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Abstract. Let G be a finite group and d the degree of a complex irreducible character of G,
then write |G| = d(d + e) where e is a nonnegative integer. We prove that |G| ≤ e4 − e3

whenever e > 1. This bound is best possible and improves on several earlier related results.

1. Introduction

Let d be the degree of a complex irreducible character of a finite group G. Since
d divides |G| and d2 ≤ |G|, one can write |G| = d(d + e) for some nonnegative
integer e. It is clear that the largest possible value of d is

√|G| and d = √|G| if
and only if G is trivial.

The extremal situations where d is close to
√|G| or equivalently e is small have

been studied considerably in the literature. In [1], Berkovich showed that e = 1 if
and only if G is either a cyclic group of order 2 or a 2-transitive Frobenius group.
Going further, Snyder [31] classified the finite groups with e = 2 or 3, and as a
consequence of his classification, |G| ≤ 8 when e = 2 and |G| ≤ 54 when e = 3.
This naturally leads Snyder to the observation that |G| is bounded in terms of e
whenever e > 1 and, indeed, he managed to prove that |G| ≤ ((2e)!)2.

Finding the best bound for |G| in terms of e has become a problem of interest in
many recent papers. Isaacs [16] was the first to improve Snyder’s factorial bound to
a polynomial one of the form Be6 where B is a large enough constant. However his
proof relied on a result of Larsen et al. [19, Theorem 1.1] on bounding the largest
irreducible character degree in terms of smaller degrees in a simple group, which
in turn replied on the classification of finite simple groups. Later on, Durfee and

Nguyen N. Hung is partially supported by the NSA Young Investigator Grant #H98230-14-
1-0293 and a Faculty Scholarship Award from the Buchtel College of Arts and Sciences,
The University of Akron.

N. N. Hung (B): Department of Mathematics, The University of Akron, Akron, OH 44325,
USA. e-mail: hn10@uakron.edu; hungnguyen@uakron.edu

M. L. Lewis: Department ofMathematical Sciences, Kent State University, Kent, OH 44242,
USA. e-mail: lewis@math.kent.edu

A. A. Schaeffer Fry: Department of Mathematical and Computer Sciences, Metropolitan
State University of Denver, Denver, CO 80217, USA. e-mail: aschaef6@msudenver.edu

Mathematics Subject Classification: Primary 20C15; Secondary 20C30, 20C33, 20C34

DOI: 10.1007/s00229-015-0793-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-015-0793-z&domain=pdf


524 N. N. Hung et al.

Jensen [8] were able to obtain the bound of e6 −e4 without using the classification.
This bound was further improved to e4 + e3 by the second author in [20].

In [16], Isaacs pointed out that the group of 3 × 3 matrices of the form
⎛
⎝
1 x y
0 1 z
0 0 t

⎞
⎠ ,

where x, y, z, t are elements in a field of order q and t �= 0, has order q3(q − 1)
and an irreducible character of degree q(q − 1). These groups show that the best
possible bound one can achieve is e4 − e3 and, in fact, this bound holds when G
has a nontrivial abelian normal subgroup, as shown in [20, Theorem 1]. We note
that these groups had earlier appeared in [11, p. 383] in a slightly different context.

The aimof the present paper is to prove the optimal bound of e4−e3 for arbitrary
finite groups.

Theorem 1.1. Let |G| = d(d + e) where e > 1 and d is the degree of some
irreducible character of G. Then |G| ≤ e4 − e3.

In light of [20], to prove Theorem 1.1 it suffices to assume that G has a trivial
solvable radical. Indeed, we can do a bit more.

Theorem 1.2. Let |G| = d(d + e) where d is the degree of some irreducible
character of G. If G has a non-abelian minimal normal subgroup, then |G| <

e4 − e3.

Theorem 1.2 convinces us that those groups with |G| = e4 − e3 are necessarily
solvable. It would be interesting to confirm this, or to even classify them completely,
a task that seems nontrivial to us. In Sect. 7, we show that they must be the so-called
Gagola groups of specific type and present some of their examples.

Let F(G) and b(G) respectively denote the Fitting subgroup and the largest
degree of an irreducible character of G. An old (and still open) conjecture of
Gluck [12] asserts that |G : F(G)| ≤ b(G)2 whenever G is solvable. In a recent
extension of Gluck’s conjecture to arbitrary finite groups [6], it has been predicted
that |G : F(G)| ≤ b(G)3. This means that, when G has a trivial solvable radical,
it is expected that |G| ≤ b(G)3. In the course of proving Theorem 1.2, we in fact
prove that e >

√
b(G) + 1, and this, on the other end, provides a lower bound for

|G| in terms of b(G) in those groups.

Theorem 1.3. Let G be a finite groupwith a non-abelianminimal normal subgroup.
Then

|G| > b(G)
(
b(G) + √

b(G) + 1
)

.

Theorem 1.3 is not true for non-solvable groups in general, as shown by the
non-solvable 2-transitive Frobenius groups (there are three of them, see [29, Propo-
sition 20.2]). We should also mention that we know of no finite groups G with a
non-abelian minimal normal subgroup such that |G| ≤ 2b(G)2. In fact, we are able
to prove the following, which solves a weak form of a prediction of Isaacs raised
in [16], see Sect. 3 for a detailed discussion.
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Theorem 1.4. Let S be a finite non-abelian simple group. Then |S| > 2b(S)2.
Consequently, if |S| = d(d+e)where d is the degree of some irreducible character
of S then |S| < 2e2.

We note that Theorem 1.4 implies Theorem 1.2 for simple groups and more
generally characteristically simple groups. Also, its proof makes use of recent
results [14,19] on bounding the largest character degree in terms of smaller degrees
in finite simple groups, see Sect. 3.

Our proof of Theorem 1.2 is fundamentally different from those in [8,16,20]
and, as expected, relies on the classification of finite simple groups. Let N be a
non-abelian minimal normal subgroup of G and suppose that S is a simple direct
factor of N . The proof is divided in two main cases, according to whether or not S
is isomorphic to PSL2(q).

The key to the proof in the case S � PSL2(q) is to show that S possesses
an irreducible character θ extendible to Aut(S) of ‘very large’ degree, namely
θ(1) > |S|3/8, see Theorem 2.1. This result helps us to reduce Theorem 1.2 to a
question on characteristically simple groups,which are then handled inTheorem1.4
as mentioned above. We believe that Theorem 2.1 will have other applications in
problems involving characters of large degree. The case S ∼= PSL2(q) turns out to
be surprisingly complicated and requires delicate treatment, and is done in Sects. 5
and 6.

2. Extendible characters of simple groups

In this section we will show that a non-abelian simple group S � PSL2(q) has
an irreducible character extendible to Aut(S) of very large degree. The following
theorem is a key tool toward the proof of Theorem 1.2 in the case S � PSL2(q).

Theorem 2.1. Let S be a non-abelian simple group not isomorphic to PSL2(q)

where q is a prime power. Then S has an irreducible character θ extendible to
Aut(S) such that θ(1) > |S|3/8.
Remark. The exclusion of PSL2(q) in the theorem is necessary since |PSL2(q)| =
q(q2 − 1)/(2, q − 1) and b(PSL2(q)) = q or q + 1 for q ≥ 5.

In the study of Gluck’s conjecture [6] concerning the largest character degree
and the index of the Fitting subgroup in a finite group, the first author along with
J.P. Cossey, Z. Halasi, and A. Maróti have proved that every non-abelian simple
group S possesses an irreducible character extendible to Aut(S)with degree at least
|S|1/3. Unfortunately this bound is not enough for our current purpose.However, the
ideas in the proof of [6, Theorem12] can be further developed to proveTheorem2.1.

For the reader’s convenience and to prove Theorem 2.1 for the alternating
groups, we recall some combinatorics concerning partitions, Young diagrams, and
representation theory of the alternating and symmetric groups.

Let n be a positive integer. A finite sequence (λ1, λ2, . . . , λk) for some k such
that λ1 ≥ λ2 ≥ · · · ≥ λk and λ1 + λ2 + · · · + λk = n is said to be a partition of
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n. The Young diagram associated to λ, denoted by Yλ, is defined to be the finite
subset of N × N such that (i, j) ∈ Yλ if and only if i ≤ λ j .

When two Young diagrams can be transformed into each other when reflected
about the line y = x , we say that the associated partitions are conjugate. The
partition conjugate to λ is denoted by λ. If λ = λ then Yλ is symmetric and we say
that λ is self-conjugate. For each node (i, j) ∈ Yλ, we define the so-called hook
length h(i, j) to be the number of nodes that are directly above it, directly to the
right of it, or equal to it. That is,

h(i, j) := 1 + λ j + λi − i − j.

It is well-known that there are bijective correspondences between the partitions of
n, the Young diagrams of cardinality n, and the irreducible complex characters of
Sn . Denote by χλ or χYλ the irreducible character of Sn corresponding to λ and Yλ.
The degree of χλ is given by the hook-length formula of Frame et al. [10]:

χλ(1) = χYλ(1) = n!∏
(i, j)∈Yλ

h(i, j)
.

The irreducible characters of An can be obtained by restricting those of Sn to
An . More explicitly, χλ ↓An= χλ ↓An is irreducible of degree χλ1(1) if λ is not
self-conjugate. Otherwise, χλ ↓An splits into two different irreducible characters
of the same degree χλ1(1)/2.

Define A(λ) to be the set of nodes that can be added to Yλ to obtain another
Young diagram of size n + 1. It is known (see [19, §2] for instance) that

|A(λ)| <
√
2n + 1.

Similarly, define R(λ) to be the set of nodes that can be removed from Yλ to obtain
another Young diagram of size n − 1. We have

|R(λ)| <
√
2n.

The branching rule [17, §9.2] asserts that the restriction χλ ↓Sn−1 of χλ toSn−1
is a sum of irreducible characters χYλ\{(i, j)} as (i, j) runs over all nodes in R(λ);

and the induction χ
Sn+1
λ of χλ to Sn+1 is a sum of irreducible characters χYλ∪{(i, j)}

as (i, j) runs over all nodes in A(λ).

Proof of Theorem 2.1. If S is one of 26 sporadic simple groups or the Tits group,
the proof is a case-by-case check from the Atlas [5]. For instance, if S = M12—the
second Mathieu group—we can choose θ to be the unique irreducible character
of degree 176 of S. If S is a simple group of Lie type in characteristic p and
S � PSL2(q) where q is a prime power, we then realize that S has the so-called
Steinberg character StS of degree StS(1) = |S|p, the p-part of the order of S.
Furthermore, StS is extendible to Aut(S) (see [9] for instance). Now we can check
the inequality |S|p > |S|3/8 easily by consulting the list of families of simple groups
and their orders, see [5, p. xvi] for instance. As an example, when S = PSLn(q)

with n ≥ 3, we see that |S|p = qn(n−1)/2 and it is easily checked that

|PSLn(q)|3/8 < q3(n
2−1)/8 ≤ qn(n−1)/2.
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So for the rest of this proof we assume that S = An is an alternating group
of degree n ≥ 7. Note that A5 ∼= PSL2(5) and A6 ∼= PSL2(9) are not in our
consideration. Let ρ(An) be the largest degree of an irreducible character of An

that can be extended to Sn . We aim to show that ρ(An) > (n!/2)3/8 when n ≥ 7.
First the theorem can be checked directly by computer for small n, namely

n < 75.We describe here how it is done. A partition corresponding to a character of
Sn of the largest degree is available in [25]. If this partition is not self-conjugate, then
the required character θ can be chosen to be the character associated to this partition.
So let us assume that this partition is self-conjugate and let Y be the corresponding
Young diagram. We consider all the possible Young diagrams obtained from Y by
moving one node from one row to another. For all thoseYoung diagrams the degrees
of the corresponding irreducible characters are computed and θ can be chosen to
be the character of the largest degree among these characters.

Now we may assume that n ≥ 75. In fact, we will prove by induction on
n ≥ 75 that ρ(An+1) ≥ (n + 1)3/8ρ(An) and this implies that ρ(An) > (n!/2)3/8
immediately.

Let ψ be an irreducible character of An with n ≥ 75 such that ψ is extendible
to Sn and ψ(1) = ρ(An). Let χ be an extension of ψ to Sn and let λ and Y be
respectively the partition and the Young diagram associated to χ . By the branching
rule, we have

χSn+1 =
∑

(i, j)∈A(λ)

χY∪{(i, j)}.

Assume that all the Young diagrams in {Y ∪ {(i, j)}|(i, j) ∈ A(λ)} are non-
symmetric. Then all the irreducible charactersχY∪{(i, j)} where (i, j) ∈ A(λ) restrict
irreducibly to An+1, and thus

χY∪{(i, j)}(1) ≤ ρ(An+1).

We therefore deduce that

χSn+1(1) ≤ |A(λ)|ρ(An+1).

Since |A(λ)| <
√
2n + 1 and χSn+1(1) = (n + 1)ρ(An), it follows that (n +

1)ρ(An) < (
√
2n + 1)ρ(An+1), and hence

ρ(An+1) >
n + 1√
2n + 1

ρ(An).

When n ≥ 75, we can check that (n + 1)/(
√
2n + 1) > (n + 1)3/8. Therefore we

conclude that ρ(An+1) > (n + 1)3/8ρ(An), as desired.
It remains to assume that there is a symmetric Young diagram of the form

Y ∪ {(i, j) with (i, j) ∈ A(λ). Then there is exactly one such diagram and at
most

√
2n non-symmetric diagrams in {Y ∪ {(i, j)}|(i, j) ∈ A(λ)}. Let Y ′ be that

symmetric Young diagram and μ be the corresponding partition. By the branching
rule, we have

χY ′ ↓Sn=
∑

(i, j)∈R(μ)

χY ′\{(i, j)}.
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We distinguish two cases:
(1) All theYoung diagrams of the form Y ′\{(i, j)}where (i, j) ∈ R(μ) are non-

symmetric. Then the characters associated to these diagrams restrict irreducibly to
An and thus their degrees are at most ρ(An). As |R(μ)| <

√
2n + 2, we deduce

that

χY ′(1) =
∑

(i, j)∈R(μ)

χY ′\{(i, j)}(1) <
√
2n + 2ρ(An).

We then have

(n + 1)ρ(An) =
∑

(i, j)∈A(λ)

χY∪{(i, j)}(1)

= χY ′(1) +
∑

(i, j)∈A(λ),Y∪{(i, j)}�=Y ′
χY∪{(i, j)}(1)

<
√
2n + 2ρ(An) +

∑
(i, j)∈A(λ),Y∪{(i, j)}�=Y ′

χY∪{(i, j)}(1).

Since χY∪{(i, j)}(1) ≤ ρ(An+1) whenever Y ∪ {(i, j)} �= Y ′, it follows that

(n + 1)ρ(An) <
√
2n + 2ρ(An) + (|A(λ)| − 1) ρ (An+1)

<
√
2n + 2ρ(An) + √

2nρ (An+1) .

Thus

ρ (An+1) >
n + 1 − √

2n + 2√
2n

ρ (An) .

Again, as n ≥ 75 we now can easily deduce that ρ(An+1) > (n + 1)3/8ρ(An).
(2) There is a symmetric Young diagram of the form Y ′\{(i, j)} where (i, j) ∈

R(μ). Let Y ′′ be this symmetric Young diagram and ν be the associated partition.
Then Y ′′ is the only one symmetric diagram and there are at most

√
2n + 2 − 1

non-symmetric diagrams in {Y ′\{(i, j)}|(i, j) ∈ R(μ)}. So we have two symmet-
ric Young diagrams Y ′ and Y ′′ and Y ′′ is obtained from Y ′ by removing a node.
Therefore, if another node is removed from Y ′′ to get a Young diagram (of size
n − 1), the resulting diagram cannot be symmetric. Therefore, by the branching
rule,

χY ′′(1) <
√
2nρ (An−1) .

It follows that

χY ′(1) <
√
2nρ (An−1) +

(√
2n + 2 − 1

)
ρ(An).

Therefore,

(n + 1)ρ(An) = χY ′(1) +
∑

(i, j)∈A(λ),Y∪{(i, j)}�=Y ′
χY∪{(i, j)}(1)

<
√
2nρ(An−1) +

(√
2n + 2 − 1

)
ρ(An) + √

2nρ(An+1).
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Using the induction hypothesis that ρ(An−1) ≤ n−3/8ρ(An), we then have

ρ (An+1) >
n + 2 − √

2n + 2 − √
2nn−3/8

√
2n

ρ (An) .

Now with n ≥ 75 we can check that

n + 2 − √
2n + 2 − √

2nn−3/8

√
2n

> (n + 1)3/8,

and the proof is complete. ��

3. Simple groups

In this section we prove Theorem 1.4, and then deduce Theorems 1.2 and 1.3 for
characteristically simple groups. This will be used in the proof for arbitrary groups.
We restate Theorem 1.4 here.

Theorem 3.1. Let S be a non-abelian simple group. Then |S| > 2b(S)2. Conse-
quently, if |S| = d(d + e) where d is the degree of some irreducible character of S
then |S| < 2e2.

Let Irr(G) denote the set of irreducible character ofG.Motivated by the problem
of improving Snyder’s bound, Isaacs [16] introduced and studied the invariant

ε(S) :=
∑

χ∈Irr(S),χ(1)<b(S) χ(1)2

b(S)2

for non-abelian simple groups S. He raised the question whether the largest char-
acter degree of S can be bounded in terms of smaller degrees in the sense that
ε(S) ≥ ε for some universal constant ε > 0 and for all non-abelian simple groups
S. This was answered in the affirmative in [19] with the bounding constant ε taken
to be 2/(120,000!). We note that this rather small bound comes from the alternating
groups, see [19, Theorem 2.1 and Corollary 2.2] for more details.

To further improve the bound from Be6 to e6 + e4, Isaacs even predicted that
ε(S) > 1 for every non-abelian simple group S. This was in fact confirmed in [19]
for the majority of simple classical groups, and for all simple exceptional groups of
Lie type as well as sporadic simple groups. Recently, Z. Halasi, C. Hannusch, and
the first author have confirmed that indeed ε(An) > 1 for every n ≥ 5, see [14].

One easily sees that if ε(S) > 1 then e > b(S) ≥ d so that 2b(S)2 < |S| < 2e2,
and Theorem 3.1 is proved for the simple group S. Furthermore, when S has a
unique irreducible character of the largest degree b(S), |S| > 2b(S)2 is equivalent
to ε(S) > 1. Therefore Theorem 3.1 can be viewed as a weak form of Isaacs’s
prediction.

To prove Theorem 3.1, we will use Lusztig’s classification of complex irre-
ducible characters of finite groups of Lie type (see [7, Chapter 13] and [4, §13.8])
and detailed structure of the centralizers of semisimple elements in finite classical
groups (see for instance [32, Section 3], [28, Section 2], and [3, Section 2]). We
first record two observations.
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Lemma 3.2. Let q ≥ 2. Then
∞∏
i=2

(1 − 1/qi ) > 9/16.

Proof. This is [19, Lemma 4.1(ii)]. ��

Let f ∈ Fq [t] be an irreducible monic polynomial. In what follows, we will
write f̃ for the polynomial over Fq [t] whose roots are {α−1|α is a root of f }. Note
that if f = f̃ , then the deg( f ) is necessarily even. Moreover, [26, Theorem 3]
gives a formula for the number of f satisfying f = f̃ , which yields the following
lemma.

Lemma 3.3. Let S2(d) be the number of irreducible monic polynomial over F2
of degree 2d satisfying f = f̃ . Then S2(1) = S2(2) = S2(3) = 1; S2(4) = 2;
S2(5) = 3; S2(6) = 5; S2(7) = 9; and S2(d) ≥ 16 for d ≥ 8.

Proof. This is straightforward from [26, Theorem 3]. ��

Proof of Theorem 3.1. Since the inequality ε(S) > 1 has been established for all
the simple exceptional groups of Lie type, the sporadic simple groups, and the
alternating groups, it remains to prove the theorem for the simple classical groups.

Further, we note that we only need to consider those classical groups of Lie
type excluded from [19, Theorem 4.7]. That is, we must consider the simple groups
found in the following list:

SLn(2),Sp2n(2),

±
2n(2),

PSLn(3) with 5 ≤ n ≤ 14, PSUn(2) with 7 ≤ n ≤ 14,

PSp2n(3) or 
2n+1(3) with 4 ≤ n ≤ 17, P
±
2n(3) with 4 ≤ n ≤ 30,

P
±
8 (7), and P
±

2n(5)with 4 ≤ n ≤ 6.

We will make use of some of the ideas used in [19], as well as the list of character
degrees of small rank groups of Lie type available on Lübeck’s website [22].

When the rank is at most 8 all the character degrees of the simply connected
group G of the same type as S in this list can be found from [22], and one can use
this to check that in fact |S| > 2b(G)2 ≥ 2b(S)2, which implies that e > b(S) and
hence |S| < 2e2. So we assume that S is one of the groups listed above with n ≥ 9
(and n ≥ 10 for type A).

(1) First, let S be PSLn(3), PSUn(2), PSp2n(3), 
2n+1(3), P
±
2n(3), P
±

8 (7),
or P
±

2n(5), with n as above, but larger than 8. Note that by Seitz [30, Theorem 2.1],

b(S) ≤ b(G) ≤ |G : T |q ′,

where q is the size of the underlying field for S, G is the group of fixed points
for the simple simply connected algebraic group corresponding to S, and T is a
maximal torus of G of minimal order. The size of T is (q − 1)n (or (q − 1)n−1 for
PSLn(q)) if S is of untwisted type, and can be found, for example, in [19, Table 1]
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if S is of twisted type. We may check directly using this bound for b(S) that in fact,
|S| > 2b(S)2 for each group in this finite list. This shows that if S is one of

PSLn(3) with 5 ≤ n ≤ 14, PSUn(2) with 7 ≤ n ≤ 14,

PSp2n(3) or 
2n+1(3)with 4 ≤ n ≤ 17, P
±
2n(3)with 4 ≤ n ≤ 30,

P
±
8 (7), and P
±

2n(5)with 4 ≤ n ≤ 6,

then 2b(S)2 < |S| < 2e2.
(2) Now let S be one of the groups SLn(2), Sp2n(2), or 
±

2n(2), and assume
n ≥ 10 in the first case and n ≥ 9 in the latter two cases. Then S∗ ∼= S is self-
dual and the center of the corresponding algebraic group is trivial. We make the
identification S∗ ∼= S, and hence by Lusztig’s classification of complex irreducible
characters of finite groups of Lie type, Irr(S) is parametrized by pairs ((s), θ),
where (s) is a semisimple conjugacy class in S and θ ∈ Irr(CS(s)) is a unipotent
character. Further, the character parametrized by ((s), θ) has degree

[S : CS(s)]2′θ(1).

Notice that if there are at least two χ ∈ Irr(S) satisfying χ(1) = b(S), then
certainly |S| > 2b(S)2, and hence |S| < 2e2. Therefore, we may further assume
that there is a unique such χ .

Notice that the centralizer of a semisimple element s of S is of the form

CS(s) ∼= K × H1 × · · · × Hr ,

where each Hi is of the form GLεi
ki

(2di ), εi is + in the linear case and ± for
the symplectic and orthogonal cases, K is trivial in the linear case, Sp2m(2) in the
symplectic case, and in the orthogonal case, wemay assume by the argument toward
the beginning of [19, Part (3) of Proof of Theorem4.8] that K is
±

2m(2). (Indeed, by
Tiep andZalesskií [32, Theorem3.7],CS(s) ∼= K1×H2×· · ·×Hr where each Hi is
as described above, and K1 has a normal subgroup isomorphic to
±

2m(2)with either
trivial quotient or quotient isomorphic to GU2(2). Since StK1 in the latter case has
degree 2m(m−1)+1, there is no loss in assumingCS(s) ∼= K×H1×H2×· · ·×Hr with
K as stated.) Note that we use the notation GL+

k (2d) := GLk(2d) and GL
−
k (2d) :=

GUk(2d). Further,
∑

kidi + m = n, and the K and Hi are determine by the
elementary divisors of s acting on the natural module Fn

2 or F2n
2 for S. Namely,

if S = Sp2n(2) or 
±
2n(2), a factor of Hi ∼= GLki (2

di ) corresponds to a pair
of monic polynomials gi (t)g̃i (t) in F2[t] with multiplicity ki , where gi �= g̃i
are irreducible of degree di . Moreover, Hi ∼= GUki (d

di ) corresponds to a monic
irreducible fi (t) �= t − 1 with degree 2di and multiplicity ki , where f = f̃ . In
these cases, K corresponds to the elementary divisor t − 1, with multiplicity 2m.
If S = SLn(2), each elementary divisor fi (t) with degree di and multiplicity ki
yields a factor Hi ∼= GLki (2

di ).
Let χ ∈ Irr(S) satisfying χ(1) = b(S) be parametrized by ((s), θ). Then by

Larsen et al. [19, Theorem 1.2], θ must be the Steinberg character StCS(s) ofCS(s).
Recall that the Steinberg character of GL±

k (2d) has degree 2dn(n−1)/2, the Steinberg
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character of Sp2m(2) has degree 2m
2
, and the Steinberg character of 
±

2m(2) has
degree 2m(m−1).

Moreover, by our assumption that χ is the unique member of Irr(S) satisfying
χ(1) = b(S), we see that it must be the case that every polynomial of a given degree
and type as described abovemust appear as an elementary divisor of s with the same
multiplicity. (Indeed, otherwise, we may find another semisimple element s′ ∈ S
not conjugate to s with CS(s) ∼= CS(s′), and hence the character parametrized by
((s′),StCS(s′)) has degree b(S) as well.)

We will proceed using some estimates for the number of monic irreducible
polynomials of a given type as above.

Let S = 
ε
2n(2). We present the complete proof in this case and note that the

proof in the other two cases are similar, though less complicated.
(3) First, if no factors of the form GL±

ki
(2di ) appears in CG∗(s), then we see

that χ = St has degree 2n(n−1). Otherwise, write CS(s) ∼= 

β
2m(2) ×GLε1

k1
(2d1) ×

GLε2
k2

(2d2) × · · · × GLεr
kr

(2dr ) with r ≥ 1. In this case,

χ(1) = 2
m(m−1)+

r∑

=1

d
k
(k
−1)/2 (2n − ε)
∏n−1

j=m

(
22 j − 1

)

(2m − β)
∏r


=1

(∏k


i=1

(
2id
 − εi


))

= 2
m(m−1)+

r∑

=1

d
k
(k
−1)/2 (2m + β)
∏n

j=m+1

(
22 j − 1

)

(2n + ε)
∏r


=1

(∏k


i=1

(
2id
 − εi


))

= 2m(m−1)+∑r

=1 d
k
(k
−1)/2

2
∑r


=1 d
k
(k
+1)/2

(2m + β)
∏n

j=m+1

(
22 j − 1

)

(2n + ε)
∏r


=1

(∏k


i=1

(
1 − (

ε
/2d

)i))

≤
(
16

9

)r (
2m + 1

2n − 1

)
2n(n+1)−m(m+1)+m(m−1)+∑r


=1 d
k
(k
−1)/2

2
∑r


=1 d
k
(k
+1)/2

=
(
16

9

)r (
1 + 1/2m

1 − 1/2n

)
2m+n(n+1)−m(m+1)+m(m−1)+∑r


=1 d
k
(k
−1)/2

2n+∑r

=1 d
k
(k
+1)/2

=
(
16

9

)r (
1 + 1/2m

1 − 1/2n

)
2n(n−1)

≤
(
16

9

)r (
3

2

) (
512

511

)
2n(n−1).

Note that the bound remains true if m = 0, and that we have used Lemma 3.2 and
the fact that n ≥ 9. If 0 ≤ r ≤ 3, this calculation (together with the first observation
for the case r = 0) yields that

χ(1) < 9 · 2n(n−1),

so we see

|S|
χ(1)2

>

(
1

9

)2 (2n − 1)
∏n−1

i=1

(
22i − 1

)

2n(n−1)
= 1

81

(2n − 1) 2n(n−1) ∏n−1
i=1

(
1 − 1/22i

)

2n(n−1)
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and by Lemma 3.2,

|S|
χ(1)2

>

(
1

81

) (
9

16

) (
2n − 1

)
,

which is larger than 2 since n ≥ 9. Hence we see that |S| > 2χ(1)2 = 2b(S)2 if
r ≤ 3. We may therefore assume that

CS(s) ∼= 

β
2m(2) × GLε1

k1

(
2d1

)
× GLε2

k2

(
2d2

)
× · · · × GLεr

kr

(
2dr

)

with r ≥ 4, and assume d1k1 ≥ d2k2 ≥ · · · ≥ dr kr .
(4) Our strategy for the remainder of the proof is to consider semisimple ele-

ments t ∈ S and the characters ψ corresponding to (t,StCS(t)). We will show that
there are a sufficient number of such semisimple elements with ψ(1)/χ(1) large
enough to imply that ε(S) > 1, and therefore that |S| < 2e2.

Let F denote the set of all monic polynomials f �= t − 1 over F2 which are
either irreducible satisfying f = f̃ or of the form f = gg̃ where g �= g̃ are
irreducible. For f ∈ F, write ε f = −1 if f is irreducible and ε f = 1 if f = gg̃,
and write d f for the degree of f . Then given that κ : F → N is a function satisfying
n−m = 1

2

∑
f ∈Fd f κ( f ) and

∏
f ∈F(ε f )

κ f = ∏r
i=1(εi )

k
i , there exists a semisimple

t ∈ S with corresponding multiplicities κ( f ) for the polynomials f as elementary
divisors, and hence

CS(t) ∼= 

β
2m(2) ×

∏
f ∈F

GL
ε f

κ( f )

(
2d f /2

)
.

Now, notice that there are at least two pairs (i, j) with 4 ≥ i > j ≥ 1 such
that di ki + d j k j is even. Moreover, these pairs satisfy di ki + d j k j ≥ 4 since the
combination (d
, k
) = (1, 1) can occur atmost once.Also note that if a factor of the
form GL±

k (2ki di+k j d j ) appears inCS(s), it must be that (k, kidi + k j d j ) = (k1, d1)
or (k2, d2) and if GUk(2(ki di+k j d j )/2) appears, then (kidi + k jd j )/2 ∈ {d1, . . . , d4}
(and correspondingly k ∈ {k1, . . . , k4}).

We consider four situations:
(i) GLε

k(2
ki di+k j d j ) is not a factor of CS(s), in which case we will consider a

semisimple element t ∈ S with

CS(t) ∼= 

β
2m(2) × GLε

1

(
2ki di+k j d j

)
×

∏

∈{1,...,r}\{i, j}

GLε


k


(
2d


)
.

(ii) GLε
k(2

ki di+k j d j ) is a factor of CS(s), in which case we will consider a
semisimple element t ∈ S with

CS(t) ∼= 

β
2m(2) × GLε

k+1

(
2ki di+k j d j

)
× GLε


k


(
2d


)

×GLε5
k5

(
2d5

)
· · · × GLεr

kr

(
2dr

)

where we write 
 ∈ {1, . . . , 4} so that 
 �= i, j , or the index corresponding to
(k, ki di + k j d j ).
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(iii) GUk(2(ki di+k j d j )/2) is not a factor of CS(s), in which case we consider a
semisimple element t ∈ S with

CS(t) ∼= 

β
2m(2) × GU2

(
2(ki di+k j d j)/2

)
×

∏

∈{1,...,r}\{i, j}

GLε


k


(
2d


)
.

(iv) GUk(2(ki di+k j d j )/2) is a factor of CS(s), in which case we consider a semi-
simple element t ∈ S with

CS(t) ∼= 

β
2m(2) × GUk+2

(
2(ki di+k j d j)/2

)
× GLε


k


(
2d


)

×GLε5
k5

(
2d5

)
· · · × GLεr

kr

(
2dr

)

where we write 
 ∈ {1, . . . , 4} so that 
 �= i, j , or the index corresponding to
(k, (ki di + k j d j )/2).

Note that for situations (iii) and (iv), it must be that εkii ε
k j
j = 1. In each situation,

we will let ψ ∈ Irr(S) correspond to (t,StCS(t)), and arrive at lower bounds for
ψ(1)
χ(1) . Note that from the last paragraph of part (3) of the proof of [19, Theorem 4.8],

we have that in situation (i), ψ(1)/χ(1) > 81
320 . We use similar arguments in the

remaining situations.

Consider situation (ii). For simplicity in the calculation, rewrite (i, j) as (1, 2)
and write d0 := d1k1 + d2k2. Then

ψ(1)

χ(1)
= 2d0k(k+1)/2 ∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
) ∏k

ν=1(2
νd0 − εν)

2d0k(k−1)/2+d1k1(k1−1)/2+d2k2(k2−1)/2
∏k+1

ν=1

(
2νd0 − εν

)

= 2d0k
∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d1k1(k1−1)/2+d2k2(k2−1)/2(2kd0+d0 − εk+1)

>
4

5
·
∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d1k1(k1−1)/2+d2k2(k2−1)/2+d0

= 4

5
· 2

d1k1(k1+1)/2+d2k2(k2+1)/2 ∏k1
ν=1

(
1 − (

ε1/2d1
)ν) ∏k2

ν=1

(
1 − (

ε2/2d2
)ν)

2d1k1(k1−1)/2+d2k2(k2−1)/2+d0

= 4

5
· 2d1k1+d2k2−d ·

k1∏
ν=1

(
1 −

(
ε1/2

d1
)ν) k2∏

ν=1

(
1 −

(
ε2/2

d2
)ν)

>
4

5
· (9/16)2 = 81

320

by Lemma 3.2, since (d j , ε j ) �= (1, 1) for any j . In the third line, we have also
used the fact that 2kd+d + 1 ≤ 5

42
kd0+d0 since certainly kd + d ≥ 2.
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Now, consider situation (iii), and again for simplicity rewrite (i, j) as (1, 2) and
write d0 := d1k1 + d2k2. Then

ψ(1)

χ(1)
= 2d0/2 · ∏k1

ν=1

(
2νd1 − (ε1)

ν
)∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d1k1(k1−1)/2+d2k2(k2−1)/2 · (
2d0/2 + 1

) (
2d0 − 1

)

>
2d0/2

2d0/2 + 1
·
∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d1k1(k1−1)/2+d2k2(k2−1)/2+d0

>
81

256
· 2d0/2

2d0/2 + 1

≥ 81

256
· 4
5

= 81

320

where the last inequality is since d0 ≥ 4, and the second-to-last is by the same
argument as situation (ii).

Finally, consider situation (iv). As before, write (i, j) as (1, 2), and
d0 := d1k1 + d2k2. We have

ψ(1)

χ(1)

= 2d0(k+2)(k+1)/4 · ∏k1
ν=1(2

νd1 − (ε1)
ν)

∏k2
ν=1

(
2νd2 − (ε2)

ν
) ∏k

ν=1

(
2νd/2 − (−1)ν

)

2dk(k−1)/4+d1k1(k1−1)/2+d2k2(k2−1)/2 · ∏k+2
ν=1

(
2νd0/2 − (−1)ν

)

= 2d0(k+2)(k+1)/4 · ∏k1
ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d0k(k−1)/4+d1k1(k1−1)/2+d2k2(k2−1)/2 · (
2d0(k+1)/2 − (−1)k+1)(2d0(k+2)/2 − (−1)k+2

)

Now, notice that one of k + 1 and k + 2 is even, so that
(
2d0(k+1)/2 − (−1)k+1

) (
2d0(k+2)/2 − (−1)k+2

)
≤ 17

16
2d0(k+1)/2+d0(k+2)/2

since d0(k + 1)/2 and d0(k + 2)/2 are at least 4. Hence

ψ(1)

χ(1)
≥

(
16

17

)
2d0(k+2)(k+1)/4 · ∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d0k(k−1)/4+d1k1(k1−1)/2+d2k2(k2−1)/2 · 2d0(k+1)/2+d0(k+2)/2

=
(
16

17

)
·
∏k1

ν=1

(
2νd1 − (ε1)

ν
) ∏k2

ν=1

(
2νd2 − (ε2)

ν
)

2d1k1(k1−1)/2+d2k2(k2−1)/2+d0

>

(
16

17

)(
81

256

)
= 81

272
.

Hence, in each situation, we see that ψ(1)/χ(1) ≥ 81/320. Now, let d0 :=
di ki + d j k j as above. Suppose that ε

ki
i ε

k j
j = −1. Note that for every f ∈ F which

is irreducible of degree 2d0, we can identify a semisimple element t as in situation
(i) or (ii) with ε = −1. By Lemma 3.3, there are at least 16 such f as long as d0 ≥ 8,
yielding at least 16 characters ψ ∈ Irr(S) satisfying ψ(1)/χ(1) ≥ 81/320 when
d0 ≥ 8. Hence if d0 ≥ 8, we see that ε(S) ≥ 16(81/320)2 > 1, and |S| < 2e2.

Now suppose ε
ki
i ε

k j
j = −1. Define Fd0 ⊂ F to be the set of monic polynomials

of the form gg̃ where g �= g̃ are irreducible of degree d0 together with the monic
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irreducible polynomials f �= t − 1 of degree d0 such that f = f̃ . Notice that
if nd0 is the number of irreducible monic polynomials over F2 of degree d0, then
|Fd0 | ≥ nd0/2. Moreover, for each choice of f ∈ Fd0 , we can identify a semisimple
element t ∈ S as in one of the cases (i)–(iv), with ε = 1 in cases (i) and (ii).
This yields at least nd0/2 characters ψ satisfying ψ(1)/χ(1) ≥ 81/320. Note

that by Larsen et al. [19, (5.1)], if d0 ≥ 3, then nd0 ≥ 3·2d0
4d0

. Then certainly

|Fd0 | ≥ nd0
2 ≥ 3·2d0

8d0
as long as d0 ≥ 3, which is at least 12 if d0 ≥ 8.

So, if d0 ≥ 8 for both choices of (i, j) (recall there must be at least two pairs
(i, j)with d0 = di ki +d j k j even), then there are at least 24 charactersψ satisfying
ψ(1)/χ(1) ≥ 81/320, so that ε(S) ≥ 24 · (81/320)2 > 1, and we see in this case
that |S| < 2e2.

Finally, considering each possibility forGLεi
ki

(2di )×GL
ε j
k j

(2d j ) satisfyingdi ki+
d j k j = 4 or 6, we can use similar (but now more explicit) calculations to show that
in each case, ε(S) > 1, completing the proof for 
±

2n(2).
We make a final remark about the proofs for Sp2n(2) and SLn(2). In either

case, calculations analogous to those in part (3) above yield similar results. The
remainder of the proof for Sp2n(2) follows directly from the calculations in part
(4) above for 
±

2n(2), replacing 

β
2m(2) with Sp2m(2). The analogue to part (4)

for SLn(2) is similar, but requires only considering case (i) above, with ε = 1,
together with the estimate for nd , since each elementary divisor of s yields a factor
GLki (2

di ) in this case. ��
The next observation is useful in the proofs of the main results.

Lemma 3.4. Let N be a nontrivial proper normal subgroup of G. Assume that
b(G) ≤ b(N )b(G/N ). Then Theorem 1.2 is true for G. Furthermore, if |G| =
b(G)(b(G) + e) then e > 2

√
b(G).

Proof. Write |N | = b(N )(b(N )+e(N )), |G/N | = b(G/N )(b(G/N )+e(G/N )),
and recall that |G| = b(G)(b(G) + e). Then

b(G)(b(G) + e) = b(N )b(G/N )(b(N ) + e(N )) (b(G/N ) + e(G/N )) .

As b(G) ≤ b(N )b(G/N ), we deduce that

e ≥ e(N )e(G/N ) + e(N )b(G/N ) + b(N )e(G/N )

> e(N )b(G/N ) + b(N )e(G/N )

≥ 2
√
b(N )b(G/N )

≥ 2
√
b(G).

Note that, as both N and G/N are nontrivial, e(N ) > 0 and e(G/N ) > 0. We now
easily deduce that |G| < e4 − e3. ��
Corollary 3.5. Theorems 1.2 and 1.3 are true for every finite group which is direct
product of non-abelian simple groups. In particular, they are true for all charac-
teristically simple groups.

Proof. This follows from Theorem 3.1 and Lemma 3.4. ��
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4. The case S � PSL2(q)

With Theorem 2.1 in hand, we are now ready to prove the main results in the case
S � PSL2(q). First, we recall the following lemma, which will be frequently used
from now on.

Lemma 4.1. Let N = S × · · · × S, a direct product of copies of a non-abelian
simple group S, be a minimal normal subgroup of G. Assume that θ ∈ Irr(S) is
extendible to Aut(S). Then the product character ψ := θ × · · · × θ ∈ Irr(N ) is
extendible to G. Consequently, if χ ∈ Irr(G) is an extension of ψ , then there is a
bijection β ↔ βχ between Irr(G/N ) and the set of irreducible characters of G
lying above ψ .

Proof. The first statement of the lemma is well known (see for instance
[2, Lemma 5] or [27, Lemma 1]). The second statement follows by Gallagher’s
theorem, see [15, Corollary 6.17]. ��
Theorem 4.2. Let G be a finite group with a minimal normal subgroup N = S ×
· · · × S, where S is a non-abelian simple group different from PSL2(q) for every
prime power q. Let |G| = b(G)(b(G)+e). Then e >

√
b(G)+1 and, in particular,

|G| < e4 − e3.

Proof. Let θ be a character of S found in Theorem 2.1, i.e. θ is extendible to
Aut(S) and θ(1) > |S|3/8. Let ψ := θ × · · · × θ ∈ Irr(N ). Using Lemma 4.1, we
deduce that ψ is extended to a character χ ∈ Irr(G) and the mapping β �→ βχ is a
bijection between Irr(G/N ) and the set of irreducible characters of G lying above
ψ ∈ Irr(N ). This implies in particular that χ(1)b(G/N ) is a character degree of
G, and whence b(G) ≥ χ(1)b(G/N ).

If b(G) = χ(1)b(G/N ), then b(G) ≤ b(N )b(G/N ) and we are done by
Lemma 3.4. So for the rest of the proof we assume that b(G) > χ(1)b(G/N ). This
means that the degree of any irreducible character of G lying above ψ is <b(G).
We therefore deduce that

b(G)e = |G| − b(G)2 ≥
∑

β∈Irr(G/N )

(χ(1)β(1))2 = χ(1)2|G/N |.

Using the fact that χ(1) = θ(1)k > |S|3k/8 = |N |3/8, we then obtain

b(G)e > |N |3/4|G/N | = |G|/|N |1/4.
As the case G = N has been already handled in Corollary 3.5, we may assume

that |G/N | ≥ 2. Also note that |G| ≥ 2|N | ≥ 5040 as 2520 is the size of
the smallest simple group not isomorphic to PSL2(q). We now easily see that
|G|/|N |1/4 > |G|3/4 + |G|1/2. This and the above inequality imply that

b(G)e > |G|3/4 + |G|1/2.
Since b(G) ≤ |G|1/2, it follows that

b(G)e > b(G)3/2 + b(G),
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or equivalently

e > b(G)1/2 + 1.

This implies that b(G) < e2 − e, which in turn implies that

|G| = b(G)(b(G) + e) <
(
e2 − e

)
e2 = e4 − e3,

and the theorem is completely proved. ��

5. The case S ∼= PSL2(q) with q even

Characters of the linear groups in dimension 2 are well known and we will use [33]
as the main source. In particular, we will follow the notation there.

According to [33, p. 8], when q is even, SL2(q) ∼= PSL2(q) has the following
irreducible characters

(i) 1SL2(q) of degree 1,
(ii) StSL2(q) of degree q,
(iii) χi , 1 ≤ i ≤ (q − 2)/2, of degree q + 1, and
(iv) θ j , 1 ≤ j ≤ q/2, of degree q − 1.

Let q = 2 f and ϕ the field automorphism of order f of SL2(q). Then, by
White [33, Lemma 4.8], the character χi ∈ Irr(SL2(q)) is invariant under ϕk where
1 ≤ k ≤ f if and only if (2 f −1)|i(2k −1) or (2 f −1)|i(2k +1); and the character
θ j ∈ Irr(SL2(q)) is invariant under ϕk if and only if (2 f + 1)| j (2k − 1) or (2 f +
1)| j (2k+1). Using this, we can deduce that SL2(2 f ) has a non-principal irreducible
character besides the Steinberg character that is extendible to Aut(SL2(2 f )).

Lemma 5.1. The simple groupsSL2(q)with q ≥ 8 even always have an irreducible
character θ of degree q − 1 or q + 1 such that θ is extendible to Aut(SL2(q)).

Proof. Assume that q = 2 f with f ≥ 3. From the above discussion, we observe
that when f is odd then 3|(2 f + 1) and θ(2 f +1)/3 is invariant under ϕ. On the other
hand, when f is even then 3|(2 f − 1) and χ(2 f −1)/3 is invariant under ϕ. So in any
case, there is always an irreducible character θ ∈ Irr(SL2(q)) of degreeq−1 orq+1
such that θ is invariant in Aut(SL2(q)). Note that Aut(SL2(2 f )) = SL2(2 f )� 〈ϕ〉.
Thus θ is extendible to Aut(SL2(q)), as wanted. ��
Lemma 5.2. Let N = PSL2(q) × · · · × PSL2(q), a direct product of k copies of
the simple linear group PSL2(q), is a normal subgroup of G. Then

b(G) ≤ min
{
|G|1/2, (q + 1)k |G/N |

}
.

Proof. It is clear that b(G) ≤ |G|1/2, so it remains to show that b(G) ≤ (q +
1)k |G/N |. But this is also clear since b(PSL2(q)) ≤ q + 1 for every prime power
q ≥ 8. ��
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We are now ready to prove Theorems 1.2 and 1.3 in the case S ∼= PSL2(q)with
q even. Since PSL2(4) ∼= PSL2(5), we will assume that q ≥ 8.

Theorem 5.3. Assume that N = PSL2(q) × · · · × PSL2(q), a direct product of k
copies of PSL2(q) where q ≥ 8 is even, is a minimal normal subgroup of a finite
group G. Let |G| = b(G)(b(G) + e). Then e >

√
b(G) + 1 and, in particular,

|G| < e4 − e3.

Proof. Let θ ∈ Irr(SL2(q)) be an irreducible character of degree q−1 or q+1 such
that θ is extendible to Aut(SL2(q)), as its existence is guaranteed by Lemma 5.1.
Using Lemma 4.1, we obtain a bijection β ↔ βχ between Irr(G/N ) and the set
of irreducible characters of G lying above θ × · · · × θ ∈ Irr(N ), where χ is an
extension of θ × · · · × θ to G.

Consider the case b(G) = χ(1)b(G/N ). We then have b(G) ≤ b(N )b(G/N )

and as in the proof of Theorem 4.2, we are done by Lemma 3.4. So we can assume
that b(G) > χ(1)b(G/N ). In other words, all the irreducible characters of G lying
above θ × · · · × θ ∈ Irr(N ) have degree smaller than b(G).

Repeat the above arguments for the Steinberg character StSL2(q) in place of θ ,
we also can assume that all irreducible characters of G lying above StSL2(q) ×· · ·×
StSL2(q) ∈ Irr(N ) have degree smaller than b(G). Note that these characters are
of the form βχ1 where β ∈ Irr(G/N ) and χ1 is an extension of StSL2(q) × · · · ×
StSL2(q) ∈ Irr(N ) to G.

The conclusions of the last two paragraphs imply that

b(G)e = |G| − b(G)2 >
∑

β∈Irr(G/N )

(
β(1)2χ(1)2 + β(1)2χ1(1)

2
)

=
(
χ(1)2 + χ1(1)

2
)

|G/N |
≥

(
(q − 1)2k + q2k

)
|G/N |.

It is straightforward to check that

(
(q − 1)2k + q2k

)
|G/N | ≥ |G|3/4 + |G|1/2

if |G/N | ≥ qk , and

(
(q − 1)2k + q2k

)
|G/N | ≥ (q + 1)3k/2|G/N |3/2 + (q + 1)k |G/N |

if |G/N | < qk . Therefore, it follows from Lemma 5.2 that

(
(q − 1)2k + q2k

)
|G/N | ≥ b(G)3/2 + b(G).

Wefinally deduce that b(G)e > b(G)3/2+b(G), and the desired inequality follows.
��
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6. The case S ∼= PSL2(q) with q odd

We now turn to the most complicated case, namely S ∼= PSL2(q) with odd q. This
will be achieved in Theorems 6.1 and 6.3.

Theorem 6.1. Assume that N = PSL2(q) × · · · × PSL2(q), a direct product of
k copies of PSL2(q) where q ≥ 5 is an odd prime power, is a minimal normal
subgroup of a finite group G such that |G/N | ≥ qk. Let |G| = b(G)(b(G) + e).
Then e >

√
b(G) + 1 and, in particular, |G| < e4 − e3.

Proof. Write N = S1 × · · · × Sk where Si ∼= PSL2(q) for every i = 1, 2, . . . , k.
As before, we apply Lemma 4.1 to have a bijective map β �→ βχ from Irr(G/N ) to
the set of irreducible characters of G lying above StS1 ×StS2 ×· · ·×StSk ∈ Irr(N ),
where χ is an extension of StS1 × StS2 × · · · × StSk to G. The case b(G) =
χ(1)b(G/N ) = qkb(G/N ) can be argued as before by using Lemma 3.4. So we
may assume that b(G) > qkb(G/N ). Equivalently, every irreducible character of
G lying above StS1 × StS2 × · · · × StSk ∈ Irr(N ) has degree smaller than b(G). It
follows in particular that

b(G)e = |G| − b(G)2 ≥ q2k |G/N |. (1)

Let M := S2×· · ·× Sk . Let T := NG(M), so |G : T | = k. Furthermore M can
be considered as a subgroup of T/CG(M), which in turn is isomorphic to a subgroup
of Aut(M) ∼= Aut(PSL2(q)) � Sk−1. Using [24, Lemma 1.3], we have that StS2 ×
· · ·×StSk ∈ Irr(M) is extendible to Aut(M), and hence is extendible to T/CG(M).
It follows that StS2 ×· · ·×StSk ∈ Irr(M) is extended to an irreducible character of
T whose kernel contains CG(M). Now since S1 ⊆ CG(M), we conclude that the
character 1S1 × StS2 × · · · × StSk ∈ Irr(N ) is extendible to T . Assume that χ1 is
an extension of 1S1 × StS2 × · · · × StSk to T .

Observe that the stabilizer of 1S1 × StS2 × · · · × StSk normalizes M , and 1S1 ×
StS2 × · · · × StSk has exactly k conjugates under the action of G. Thus, T must be
the stabilizer of 1S1 × StS2 × · · · × StSk in G.

Now we apply Gallagher’s theorem to obtain a bijection β1 �→ β1χ1 between
Irr(T/N ) and the set of irreducible characters of T lying above 1S1 × StS2 × · · · ×
StSk ∈ Irr(N ). Moreover, by Clifford’s theorem, each irreducible character of T
lying above 1S1 × StS2 × · · · × StSk ∈ Irr(N ) induces irreducibly to G. Therefore,
the map β1 �→ (β1χ1)

G is a bijection between Irr(T/N ) and the set of irreducible
characters of G lying above 1S1 × StS2 × · · · × StSk ∈ Irr(N ). We note that

(β1χ1)
G (1) = |G : T |χ1(1)β1(1) = kqk−1β1(1)

and

kqk−1β1(1) ≤ kqk−1b(T/N ) ≤ kqk−1|T/N |1/2 = k1/2qk−1|G/N |1/2.
If b(G) = kqk−1b(T/N ) then it follows that

b(G)3/2 + b(G) ≤ k3/2q3(k−1)/2|G/N |3/4 + k1/2qk−1|G/N |1/2.
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Using the hypothesis |G/N | ≥ qk , one can easily check that

k3/2q3(k−1)/2|G/N |3/4 + k1/2qk−1|G/N |1/2 < q2k |G/N |
and therefore we have

b(G)3/2 + b(G) < q2k |G/N |.
This and (1) imply that b(G)3/2 + b(G) < b(G)e. As in the proof of Theorem 4.2,
we deduce that |G| < e4 − e3 as required.

So from now on to the end of the proof we assume that b(G) > kqk−1b(T/N ).
In other words, the irreducible characters of G of the form (β1χ1)

G where β1 ∈
Irr(T/N ) all have degree smaller than b(G). Recall from the second paragraph
that all irreducible characters of G lying above StS1 × · · · × StSk also have degree
smaller than b(G). Therefore we obtain

b(G)e ≥
∑

β∈Irr(G/N )

β(1)2χ(1)2 +
∑

β1∈Irr(T/N )

(
(β1χ1)

G(1)
)2

= q2k |G/N | + k2q2(k−1)|T/N |
= q2k |G/N | + kq2(k−1)|G/N |.

Using the hypothesis that |G/N | ≥ qk and the fact that |N | = |PSL2(q)|k <

q3k , we easily check that

q2k |G/N | > |G|3/4
and

kq2(k−1)|G/N | > |G|1/2.
Thereforewe deduce that b(G)e > |G|3/4+|G|1/2. Since b(G) ≤ |G|1/2, it follows
that b(G)e > b(G)3/2 + b(G) and the theorem follows as before. ��

Unlike the groups in even characteristic, PSL2(q) with odd q may have the
Steinberg character as the only one that is extendible to Aut(PSL2(q)). According
toWhite [33, p. 8], when q is odd, PSL2(q) has the following irreducible characters:

(i) 1PSL2(q) of degree 1,
(ii) StPSL2(q) of degree q,
(iii) χi , 1 ≤ i ≤ (q − 3)/2 and i even, of degree q + 1,
(iv) θ j , 1 ≤ j ≤ (q − 1)/2 and j even, of degree q − 1,
(v) ξ1 and ξ2 of degree (q + 1)/2, if q ≡ 1(mod 4), and
(vi) η1 and η2 of degree (q − 1)/2, if q ≡ −1(mod 4).

Let q = p f where p is an odd prime. Let ϕ be the field automorphism of order
f of PSL2(q) and δ be the diagonal automorphism of order 2 of PSL2(q). Then,
by White [33, Lemma 4.8], the character χi ∈ Irr(PSL2(q)) is invariant under ϕk

where 1 ≤ k ≤ f if and only if (p f − 1)|i(pk − 1) or (p f − 1)|i(pk + 1); and the
character θ j ∈ Irr(PSL2(q)) is invariant under ϕk if and only if (p f +1)| j (pk −1)
or (p f + 1)| j (pk + 1). Contrary to the even characteristic case, we now show
that PSL2(p f ) has an irreducible character of degree q − 1 whose stabilizer in
Aut(PSL2(q)) is PGL2(q), which is as small as possible.



542 N. N. Hung et al.

Lemma 6.2. Let q = p f ≥ 5 be an odd prime power and let θ2 be defined as
above. Then

StabAut(PSL2(q))(θ2) = PGL2(q).

Proof. We observe that (p f + 1)|2(pk − 1) or (p f + 1)|2(pk + 1) if and only
if k = f . That means θ2 ∈ Irr(PSL2(q)) is not invariant under ϕk for every
1 ≤ k < f . It is well known that every irreducible character of PSL2(q) of degree
q ± 1 is invariant under the diagonal automorphism δ. Therefore

StabAut(PSL2(q))(θ2) = PSL2(q) � 〈δ〉 = PGL2(q),

as claimed. ��
Theorem 6.3. Assume that N = PSL2(q) × · · · × PSL2(q), a direct product of k
copies of PSL2(q) with q ≥ 5, is a minimal normal subgroup of a finite group G
such that |G/N | < qk. Let |G| = b(G)(b(G) + e). Then e >

√
b(G) + 1 and, in

particular, |G| < e4 − e3.

Proof. Arguing as in the proof of Theorem6.1,we can assume that every irreducible
character of G lying above StS1 × StS2 × · · · × StSk ∈ Irr(N ) has degree smaller
than b(G).

By Lemma 6.2, we have StabAut(PSL2(q))(θ2) = PGL2(q). Let ψ := θ2 × · · ·×
θ2 ∈ Irr(N ). Thenwe have StabAut(N )(ψ) = PGL2(q)�Sk . Set H := PGL2(q)�Sk .

Consider N as a subgroup of G/CG(N ), which in turn can be considered as a
subgroup of Aut(N ). Then the stabilizer of ψ in G/CG(N ) is H ∩G/CG(N ). Let
H be the preimage of H ∩ G/CG(N ) in G. Then we have StabG(ψ) = H .

Recall that PGL2(q) = PSL2(q) � 〈δ〉 where δ the diagonal automorphism of
degree 2 of PSL2(q). Therefore θ is extendible to PGL2(q). Thus ψ ∈ Irr(N ) is
extendible to H so that it is extendible to H ∩ G/CG(N ) as well. We deduce that
ψ is extendible to H . Let χ be an extension of ψ to H .

The conclusions of the last two paragraphs, together with Gallagher’s theorem
and Clifford’s theorem, imply that β �→ (βχ)G is a bijection between Irr(H/N )

and the set of irreducible characters of G lying above ψ ∈ Irr(N ). Note that

(βχ)G (1) = β(1)χ(1)|G/H | = (q − 1)kβ(1)|G/H |.
We come up with two cases:
Case b(G) = (q − 1)kb(H/N )|G/H |: Then we have b(G) ≤ (q − 1)|G/N |.

Recall that every irreducible character of G lying above StS1 ×StS2 × · · ·×StSk ∈
Irr(N ) has degree smaller than b(G). Therefore b(G)e ≥ q2k |G/N |. This and the
inequality b(G) ≤ (q − 1)|G/N |, together with the hypothesis that |G/N | < qk

imply that b(G)e > b(G)3/2 + b(G), and we are done as before.
Case b(G) > (q − 1)kb(H/N )|G/H |: Then every irreducible character of G

of the form (βχ)G where β ∈ Irr(H/N ) has degree smaller than b(G). Therefore

b(G)e ≥ q2k |G/N | +
∑

β∈Irr(H/N )

(
(βχ)G(1)

)2

= q2k |G/N | + (q − 1)2k |H/N ||G/H |2
≥ q2k |G/N | + (q − 1)2k |G/N |.
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Using |G/N | < qk , we can check that

q2k |G/N | + (q − 1)2k |G/N | > (q + 1)3k/2|G/N |3/2 + (q + 1)k |G/N |.

It follows from Lemma 5.2 that

q2k |G/N | + (q − 1)2k |G/N | > b(G)3/2 + b(G).

This and the above inequality b(G)e ≥ q2k |G/N | + (q − 1)2k |G/N | imply that
b(G)e > b(G)3/2 + b(G), which in turn implies that b(G) < e2 − e and the
theorem follows. ��

Theorems 1.2 and 1.3 now are consequences of Theorems 4.2, 5.3, 6.1, and 6.3.

7. Groups with |G| = e4 − e3

In this section, we characterize those groups that satisfy the condition |G| = e4−e3.
To do this, we need to introduce another class of groups.

An irreducible character χ of a finite group G is said to be a Gagola character
if it vanishes on all but two conjugacy classes of G. Groups with such a character
have been studied in great depth by Gagola [11]. In particular, if G has a Gagola
character, then G has a unique minimal normal subgroup N , which is necessarily
elementary abelian. Furthermore, χ vanishes on all the elements in G\N and that
χ is the unique irreducible character of G whose kernel does not contain N . In
this situation, for simplicity we will say that G is a Gagola group and (G, N ) is a
Gagola pair.

The following lemma shows the connection between groups in consideration
and Gagola groups.

Lemma 7.1. (i) Let G be a finite group with a nontrivial abelian normal sub-
group, and let |G| = d(d + e) where d is a character degree of G and e > 1
is an integer. If d ≥ e2 − e then G has a Gagola character χ ∈ Irr(G) of
degree d.

(ii) Let (G, N ) be a Gagola pair with the associated Gagola character of degree
d. Let p be the only prime divisor of |N | and P a Sylow p-subgroup of G.
Then |P : N | = e2 and d = e(|N | − 1).

Proof. See [18, Corollary 1.4], [31, Theorem 4.1], and [20, Lemmas 2.1 and 2.2].
��

We can now characterize the groups G with |G| = e4 − e3.

Theorem 7.2. Let G be a finite group, and let |G| = d(d + e) where d > 1 is a
character degree of G and e > 1 is an integer. Then |G| = e4 − e3 if and only if G
has a Gagola character of degree d and a unique minimal normal subgroup N of
order e.



544 N. N. Hung et al.

Proof. Suppose first that G has a Gagola character of degree d and the unique
minimal normal subgroup N with |N | = e. Let p be the unique prime divisor
of |N | and let P be a Sylow p-subgroup of G. By Lemma 7.1(ii), we know that
e2 = |P : N |. Furthermore, from Lemma 2.1 and Corollary 2.3 of [11], we have
|G : P| = |N | − 1. Therefore,

|G| = |G : P||P : N ||N | = (|N | − 1)|P : N ||N | = (e − 1)e2e = e4 − e3.

Conversely, suppose that |G| = e4 − e3. In view of Theorem 1.2, G must
have a nontrivial solvable radical. In particular, G has a nontrivial abelian normal
subgroup. Theorem 1.1 of [20] then implies that

d ≤ e2 − e.

If d < e2 − e, then

|G| = d(d + e) <
(
e2 − e

) ((
e2 − e

)
+ e

)
=

(
e2 − e

)
e2 = e4 − e3 = |G|,

which is a contradiction. Thus, we must have d = e2 − e. We then apply
Lemma 7.1(i) to see that G has a Gagola character of degree d, and hence has
a unique minimal normal subgroup. Let N be the unique minimal normal subgroup
of G. Applying Lemma 7.1(ii), we deduce that d = e(|N | − 1). Since d = e2 − e,
it follows that e(e − 1) = e(|N | − 1), and we easily computes that |N | = e. ��

The groups mentioned in the introduction are not the only Gagola groups in the
consideration of Theorem 7.2. Let us describe here another family of such groups,
which appeared in [13, p. 409] in a different context. These groups have normal
Sylow p-subgroups, where p the the prime divisor of |N |.

Let F be a field of order q where q is a power of some prime p. Take

K :=
⎧⎨
⎩

⎛
⎝
1 a b
0 1 c
0 0 d

⎞
⎠ : a, b, c ∈ F; d ∈ F

∗
⎫⎬
⎭ .

Let G := Gal(F/Fp) be the Galois group for F over the subfield Fp of order p. We
define an action G on K as follows: if σ ∈ G, then σ acts on a typical element of
K by acting on each of the entries of K . Let

P :=
⎧⎨
⎩

⎛
⎝
1 a b
0 1 c
0 0 1

⎞
⎠ |a, b, c ∈ F

⎫⎬
⎭ ,

and

L :=
⎧⎨
⎩

⎛
⎝
1 0 0
0 1 0
0 0 d

⎞
⎠ |d ∈ F

∗
⎫⎬
⎭ .

It is not difficult to see that P is an ultraspecial group of order q3 and L is a
cyclic group of order q − 1. Notice that P and L are invariant under the action
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of G. Furthermore, the semi-direct product of G acting on L is isomorphic to the
affine group on F. Let � be the semi-direct product of G acting on K . (We note
that Z(P)LG is isomorphic to the affine semi-linear group on F, which has been
discussed on [23, p. 38].)

Suppose D = NH∗ is a two-transitive Frobenius group ofDickson type of order
pn(pn −1), where N is the Frobenius kernel and H∗ is the Frobenius complement.
It is well-known that H∗ can be embedded in the affine group of F and that NH∗
is isomorphic to a subgroup of the semi-linear affine group of F. Thus, H∗ is
isomorphic to H ⊆ LG ⊂ � and NH is isomorphic to Z(P)H . We set G := PH ,
and it is not difficult to see that G is a Gagola group with the desired properties.

A family of non-p-closed examples can be found in [21, Theorem 3.3] for every
prime p. These groups were constructed as subgroups of index p of the group �

defined above when q = pp. Two other non-p-closed examples can be found in
[11, pp. 383–384]. The first of these has a subgroup S of order 12 obtained by taking
a cyclic group of order 4 acting on a group of order 3 by inverting the nontrivial
elements and then having S act on the direct product of two cyclic groups of order
4. The second one has a subgroup T which is the direct product of a cyclic group of
order 4 and the semi-direct product of a cyclic group of order 9 acting nontrivially
on the quaternion group of order 8. The desired group is then obtained by having
T act on the direct product of two cyclic groups of order 9. We refer the interested
reader to [11] for detailed constructions of these groups.

It seems nontrivial to us to obtain a complete classification of those groups
that satisfy the extremal condition |G| = e4 − e3. It is likely that these groups are
necessarily solvable, but we are not able to confirm it at this time.
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