T ;W 1,q
loc (�,Rn))

is in fact already a weak solution. Hence, if the higher integrability is established,
the two concepts coincide.

First, we show an existence result for variational solutions.

Theorem 3.4. Suppose that f : �T × R
Nn → [0,∞) satisfies (3.1) and

2n

n + 2
< p < q < p + 1

and g satisfies (1.6). Then, there exists a unique variational solution

u ∈ L p(0, T ;W 1,p
g (�,RN )

) ∩ Cω

([0, T ]; L2(�,RN )
)

with u(·, 0) = g(0, ·).
Proof. Since the proof is essentially the same as the one of Theorem 2.4 in [4], we
will only give a sketch of the proof.
Step 1: First, we consider the regularized integrand

fε(x, t, ζ ) := f (x, t, ζ ) + ε|ζ |p

for ε ∈ (0, 1]. Then, fε satisfies a standard q-growth condition and [17] ensures
the existence of a unique weak solution

uε ∈ Lq(0, T ;W 1,q(�,RN )
) ∩ C0([0, T ], L2(�,RN )

)

to the Cauchy–Dirichlet problem
{

∂t uε − div ∂ζ fε(x, t, Duε) = 0 in �T

uε = g on ∂P�T .

Step 2: Next, we prove a suitable energy bound for uε. Therefore, we take ϕ =
(uε − g) as testing function in the weak formulation (note, that this is only possible
on a formal level) and with help of the growth conditions (3.1), we get the following
energy bound

sup
t∈(0,T )

∫
�

|uε(u(·, t))|2dx +
∫

�T

|uε|p + |Duε|pdz ≤ c(ν, L , q, p,�, g). (3.3)
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Step 3: Using the energy bound (3.3) and the fact, that uε is a weak solution, we
get for any 0 < t1 < t2 < T and ϕ ∈ C∞

0 (� × (t1, t2))∣∣∣∣
∫

�×(t1,t2)
uε · ∂tϕ dz

∣∣∣∣ ≤ c| spt ϕ| p+1−q
p ‖Dϕ‖L∞(�×(t1,t2)).

This and a density argument guarantees that

‖uε(·, s1) − uε(·, s2)‖W−�,2(�) ≤ c|s1 − s2|
p+1−q

p (3.4)

holds true for any s1, s2 ∈ (t1, t2) and � > n+2
n . But this is the desired weak

continuity property with respect to the time variable for uε.
Step 4: The weak solutions are also variational solutions, which can be easily
deduced by testing the weak formulation with ϕ = v − uε.
Step 5: In order to prove, that there exists a variational solution, we have to pass
the limit ε ↓ 0. The energy bound (3.3) and (3.4) ensure the existence of a function
u ∈ L p(0, T ;W 1,p(�,RN )) such that

{
uε ⇀ u weakly in L p

(
0, T ;W 1,p(�,RN )

)
uε(·, t) ⇀ u(·, t) weakly in L2

(
�,RN

)
for any t ∈ [0, T ]

for a (not re-labelled) subsequence. Since uε is already a variational solution for
every ε > 0, we can pass to the limit ε ↓ 0 in (3.2). Note, that the functions uε

belong to space C0([0, T ]; L2(�,RN )), but they loose this property in the limit
ε ↓ 0 and u belongs only to the space Cω([0, T ]; L2(�,RN )).

Step 6: It remains to show, that there exists only one variational solution. To this
end, we assume that there exist two different solutions u1 and u2. If we choose
v = (u1+u2)/2 as comparison map in (3.2), we get a contradiction and the desired
claim follows. Note, that this choice for the comparison map is only possible on
a formal level, because the functions u1 and u2 do not possess a time derivative
in L p′

(0, T ;W−1,p′
(�,RN )). Therefore, one has to use a mollification in time to

make the calculations rigorous. ��

4. A local Lq-estimate for the Spatial gradient

This section contains the main effort of this work. Here, we show the higher in-
tegrability for the spatial gradient Du. To be more precisely, we first assume that
Du ∈ Lq

loc(�T ,RN ) holds, and prove that the Lq
loc(�T ,RN )-norm of Du can be

estimated only in terms of the L p(�T ,RN ) of Du. This result can later on be used
in an approximation scheme. For the approximating sequence, the higher integra-
bility is known and the results from this section, ensures the higher integrability of
variational solutions.

First we define

τh,i [v](x, t) := v(x + hei , t) − v(x, t) and �h,i [v](x, t) := τh,i [v](x, t)
h

,

and start with a Caccioppoli-type inequality.
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Lemma 4.1. Let p > 2n
n+2 and

u∈ L p(0, T ;W 1,p(�,RN ))∩Lq
loc(0, T ;W 1,q

loc (�,RN ))∩C0([0, T ]; L2(�,RN ))

be a weak solution to (1.2), where (1.3) holds. Then for every parabolic cylinder
QR(z0) � �T , any 0 < r ≤ ρ1 < ρ2 ≤ R, any 0 < |h| <

ρ2−ρ1
8 and any

i ∈ {1, . . . , n} there holds

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx

+
∫
Qρ1 (z0)

(
|Du(x, t)|2 + |Du(x + hei , t)|2

) p−2
2 |τh,i [Du]|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz + c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2
(z0)

|τh,i u|2dz

(4.1)

with a constant c = c(ν, L , p, q).

Proof. Without loss of generality, we assume that z0 = 0 and write Qρ instead of
Qρ(0). In the weak formulation

∫
�T

u · ϕt − 〈
∂ζ f (x, t, Du), Dϕ

〉
dz = 0 for all ϕ ∈ C∞

0 (�T ,Rn)

we replace ϕ by τ−h,i [ϕ] with 0 < |h| � 1 and obtain after an integration by parts
for finite differences

∫
�T

τh,i [u] · ϕt − 〈
τh,i [∂ζ f (x, t, Du)], Dϕ

〉
dz = 0 (4.2)

for all ϕ ∈ C∞
0 (�T ,RN ) and |h| small enough. In this formulation we choose the

testing function ϕ(x, t) = τh,i [u](x, t)η2(x)ζ(t)χθ (t), where η ∈ C1
0(B(ρ1+ρ2)/2,

[0, 1]) and ζ, χθ ∈ W 1,∞(R, [0, 1]) are cut-off functions. The spatial cut-off func-
tion η satisfies η ≡ 1 in Bρ1 and |Dη| ≤ 4/(ρ2 − ρ1), while ζ is defined by

ζ(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t ∈
(
−∞,− (ρ1+ρ2

2

)2]
1(

ρ1+ρ2
2

)2−ρ2
1

(
t + (

ρ1+ρ2
2

))2
for t ∈

[
− (ρ1+ρ2

2

)2
,−ρ2

1

)

1 for t ∈ [−ρ2
1 ,∞)

and χθ is given by

χθ (t) :=
⎧⎨
⎩

1 for t ∈ (−∞, τ − θ ]
1
θ
(τ − t) for t ∈ (τ − θ, τ ]
0 for t ∈ (τ, 0],
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for some τ ∈ (−ρ2
1 , 0) and θ ∈ (0, ρ2

1 + τ). With this choice, (4.2) turns into

−
∫
Qρ2

τh,i [u] · ∂t (τh,i [u]ζχθ )η
2dz +

∫
Qρ2

〈
τh,i [∂ζ f (x, t, Du)], τh,i [Du]〉 η2ζχθ dz

= −
∫
Qρ2

〈
τh,i [∂ζ f (x, t, Du)],∇η2 ⊗ τh,i [u]〉 ζχθ dz. (4.3)

For the first term on the left-hand side in (4.3), we obtain for almost every τ ∈
(−ρ2

1 , 0)

−
∫
Qρ2

τh,i [u] · ∂t (τh,i [u]ζχθ )η
2dz =

∫
Qρ2

∂tτh,i [u] · (τh,i [u]ζχθ )η
2dz

= 1

2

∫
Q

ρ22

∂t |τh,i [u]|2η2ζχθ dz = −1

2

∫
Q

ρ22

|τh,i [u]|2η2∂t (ζχθ )dz

= − 1

2
((

ρ1+ρ2
2

)2 − ρ2
1

)
∫ −ρ2

1

−
(

ρ1+ρ2
2

)2
∫
B ρ1+ρ2

2

|τh,i [u]|2η2χθ dxdt

+ 1

2θ

∫ τ

τ−θ

∫
Bρ2

|τh,i [u]|2η2ζ dxdt

θ↓0−→ − 1

2
((

ρ1+ρ2
2

)2 − ρ2
1

)
∫ −ρ2

1

−
(

ρ1+ρ2
2

)2
∫
B ρ1+ρ2

2

|τh,i [u]|2η2dxdt

+ 1

2

∫
Bρ2

|τh,i [u](·, τ )|2η2dx .

Passing also the limit θ ↓ 0 in (4.3) and using the estimate 1/((ρ1+ρ2
2 )2 − ρ2

1 ) ≤
4/(ρ2 − ρ1)

2, we get

1

2
I + II := 1

2

∫
Bρ2

|τh,i [u](·, τ )|2η2dx +
∫
Qτ

ρ2

〈
τh,i [∂ζ f (x, t, Du)], τh,i [Du]〉 η2ζ dz

≤ −2
∫
Qτ

ρ2

〈
τh,i [∂ζ f (x, t, Du)],∇η ⊗ τh,i [u]〉 ηζ dz

+ 2

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2

|τh,i [u]|2dz

=: III + IV,

where we used the abbreviation Qτ
ρ := Bρ × (−ρ2, τ ). Now, we rewrite the term

II

II =
∫
Qτ

ρ2

η2ζ
〈
∂ζ f (x + hei , t, Du(x + hei , t))

− ∂ζ f (x, t, Du(x, t)), τh,i [Du](x, t)〉 dz
=
∫
Qτ

ρ2

η2ζ
[ 〈

∂ζ f (x + hei , t, Du(x + hei , t))



100 T. Singer

− ∂ζ f (x, t, Du(x + hei , t)), τh,i [Du](x, t)〉 ]dz
+
∫
Qτ

ρ2

η2ζ
〈
∂ζ f (x, t, Du(x + hei , t)) − ∂ζ f (x, t, Du(x, t)), τh,i [Du](x, t)〉 dz

=: II1 + II2

and estimate II1 with help of (1.5)2

|II1| ≤ c(q)|h|αL
∫ 0

−ρ2
2

∫
B ρ2+ρ1

2

(1 + |Du(x + hei , t)|)q−1|τh,i [Du](x, t)|dxdt

≤ c|h|α
∫
Qρ2

(1 + |Du|)q dz,

since |h| < (ρ2 −ρ1)/8. For the other term we use (1.3)3 and Lemma 2.2 to obtain

II2 =
∫
Qτ

ρ2

η2ζ

∫ 1

0

〈
∂2ζ f (x, t, Du + sτh,i [Du])τh,i [Du], τh,i [Du]

〉
dsdz

≥ ν

∫
Qτ

ρ2

η2ζ

∫ 1

0
|Du + sτh,i [Du]|p−2|τh,i [Du]|2dsdz

≥ ν

c

∫
Qτ

ρ2

η2ζ
(
|Du(x, t)|2 + |Du(x + hei , t)|2

) p−2
2 |τh,i [Du]|2dz.

It remains to estimate III. If we use
∫
B ρ1+ρ2

2

|τh,i [u]|q dx ≤ |h|q
∫
Bρ2

|Du|q dx

and the condition (1.5)1, we get

|III| ≤ c
∫ 0

−ρ2
2

∫
B ρ1+ρ2

2

|Dη|
[
(1 + |Du(x, t)|)q−1 + (1 + |Du(x + hei , t)|)q−1

]

· |τh,i [u]|dxdt

≤ c

ρ2 − ρ1

∫ 0

−ρ2
2

(∫
Bρ2

(1 + |Du|)q dx
)1− 1

q
⎛
⎝
∫
B ρ1+ρ2

2

|τh,i [u]|q dx
⎞
⎠

1
q

dt

≤ c
|h|

ρ2 − ρ1

∫
Qρ2

(1 + |Du|)q dz

≤ c
|h|α

ρ2 − ρ1

∫
Qρ2

(1 + |Du|)q dz.
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Combing the previous estimates, we can conclude that∫
Bρ2

|τh,i [u](·, τ )|2η2dx

+
∫
Qτ

ρ2

η2ζ
(
|Du(x, t)|2 + |Du(x + hei , t)|2

) p−2
2 |τh,i [Du]|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2

(1 + |Du|)q dz + c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2 (z0)

|τh,i [u]|2dz

holds for every τ ∈ (−ρ2, 0). Taking the supremum over τ ∈ (−ρ2, 0) in the first
term and letting τ → 0 in the second term on the left-hand side, completes the
proof of the Lemma. ��

With the Caccioppoli type inequality at hand, we can prove the desired higher
integrability for the spatial gradient. To this end, we will make use of the fractional
Gagliardo-Nirenberg inequality (Lemma 2.5).

Lemma 4.2. Let

2n

n + 2
< p < q < p + min{2, p} α

n + 2
(4.4)

and

u ∈ L p(0, T ;W 1,p(�,RN )
) ∩ Lq

loc

(
0, T ;W 1,q

loc (�,RN )
) ∩ C0([0, T ]; L2(�,RN )

)

be a weak solution to (1.2), where (1.3) holds. If p ≥ 2, then there exists a constant
χ = χ(n, q, p, α) such that for every parabolic cylinder QR(x0) � �T there
holds ∫

Q R
2

(z0)
|Du|q dz ≤ c

(
Mz0,R

)χ
,

and for p < 2 there exists a constant χ̃ = χ̃(n, q, p, α) such that for every
parabolic cylinder QR(x0) � �T there holds∫

Q R
2

(z0)
|Du|q dz ≤ c

(
Mz0,R + Nz0,R

)χ̃

with

Mz0,R := sup
t∈(t0−R2,t0)

∫
BR(x0)

|u(·, t)|2dx +
∫
QR(z0)

1 + |u|p + |Du|pdz (4.5)

and

Nz0,R :=
(∫

QR(z0)
1 + |Du|pdz

) 4−(2−p)n
p(n+2)−2n

(4.6)

and a constant c = depending only on n, q, p, L, ν, α and R.
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Proof. We start with the case p ≥ 2, where (4.4) can be written as

q < p + 2α

n + 2
. (4.7)

Consider 0 < ρ1 < ρ2 ≤ R. Making use of Lemma 4.1 and the fact that p ≥ 2,
we get for 0 < |h| < (ρ2 − ρ1)/8

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx +
∫
Qρ1 (z0)

|τh,i [Du]|pdz

≤ sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx

+
∫
Qρ1 (z0)

(
|Du(x, t)|2 + |Du(x + hei , t)|2

) p−2
2 |τh,i [Du]|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz

+ c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2
(z0)

|τh,i u|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz,

where we used ∫
Q ρ1+ρ2

2
(z0)

|τh,i u|2dz ≤ |h|2
∫
Qρ2 (z0)

|Du|2dz.

For r1, r2 > 0 with ρ1+ρ2
2 ≤ r1 < r2 ≤ ρ1+3ρ2

4 , Lemma 2.6 and the last inequality
imply that{

u ∈ L∞ (
t0 − r22 , t0;Wμ,2(Br2(x0),R

N )
)

for all μ ∈ (0, α
2

)
u ∈ L p

(
t0 − r22 , t0;W 1+θ,p(Br2(x0),R

N )
)

for all θ ∈ (0, α
p

)

holds.Moreover,Lemma2.5 ensures the existenceof constantsβ = β(p, μ, θ, α, s)
> 0 and c = c(n, p, s, α, μ, θ, 1/(ρ2 − ρ1)) such that

∫
Qr1 (z0)

|Du|sdz ≤ c

(r2 − r1)β

(∫
Qr2 (z0)

1 + |u|p + |Du|p + |Du|q dz
)

·
⎛
⎝ sup

t∈(t0−r22 ,t0)

∫
Br2 (x0)

|u(·, t)|2dx +
∫
Qr2 (z0)

1 + |Du|q dz
⎞
⎠

s−p
2

,

(4.8)

for all s with

(s − p)
(
1 − μ + n

2

)
≤ θp.
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Using the maximal range for the variables θ and μ, we can conclude that the last
estimate holds for all

s < p + 2α

n + 2 − α
.

Since

q < p + 2α

n + 2
< p + 2α

n + 2 − α

by assumption we can choose s ∈ (q, p + 2α
n+2−α

). For δ > s
q > 1, where δ will

be chosen later, we infer from (4.8)
∫
Qr1 (z0)

|Du|sdz

≤ c

(r2 − r1)β

(∫
Qr2 (z0)

|Du|q dz + Mz0,R

)1+ s−p
2

≤ c

(r2 − r1)β

(∫
Qr2 (z0)

|Du| sδ |Du|q− s
δ dz

)1+ s−p
2

+ c

(r2 − r1)β
M

1+ s−p
2

z0,R

≤ c

(r2 − r1)β

(∫
Qr2 (z0)

|Du|s dz
) 1

δ
(1+ s−p

2 )

·
(∫

Qr2 (z0)
|Du| qδ−s

δ−1 dz

) δ−1
δ

(1+ s−p
2 )

+ c

(r2 − r1)β
M

1+ s−p
2

z0,R
. (4.9)

Next, we want to absorb the term involving the Ls-norm of Du from the right-hand
side into the left, so that there remain only terms with the L p-norm of Du on the
right-hand side. Therefore, we have to choose δ and s in such a way that

1

δ

(
1 + s − p

2

)
< 1 and

δq − s

δ − 1
≤ p (4.10)

holds, but this is equivalent to

1 + s − p

2
< δ and δ ≤ s − p

q − p
.

If we choose

δ = s − p

q − p
,

it is sufficient to show that we can find s ∈ (q, p + 2α
n+2−α

) satisfying

1 + s − p

2
< δ ⇔ q − p <

2(s − p)

2 + s − p
,
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where we note that δ > s
q holds. Since

q − p <
2α

n + 2
,

there exists ε = ε(α, n) > 0 such that

q − p <
2α − 2ε

n + 2 − ε
(4.11)

is true. Moreover, there exists s0 ∈ (q, p + 2α
n+2−α

) such that (4.9) is true for all

s ∈ [s0, p + 2α
n+2−α

) with

s − p ≥ 2α

n + 2 − α
− 2ε

n + 2 − α
.

Hence, by (4.11), we obtain

2(s − p)

2 + s − p
≥ 2 2α−2ε

n+2−α

2 + 2α−2ε
n+2−α

= 2α − 2ε

n + 2 − ε
> q − p,

which means, we can choose δ and s such that (4.10) and s > s
q holds. With this

choice in (4.9), we can apply Young’s inequality and obtain∫
Qr1 (z0)

|Du|s dz

≤ 1

2

∫
Qr2 (z0)

|Du|s dz + c

(r2 − r1)β

(∫
QR(z0)

|Du|pdz
)χ

+ c

(r2 − r1)β
M

1+ s−p
2

z0,R
,

for some exponent χ depending on n, p, q, and α. Lemma 2.1 allows to absorb the
term involving the Ls-norm of Du from the left-hand side into the right and yields
that ∫

Q R
2

(z0)
|Du|s dz ≤ c

(
Mz0,R

)χ

for some s ∈ [s0, p+ 2α
n+2−α

). But this implies already the claim of the Lemma for
p ≥ 2

Now we consider the case p < 2, where

q < p + αp

n + 2
(4.12)

holds. Lemma 2.3 and 4.1 imply the following estimate

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx +
∫
Qρ1 (z0)

|τh,i [V (Du)]|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz + c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2
(z0)

|τh,i [u]|2dz
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and dividing the last inequality by |h|2 leads to
sup

t∈(t0−ρ2
1 ,t0)

∫
Bρ1 (x0)

|�h,i [u](·, t)|2dx +
∫
Qρ1 (z0)

|�h,i [V (Du)]|2dz

≤ c
|h|α−2

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz

+ c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2
(z0)

|�h,i [u]|2dz. (4.13)

Since p < 2 holds, we do not know, whether Du ∈ L2
loc(�T ) is satisfied or not.

Thus, we want to absorb the quadratic term on the right-hand side and proceed in
a similar way as in [23,27]. To this end, we estimate with Hölder’s inequality∫

Q ρ1+ρ2
2

(z0)
|�h,i [u]|2dz

=
∫
Q ρ1+ρ2

2
(z0)

|�h,i [u]| p(n+2)−2n
2 |�h,i [u]| (n+2)(2−p)

2 dz

≤
⎛
⎝
∫
Q ρ1+ρ2

2
(z0)

|�h,i [u]|pdz
⎞
⎠

p(n+2)−2n
2p

·
⎛
⎝
∫
Q ρ1+ρ2

2
(z0)

|�h,i [u]|p n+2
n dz

⎞
⎠

(2−p)n
2p

.

Next, we use Lemma 2.4 to estimate the second term, where we note that (ρ1 +
ρ2)/2 + |h| ≤ (ρ1 + 3ρ2)/4 holds, and get∫

Q ρ1+ρ2
2

(z0)
|�h,i [u]|2dz

≤ c

(∫
Qρ2 (z0)

|Du|pdz
) p(n+2)−2n

2p

·
⎛
⎝
∫
Q ρ1+3ρ2

4
(z0)

ρ
p
2 |�h,i [Du]|p + ρ

p
2

(ρ2 − ρ1)p
|�h,i [u]|pdz

⎞
⎠

(2−p)n
2p

·
⎛
⎝ sup

t∈(t0−ρ2
2 ,t0)

∫
Bρ2 (x0)

|�h,i [u](·, t)|2dx
⎞
⎠

2−p
2

. (4.14)

Lemma 2.3 implies

|�h,i [Du]|p ≤ c|�h,i [V (Du)]|p
(
|Du(x + hei , t)|2 + |Du(x, t)|2

) (2−p)p
4

,
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which leads to
⎛
⎝
∫
Q ρ1+3ρ2

4
(z0)

ρ
p
2 |�h,i [Du]|p + ρ

p
2

(ρ2 − ρ1)p
|�h,i [u]|pdz

⎞
⎠

(2−p)n
2p

≤ c

⎡
⎣
(∫

Qρ2

ρ
p
2 |�h,i [V (Du)]|2dz

) p
2
(∫

Qρ2

(1 + |Du|)pdz
) 2−p

2

+ ρ
p
2

(ρ2 − ρ1)p

∫
Qρ2 (z0)

|Du|pdz
] (2−p)n

2p

≤ c

⎡
⎣
(∫

Qρ2

ρ
p
2 |�h,i [V (Du)]|2dz

)(∫
Qρ2

(1 + |Du|)pdz
) 2−p

p

+
(

ρ
p
2

(ρ2 − ρ1)p

∫
Qρ2 (z0)

|Du|pdz
) 2

p
⎤
⎦

(2−p)n
4

≤ c

(
1

(ρ2 − ρ1)p

∫
Qρ2 (z0)

(1 + |Du|p)dz
) (2−p)2n

4p

·
(∫

Qρ2 (z0)
ρ2
2 |�h,i [V (Du)]|2dz + ρ

p
2

(ρ2 − ρ1)p

∫
Qρ2 (z0)

|Du|pdz
) (2−p)n

4

.

Combining the last estimate with (4.14), yields

c

(ρ2 − ρ1)2

∫
Q ρ1+ρ2

2
(z0)

|�h,i [u]|2dz

≤ c

((
1

(ρ2 − ρ1)2

) 4
4−(2−p)n 1

(ρ2 − ρ1)p

∫
Qρ2 (z0)

(1 + |Du|)pdz
) 4−(2−p)n

4

·
⎛
⎝ sup

t∈(t0−ρ2
2 ,t0)

∫
Bρ2 (x0)

|�h,i [u](·, t)|2dx
⎞
⎠

2−p
2

·
(∫

Qρ2 (z0)
ρ2
2 |�h,i [V (Du)]|2 + ρ

p
2

(ρ2 − ρ1)p
|Du|pdz

) (2−p)n
4

≤ c

(
1

(ρ2 − ρ1)2

) 4
p(n+2)−2n

(
1

(ρ2 − ρ1)p

∫
Qρ2 (z0)

(1 + |Du|)p
) 4−(2−p)n

p(n+2)−2n

+ 1

2
sup

t∈(t0−ρ2
2 ,t0)

∫
Bρ2 (x0)

|�h,i [u](·, t)|2dx + 1

2

∫
Qρ2 (z0)

|�h,i [V (Du)]|2dz,
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wherewe usedYoung’s inequalitywith 4/(p(n+2)−2n), 2/(2−p) and 4/(2−p)n.
If we insert this in (4.13) and use Lemma 2.1 to absorb the last two terms on the
right-hand side, we get

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|�h,i [u](·, t)|2dx +
∫
Qρ1 (z0)

|�h,i [V (Du)]|2dz

≤ c
|h|α−2

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz

+ c

(
1

(ρ2 − ρ1)2

) 4
p(n+2)−2n

(∫
Qρ2 (z0)

(1 + |Du|)pdz
) 4−(2−p)n

p(n+2)−2n

,

or respectively

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx +
∫
Qρ1 (z0)

|τh,i [V (Du)]|2dz

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz

+ c|h|α
(

1

(ρ2 − ρ1)2

) 4
p(n+2)−2n

(∫
Qρ2 (z0)

(1 + |Du|)pdz
) 4−(2−p)n

p(n+2)−2n

.

On the one hand, the last inequality implies

sup
t∈(t0−ρ2

1 ,t0)

∫
Bρ1 (x0)

|τh,i [u](·, t)|2dx

≤ c
|h|α

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz

+ c|h|α
(

1

(ρ2 − ρ1)2

) 4
p(n+2)−2n

(∫
Qρ2 (z0)

(1 + |Du|)pdz
) 4−(2−p)n

p(n+2)−2n

, (4.15)

on the other hand, if we additionally use Lemma 2.3, we obtain
∫
Qρ1 (z0)

|τh,i [Du]|pdz

≤ c
∫
Qρ1 (z0)

|τh,i [V (Du)]|p
(
|Du(x + hei , t)|2 + |Du(x, t)|2

) (2−p)p
4

≤ c

(∫
Qρ1 (z0)

|τh,i [V (Du)]|2dz
) p

2
(∫

Qρ2 (z0)
|Du|pdz

) 2−p
2

≤ c|h|α p
2

(∫
Qρ2 (z0)

|Du|pdz
) 2−p

2
[

1

(ρ2 − ρ1)2

∫
Qρ2 (z0)

(1 + |Du|)q dz
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+
(

1

(ρ2 − ρ1)2

) 4
p(n+2)−2n

(∫
Qρ2 (z0)

(1 + |Du|)pdz
) 4−(2−p)n

p(n+2)−2n
⎤
⎦

p
2

(4.16)

If we choose r1, r2 > 0 with ρ1+ρ2
2 ≤ r1 < r2 ≤ ρ1+3ρ2

4 , Lemma 2.6, (4.15) and
(4.16) imply

{
u ∈ L∞ (

t0 − r22 , t0;Wμ,2(Br2(x0),R
N )
)

for all μ ∈ (0, α
2

)
u ∈ L p

(
t0 − r22 , t0;W 1+θ,p(Br2(x0),R

N )
)
for all θ ∈ (0, α

2

)
.

Moreover, Lemma 2.5, combined with the estimates (4.15) and (4.16), ensures the
existence of a constants β̃ = β̃(p, μ, θ, α, s) > 0 and c = c(n, p, q, ν, L , s) such
that
∫
Qr1 (z0)

|Du|s dz

≤ c

(r2 − r1)β̃

(∫
Qr2 (z0)

|Du|q dz + Mz0,R + Nz0,R

) p
2 (

Mz0,R + Nz0,R
) 2−p

2

·
(∫

Qr2 (z0)
|Du|q dz + Mz0,R + Nz0,R

) s−p
2

= c

(r2 − r1)β̃

(∫
Qr2 (z0)

|Du|q dz + Mz0,R + Nz0,R

) s
2 (

Mz0,R + Nz0,R
) 2−p

2

≤ c

(r2 − r1)β̃

(∫
Qr2 (z0)

|Du|q dz
) s

2 (
Mz0,R + Nz0,R

) 2−p
2

+ (
Mz0,R + Nz0,R

) s+2−p
2 (4.17)

holds for all s with

(s − p)
(
1 − μ + n

2

)
≤ θp,

where Mz0,R and Nz0,R are defined in (4.5) and (4.6). Using the maximal range for
the variables θ and μ, we can conclude that the last estimate holds for all

s < p + αp

n + 2 − α
.

Since

q < p + αp

n + 2
< p + αp

n + 2 − α
,

by assumption, we can choose s ∈ (q, p + αp
n+2−α

). For δ > s
q > 1, where δ will

be chosen later, we estimate (4.17) in the following way
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∫
Qr1 (z0)

|Du|s dz

≤ c

(r2 − r1)β

(∫
Qr2 (z0)

|Du| sδ |Du|q− s
δ dz

) s
2 (

Mz0,R + Nz0,R
) 2−p

2

+ (
Mz0,R + Nz0,R

) s+2−p
2

≤ c

(r2 − r1)β

(∫
Qr2 (z0)

|Du|sdz
) 1

δ
s
2
(∫

Qr2 (z0)
|Du| qδ−s

δ−1 dz

) δ−1
δ

s
2

· (Mz0,R + Nz0,R
) 2−p

2 + (
Mz0,R + Nz0,R

) s+2−p
2 . (4.18)

As in the case p ≥ 2, we want to absorb the term involving the Ls-norm of Du on
the right-hand side. Therefore, we have to choose δ and s in such a way that

s

2δ
< 1 and

δq − s

δ − 1
≤ p (4.19)

holds, but this is equivalent to

s

2
< δ and δ ≤ s − p

q − p
.

If we choose δ = s−p
q−p , we only need to find s ∈ (q, p + αp

n+2−α
) satisfying

q − p < 2
s − p

s
,

where we note that δ > s
q holds. Since

q − p <
αp

n + 2
,

there exists ε = ε(α, n, p) > 0 such that

q − p <
αp − 2ε

n + 2 − ε
(4.20)

is true. Moreover, there exists s0 ∈ (q, p + αp
n+2−α

) such that (4.18) is true for all
s ∈ [s0, p + αp

n+2−α
) with

s ≥ αp

n + 2 − α
+ p − εp

n + 2 − α
.

Hence, by (4.20), we obtain

2
s − p

s
≥ 2

αp−pε
n+2−α

αp−pε
n+2−α

+ p
= 2α − 2ε

n + 2 − ε
>

pα − 2ε

n + 2 − ε
> q − p,
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which means, we can choose δ and s such that (4.19) and δ > s
q holds. With this

choice, (4.18) turns into∫
Qr1 (z0)

|Du|s dz

≤ 1

2

∫
Qr2 (z0)

|Du|s dz + c

(r2 − r1)β̃

(
Mz0,R + Nz0,R

)χ̃
,

for some exponent χ̃ depending only on n, p, q and α. Lemma 2.1 gives∫
Q R

2
(z0)

|Du|s dz ≤ c
(
Mz0,R + Nz0,R

)χ̃

for some s ∈ [s0, p + αp
n+2−α

). This finishes the proof of the Lemma. ��

5. Proof of Theorem 1.2

In this section we complete the proof of Theorem 1.2. Therefore, we regularize
the functional and obtain variational solutions uε, which also solve the associated
parabolic system. Lemma 4.2 guarantees an Lq

loc-bound for the spatial gradient of
uε. In the limit ε ↓ 0, this property can be transferred to the variational solution u
and hence it also a weak solution.

Proof of Theorem 1.2. The procedure will be the same as in Sect. 7 of [4], so we
will only give a sketch of the proof.
Step 1: For ε ∈ (0, 1] we define

fε(x, t, ζ ) := f (x, t, ζ ) + ε|ζ |q .
For every fixed ε, ∂ζ fε satisfies a standard q-growth condition and we obtain a
unique weak solution

uε ∈ Lq(0, T ;W 1,q(�,RN )
) ∩ C0([0, T ], L2(�,RN )

)

to the parabolic Cauchy–Dirichlet problem
{

∂t uε − div ∂ζ fε(x, t, Duε) = 0 in �T

uε = g on ∂P�T .

Step 2: In the following we want to pass to the limit ε ↓ 0. Since we perform the
same approximation schema as in Sect. 3, we gain the energy bound (3.3). From
[10, Chapter I, Proposition 3.1] we conclude that

∫
�T

|uε| p(n+2)
n dz ≤ c

∫
�T

(|uε|p + |Duε|p
)
dz

(
sup

t∈(0,T )

∫
�

|uε(·, t)|2dx
) p

n

holds for a constant c = c(c, p,�). Since q < p + min{2,p}α
n+2 ≤ p n+2

n holds, the
energy bound implies that uε is uniformly bounded in Lq(�T ,RN ). Moreover, if



Existence of weak solutions of parabolic systems with p, q-growth 111

we combine the energy bound (3.3) with Lemma 4.2, we infer that Du is uniformly
bounded in Lq

loc(�T ,RNn). This ensures the existence of a function

u ∈ L p(0, T ;W 1,p(�,RN )
) ∩ Lq

loc

(
0, T ;W 1,q

loc (�,RN )
)
,

with
{

uε ⇀ u weakly in Lq
loc(�T ,RN )

Duε ⇀ Du weakly in Lq
loc(�T ,RNn).

As in Sect. 3, we can only show that u ∈ Cω([0, T ]; L2(�,RN )) holds, although
uε ∈ C0([0, T ]; L2(�,RN )) is true for every ε > 0.
Step 3: With help of [26, Theorem 6], we obtain
⎧⎨
⎩

uε → u strongly in L2(�T ,RN ) and Lq(Q0,R
N ) for any Q0 � �T ,

Duε → Du strongly in L p(Q0,R
Nn) for any Q0 � �T ,

uε(·, t) → u(·, t) strongly in L2(O,RN ) for any O � � and any t ∈ (t1, t2).

Step 4: The convergence results allow us to pass to the limit ε ↓ 0 in the weak
formulation for uε, which implies that u is also a weak solution to the Cauchy–
Dirichlet problem (1.2). The bounds of Lemma 4.2 can be transferred from uε to
u, which completes the proof. ��
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