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Abstract. We prove the existence of rotational hypersurfaces in H
n × R with Hr+1 = 0

(r -minimal hupersurfaces) and we classify them. Then we prove some uniqueness theorems
for r -minimal hypersurfaces with a given (finite or asymptotic) boundary. In particular, we
obtain a Schoen-type theorem for two ended complete hypersurfaces.

Introduction

In this articlewe deal with r -minimal hypersurfaces inHn×R, that is hypersurfaces
in Hn × R with Hr+1 = 0.

First we address the problem of finding all r -minimal hypersurfaces inHn ×R

invariant by rotation with respect to a vertical axis. We prove that there is a one
parameter family of them and that their behavior is very similar to that of catenoids
in Hn × R, obtained in Pierre Bérard and Ricardo Sa Earp [3] (Theorem 2.1).

Once proved the existence of this family of examples, we prove some rigid-
ity results for r -minimal hypersurfaces spanning a fixed boundary or asymptotic
boundary. In particular, we obtain classification results provided either the bound-
ary or the asymptotic boundary is contained in two parallel slices (Theorems 3.1
and 3.2). For the precise definition of asymptotic boundary, see the end of Sect. 1.
Theorem 3.1 is inspired by the results of Jorge Hounie andMaria Luiza Leite [9] for
r -minimal hypersurfaces in Euclidean space. Theorem3.2 is whatwe call a Schoen-
type result. In his pioneer paper [14], Schoen characterizes the minimal complete
hypersurfaces which are regular at infinity and have two ends. This result was gen-
eralized for r -minimal hypersurfaces of Euclidean space by Levi Lopes de Lima
and Antonio Sousa [10] and also by Maria Luiza Leite and Henrique Araújo [1].
A Schoen-type result for minimal hypersurfaces in H

n × R was obtained by the
second author, Ricardo Sa Earp and Eric Toubiana in [11]. Our Theorem 3.2 is
a generalization of the latter. In Euclidean space, the proofs in [1,9,10,14] use
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the invariance of the minimality (or r -minimality) condition under ambient space
scaling. The lack of such invariance in H

n × R obliges one to look for reasonable
geometrically analogous results and suitable strategies to obtain them. The reader
will find more details and comments throughout the text.

We recall that, when working with Hr+1 = 0, we are led to use a version of the
maximumprinciple different from the one used for classicalminimal hypersurfaces.
In fact, here, ellipticity is not for free and one has to add some hypothesis on the
principal curvatures vector (see Sect. 3). One of the consequence of this fact is
that we must assume embeddedness in Theorem 3.2, that is for free in the mean
curvature case.

Hypersurfaces with Hr+1 = 0 in R
n+1 have been broached in several papers.

We refer the reader to [1,7,8,10] and the references therein.
The paper is organized as follows. In the first section we fix notations. The

second section is devoted to the classification of r -minimal hypersurfaces invariant
by rotations and to the establishment of their properties. In the third section, we
establish our uniqueness results for r -minimal hypersurfaces with either (finite)
boundary or asymptotic boundary contained in two parallel slices.

1. Preliminaries

Let Mn, M̄n+1 be oriented Riemannian manifolds of dimension n and n+1 respec-
tively and let X : Mn → M̄n+1 be an isometric immersion. Let A be the linear
operator associated to the second fundamental form of X and k1, . . . , kn be its
eigenvalues. The r -mean curvature Hr+1 of X is given by(

n

r + 1

)
Hr+1 =

∑
i1<···<ir+1

ki1 , . . . , kir+1 , 1 ≤ r + 1 ≤ n.

We recall that H1 (r = 0) is the mean curvature of the immersion and that Hn

(r + 1 = n) is the Gauss–Kronecker curvature. The Newton tensors associated to
X are inductively defined by

P0 = I,

Pr+1 =
(

n

r + 1

)
Hr+1 I − A ◦ Pr , r > 0.

For further details about the Newton tensors, see [12,13]. We are interested in
the case where M̄n+1 = IHn × R, where IHn denotes the hyperbolic n-space and
Hr+1 = 0, for some r.

We use the ball model of the hyperbolic space IHn (n ≥ 2), i.e.

IHn =
{
x = (x1, . . . , xn) ∈ R

n
∣∣∣x21 + · · · + x2n ≤ 1

}

endowed with the metric

gIH := dx21 + · · · + dx2n(
1−|x |2

2

)2 .
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In IHn × R, with coordinates (x1, . . . , xn, t), we consider the product metric

gIH + dt2.

For later use, we briefly recall the notion of asymptotic boundary of a hyper-
surface. We denote the ideal boundary of Hn × R by ∂∞(Hn × R).

Since we are using the ball model for Hn, ∂∞(Hn × R) is naturally identified
with the cylinder Sn−1 × R joined with the endpoints of all the non horizontal
geodesic of Hn × R. Here, Sn−1 denotes the unitary (n − 1)-dimensional sphere.

The asymptotic boundary of a hypersurface M inHn ×R is the set of the limit
points of M in ∂∞(Hn × R) with respect to the Euclidean topology of Sn−1 × R.

The asymptotic boundary of the surface M will be denoted by ∂∞M, while the
usual (finite) boundary of M will be denoted by ∂M.

2. r-Minimal rotational hypersurfaces

Our aim in this section is to classify the r -minimal hypersurfaces in IHn × R

invariant by rotation about a vertical axis. In IHn ×R, we consider the coordinates
(x1, . . . , xn, t) and, up to isometry, we can assume the rotation axis to be {0} ×R.
Notice that the slices t = const are r -minimal hypersurfaces invariant by rotation
for any r.

Weconsider a hypersurface obtained by the rotation of a regular curve in the ver-
tical plane V := {(x1, . . . , xn, t) ∈ IHn × R|x1 = · · · = xn−1 = 0}, parametrized
by (tanh( f (t)

2 ), t), where f is a positive function.
We define a rotational hypersurface in IHn × R by the parametrization

X :
{
R × Sn−1 → IHn × R

(t, ζ ) → (tanh( f (t)/2)ζ, t).

The normal field to the immersion can be chosen to be

N =
(
1 + f 2t (t)

)−1/2
( −1

2 cosh2( f (t)/2)
ζ, ft (t)

)
(1)

and the principal curvatures associated to X are then given by (see [3])

k1 = k2 = · · · = kn−1 = cotgh ( f (t))
(
1 + f 2t (t)

)−1/2
and

kn = − ft t (t)
(
1 + f 2t (t)

)−3/2
.

We set q = n−r−1
r+1 and a straightforward computation yields

(q + 1)Hr+1 = − cotgh r ( f (t)) ft t (t)
(
1 + f 2t (t)

)− r+3
2

+ q cotgh r+1( f (t))
(
1 + f 2t (t)

)− r+1
2

(2)
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or, equivalently,

(q+1) ft (t)
(
1+ f 2t (t)

) r
2 sinhq+r ( f (t))

coshr ( f (t))
Hr+1= ∂

∂t

[
sinhq( f (t))

(
1+ f 2t (t)

)− 1
2
]

.

(3)

The solutions of either (2) or (3) with Hr+1 = 0 will be the profile of the
r -minimal hypersurfaces invariant by rotation.

We state below our classification result. We point out that in the statement we
discard the slices, that are r -minimal for each r .

Theorem 2.1. The r-minimal complete hypersurfaces invariant by rotation inHn×
R are the following:

(a) For n = r + 1 : right cylinders above spheres of dimension n − 1.
(b) For r + 1 < n : a one parameter family {Ma(r)}a>0 of hypersurfaces with the

following properties. AnyMa(r) is embedded and homeomorphic to an annulus
symmetric with respect to the slice t = 0. The distance between the rotational
axis and the “neck”of Ma(r) is a. The asymptotic boundary of Ma(r) is
composed by two horizontal circles in ∂∞(H)×R whose vertical distance is an

increasing function of a, taking values in
(
0, (r+1)π

(n−r−1)

)
.Moreover, if a �= b then

the generating curves ofMa(r) andMb(r) intersect exactly at two symmetric
points.

Proof. For n = r + 1, it is easy to see that the solutions of Eq. (2) for Hr+1 = 0
satisfy ft (t) = const, that is, they are part of cones or right cylinders. Since we
search for complete hypersurfaces, (a) is proved.

We now prove (b). We first notice that, in order to solve (2) with Hr+1 = 0, it
is enough to solve the following Cauchy problem⎧⎪⎨

⎪⎩
ft t = q cotgh ( f (t))

(
1 + f 2t (t)

)
f (0) = a
ft (0) = 0,

(4)

for any a > 0.
In fact, we only have to realize that the condition ft (0) = 0 is not restrictive.

We recall that the Cauchy–Lipschitz theorem guarantees the existence of a unique
maximal solution for given initial data. Since we are considering f (t) > 0, a
solution of the equation in (4) satisfies ft t ≥ q > 0. Then, the maximal solution
attains a minimum at some point of the corresponding interval. We can, w.l.g.,
suppose it attains a minimum at t = 0 and we are done.

Let (Ia, f (a, t)) be the maximal solution of (4). Since f (a,−t) also solves
the equation, we conclude that f (a, t) is an even function of t, and we can write
Ia = (−L(a), L(a)) for some L(a) ∈ R

+ ∪ {∞}.
By imposing Hr+1 = 0 in theEq. (3), integrating and using the initial conditions

of the Cauchy problem we obtain

sinhq( f (a, t))(
1 + f 2t (a, t)

) 1
2

= sinhq(a) for all t ∈ Ia . (5)
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In order to obtain the result, we explore the geometric properties of the solutions
(Ia, f (a, t)), that can be deduced from (4) and (5). Our analysis is inspired by the
one in [3] and [5].

Since ft t (t) > 0, the profile curve is strictly convex. Moreover, f (a, .) is
greater or equal to a and is increasing on (0, L(a)). As it is a maximal solu-
tion of (4) (and (5)), f (a, .) must go to infinity for t −→ ±L(a). Then, we can
define the inverse function λ(a, ρ) for ρ ∈ [a,∞) onto [0, L(a)] that satisfies
λρ(a, f (a, t)) ft (a, t) = 1. Hence we have

λ(a, ρ) = sinhq(a)

∫ ρ

a

1√
sinh2q(u) − sinh2q(a)

du. (6)

Setting v = sinh(u)
sinh(a)

, we obtain

λ(a, ρ) =
∫ sinh(ρ)

sinh(a)

1
(v2q − 1)−1/2 sinh(a)

(
1 + v2 sinh2(a)

)−1/2
dv. (7)

Now, we notice that

sinh(a)
(
1 + v2 sinh2(a)

)−1/2 ≤ v−1

lim
a−→∞ sinh(a)

(
1 + v2 sinh2(a)

)−1/2 = v−1 (8)

and that ∫
v−1(v2q − 1)−1/2 dv = 1

q
arctan(v2q − 1)

1
2 + const. (9)

From the relations above, we obtain that λ(ρ, a) converges at ρ = a and also
when ρ → ∞. Thus we can write

L(a) =
∫ ∞

1
(v2q − 1)−1/2 sinh(a)

(
1 + v2 sinh2(a)

)−1/2
dv. (10)

Moreover the limit when a −→ ∞ can be taken under the integral and

lim
a→∞ L(a) =

∫ ∞

1
v−1(v2q − 1)−1/2dv = π

2q
= π(r + 1)

2(n − r − 1)
. (11)

Finally, since

dL

da
= cosh(a)

∫ ∞

1
(v2q − 1)−1/2

(
1 + v2 sinh2(a)

)−3/2
dv > 0, (12)

we conclude that the function a → L(a) increases from 0 to π(r+1)
2(n−r−1) when a

increases from 0 to ∞. Since f (a, t) is an even function of t, we can make a
reflection of the graph of the function λ(ρ, a) with respect to the horizontal slice
t = 0 and we obtain a catenary like curve with finite height.

The fact that two generating curves intersect exactly at two symmetric points
follow by considering the function λ(b, ρ) − λ(a, ρ) for a �= b and by using the
monotonicity of L(a) (see Fig. 1).

With this method we have then found all the complete rotational hypersurfaces
that are local graphs over the vertical axis and we are then able to conclude that no
immersed examples will appear. 
�
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2(n−r−1)

ρa b

π(r+1)

(r+1)π
−

t

2(n−r−1)

Fig. 1. The profile curves ofMa(r) and Mb(r)

(r+1)

ρaα 0

0t

m

t

2(n−r−1)
π

Fig. 2. The minimum for f

Definition 2.2. The elements of the one parameter family {Ma(r)}a>0 of r -
minimal complete hypersurfaces invariant by rotation in H

n × R are called r-
catenoids.

In the rest of this section we explore further properties of the family of r -
catenoids Ma(r) (see Fig. 2).

Let us fix t0 in
(
0, π(r+1)

2(n−r−1)

)
and let α be such that L(α) = t0. This means that

lim
t−→t−0

f (α, t) = ∞.Letφt0 be the positive continuous function defined byφt0(a) =
f (a, t0). Since, by (12), dL

da > 0, we have that L(a) > L(α) = t0, for any a > α.

Then φt0 is defined on (α,∞). Moreover, lim
a−→α+φt0(a) = lim

a−→∞φt0(a) = ∞. It

is then clear that φt0 has a minimum value m0 in (α,∞). Let ā ∈ (α,∞) be such
that φt0(ā) = m0. Notice that f (ā, t0) = m0 is a minimum of f with respect to
the variable a.
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Claim. f (ā, t0) = m0 is a minimum of f with respect to the variable a if, and
only if, λ(ā,m0) is a maximum of λ, with respect to the variable a.

Proof of claim. Assume that f (ā, t0) = m0 is a minimum of f and that there
exists ã such that λ(ã,m0) > λ(ā,m0). Then, the graph of λ(ã, ρ) intersects
t = t0 at a point (ρ̃, t0) with ã < ρ̃ < m0. Then f (ã, t0) = ρ̃ < m0 = f (ā, t0).
Contradiction. The proof of the “only if” part is analogous.

We now state a technical lemma that will be useful in what follows.

Lemma 2.1. Letλ(a, ρ) be given by (7). Thenwe haveλaa(a, ρ) < 0 for a ∈ (0, ρ)

and:

– ρ ∈ (a,∞), if q ≥ 1.

– ρ ∈ (0, M], where M = arcosh
(√

1
1−q

)
, if q < 1.

Proof. By a straightforward computation, we obtain

λa(a, ρ) = − tgh (ρ) cotgh (a)

((
sinh(ρ)

sinh(a)

)2q

− 1

)− 1
2

+ cosh(a)

∫ (
sinh(ρ)
sinh(a)

)

1
(v2q − 1)−

1
2

(
1 + v2 sinh2(a)

)− 3
2
dv

and

λaa(a, ρ) = tgh (ρ)

sinh2(a)

((
sinh(ρ)

sinh(a)

)2q

− 1

)− 3
2

.

·
[(

sinh(ρ)

sinh(a)

)2q (
1−q cosh2(a)− cosh2(a)

cosh2(ρ)

)
+

(
cosh2(a)

cosh2(ρ)
− 1

)]

+ sinh(a)

∫ (
sinh(ρ)
sinh(a)

)

1
(v2q − 1)−

1
2 (1 + v2 sinh2(a))−

5
2

· (1 − v2 − 2v2 cosh2(a))dv.

It is easy to see that, under the assumptions, the term
(
1 − q cosh2(a)− cosh2(a)

cosh2(ρ)

)
is negative. The remainder terms are clearly negative for a ∈ (0, ρ). 
�

For any fixed ρ, let γ ρ(a) = λ(a, ρ).

Wecan easily see thatγ ρ is defined, positive and continuous in (0, ρ).Moreover,
we can see that lim

a−→0+γ ρ(a) = 0 and that γ ρ(ρ) = 0. Hence, γ ρ reaches a

maximum at some a in (0, ρ). Set
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– Jq = (0,∞) if q ≥ 1
– Jq = (0, M] if q < 1.

Lemma 2.1 guarantees that for each ρ ∈ Jq , γ ρ(a) = λ(a, ρ) has a unique point
of maximum.

When q < 1, let A be the unique point of maximum of λ(a, M), for a ∈ (0, M).
We set

– T = π(r+1)
2(n−r−1) if q ≥ 1

– T = λ(A, M) if q < 1.

Corollary 2.1. For each t0 ∈ (0, T ), there exists a unique a0 ∈ (α,∞) such that
m0 = φt0(a0) is the minimum of φt0 . Moreover, for each ρ > m0, there exists at
least a pair (a1, a2), with a1 < a0 < a2, such that φt0(a1) = φt0(a2) = ρ.

Proof. For q < 1, it is clear that for each value of t ∈ (0, T ), the minimum value
of φt (a) = f (a, t) is less than M . Then, taking into account the last claim, we can
conclude that φt (a) has a unique point of minimum since, for each ρ ∈ Jq , γρ has
a unique point of maximum. In particular, φt0 reaches the minimum value m0 at a
unique point, say a0.

Now, we take ρ ∈ Jq , ρ > m0. By analysing the behavior of the profile curves
λ(a0, ρ), we see that γ ρ(a0) = λ(a0, ρ) > λ(a0,m0) = t0.Since lim

a−→0+γ ρ(a) = 0

and that γ ρ(ρ) = 0, then γ ρ reaches the height t0 twice for two values a1 and a2
such that a1 < a0 < a2. The proof of the Corollary is now complete. 
�

The following Proposition follows easily from the previous results. Here, t0 ∈
(0, T ) and m0 and ai , i = 0, 1, 2, are the numbers given in Corollary 2.1.

Proposition 2.1. Let D+(R), D−(R) two (n − 1)-spheres of radius R, contained
in the slices t = t0 and t = −t0, respectively, with center on the axis t. We have

(1) If R < m0, there exist no r-minimal rotational hypersurfaces with boundary
D+(R) ∪ D−(R).

(2) If R = m0, there exists a unique r-minimal rotational hypersurfaces with
boundary D+(m0) ∪ D−(m0), namely, Ma0(r).

(3) If R ∈ Jq , R > m0, there exist at least twor-minimal rotational hypersurfaces
with boundary D+(R) ∪ D−(R). Two of them are Ma1(r) and Ma2(r).

The study of the r -catenoids in Euclidean space was addressed in [9]. There,
we can see that the vertical heights of the r -catenoids are bounded for q > 1
(n > 2(r + 1)) and unbounded for q ≤ 1 (n ≤ 2(r + 1)). In IHn × R, the heights
are bounded in both cases. On the other hand, for each admissible value of t , the
authors in [9] were able to prove the uniqueness of the minimum point of φt by
using ambient scaling. Here, by means of geometric arguments and of Lemma 2.1,
we were able to prove the uniqueness for q ≥ 1, but we fail to prove in the case
q < 1. For q < 1, we have to restrict the values of t in order to obtain uniqueness.
This is, possibly, a technical restriction and we ask the following.

Question. For any fixed t0 ∈ (0, π(r+1)
2(n−r−1) ), we know that there is an r -catenoid, C,

passing through (m0, t0) in the (ρ, t)-plane and that all r -catenoids passing through
(m, t0) satisfy m ≥ m0. Is C unique?
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We are able to give a positive answer for q ≥ 1. For q < 1, we have to consider
t0 ∈ (0, T ). In other words, we ask: can we consider T = π(r+1)

2(n−r−1) for all values
of q in Corollary 2.1 and in Proposition 2.1?

Remark 2.1. For any t in (0, π(r+1)
2(n−r−1) ), we define m(t) as the minimum value of

the function φt = f (a, t).
Then, the set (using the ball model for Hn)

Er+1 =
{
(tanh

(
m(t)

2

)
ζ, t) ∈ H

n × R | ζ ∈ S
n−1, t ∈ (−T, T )

}

is the envelope of the family Ma(r), that satisfies Hr+1 = 0 (see Definition 5.16
in [2]).

Let us state a property of the familyMa(r) that will be useful in the following
section.

Proposition 2.2. For a fixed r, 1 ≤ r < n − 1, each rotational r-minimal hyper-
surface of the familyMa(r) satisfies

(1) Hj > 0, for j < r + 1.
(2) Hr+1 = 0.
(3) Hj < 0, for r + 1 < j ≤ n.

Proof. By taking (4) into account we see that k1 = · · · = kn−1 and that kn =
− n−r−1

r+1 k1. Then, a straightforward computation yields

Hj = k j
1 [(r + 1) − j], j = 1, . . . , n,

that gives the result. 
�

3. Uniqueness results

In this section we obtain two classification results. The first one deals with compact
r -minimal hypersurfaces with boundary on two slices and the second one deals
with non compact r -minimal hypersurfaces with asymptotic boundary spanned by
two copies of ∂∞H

n .

Before stating the results of this section, we establish some notation. We denote
the slice Hn × {s}, s ∈ R, by 
s and a (closed) slab between two slices by S, say
S = {(p, t)|p ∈ H

n, t0 ≤ t ≤ t1}. The asymptotic boundary of S is given by
∂∞S = ∂∞H

n × [t0, t1]. We set 
+
s = {(p, t)|p ∈ H

n, t > s},
−
s = {(p, t)|p ∈

H
n, t < s} and, for notational convenience, we write 
 = 
0. Also, we set σ for

the origin of the slice 
.
The complete totally geodesic hypersurface P = π ×R, where π is any totally

geodesic (n − 1)-dimensional complete hypersurface of Hn , is called a vertical
hyperplane.

We will use suitable versions of the interior and boundary maximum principles
for vanishing higher order mean curvatures. We believe it is worthwhile to recall
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themhere and to point out the important differences between the classicalmaximum
principles for minimal hypersurfaces and these for r -minimal hypersurfaces. For
further details about such generalized maximum principles, see [7,8] for hyper-
surfaces of Euclidean space and [6] for hypersurfaces of a general Riemannian
manifold.

Let−→κ = (κ1, . . . , κn) be the principal curvature vectors of M . Roughly speak-
ing, for r ≥ 1, the maximum principle requires, as extra hypotheses, that:

(1) the principal curvature vectors of the two compared hypersurfaces belong to
the same leaf of Hr+1 = 0.

(2) the rank of the Gauss map (the rank of −→κ ) of one of the compared hyper-
surfaces at the contact point is greater than r. This hypothesis guarantees the
ellipticity of the equation Hr+1 = 0 and it is satisfied if Hr+2 �= 0.

Let M, M ′ be two oriented r -minimal hypersurfaces ofHn ×R. Let−→κ (respec-

tively
−→
κ ′ ) be the principal curvature vector of M (respectively M ′).

Theorem A. (Corollary 1.a [6]) Let M and M ′ two r-minimal oriented hypersur-
faces, tangent at a point p, with normal vector pointing in the same direction.
Suppose that M remains on one side of M ′ in a neighborhood of p. Suppose that
−→κ (p) and

−→
κ ′ (p) belong to the same leaf of Hr+1 = 0 and that the rank of either

−→κ or
−→
κ ′ is at least r. Then M and M ′ coincide in a neighborhood of p.

Theorem B. (Theorem 2.a [6]) Let M and M ′ two r-minimal oriented hypersur-
faces, tangent at a point p, with normal vector pointing in the same direction.
Suppose that M remains on one side of M ′ in a neighborhood of p. Suppose fur-
ther that H ′

j (p) ≥ 0, 1 ≤ j ≤ r and either Hr+2 �= 0 or H ′
r+2 �= 0. Then M and

M ′ coincide in a neighborhood of p.

The analogous of both Theorem A and B hold for hypersurfaces tangent at
boundary points (see Corollary 1.b and Theorem 2.b [6]).

For the reader’s convenience, we explain here in which cases either Theorem
A or Theorem B (and their boundary versions) can be used. Then, it will be clear
in the following when we use either the first or the second one.

• TheoremAwill be used for the comparison of an r -minimal hypersurfacewith a
reflection of the hypersurface itself. The assumption of TheoremA are satisfied
by a hypersurface and its reflection because of the following two facts:

Fact 1 Due to properties of hyperbolic polynomials, the principal curvature vector
of a connected hypersurface with Hr+1 = 0 and Hr+2 �= 0 does not change
of leaf (see [7] for details).

Fact 2 Let τ be an isometry of Hn ×R that preserves the orientation of either Hn

orR and reverses the other. Let f : M → H
n ×R be an immersion and set

f̂ = τ ◦ f . Then, we have N̂ = −τ ◦ N , where N̂ is the normal vector to
f̂ (see [4], Proposition (3.8)). As a consequence, the second fundamental
forms of f and f̂ have opposite sign.

• Theorem B will be used for the comparison of an r -minimal hypersurface with
one of the Ma(r) that, by Proposition 2.2, satisfy Hj > 0 for j < r + 1 and
Hr+2 < 0.
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Now, we recall the description of a family of hypersurfaces found by the first
author andRicardo SaEarp in [5], that will be crucial in the proof of Proposition 3.1.
There, the authors proved the existence of a family Fσ of entire rotational strictly
convexgraphswith constant Hr+1 ∈ (0, n−r−1

n ] that satisfy the followingproperties
(see [5, Propositions (6.4) and (6.5)]):

(1) The graphs of the familyFσ intersect each other only at the pointσ .Moreover,
they are tangent to the slice
 at σ and have normal vector pointing upwards.

(2) The graphs of the family Fσ converge to 
 uniformly on compact sets as
Hr+1 goes to zero.

By an isometry of the ambient space, we can produce a new family with an
arbitrary common point q and with normal pointing either upward or downward.
We denote by Fq the family with common point q and upward normal vector and
by F̃q the one with downward normal vector.

Proposition 3.1. Let M be an r-minimal hypersurface in H
n × R such that ∂M

and ∂∞M, one of them possibly empty, are contained in S ∪ ∂∞S, for a given slab
S. Then M is contained in S.

Proof. Suppose that M is not contained in the slab S. Without loss of generality, we
can assume that S = {(p, t)|p ∈ H

n, s ≤ t ≤ 0} and that there is a subset of M in

+. Now, we choose ε > 0 such that M+

ε = M ∩ 
+
ε is not empty. Since ∂M and

∂∞M are in the slab, Mε is compact with boundary in 
ε. Let q be a point above
M+

ε and let {�i }i∈N be a sequence of graphs with constant (r + 1)-mean curvature
in the family F̃q that converges to the slice passing through q when i tends to
infinity. Since M+

ε is compact, we can suppose that M+
ε is contained in the convex

side of �i , for large i . Let l be the vertical line passing through q. Now, we let q
move downwards along l and simultaneously we let i increase. We do this process
keeping M+

ε in the convex side of the translated �i , by choosing a subsequence,
if necessary. We do this until one of the translated �i touches M+

ε . Such contact
point must be interior and a strictly convex point of M . This is a contradiction since
M is r -minimal. 
�
Corollary 3.1. Let M ⊂ H

n ×R be a compact embedded r-minimal hypersurface
with boundary contained in
s ∪
t , s < t , and assume that ∂Ms = ∂M∩
s �= ∅
and ∂Mt = ∂M∩
t �= ∅. Then, M canbeorientedbya continuous normal pointing
into the interior of a closed domain U in Hn × R, with M ⊂ ∂U.

Proof. By the last proposition, we have that M is contained in the slab between 
s

and 
t . Let Ds ⊂ 
s and Dt ⊂ 
t be the bounded regions such that ∂Ds = ∂Ms

and ∂Dt = ∂Mt . Then, M ∪ Ds ∩ Dt is an orientable homological boundary of an
(n+1)-dimensional chain inHn×R.We choose the inwards normal toM∪Ds∩Dt .


�
Next Theorem is a uniqueness result for compact r -minimal hypersurfaces with

boundary in two parallel slices. The analogous result in Euclidean space is Theorem
3.2 in [9].
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In the next statement, t0,m0 and a0 are as in Corollary 2.1. Also, we recall that
D+(R) and D−(R) are two (n − 1)-spheres of radius R, contained in the slices
t = t0 and t = −t0, respectively, with center on the t-axis.

Theorem 3.1. Let M be a compact, connected and embedded r-minimal hyper-
surface in H

n × R, 1 ≤ r < n − 1, with boundary contained in 
to ∪ 
−t0
with ∂M+ = ∂M ∩ 
t0 �= ∅ and ∂M− = ∂M ∩ 
−t0 �= ∅. We suppose that
∂M+ ⊂ D+(m0) and that ∂M− ⊂ D−(m0). Then, M coincides with the unique
rotational hypersurface Ma0(r) with boundary D+(m0) ∪ D−(m0).

Proof. By Proposition 3.1, M is contained in the slab S between
t0 and
−t0 .We
orient M as in Corollary 3.1. As M is compact, for a large enough, there exists a
rotational hypersurfaceMa(r) such that M is contained in the compact component
determined byMa(r)∩S.Now, we let a decrease. It is clear that there exists α > 0
such that Mα(r) has a first contact point with M. We notice that α �= 0 because
the waist of Ma(r) shrinks to zero as a −→ 0 and the absence of a contact point
before a = 0 would contradict the connectedness of M.

If the first contact point p between M andMα(r) is an interior point of M, then
M andMα(r) are tangent at p, both have normal vectors pointing into the compact
region determined by M ∩ S and M lies above Mα(r) with respect to the normal
vector [recall that Mα(r) is oriented as in (1)]. By Proposition 2.2, Mα(r) is such
that Hr+2 < 0 and Hj > 0, for j < r + 1, hence by the maximum principle (see
Theorem B), M andMα(r) coincide in a neighborhood of p. Then, they coincide
everywhere. Moreover, since ∂M ⊂ D+(m0)∪ D−(m0), Proposition 2.1 gives the
result.

Now, let we analyse the case where the first contact point between M and
Mα(r) is on ∂M. Let q ∈ ∂M be a first contact point between M and Mα(r). As
∂M ⊂ D+(m0) ∪ D−(m0), again by Proposition 2.1, α = a0 and q belongs to
∂D+(m0) ∪ ∂D−(m0).

If the tangent planes at q to M and Ma0(r) coincide, then, by the boundary
maximum principle (see Theorem 2.b [6], that is the boundary version of Theorem
B), M and Mα(r) coincide as well and the result is proved.

Otherwise, the slope of TqM is strictly smaller than the slope of TqMa0(r).
We will get a contradiction in this case. By Proposition 2.1, for ε small,Ma0−ε(r)
is such thatMa0−ε(r) ∩ (
t0 ∪ 
−t0) contains D+(m0) ∪ D−(m0) in its interior.
This last fact, joint with the fact that the slope of TqM is strictly smaller than
the slope of TqMa0(r) yield that Ma0−ε(r) ∩ S bounds a region containing M.

Now, if we continue decreasing a, ∂Ma(r) can not touch ∂M again (because of
Proposition 2.1), but for a −→ 0, the waist ofMa(r) shrink to zero, so there must
be an interior contact point between M and Mā(r), for some ā < a0. Then, as
before, M and Mā(r) must coincide. This is a contradiction because they have
disjoint boundaries. 
�

Theorem 3.1 implies the following result (with the same notation as there).

Corollary 3.2. There is no compact, connected and embedded r-minimal hyper-
surface in H

n × R, 1 ≤ r < n − 1, with ∂M+ ⊂ D+(R) and ∂M− ⊂ D−(R), for
R < mo.
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Theorem 3.2 below is inspired by the classical result of Schoen [14, Theorem
3]. As in the proof of Theorem 3.1, we have to deal with the restrictions imposed
by the geometry ofHn ×R. Here, based on the ideas contained in [11], we change
the assumption of regular ends at infinity in Euclidean space by that of asymptotic
boundary in twoparallel slices inHn×R. The proofs ofLemma3.1 andTheorem3.2
are very similar to that of [11, Lemma 2.1, Theorem 4.2]. The differences are
essentially due to the differences in the hypothesis of the maximum principle for
minimal and for r -minimal hypersurfaces. Also, we point out that arguments used
to prove embeddedness of the minimal immersion in [11,14] can not be carried
out here. The obstruction is the requirement in the maximum principle, for the
r -minimal case, that the principle curvature vectors belong to the same leaf. Then,
here, embeddedness is a hypothesis.

Lemma 3.1. Let �+ and �− be two (n − 1)-manifolds in ∂∞H
n × R which are

vertical graphs over ∂∞H
n × {0} and such that �+ ⊂ ∂∞
+ and �− ⊂ ∂∞
−.

Assume that �− is the symmetric of �+ with respect to 
. Let M ⊂ H
n × R

be an embedded, connected, complete r-minimal hypersurface, 1 ≤ r < n − 1,
with two ends E+ and E−. Assume that each end is a vertical graph and that
∂∞M = �+ ∪ �−, that is ∂∞E+ = �+ and ∂∞E− = �−. Moreover, assume
that Hr+2 �= 0. Then M is symmetric with respect to 
. Furthermore, each part
M ∩ 
± is a vertical graph.

Proof. We denote by t+ the highest t-coordinate of �+. Since ∂∞M = �+ ∪ �−,

then Proposition 3.1 imply that M is contained in the slab between 
t+ and 
−t+ .
We now notice that since each end of M is a vertical graph, we can obtain a

compact domain� ∈ H
n×{0} such that E+ and E− are graphs over (Hn×{0})\�.

We consider the cylinder C over � and we see that MC = M ∩ C is compact and
embedded, so it bounds a compact domain B. Then an argument similar to that
used in the Corollary 3.1 gives that we can orient MC towards B. Since, M\MC is
a graph, we can extend the normal vector continuously to M . In this case, we will
say that the whole M is oriented towards the interior.

For any t > 0 we set M+
t = M ∩
+

t . We denote by M+∗
t the symmetry of M+

t
with respect to the slice 
t . As E+ is a vertical graph, there exists ε > 0 such that
M+

t+−ε
is a vertical graph, then we can start Alexandrov reflection. We keep doing

the Alexandrov reflection with respect to 
t , doing t ↘ 0. Here, we recall that
reflection with respect to a slice preserves the orientation of Hn and reverses that
of R. Then, taking Fact 2 into account, the principal curvature vector of M+∗

t with
respect to the suitable orientation −N̂ , is equal to the principal curvature vector of
M+

t . By Fact 1, the principal curvature vectors of M+∗
t and M−

t belong to the same
leaf, hence we can apply the maximum principle for comparing them. Theorem
A or its corresponding boundary version (Corollaries 1a and 1b of [6]), gives, for
t > 0, that the surface M+∗

t stays above M−
t and that both, M+

t and M−
t , are

vertical graphs. By doing t ↘ 0, we obtain that M+
0 is a vertical graph and that

M+∗
0 stays above M−

0 .
Doing Alexandrov reflection with slices coming from below, one has that M−

0
is a vertical graph and that M−∗

0 stays below M+
0 , henceforth we get M+∗

0 = M−
0 .
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Thus M is symmetric with respect to 
 and each component of M\
 is a graph.
This completes the proof. 
�
Theorem 3.2. Let M be a complete connected r-minimal hypersurface embedded
in Hn × R, 1 ≤ r < n − 1, with Hr+2 �= 0. Assume that M has two ends and that
each end is a vertical graph whose asymptotic boundary is a copy of ∂∞H

n . Then
M is isometric, by an ambient isometry, to one of theMa(r).

Proof. Up to a vertical translation, we can assume that the asymptotic boundary of
M is symmetric with respect to 
 := H

n ×{0}, say ∂∞M = ∂∞H
n ×{t0,−t0} for

some t0 > 0. Then �+ := ∂∞M × {t0} and �− := ∂∞M × {−t0}. By Proposition
3.1,M is contained in the slab between�+ and�−.ByLemma 3.1,M is symmetric
about 
, and each connected component of M\
 is a vertical graph. Moreover, at
any point of M ∩ 
, the tangent hyperplane to M is orthogonal to 
.

Since M is embedded, M separates Hn × [−t0, t0] into two connected com-
ponents. We denote by U1 the component whose asymptotic boundary is ∂∞H

n ×
[−t0, t0] and by U2 the component such that ∂∞U2 = ∂∞H

n × {t0,−t0}.
Let q∞ ∈ ∂∞H

n and let γ ⊂ H
n be an oriented geodesic issuing from q∞,

that is q∞ ∈ ∂∞γ . Let q0 ∈ γ be any fixed point. For any s ∈ R, we denote by
Ps the vertical hyperplane orthogonal to γ passing through the point of γ whose
oriented distance from q0 is s. We suppose that s < 0 for any point in the geodesic
segment (q0, q∞). For any s ∈ R, we call Ms(e) the part of M\Ps such that
(q∞, t0), (q∞,−t0) ∈ ∂∞Ms(e) and let M∗

s (e) be the reflection of Ms(e) about Ps .
We denote by Ms(d) the other part of M\Ps and by M∗

s (d) its reflection about Ps .
We recall that this reflection preserves the orientation of R and reverses that ofHn .
This enable us to use Theorem A, as we did in Lemma 3.1.

By assumption there exists s1 < 0 such that for any s < s1 the part Ms(e)
has two connected components and both of them are vertical graphs. We deduce
that ∂Ms(e) has two (symmetric) connected components, each one being a vertical
graph.

Claim 1. For any s < s1, we have that M∗
s (e) ∩ 
+ stays above Ms(d) and

M∗
s (e) ∩ 
− stays below Ms(d). Consequently M∗

s (e) ⊂ U2 for any s < s1.

Claim 2. Given a geodesic γ ⊂ H
n , there exists a vertical hyperplane Pβ orthog-

onal to γ such that M∗
β(e) = Mβ(d), that is M is symmetric with respect to Pβ

The reader can find analogous claims joint with their proofs in [11, Theorem
2.3]. The proofs go exactly in the same way. There, the authors use the classi-
cal maximum principle and here we should use Theorem A or its corresponding
boundary version.

By Claim 2, one has that M ∩ 
 satisfies the assumptions of [11, Proposition
4.2]. Then M ∩ 
 is a (n − 1)-geodesic sphere of 
. Let a be such that Ma(r)
is the rotational r -minimal hypersurface through M ∩ 
 and orthogonal to 
. We
set Ma(r)+ := Ma(r) ∩ {t > 0}. Both Ma(r)+ and M+ are vertical along their
common finite boundary �, hence they are tangent along �. We want to show
that they coincide. Let t (Ma(r)) (resp. t (M)) be the height of the asymptotic
boundary of Ma(r)+ (resp. M+). Suppose, for example, that t (Ma(r)) ≤ t (M).
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We translate M+ upward so that it stays aboveMa(r)+. Then we translate it down
till we find the first point of contact. By using Theorem B, or its corresponding
boundary version, we conclude that M+ = Ma(r)+.

The case t (M) ≤ t (Ma(r)) is analogous. We then conclude that M = Ma(r)
and the proof is completed. 
�
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