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Abstract. Let (M, g0) be a compact Riemann surface with boundary and with negative
Euler characteristic. Let f (x) be a strictly negative smooth function on M̄ and denote by
σ(x) the value of f in the interior and ζ(x) the value of f on the boundary. By studying
the evolution of curvatures on M , we prove that there exist a constant λ∞ and a conformal
metric g∞ such that λ∞σ(x) and λ∞ζ(x) can be realized as the Gaussian curvature and
boundary geodesic curvature of g∞ respectively.

1. Introduction

Let M be a closed Riemann surface with Riemannian metric g0. Given a smooth
function f on M , is it possible to find a metric g which is pointwise conformal
to g0, i.e. g = e2ug0, such that f can be realized as the Gaussian curvature of g?
This prescribing Gaussian curvature problem is equivalent to solving the following
equation

− �g0u + K0 = f e2u, u ∈ C∞(M), (1.1)

where �g0 and K0 are, respectively, the Laplace–Beltrami operator and Gaussian
curvature of g0. The solvability of the Eq. (1.1) depends on the sign of Euler
characteristic χ(M) of M . When χ(M) > 0, i.e., M is the sphere, the problem
is called Nirenberg’s problem which has been extensively studied by Morser [14,
15], Kazdan–Warner [13], Chang–Yang [8,9] and many others; when χ(M) = 0,
the problem was completed solved by Berger [3] and Kazdan–Warner [13]; when
χ(M) < 0, this problem was studied by Chen–Li [10] and Kazdan–Warner [13].
Particularly, Kazdan–Warner, by using the method of upper and lower solutions,
showed in [13] the result below

Theorem 1.1. Assume that f ≤ 0 and f �≡ 0, then the Eq. (1.1) possesses a
solution.
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Later on, Ho [12] partially recovered this result by using the curvature flow intro-
duced by Struwe [17]. Baird–Fardoun–Regbaoui [2] extended this result to sign-
changing functions by studying an abstract gradient flow.

A natural analogue of prescribing Gaussian curvature problem for Riemann
surface with boundary is as follows. Let M be a compact Riemann surface with
boundary with metric g0. Assume that f (x) is a smooth function on M̄ and denote
by σ(x) the value of f in the interior and ζ(x) the value of f on the boundary. It is
natural to ask if it is possible to find a metric g which is pointwise conformal to g0
such that σ(x) and ζ(x) can be realized as the Gaussian curvature and boundary
geodesic curvature of g, respectively. This problem is equivalent to solving the
following boundary value problem{

−�g0u + K0 = σ(x)e2u, in M,
∂

∂ηg0
u + κ0 = ζ(x)eu, on ∂M,

(1.2)

where κ0 and ∂/∂ηg0 are geodesic curvature and out normal derivative of g0, re-
spectively.

In this paper, we partially generalize Theorem 1.1 to problem (1.2) through
studying the evolution of curvatures on M . The main result of the paper is stated
as the following

Theorem 1.2. Suppose that f (x) < 0 andσ(x) and ζ(x) are defined as before, then
there exist a constantλ∞ and a conformalmetric g∞ such thatλ∞σ(x) andλ∞ζ(x)
can be realized as the Gaussian curvature and boundary geodesic curvature of g∞
respectively, i.e., Eq. (1.2), with σ(x) and ζ(x) replaced respectively by λ∞σ(x)
and λ∞ζ(x), has a solution.

2. The flow equation and long time existence

2.1. The flow equation and its energy

Let M be a compact Riemann surface with boundary with background metric g0
and the Euler characteristic χ(M) < 0. Assume that f is a strictly negative smooth
function on M̄ and σ(x) and ζ(x) are defined the same as above. Also, without loss
of generality, we may assume∫

M
σ(x) d Ag0 +

∫
∂M

2ζ(x) dsg0 = −2π. (2.1)

Inspired by Brendle’s work [4], we consider the following evolution equation{
∂g
∂t = 2

σ(x) (K − λσ(x))g, in M,
∂g
∂t = 2

ζ(x) (κ − λζ(x))g, on ∂M,
(2.2)

with the initial condition

g(0) = g0,
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where K and κ are, respectively, Gaussian curvature and boundary geodesic cur-
vature of g, and λ is a constant defined in (2.7). If we write g = e2ug0, then the
evolution Eq. (2.2) implies that the evolution equation for u is given by{

∂u
∂t = K

σ(x) − λ, in M,
∂u
∂t = κ

ζ(x) − λ, on ∂M,
(2.3)

with the initial condition

u(·, 0) = 0.

Moreover, K and κ can be formulated by{
K = e−2u(−�g0u + K0), in M,

κ = e−u
(

∂u
∂ηg0

+ κ0

)
, on ∂M,

(2.4)

Notice that (1.2) can be viewed, differing by a constant, as Euler–Lagrange
equation of the following energy functional

E[u] =
∫
M

1

2
|∇u|2g0 + K0u d Ag0 +

∫
∂M

κ0u dsg0 (2.5)

with the constraint

L(u) :=
∫
M

σ(x)e2u d Ag0 +
∫

∂M
2ζ(x)eu dsg0 = −2π. (2.6)

The constraint (2.6) above reminds us that we should keep L unchanged along
the flow (2.2). That is

dL

dt
= d

dt

( ∫
M

σ(x)e2u d Ag0 +
∫

∂M
2ζ(x)eu dsg0

)

= 2
∫
M

σ(x)ut d Ag + 2
∫

∂M
ζ(x)ut dsg

= 2

[
λ

(∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg

)
−

( ∫
M
K dAg +

∫
∂M

κ dsg

)]

= 2

[
λ

(∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg

)
− 2πχ(M)

]
= 0,

where we have used the Gauss–Bonnet formula in the second last equality above.
Hence, the natural choice of λ will be

λ = 2πχ(M)∫
M σ(x) d Ag + ∫

∂M ζ(x) dsg
. (2.7)

From the choice of λ and (2.1), it follows that L(u)(t) = L(u)(0) = L(0) = −2π .
Hence, u(t) satisfies the constraint (2.6) for all t ≥ 0.

An important characterization of the flow (2.2) is that the energy functional
E[u] is decay during the evolution. In fact, we have the following lemma
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Lemma 2.1. For any smooth solution u(x, t) of (2.3), there holds

dE[u]
dt

=
∫
M

1

σ(x)
(K − λσ(x))2 d Ag +

∫
∂M

1

ζ(x)
(κ − λζ(x))2 dsg.

In particular, E[u] is decreasing.
Proof. It follows from (2.3), (2.4) and (2.7) that

dE[u]
dt

=
∫
M

〈∇u,∇ut 〉g0 + K0ut d Ag0 +
∫

∂M
κ0ut dsg0

=
∫
M

−�g0uut + K0ut d Ag0 +
∫

∂M

∂u

∂ηg0
ut + κ0ut dsg0

=
∫
M

(
K

σ(x)
− λ

)
K dAg +

∫
∂M

(
κ

ζ(x)
− λ

)
κ dsg

=
∫
M

(
K

σ(x)
−λ

)
(K − λσ(x)) d Ag+

∫
∂M

(
κ

ζ(x)
− λ

)
(κ − λζ(x)) dsg

+λ

[
2πχ(M) − λ

(∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg

)]

=
∫
M

1

σ(x)
(K − λσ(x))2 d Ag +

∫
∂M

1

ζ(x)
(κ − λζ(x))2 dsg.

Since σ(x) and ζ(x) are negative, E[u] is decreasing. ��

2.2. Long time existence of the flow

In order to bound the conformal factor u, as a initial step, one may need to show
that the normalized coefficient λ(t) keeps bounded during the evolution. This is the
following lemma

Lemma 2.2. There exist two positive constants λ1 and λ2 such that

λ1 ≤ λ(t) ≤ λ2.

Proof. Since σ(x) and ζ(x) are negative, it follows that∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg ≥

∫
M

σ(x) d Ag + 2
∫

∂M
ζ(x) dsg.

and

2

( ∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg

)
≤

∫
M

σ(x) d Ag + 2
∫

∂M
ζ(x) dsg.

Since u(t) satisfies the constraint (2.6), we obtain

− 2π ≤
∫
M

σ(x) d Ag +
∫

∂M
ζ(x) dsg ≤ −π. (2.8)

Combining (2.7) and (2.8), one can obtain

λ1 := −χ(M) ≤ λ(t) ≤ −2χ(M) := λ2,

��



Evolution of curvatures on a surface with boundary 157

The following lemma allows us to choose the background metric g0 with the
Gauss curvature K0 < 0 and geodesic curvature κ0 < 0. This fact will simplify
our argument later.

Lemma 2.3. There exists a metric g∗ in the conformal class of the metric g0 such
that the Gauss curvature K∗ and geodesic curvature κ∗ of g keep the same sign.

Proof. Consider the following boundary value problem{
�g0u = K0 − 2πχ(M)

A(g0)
in M,

∂u
∂ηg0

= −κ0 + 2πχ(M)
L(g0)

on ∂M.
(2.9)

Since ∫
M
K0 − 2πχ(M)

A(g0)
d Ag0 =

∫
∂M

−κ0 + 2πχ(M)

L(g0)
dsg0 ,

the Eq. (2.9) has a solution u∗. Now, define g = e2u∗g0. Then

K∗ = e−2u (−�g0u + K0
) = e−2u 2πχ(M)

A(g0)

and

κ∗ = e−u
(

− ∂u

∂ηg0
+ κ0

)
= e−u 2πχ(M)

L(g0)
.

��
Since χ(M) < 0, we may assume that K0 < 0 and κ0 < 0 by the two

equalities above. Otherwise, we let g∗ be the initial metric of evolution Eq. (2.2). If
this evolution equation has a limit metric g∗∞ = e2u

∗∞g∗, then g∞ = e2(u
∗∞+u∗)g0

will be our desired metric. Using this fact and Lemma 2.2, we are able to show that
the conformal factor u is uniformly bounded.

Lemma 2.4. There exists a positive constant C independent of time t such that

||u(t)||∞ ≤ C.

Proof. From (2.3) and (2.4), it follows that the conformal factor u will satisfy{
ut = − 1

σ(x)e
−2u�g0u + 1

σ(x)e
−2uK0 − λ, in M,

ut = 1
ζ(x)e

−u ∂u
∂ηg0

+ 1
ζ(x)e

−uκ0 − λ, on ∂M.
(2.10)

Firstly, we show that u is uniformly bounded from above. To see this, let x ′ ∈
M̄ be a point where the function u attains its maximum. Assume that u(x ′) is
sufficiently large. Then we consider the following two cases.

(i) x ′ ∈ M . Using maximum principle and the fact that σ(x) < 0, we have(− 1
σ
e−2u�g0u

)
(x ′) ≤ 0. Since λ > 0 by Lemma 2.2 and u(x ′) is sufficiently

large by our assumption, it follows that
( 1

σ
e−2uK0

)
(x ′) − λ < 0. Hence, the first

equation in (2.10) implies that ∂u
∂t (x

′) < 0.
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(ii) x ′ ∈ ∂M . It follows from maximum principle and the fact that ζ(x) < 0

that
(
1
ζ
e−u ∂u

∂ηg0

)
(x ′) ≤ 0. The same reason as in (i) yields

(
1
ζ
e−uκ0

)
(x ′)−λ < 0.

Then the second equation in (2.10) implies that ∂u
∂t (x

′) < 0.
Therefore, the time derivative of u at the maximum point where u is sufficiently

large is negative and hence the maximum of u must be uniformly bounded from
above.

Next, we show that u is also uniformly bounded from below. Let x∗ ∈ M̄ be a
point where the function u attains its minimum. Suppose that u(x∗) is sufficiently
negative. Similarly, we split the argument into two cases.

(a) x∗ ∈ M . Using maximum principle and the fact that σ(x) < 0, we have(− 1
σ
e−2u�g0u

)
(x∗) ≥ 0. Since λ is bounded by Lemma 2.2, K0 < 0 and u(x∗) is

sufficiently negative by our assumption, it follows that
( 1

σ
e−2uK0

)
(x ′) − λ > 0.

Hence, the first equation in (2.10) implies that ∂u
∂t (x

∗) > 0.

(b) x∗ ∈ ∂M . It follows frommaximumprinciple and ζ(x) < 0 that
(
1
ζ
e−u ∂u

∂ηg0

)
(x∗) ≥ 0. From the boundedness of λ, κ0 < 0 and sufficiently negative u(x∗), it
follows tha

(
1
ζ
e−uκ0

)
(x∗) − λ > 0. Then the second equation in (2.10) implies

that ∂u
∂t (x

∗) > 0.
Therefore, the time derivative of u at the minimum point where u is sufficiently

negative is positive and hence the minimum of u must be uniformly bounded from
below. ��

Next step, we need to bound all higher derivatives of the conformal factor u. To
do so, we will show that the curvatures are bounded in L p for all p ≥ 2. For this
purpose, deriving the curvatures evolution equations seems necessary which is the
following lemma.

Lemma 2.5. {
Kt = −�g(t)

( K
σ(x)

) − 2K
( K

σ(x) − λ
)
, in M,

κt = ∂
∂ηg(t)

(
κ

ζ(x)

) − κ
(

κ
ζ(x) − λ

)
, on ∂M.

Proof. From (2.4) and (2.3), it follows that

Kt = −2e−2u(−�g0u + K0)ut − e−2u�g0ut
= −�g(t)ut − 2Kut

= −�g(t)

(
K

σ(x)

)
− 2K

(
K

σ(x)
− λ

)
and

κt = −e−u(− ∂u

∂ηg0
+ κ0)ut + e−u ∂ut

∂ηg0

= ∂ut
∂ηgt

− κut

= ∂

∂ηgt

(
κ

ζ(x)

)
− κ

(
κ

ζ(x)
− λ

)
,

where we have used the relations: �g = e−2u�g0 and ∂/∂ηg = e−u∂/∂ηg0 . ��
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Now, observing (2.3), we may rewrite K and κ as{
K = σ(x)( ∂u

∂t + λ)

κ = ζ(x)( ∂u
∂t + λ)

Hence, by setting

h = ∂u

∂t
+ λ, (2.11)

we then have the following relation{
h = K

σ(x) , in M,

h = κ
ζ(x) , on ∂M.

(2.12)

By using (2.12), it is easy to obtain the evolution equation for h.

Lemma 2.6. The function h satisfies the following evolution equation{
ht = − 1

σ(x)�g(t)h − 2h(h − λ), in M,

ht = 1
ζ(x)

∂
∂ηg(t)

h − h(h − λ), on ∂M

Proof. In view of Lemma 2.5 and (2.12), it is just a routine calculation. We omit
the detail. ��

Since σ(x) and ζ(x) are smooth functions, it suffices to bound h in L p instead
of bounding K and κ in L p in view of (2.12). The next lemma shows that h belongs
to L2(M, g) ∩ L2(∂M, g) for t ∈ [0, T ] with T < ∞.

Lemma 2.7. For any fixed T < ∞, the function h is bounded in L2(M, g) ∩
L2(∂M, g) for t ∈ [0, T ].
Proof. From Lemma 2.1 and (2.12), we have

d

dt
E[u] =

∫
M

σ(x)(h − λ)2 d Ag +
∫

∂M
ζ(x)(h − λ)2 dsg. (2.13)

Since the conformal factor u is bounded by Lemma 2.4, it follows from the energy
functional formula (2.5) that

E[u] ≥ −C. (2.14)

Hence, by integrating (2.13) and using (2.14) and the fact that σ(x) < 0 and
ζ(x) < 0, we have∫ T

0

(∫
M

−σ(x)(h − λ)2 d Ag +
∫

∂M
−ζ(x)(h − λ)2 dsg

)
dt ≤ C.

From Lemma 2.2, it follows that∫ T

0

(∫
M

−σ(x)h2 d Ag +
∫

∂M
−ζ(x)h2 dsg

)
dt ≤ C. (2.15)
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For simplicity, we set

Fp(t) =
∫
M

−σ(x)|h|p d Ag +
∫

∂M
−ζ(x)|h|p dsg.

Then, by Lemma 2.6 and (2.3), we have

d

dt
Fp(t) = p

∫
M

−σ(x)|h|p−2hht d Ag + 2
∫
M

−σ(x)|h|put d Ag

+p
∫

∂M
−ζ(x)|h|p−2hht dsg +

∫
∂M

−ζ(x)|h|put dsg

= p
∫
M

−σ(x)|h|p−2h
[ − 1

σ(x)
�gh − 2h(h − λ)

]
d Ag

+p
∫

∂M
−ζ(x)|h|p−2h

[ 1

ζ(x)

∂h

∂ηg
− h(h − λ)

]
dsg

+2
∫
M

−σ(x)|h|p(h − λ) d Ag +
∫

∂M
−ζ(x)|h|p(h − λ) dsg

= −p
∫
M

〈∇(|h|p−2h),∇h〉g d Ag

+2(1 − p)
∫
M

−σ(x)|h|p(h − λ) d Ag

+(1 − p)
∫

∂M
−ζ(x)|h|p(h − λ) dsg

≤ −4(p − 1)

p

∫
M

|∇|h| p
2 |2 d Ag + C

( ∫
M

|h|p d Ag +
∫

∂M
|h|p dsg

)

+C

( ∫
M

|h|p+1 d Ag +
∫

∂M
|h|p+1 dsg

)
, (2.16)

for p ≥ 2. Using the Gagliardo–Nirenberg inequality (see [1], p. 60), we obtain

∫
M

|h|p+1 d Ag ≤ C

( ∫
M

|h|q d Ag

)(∫
M

|∇|h| p
2 |2 d Ag

)1− q−1
p

and ∫
∂M

|h|p+1 d Ag ≤ C

( ∫
∂M

|h|q dsg

)( ∫
M

|∇|h| p
2 |2 d Ag

)1− q−1
p

.

Plugging the two inequalities above into (2.16) and applying Young’s inequality,
we have

d

dt
Fp(t) ≤ −C

∫
M

|∇|h| p
2 |2 d Ag + C

( ∫
M

|h|p d Ag +
∫

∂M
|h|p dsg

)

+C

( ∫
M

|h|q d Ag

) p
q−1 + C

(∫
∂M

|h|q dsg

) p
q−1

≤ CFp(t) + CFq(t)
p

q−1 , (2.17)
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for all q ≤ p ≤ 2q. Now, set p = q = 2 in (2.17). Then

d

dt
F2(t) ≤ CF2(t) + CF2(t)

2,

which implies that

d

dt
log(F2(t) + 1) ≤ CF2(t) + C. (2.18)

From (2.15), it follows that ∫ t

0
F2(t) dt ≤ C,

for t ∈ [0, T ]. Hence, by integrating (2.18) with respect to t and using the estimate
above, we obtain

F2(t) ≤ C, (2.19)

for t ∈ [0, T ]. Since σ(x) and ζ(x) are bounded functions, it follows that∫
M
h2 d Ag +

∫
∂M

h2 dsg ≤ CF2(t) ≤ C.

This proves the assertion. ��
With the help of Lemma 2.7, we are able to show that the function h is bounded

in L p for all p ≥ 2.

Lemma 2.8. The function h is bounded in L p(M, g) ∩ L p(∂M, g) for t ∈ [0, T ].
Proof. It suffices to prove that the function h is bounded in L2n (M, g)∩L2n (∂M, g)
for all integers n ≥ 1. To see this, we only need to show that F2n (t) is bounded for
all n ≥ 1.

When n = 1, it follows from (2.19) that F2(t) is bounded for t ∈ [0, T ].
Now, assume that F2k (t) is bounded for t ∈ [0, T ]. By setting p = 2k+1, q = 2k

in (2.17) and applying the induction assumption, we obtain

d

dt
F2k+1(t) ≤ CF2k+1(t) + CF2k (t)

2k+1

2k−1

≤ CF2k+1(t) + C,

which implies that F2k+1(t) is bounded. Hence, by mathematical induction, F2n (t)
is bounded for all n ≥ 1. ��
Lemma 2.9. The function ∂

∂t u is bounded in L p(M, g)∩ L p(∂M, g) for all p ≥ 2
and t ∈ [0, T ].Moreover, the functionu is bounded inW 2,p(M, g0)∩W 1,p(∂M, g0)
for all p ≥ 2 and t ∈ [0, T ].
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Proof. From (2.3) and (2.12), it follows that

∂

∂t
u = h − λ.

Hence, by Lemma 2.8, the function ∂
∂t u is bounded in L p(M, g) ∩ L p(∂M, g) for

all p ≥ 2 and t ∈ [0, T ]. Moreover, we have by (2.4) and (2.12)

{
−�g0u = e2uσ(x)h − K0 in M,

∂
∂ηg0

u = euζ(x)h − κ0 on ∂M

Hence, it follows from Lemma 2.8 that

∫
M

|�g0u|p d Ag0 ≤ C and
∫

∂M
| ∂

∂ηg0
u|p dsg0 ≤ C.

Now, from Lemma 2.4 and the estimate (A.1), it follows that u is bounded in
W 2,p(M, g0) ∩ W 1,p(∂M, g0) for all p ≥ 2 and t ∈ [0, T ]. ��

At this point, we are able to show that all higher order derivatives of function u
are bounded for t ∈ [0, T ].
Lemma 2.10. The functionu is bounded inCk(M×[0, T ], g0)∩Ck(∂M×[0, T ], g0)
for all k ≥ 0.

Proof. We firstly show the interior regularity of the function u. For this, we will
follow the idea in [7, Proposition 3.8]. Hence, it suffices to show that for some
0 < s < 1, there exists a constant C(T ) > 0 such that

|u(x1, t1) − u(x2, t2)| ≤ C(T )((t1 − t2)
s
2 + d(x1, x2)

s).

for all x1, x2 ∈ M and all t1, t2 ∈ [0, T ] with 0 < t1 − t2 < 1.
Let s = 1 − 2/p, where p > 2. Using Lemma 2.9, we have

∫
M

|�g0u|p d Ag0 ≤ C(T )

and

∫
M

∣∣∣∣ ∂

∂t
u

∣∣∣∣
p

d Ag0 ≤ C(T )

for all t ∈ [0, T ]. It follows from the first inequality above that

|u(x1, t) − u(x2, t)| ≤ C(T )d(x1, x2)
s
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for all x1, x2 ∈ M and t ∈ [0, T ]. Now, applying the second inequality above yields
|u(x, t1) − u(x, t2)|

≤ C(t1 − t2)
−1

∫
B√

t1−t2
(x)

|u(x, t1) − u(x, t2)| d Ag0

≤ C(t1 − t2)
−1

∫
B√

t1−t2
(x)

|u(t1) − u(t2)| d Ag0 + C(T )(t1 − t2)
s
2

≤ C sup
t2≤t≤t1

∫
B√

t1−t2
(x)

| ∂

∂t
u| d Ag0 + C(T )(t1 − t2)

s
2

≤ C(t1 − t2)
s
2 sup
t2≤t≤t1

( ∫
M

| ∂

∂t
u|p d Ag0

) 1
p + C(T )(t1 − t2)

s
2

≤ C(T )(t1 − t2)
s
2 .

Therefore, we can now apply the standard regularity theory for parabolic equations
(see [11, Theorem 5], on p. 64) to obtain that u is bounded in Ck(M × [0, T ], g0)
for all k ≥ 0.

Next, we show the boundary regularity of the function u. It follows from Lem-
mas 2.4 and 2.9 and the interior regularity we just proved above that u is bounded
in L∞(M̄ × [0, T ]), in C∞(M × [0, T ]) ∩ W 1,4(∂M × [0, T ]). Hence, we can
apply the recurrence estimate for the linear equation from Lemma A.2 to obtain
that u is bounded in Ck(∂M × [0, T ], g0) for all k ≥ 0. ��

Notice thatwemay follow the proof of [5, Theorem2.5] to get the local existence
of our flow. Then, using Lemma 2.10, we immediately obtain

Corollary 2.11. The evolution Eq. (2.2) has a unique smooth solution on [0,∞).

3. Existence of conformal metrics

In this section, we devote ourselves to proving the Theorem 1.2. To do so, we need
the following L2 convergence of the curvatures.

Lemma 3.1.∫
M

−σ(x)(h − λ)2 d Ag +
∫

∂M
−ζ(x)(h − λ)2 dsg → 0, as t → ∞.

Proof. For abbreviation, we set

y(t) =
∫
M

−σ(x)(h − λ)2 d Ag +
∫

∂M
−ζ(x)(h − λ)2 dsg.

Then by Lemma 2.6, (2.7) and a direct computation, we obtain

d

dt
y(t) ≤ −2

∫
M

|∇h|2 d Ag + C

( ∫
M

(h − λ)2 d Ag +
∫

∂M
(h − λ)2 dsg

)

+C

( ∫
M

(h − λ)3 d Ag +
∫

∂M
(h − λ)3 dsg

)



164 H. Zhang

Using the Gagliardo-Nirenberg inequality as before, we obtain

∫
M

|h − λ|3 d Ag ≤ C

( ∫
M

(h − λ)2 d Ag

)( ∫
M

|∇h|2 d Ag

) 1
2

and ∫
∂M

|h − λ|3 d Ag ≤ C

( ∫
∂M

(h − λ)2 dsg

)( ∫
M

|∇h|2 d Ag

) 1
2

.

Here, the constant C can be chosen independent of t , since the conformal factor u
is uniformly bounded by Lemma 2.4. From this and Young’s inequality, it follows
that

d

dt
y(t) ≤ C

( ∫
M

−σ(x)(h − λ)2 d Ag +
∫

∂M
−ζ(x)(h − λ)2 dsg

)2

+C

( ∫
M

−σ(x)(h − λ)2 d Ag +
∫

∂M
ζ(x)(h − λ)2 dsg

)
.

Hence, the function y(t) satisfies

d

dt
y(t) ≤ Cy(t)2 + Cy(t). (3.1)

By (2.13) and (2.14), we have ∫ ∞

0
y(t) dt ≤ C.

This implies that there exists a sequence t j → ∞ as j → ∞ such that

lim
j→∞ y(t j ) → 0.

Observing that (3.1) is equivalent to the following differential inequality

d

dt
(log(y(t) + 1)) ≤ Cy(t).

Integrating this inequality with respective to t from t j to t with t > t j yields

y(t) ≤ (y(t j ) + 1) exp

{
C

∫ ∞

t j
y(t) dt

}
− 1.

Letting j → ∞ gives

lim
t→∞ y(t) = 0.

��
With the help of Lemma (3.1), we can show that u(t) is uniformly bounded

in W 2,2(M, g0) ∩ W 1,2(∂M, g0) for all t ≥ 0. From this, the main theorem thus
follows.
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Proof of Theorem 1.2. By (2.4) and (2.12), we have

−�g0u = Ke2u − K0

= σ(x)(h − λ)e2u + λσ(x)e2u − K0

in M and

∂

∂ηg0
u = κeu − κ0

= ζ(x)(h − λ)eu + λζ(x)eu − κ0

on ∂M . From Lemmas 2.4 and 3.1, it follows that there exists a constant C inde-
pendent of t such that

∫
M

|�g0u|2 d Ag0 ≤ C and
∫

∂M

∣∣∣∣ ∂

∂ηg0
u

∣∣∣∣
2

dsg0 ≤ C.

From this and the estimate (A.1), we conclude that u(t) is uniformly bounded
in W 2,2(M, g0) ∩ W 1,2(∂M, g0) for all t ≥ 0. Hence, there exists a function
u∞ ∈ W 2,2(M, g0) ∩W 1,2(∂M, g0) such that, up to a subsequence (t j ) j , we have{

u(t j ) ⇀ u∞, weakly in W 2,2(M, g0) ∩ W 1,2(∂M, g0),
u(t j ) → u∞, strongly in Cs(M, g0) ∩ Cs(∂M, g0) for 0 < s < 1.

It follows from Lemma 3.1 that u∞ weakly solves the following equation{
−�g0u∞ + K0 = λ∞σ(x)e2u∞ , in M

∂
∂ηg0

u∞ + κ0 = λ∞ζ(x)eu∞ , on ∂M.

The standard regularity theory implies that u∞ is smooth since σ(x) and ζ(x) are
smooth. Hence, if we let g∞ = e2u∞g0, then under themetric g∞, the Gaussian cur-
vature K∞(x) = λ∞σ(x) and the boundary geodesic curvature κ∞(x) = λ∞ζ(x).
This completes the proof of Theorem 1.2. ��

A. Appendix

In this appendix, we will provide some estimates which are needed in the proof of
long time existence and convergence of the flow. We will firstly borrow the idea in
[4, Lemma 2.1] and [5, Lemma 3.2] to show the following result. In fact, the result
below is a generalization of [5, Lemma 3.2] where only harmonica functions were
considered.

Proposition A.1. Let (M, g0) be a compact Riemannian manifold with boundary.
Also let φ be a smooth function on M̄. Then we have the following estimate

||∇φ||L p(∂M,g0) ≤ C || ∂

∂ηg0
φ||L p(∂M,g0) + C ||�g0φ||L p(M,g0). (A.1)
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Proof. Firstly, we will give a proof of (A.1) for the model problem on the half
space {xn ≥ 0}. Hence, let (x ′, xn) = (x1, . . . , xn−1, xn) be the coordinate of the
half space. For abbreviation, we set α(x) := ∑n

i
∂2

∂x2i
φ and β(x ′) := − ∂

∂xn
φ(x ′, 0).

Taking the Fourier transformation in the first n − 1 variables, we obtain{
∂2

∂x2n
φ̂(ξ, xn) − |ξ |2φ̂(ξ, xn) = α̂(ξ, xn) in xn > 0,

∂
∂xn

φ̂(ξ, 0) = β̂(ξ) on xn = 0.

This is an second order linear ordinary differential equation with respect to xn
whose solution is given by

φ̂(ξ, xn)

= − 1

2|ξ |
∫ ∞

0
e−|ξ ||xn−yn |α̂(ξ, xn) dyn

− 1

2|ξ |
∫ ∞

0
e−|ξ |(xn+yn)α̂(ξ, xn) dyn + 1

|ξ |e
−|ξ |xn β̂(ξ).

Therefore, it follows from the expression above that

̂∇tan φ(ξ, 0) = − iξ

|ξ |
∫ ∞

0
e−|ξ |yn α̂(ξ, xn) dyn + iξ

|ξ | β̂(ξ),

where ∇tan = ( ∂
∂x1

, . . . , ∂
∂xn−1

). Using Mikhlin’s theorm (see [16], p. 109), we
conclude that∫

{xn=0}
|∇tan φ(x ′, 0)|p dx ′

≤ C

( ∫
{xn>0}

|α(x ′, xn)|p dx ′dxn +
∫

{xn=0}
|β(x ′, 0)|p dx ′

)
.

= C

( ∫
{xn>0}

∣∣∣∣
n∑

i=1

∂2

∂x2i
φ(x ′, xn)

∣∣∣∣
p

dx ′dxn +
∫

{xn=0}

∣∣∣∣ ∂

∂xn
φ(x ′, 0)

∣∣∣∣
p

dx ′
)

.

From this, it follows that∫
{xn=0}

|∇φ(x ′, 0)|p dx ′

≤ C

( ∫
{xn=0}

|∇tan φ(x ′, 0)|p dx ′ +
∫

{xn=0}

∣∣∣∣ ∂

∂xn
φ(x ′, 0)

∣∣∣∣
p)

= C

( ∫
{xn>0}

∣∣∣∣
n∑

i=1

∂2

∂x2i
φ(x ′, xn)

∣∣∣∣
p

dx ′dxn +
∫

{xn=0}

∣∣∣∣ ∂

∂xn
φ(x ′, 0)

∣∣∣∣
p

dx ′
)

.

Hence, the estimate (A.1) holds for the half space. Next, using the standard unitary
partition argument and the estimate above, we conclude that (A.1) holds on M . ��

Next, we will prove a recurrence estimate for a linear evolution equation. The
proof of this estimate is basically the same as [6, Lemma 3.2]. For simplicity, all
norms below are considered with respective to the metric g0.
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Lemma A.2. Let γ (x) be a strictly negative smooth function on M̄. Let φ be a
solution of the linear evolution equation{

∂
∂t φ = −γ (x)e−2u�g0φ + f1 in M
∂
∂t φ = γ (x)e−u ∂

∂ηg0
φ + f2 on ∂M (A.2)

with the initial data

φ(·, 0) = 0. (A.3)

Suppose that u is bounded. Then we have the estimate

||φ||W 1,2(M×[0,T ]) + ||φ||W 1,2(∂M×[0,T ])
≤ C

(|| f1||L2(M×[0,T ]) + || f2||L2(∂M×[0,T ])
)
.

Proof. Notice that

2

(∫ T

0

∫
M

∂φ

∂t
�g(t)φ d Agdt −

∫ T

0

∫
∂M

∂φ

∂t

∂φ

∂ηg(t)
dsgdt

)

= −2
∫ T

0

∫
M

∂

∂t
(∇g0φ) · ∇g0φ d Ag0dt

= −
∫ T

0

∫
M

∂

∂t
|∇g0φ|2 d Ag0dt

= −
∫
M

|∇g0φ|2 d Ag0

∣∣∣
t=T

≤ 0.

From this it follows that( ∫ T

0

∫
M

− 1

γ (x)

(
∂

∂t
φ

)2

d Agdt +
∫ T

0

∫
M

−γ (x)(�g(t)φ)2 d Agdt

)

+
( ∫ T

0

∫
∂M

− 1

γ (x)

(
∂

∂t
φ

)2

dsgdt +
∫ T

0

∫
∂M

−γ (x)

(
∂

∂ηg(t)
φ

)2

dsgdt

)

≤
∫ T

0

∫
M

(
1√−γ (x)

∂

∂t
φ − √−γ (x)�g(t)φ

)2

d Agdt

+
∫ T

0

∫
M

(
1√−γ (x)

∂

∂t
φ + √−γ (x)

∂

∂ηg(t)
φ

)2

dsgdt

=
∫ T

0

∫
M

1

−γ (x)
( f1)

2 d Agdt +
∫ T

0

∫
M

1

−γ (x)
( f2)

2 dsgdt

Since u and γ (x) are bounded, it follows from the estimate above that(∫ T

0

∫
M

(
∂

∂t
φ

)2

d Ag0dt +
∫ T

0

∫
M

(�g0φ)2 d Ag0dt

)

+
( ∫ T

0

∫
∂M

(
∂

∂t
φ

)2

dsg0dt +
∫ T

0

∫
∂M

(
∂

∂ηg0
φ

)2

dsg0dt

)

≤ C

( ∫ T

0

∫
M

( f1)
2 d Ag0dt +

∫ T

0

∫
M

( f2)
2 dsg0dt

)
.
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Using the estimate A.1, we obtain( ∫ T

0

∫
M

(
∂

∂t
φ

)2

d Ag0dt +
∫ T

0

∫
M

(�g0φ)2 d Ag0dt

)

+
( ∫ T

0

∫
∂M

(
∂

∂t
φ

)2

dsg0dt +
∫ T

0

∫
∂M

|∇g0φ|2 dsg0dt
)

≤ C

( ∫ T

0

∫
M

( f1)
2 d Ag0dt +

∫ T

0

∫
M

( f2)
2 dsg0dt

)
. (A.4)

Moreover

d

dt

(∫
M

φ2 d Ag0 +
∫

∂M
φ2 dsg0

)
= 2

∫
M

∂φ

∂t
φ d Ag0 + 2

∫
∂M

∂φ

∂t
φ dsg0

≤
( ∫

M
φ2 d Ag0 +

∫
∂M

φ2 dsg0

)
+

( ∫
M

(
∂φ

∂t

)2

d Ag0 +
∫

∂M

(
∂φ

∂t

)2

dsg0

)
.

Therefore∫
M

φ2 d Ag0 +
∫

∂M
φ2 dsg0 ≤ et

∫ T

0
e−t

(∫
M

(
∂φ

∂t

)2

d Ag0 +
∫

∂M

(
∂φ

∂t

)2

dsg0

)
dt.

Integrating the inequality above with respect to t and using (A.4), we obtain∫ T

0

∫
M

φ2 d Ag0dt +
∫ T

0

∫
∂M

φ2 dsg0dt

≤ C

( ∫ T

0

∫
M

(
∂φ

∂t

)2

d Ag0dt +
∫ T

0

∫
∂M

(
∂φ

∂t

)2

dsg0dt

)

≤ C

( ∫ T

0

∫
M

( f1)
2 d Ag0dt +

∫ T

0

∫
M

( f2)
2 dsg0dt

)
. (A.5)

The assertion now follows from the estimate (A.4) and (A.5). ��
Lemma A.3. Let φ be a solution of (A.2) and (A.3). Suppose that u is bounded in
L∞(M̄ × [0, T ]), in C∞(M × [0, T ]) ∩ W 1,4(∂M × [0, T ]) and in Wm,2(∂M ×
[0, T ]). Then we have

||φ||Wm+1,2(M×[0,T ]) + ||φ||Wm+1,2(∂M×[0,T ])
≤ C

(|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)
.

Proof. Assume that the assertion holds for m − 1. Observe that the function ∇g0φ

satisfies the evolution equation{
∂
∂t (∇g0φ) = −γ (x)e−2u�g0(∇g0φ) + f̃1 in M
∂
∂t (∇g0φ) = −γ (x)e−u ∂

∂ηg0
(∇g0φ) + f̃2 on ∂M

with the initial data

∇g0φ(·, 0) = 0,
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where

f̃1 = ∇g0 f1 − e−2u(2γ (x)∇g0u − ∇g0γ (x)
)
�g0φ

and

f̃2 = ∇g0 f2 − e−u(γ (x)∇g0u − ∇g0γ (x)
) ∂

∂ηg0
φ.

Using the Lemma A.2, Gagliado–Nirenberg inequality, Sobolev embedding theo-
rem and induction assumption, we obtain

||∇g0φ||Wm,2(M×[0,T ]) + ||∇g0φ||Wm,2(∂M×[0,T ])
≤ C

(|| f̃1||Wm−1,2(M×[0,T ]) + || f̃2||Wm−1,2(∂M×[0,T ])
)

= C
[
||∇g0 f1 − e−2u(2γ (x)∇g0u − ∇g0γ (x)

)
�g0φ||Wm−1,2(M×[0,T ])

+||∇g0 f2 − e−u(γ (x)∇g0u − ∇g0γ (x)
) ∂

∂ηg0
φ||Wm−1,2(∂M×[0,T ])

]

≤ C
(
||�g0φ||Wm−1,4(M×[0,T ]) + || ∂

∂ηg0
φ||Wm−1,4(∂M×[0,T ])

+||∇g0 f1||Wm−1,2(M×[0,T ]) + ||∇g0 f2||Wm−1,2(∂M×[0,T ])
)

≤ C
(
|| − 1

γ (x)
e2u

(
∂

∂t
φ − f1

)
||Wm−1,4(M×[0,T ]) + ||φ||Wm,4(∂M×[0,T ])

+|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)

≤ C
(
||φ||Wm,4(M×[0,T ]) + ||φ||Wm,4(∂M×[0,T ])

+|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)

≤ C
(
||φ||

1
4
Wm,2(M×[0,T ])||φ||

3
4
Wm+1,2(M×[0,T ]) + || f1||Wm,2(M×[0,T ])

+||φ||
1
2
Wm,2(∂M×[0,T ])||φ||

1
2
Wm+1,2(∂M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])

)
≤ C

((|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
) 1
4 ||φ||

3
4
Wm+1,2(M×[0,T ])

+(|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
) 1
2 ||φ||

1
2
Wm+1,2(∂M×[0,T ])

+|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)

Using Lemma A.2 again, we conclude that

||φ||Wm+1,2(M×[0,T ]) + ||φ||Wm+1,2(∂M×[0,T ])

≤ C
((|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])

) 1
4 ||φ||

3
4
Wm+1,2(M×[0,T ])

+(|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
) 1
2 ||φ||

1
2
Wm+1,2(∂M×[0,T ])

+|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)
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From Young’s inequality, it follows that

||φ||Wm+1,2(M×[0,T ]) + ||φ||Wm+1,2(∂M×[0,T ])
≤ C

(|| f1||Wm,2(M×[0,T ]) + || f2||Wm,2(∂M×[0,T ])
)
.

We thus complete the proof. ��
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