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Abstract. We construct the biharmonic heat kernel for a suitable self-adjoint extension of
the bi-Laplacian on a manifold with incomplete edge singularities. We employ a microlocal
description of the biharmonic heat kernel to establish mapping properties of the correspond-
ing biharmonic heat operator on certain Banach spaces. This yields short time existence for
a class of semi-linear equations of fourth order, including for example the Cahn–Hilliard
equation. We also obtain asymptotics of the solutions near the edge singularity.

1. Introduction

In this paper we provide a microlocal construction of the biharmonic heat kernel for
a self-adjoint extension of the Laplace operator on amanifold with incomplete edge
singularities. Such manifolds include spaces with isolated conical singularities,
more precisely open manifolds (M, g) with a decomposition M = K ∪N U ,
where K is a compact manifold with boundary N , (N , gN ) is a closed Riemannian
manifold, U = (0, 1] × N and

g � U = dx2 ⊕ x2gN , x ∈ (0, 1].
While the heat kernel for the Laplace operator on edge manifolds has been studied
extensively before, compare for example joint work with Mazzeo [15], Bahuaud
[4], Bahuaud and Dryden [2], as well as [18]; the present work seems to be the
first step towards a microlocal analysis of the bi-Laplacian, its heat kernel and
associated non-linear partial differential equations of fourth order on edge spaces.
In the non-singular setting cf. Lamm [12].

Our construction of the biharmonic heat kernel yields a precise understanding
of its asymptotic properties, which in turn allows to study the mapping properties
of the corresponding biharmonic heat operator. In the present paper we concentrate
on the mapping properties with respect to certain Banach spaces that yield short
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time existence for some semi-linear equations of fourth order, in analogy to [11]
and [2].

We point out that several other interesting open questions are delegated to future
research and not touched upon here. These include mapping properties of the bihar-
monic heat kernel with respect to certain Hölder spaces and applications to short
time existence of quasi-linear equations, as in [4]. Further questions are concerned
with elliptic boundary value problems for the bi-Laplacian and the corresponding
biharmonic heat trace asymptotics, as in [18].

Our interest in non-linear fourth order equations of parabolic type stems from
recent results on e.g. the Cahn–Hilliard equation on spaces with isolated conical
singularities by Roidos and Schrohe [17], as well as results on higher order geo-
metric flows on compact manifolds, generated by powers of the Laplacian applied
to the Ricci tensor or by the ambient obstruction tensor, introduced by Fefferman
and Graham [10], see Bahuaud and Helliwell [3].

The Cahn–Hilliard equation was proposed by Cahn and Hilliard in [6,7] as a
simple model of the phase separation process, where at a fixed temperature the
two components of a binary fluid spontaneously separate and form domains that
are pure in each component. Let � denote the Laplace Beltrami operator. Then the
Cahn–Hilliard equation may be stated in the following form

∂t u + �2u + �
(
u − u3

)
) = 0, u(0) = u0.

Global existence for solutions to the Cahn–Hilliard equation has been estab-
lished by Elliott and Songmu [9], and Caffarelli and Muler [5]. In the setup of
singular manifolds however, there is still a question of asymptotics of solutions
at the singular strata. This aspect has been studied by the recent work of Roidos
and Schrohe [17] in the context of manifolds with isolated conical singularities,
which has partly motivated the present discussion here. Using the notion of maxi-
mal regularity, they establish short time existence of solutions to the Cahn–Hilliard
equation in certain weighted Mellin-Sobolev spaces which then yields regularity
and asymptotics of solutions near the conical point.

In this paper we study the semi-linear parabolic equations of fourth order in the
geometric setup of spaces with incomplete edges, which generalizes the notion of
isolated conical singularities. Our method is different from [17] and, as emphasized
above, uses the microlocal construction of the heat kernel for the bi-Laplacian.

Another recent example of higher order geometric evolution equations has been
studied by Bahuaud and Helliwell [3]. The authors consider geometric flows by
powers of the Laplacian applied to the Ricci tensor or generated by the ambi-
ent obstruction tensor. The ambient obstruction tensor was introduced by Charles
Fefferman and Robin Graham [10] as the obstruction to a formal expansion of
an asymptotically hyperbolic Einstein metric with a given conformal infinity in
dimension n + 1. When n = 4, the ambient obstruction tensor is the Bach tensor.

In both instances the geometric flows admit a strongly parabolic linearization
after some de Turck like adjustment by the Lie derivative of the metric with respect
to a suitable vector field.

Themicrolocal analysis of the biharmonic heat kernel on edge spaces, presented
here, allows for derivation of Schauder estimates with respect to certain Hölder
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spaces and ultimately leads to short time existence results for fourth order PDE’s,
including the geometric flows studied in [3] in the setting of singular spaces. This
will be the subject of forthcoming analysis.

We also point out that our approach is not limited to squares of Laplacians on
functions, but yields similar results for general powers of Hodge Laplacians on
differential forms along the same lines.

2. Preliminaries and statement of the main results

In this section we introduce the notion of manifolds with edge singularities, specify
a self-adjoint extension of the bi-Laplacian and state our main results.

2.1. Manifolds with incomplete edge singularities

We introduce the fundamental geometric aspects of spaces with incomplete edge
singularities, as described in detail in [14], compare also [15].

Let M be a compact stratified space with its open interior M as a single top-
dimensional stratum, and a single lower dimensional stratum B, which is a smooth
closed manifold by definition of stratified spaces. The singular stratum B admits
an open neighborhood U ⊂ M and a radial function x : U ∩ M → R, such that
U ∩ M is a smooth fibre bundle over B with fibre C (F) = (0, 1)× F , a finite open
cone over a compact smooth manifold F . The restriction of x to each fibre defines
a radial function of that cone.

The singular stratum B in M may be resolved and defines a compact manifold
M̃ with boundary ∂M , where ∂M is the total space of a fibration φ : ∂M → B with
the fibre F . The resolution process is described in detail for instance in [14]. The
neighborhoodU lifts to a collar neighborhoodU of the boundary, which is again a
smooth fibration over B with fibre [0, 1)× F , a cylinder with the radial function x .

Definition 2.1. ARiemannianmanifold (M, g)with an incomplete edge singularity
at B is the open stratum of a stratified space with a single lower dimensional stratum
B, and the Riemannian metric g, such that g = g0+h overU , where |h|g0 = O(x)
as x → 0 and

g0 � U \∂M = dx2 + x2gF + φ∗gB,

with gB being a Riemannian metric on B, and gF a symmetric 2-tensor on the
fibration ∂M which restricts to a Riemannian metric on each fibre F .

We set m = dim M, b = dim B and f = dim F . Clearly, m = 1 + b + f . We
assume henceforth f = dim F ≥ 1. Otherwise M reduces to a compact manifold
with boundary, where our discussion below is no longer applicable.

Similarly to other discussions in the singular edge setup, see [1,2,4] and [15],we
additionally require φ : (∂M, gF +φ∗gB) → (B, gB) to be a Riemannian submer-
sion. If p ∈ ∂M , then the tangent bundle Tp∂M splits into vertical and horizontal
subspaces as T V

p ∂M ⊕ T H
p ∂M , where T V

p ∂M is the tangent space to the fibre of
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φ through p and T H
p ∂M is the annihilator of the subbundle T V

p ∂M�gF ⊂ T ∗∂M
(� meaning contraction). The requirement for φ to be a Riemannian submersion is
the condition that the restriction of the tensor gF to T H

p ∂M vanishes.
We summarize the necessary assumptions on g in the following definition.

Definition 2.2. Let (M, g) be a Riemannian manifold with an incomplete edge
singularity. The Riemannian metric g = g0 + h is said to be admissible if

(i) the fibration φ : (∂M, gF +φ∗gB) → (B, gB) is a Riemannian submersion,
(ii) the Laplace Beltrami operators �F,y associated to (F, gF |φ−1(y))

for any y ∈ B are isospectral.
(iii) the lowest non-zero eigenvalue λ0 > 0 of the Laplace Beltrami

operators �F,y satisfies λ0 > dim F .
(iv) h vanishes to second order at x = 0, i.e. |h|g0 = O(x2) as x → 0.

The reasons behind the feasibility assumptions are as follows. Let y =
(y1, ..., yb) be the local coordinates on B lifted to ∂M and then extended inwards.
Let z = (z1, ..., z f ) restrict to local coordinates on F along each fibre. Then
(x, y, z) are the local coordinates on M near the boundary. Consider the Laplace
Beltrami operator � associated to (M, g) and its normal operator N (x2�)y0 ,
defined as the limiting operator with respect to the local family of dilatations
(x, y, z) → (λx, λ(y − y0), z) and acting on functions on the model edge
R

+
s ×F×R

b
u . Under the first admissibility assumption, N (x2�)y0 is naturally iden-

tified with s2 times the Laplace Beltrami operator on the model edgeR+
s × F ×R

b
u

with incomplete edge metric gie = ds2+s2gF +|du|2. This is key for constructing
the initial crude approximation of the biharmonic heat kernel.

The second condition on isospectrality is severe, but has to be imposed to ensure
polyhomogeneity of the associated heat kernels when lifted to the corresponding
parabolic blowup space. More precisely we actually only need that the eigenvalues
of the Laplacians on fibres are constant in a fixed range [0, 1], though we still make
the stronger assumption for a clear and convenient representation.

The reasons behind the last two admissibility assumptions are of technical
rather than geometric nature and somewhat less straightforward to explain.However
we point out that condition λ0 > dim F is easily satisfied by a rescaling of gF .
Condition |h|g0 = O(x2) in particular holds for even metrics which depend on x2

instead of x . Altogether the admissibility assumptions yield precise information on
the heat kernel expansion, which is then used in Proposition 3.3.

2.2. Edge vector fields and Banach spaces

An important ingredient in the analysis of singular edge spaces is the vector space
Ve of edge vector fields smooth in the interior of M̃ and tangent at the boundary ∂M
to the fibres of the fibration. This space Ve is closed under the ordinary Lie bracket
of vector fields, hence defines a Lie algebra. Its description in local coordinates is
as follows. Consider the local coordinates (x, y, z) on M near the boundary. Then
the edge vector fields Ve are locally generated by

{
x∂x , x∂y1 , . . . , x∂yb , ∂z1 , . . . , ∂z f

}
.
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We may now define the Banach space of continuous sections C 0
ie(M), contin-

uous on M̃ up to the boundary and fibrewise constant at x = 0. This is precisely
the space of continuous sections with respect to the topology on M induced by the
Riemannian metric g. The standard space of 2k-times continuously differentiable
functions in the open interior M is denoted by C2k(M). Banach spaces of higher
order are now defined as follows, compare [2].

Definition 2.3. Let (M, g) be a Riemannian manifold with an incomplete edge
metric. Let D denote a subspace generated by a finite collection D̂ of derivatives
in {�, x−1 V2

e , x−1 Ve,Ve}, which will be specified later. Then for each k ∈ N we
define

C 2k
ie (M,D) :=

{
u ∈ C2k(M) ∩ C 0

ie(M) | X ◦ � j u ∈ C 0
ie(M), X ∈ D, j < k

}
,

with the norm ‖u‖2k := ‖u‖∞ +
k∑
j=0

∑

X∈D̂
‖X ◦ � j u‖∞.

2.3. Self-adjoint extension of the bi-Laplacian

Let � denote the Laplace Beltrami operator acting on functions on an incomplete
edge space (M, g)with an admissible incomplete edgemetric g. Consider the space
of square-integrable forms L2(M, g), with respect to g. The maximal and minimal
closed extensions of � are defined by the domains

Dmax(�) := {u ∈ L2(M, g) | �u ∈ L2(M, g)},
Dmin(�) := {u ∈ Dmax(�) | ∃ u j ∈ C∞

0 (M) such that

u j → u and �u j → �u both in L2(M, g)}. (2.1)

where �u ∈ L2 is a priori understood in the distributional sense. Under the unitary
rescaling transformation in the singular edge neighborhood

� : L2(U , dvol(g)) → L2(U , x− f dvol(g)), u �→ x f/2u, (2.2)

the rescaled Laplacian �� = � ◦ � ◦ �−1 is a perturbation of

��
0 = − ∂2

∂x2
+ 1

x2

(
�F,y +

(
f − 1

2

)2

− 1

4

)
,

with higher order terms coming from the curvature of the Riemannian submersion
φ and the second fundamental forms of the fibres F .

The following lemma is a straightforward reformulation of [15, Lemma 2.2]
for the simpler case of Laplace Beltrami operators.

Lemma 2.4. ([15]) Let (M, g) be an incomplete edge space with an admissible
edge metric. Consider the increasing sequence of eigenvalues (σ j ) j∈N of �F,y ,
counted with their multiplicities, and put ν2j := σ j + ( f − 1)2/4. The associated
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indicial roots are given by γ ±
j = ±ν j + 1/2. Let p ∈ N be the largest index such

that νp ∈ [0, 1). Then any u ∈ Dmax(�) admits a weak expansion as x → 0, in the
sense that for any test function χ ∈ C∞(B) there is an expansion of the pairing

∫

B
�u(x, y, z)χ(y) dy ∼

p∑
j=1

(
ψ+

j (x)c+
j [u, χ ](z) + ψ−

j (x)c−
j [u, χ ](z)

)

+ ũ, x → 0,

where the higher order term ũ = O(x3/2) as x → 0, and the coefficients c±
j [u, χ ]

are constant for j = 1, ..., dim H0(F). Moreover

ψ+
j (x, z; y) = xγ +

j , and

ψ−
j (x, z; y) = x1/2(log x), if ν j = 0,

ψ−
j (x, z; y) = xγ −

j (1 + a j x) if ν j > 0,

with a j ∈ R uniquely determined by �.

The Friedrichs self-adjoint extension of � has been identified in [15] as

D(�F ) = {u ∈ Dmax(�) | ∀ j=1,..,p : c−
j [u] = 0}. (2.3)

Note that the sequence of eigenvalues (σ j )
p
j=1 of �F,y starts with σ j = 0 for j =

1, .., dim H0(F). The corresponding indicial roots compute toγ j = 1/2±( f −1)/2
and the coefficients are constant in z ∈ F , being simply the harmonic functions of
fibres F . Consequently, the Friedrichs domain contains precisely those elements in
the maximal domain whose leading term in the weak expansion as x → 0 is given
by x0 with fibrewise constant coefficients. In particular

Dmax(�) ∩ C 0
ie(M) ⊂ D(�F ). (2.4)

We fix a self-adjoint extension of the bi-Laplacian as the square of �F

D(�2
F ) = {u ∈ �F | �u ∈ �F }. (2.5)

2.4. The biharmonic heat space blowup

Consider �2
F and the corresponding heat operator e−t�2

F . Let H be the bihar-

monic heat kernel, the Schwartz kernel of e−t�2
F . H is a priori a function on

M2
h = R

+ × M̃2. Let (x, y, z) and (̃x, ỹ, z̃) be the coordinates on the two copies
of M near the edge. Then the local coordinates near the corner in M2

h are given
by (t, (x, y, z), (̃x, ỹ, z̃)). The kernel H(t, (x, y, z), (̃x, ỹ, z̃)) has a non-uniform
behaviour at the submanifolds

A =
{
(t = 0, (0, y, z), (0, ỹ, z̃)) ∈ R

+ × ∂M2 | y = ỹ
}

,

D =
{
(t = 0, (x, y, z), (̃x, ỹ, z̃)) ∈ R

+ × M̃2 | x = x̃, y = ỹ, z = z̃
}

.
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Exactly as in the case of the Hodge Laplacian on edges, see [15], we introduce an
appropriate blowup of the heat space M2

h , such that the corresponding heat kernel
lifts to a polyhomogeneous distribution in the sense of the definition below. This
procedure has been introduced by Melrose in [16]. For self-containment of the
paper we repeat the definition of polyhomogeneity as well as the blowup process
here.

Definition 2.5. LetW be a manifold with corners, with all boundary faces embed-
ded, and {(Hi , ρi )}Ni=1 an enumeration of its boundaries and the correspond-
ing defining functions. For any multi-index b = (b1, . . . , bN ) ∈ C

N we write
ρb = ρ

b1
1 . . . ρ

bN
N . Denote by Vb(W) the space of smooth vector fields onWwhich

lie tangent to all boundary faces. A distribution ω on W is said to be conormal, if
ω ∈ ρbL∞(W) for some b ∈ C

N and V1 . . . V�ω ∈ ρbL∞(W) for all Vj ∈ Vb(W)

and for every � ≥ 0. An index set Ei = {(γ, p)} ⊂ C × N satisfies the following
hypotheses:

(i) Re(γ ) accumulates only at plus infinity,
(ii) For each γ there is Pγ ∈ N0, such that (γ, p) ∈ Ei for every 0 ≤ p ≤ Pγ ,
(iii) If (γ, p) ∈ Ei , then (γ + j, p′) ∈ Ei for all j ∈ N and 0 ≤ p′ ≤ p.

An index family E = (E1, . . . , EN ) is an N -tuple of index sets. Finally, we say
that a conormal distribution ω is polyhomogeneous onW with index family E , we
write ω ∈ A E

phg(W), if ω is conormal and if in addition, near each Hi ,

ω ∼
∑

(γ,p)∈Ei

aγ,pρ
γ

i (log ρi )
p, as ρi → 0,

with coefficients aγ,p conormal on Hi , polyhomogeneous with index E j at any
Hi ∩ Hj .

Our analysis of the biharmonic heat kernel will start with a discussion of an
explicitly solvable model situation, which leads to a homogeneity property (3.2).
That property contains the information howprecisely the submanifolds A, D ⊂ M2

h
need to be blown up such that the heat kernel H becomes polyhomogeneous. To get
the correct blowup of M2

h we first bi-parabolically (t1/4 is viewed as a coordinate
function) blow up the submanifold

A =
{
(t, (0, y, z), (0, ỹ, z̃)) ∈ R

+ × ∂M2 : t = 0, y = ỹ
}

⊂ M2
h .

The resulting heat-space [M2
h , A] is defined as the union of M2

h\A with the
interior spherical normal bundle of A in M2

h . The blowup [M2
h , A] is endowed with

the unique minimal differential structure with respect to which smooth functions in
the interior of M2

h and polar coordinates on M2
h around A are smooth. As in [15],

this blowup introduces four new boundary hypersurfaces; we denote these by ff
(the front face), rf (the right face), lf (the left face) and tf (the temporal face).

The actual heat-space blowup M 2
h is obtained by a bi-parabolic blowup of

[M2
h , A] along the diagonal D, lifted to a submanifold of [M2

h , A]. The resulting
blowup M 2

h is defined as before by cutting out the submanifold and replacing it
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Fig. 1. The biharmonic heat-space blowup M 2
h

with its spherical normal bundle. It is a manifold with boundaries and corners,
visualized in Figure below.

The projective coordinates onM 2
h are then given as follows. Near the top corner

of the front face ff, the projective coordinates are given by

ρ = t1/4, ξ = x

ρ
, ξ̃ = x̃

ρ
, u = y − ỹ

ρ
, z, ỹ, z̃, (2.6)

where in these coordinates ρ, ξ, ξ̃ are the defining functions of the boundary faces
ff, rf and lf respectively. For the bottom corner of the front face near the right hand
side projective coordinates are given by

τ = t

x̃4
, s = x

x̃
, u = y − ỹ

x̃
, z, x̃, ỹ, z̃, (2.7)

where in these coordinates τ, s, x̃ are the defining functions of tf, rf and ff respec-
tively. For the bottom corner of the front face near the left hand side projective
coordinates are obtained by interchanging the roles of x and x̃ . Projective coordi-
nates on M 2

h near temporal diagonal are given by

η = t1/4

x̃
, S = (x − x̃)

t1/4
, U = y − ỹ

t1/4
, Z = x̃(z − z̃)

t1/4
, x̃, ỹ, z̃. (2.8)

In these coordinates tf is the face in the limit |(S,U, Z)| → ∞, ff and td are defined
by x̃, η, respectively. The blowdown map β : M 2

h → M2
h is in local coordinates

simply the coordinate change back to (t, (x, y, z), (̃x, ỹ, z̃)).

2.5. Statement of the main results

Our first main result is concerned with the asymptotic properties of the biharmonic
heat kernel as a polyhomogeneous function on the biharmonic heat space blowup.

Theorem 2.6. Let (Mm, g) be an incomplete edge space with an admissible edge
metric g, and let�F denote theFriedrichs extension of the correspondingLaplace–

Beltrami operator. Let H be the Schwartz kernel of the heat operator e−t�2
F asso-

ciated to the bi-Laplacian �2
F . Then the lift β∗H is polyhomogeneous on M 2

h of
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order (−dim M) at ff and td, vanishing to infinite order at tf, and with the index
set at rf and lf given by E + N0 where

E =
⎧⎨
⎩γ ≥ 0 | γ = − ( f − 1)

2
+

√
( f − 1)2

4
+ σ 2, σ 2 ∈ Spec�F,y

⎫⎬
⎭ .

More precisely, if s denotes the boundary defining function of rf, we obtain

β∗H ∼
∑
γ∈E

⎛
⎝

∞∑
j=0

sγ+2 j aγ, j (β
∗H) +

∞∑
j=0

sγ+2+ j a′
γ, j (β

∗H)

⎞
⎠ as s → 0,

where the coefficients aγ, j (H) are of order (−m) at the front face and lie in their
corresponding �F,y eigenspaces. The higher coefficients a′

γ, j (β
∗H) are of order

(−m + 1) at ff.

We employ this microlocal heat kernel description to establish our next main
theorem on the mapping properties of the corresponding biharmonic heat operator.

Theorem 2.7. Let (Mm, g) be an incomplete edge space with an admissible edge
metric g and � the corresponding Laplace Beltrami operator. Put D0 = 〈�〉 and
D = 〈�, x−1 V2

e , x−1V ′
e,Ve〉, where V ′

e ⊂ Ve consists locally of all edge vector
fields where x∂y is weighted with functions that are fibrewise constant. Then the

biharmonic heat operator e−t�2
F is a boundedmap between the (weighted) Banach

spaces

e−t�2
F : C 2k

ie (M,D0) → t−1/4C 2(k+1)
ie (M,D).

We should point out that in the theorem above the target Banach space
C 2(k+1)
ie (M,D) is defined with respect to the set D that includes a large variety

of higher order derivatives. In fact, from the perspective of the presented proof, this
is the largest possible variety of derivatives with respect to which boundedness of
the biharmonic heat operator e−t�2

F persists. On the other hand, the initial space
C 2k
ie (M,D0) poses significantly less regularity assumptions, since it is defined with

respect to a very restricted set of derivatives D0 = 〈�〉. In that respect, the bihar-
monic heat operator indeed improves regularity.

An important aspect of the statement is that regularity is not definedwith respect
to x−1 Ve but rather x−1V ′

e, i.e. we require the generators to be weighted with
functions that are constant on fibres F when restricted to x = 0. This is due
to the fact that we consider spaces of continuously differentiable functions with
the continuity defined with respect to the Riemannian metric g. Such continuous
functions are constant on fibres at ∂M . For this aspect also note the Remark 4.3.

Our final result is concerned with local existence of solutions to certain semi-
linear parabolic equations of fourth order.

Theorem 2.8. Let (M, g) be an incomplete edge space with an admissible edge
metric g. PutD′ = 〈�,V2

e ,Ve〉 andD = 〈�, x−1 V2
e , x−1V ′

e,Ve〉, where V ′
e ⊂ Ve
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consists locally of linear combinations of {x∂x , x∂y, ∂z}, where x∂y is weightedwith
functions that are fibrewise constant. Assume Q : C 2(k+1)

ie (M,D′) → C 2k
ie (M,D′)

is locally Lipschitz. Then the semilinear equation

∂t u + �2u = Q(u), u(0) = u0 ∈ C 2(k+1)
ie (M,D′)

has a unique solution u ∈ C([0, T ],C 2(k+1)
ie (M,D))∩C∞((0, T ]× M), for some

T > 0, where T may be estimated from below in terms of ||u0||2(k+1).

As an application we arrive at a statement on existence and regularity of solu-
tions to the Cahn–Hilliard equation.

Corollary 2.9. Let (M, g) be an incomplete edge space with an admissible edge
metric g. PutD′ = 〈�,V2

e ,Ve〉 andD = 〈�, x−1 V2
e , x−1V ′

e,Ve〉, where V ′
e ⊂ Ve

consists locally of linear combinations of {x∂x , x∂y, ∂z}, where x∂y is weighted
with functions that are fibrewise constant. Then the Cahn–Hilliard equation

∂t u + �2u + �(u − u3) = 0, u(0) = u0 ∈ C 2(k+1)
ie (M,D′)

has a unique solution u ∈ C([0, T ],C 2k+2
ie (M,D)) ∩ C∞((0, T ] × M), for some

T > 0.

It should be noted that in correspondence with [17] our approach leads to an
explicit identification of the asymptotics of the Cahn–Hilliard solution at x = 0.
Indeed, u ∈ C 2k+2

ie (M,D) ⊂ D(�k+1
F ), which yields a partial asymptotics of u to

higher and higher order, depending on k ∈ N, by an iterative application of Lemma
2.4 for k steps.

3. Microlocal heat kernel construction

3.1. Biharmonic heat kernel on a model edge

In this section we construct the heat kernel for �2
F explicitly. We begin with

studying the homogeneity properties of the heat kernel for the bi-Laplacian in
the model case of an exact edge (E = R

b × C (F), dy2 + g) where (C (F) =
(0,∞)×F, g = ds2+s2gF ) is an exact unbounded cone over a closedRiemannian
manifold (F, gF ). TheLaplacian�E on the exact edge is then a sumof theLaplacian
on (C (F), g) and the Euclidean Laplacian on R

b. Consider the scaling operation
(λ > 0)

�λ : C∞(R+ × E2) → C∞(R+ × E2),

(�λu)(t, (s, y, z), (̃s, ỹ, z̃)) = u(λ4t, (λs, λ(y − ỹ), z), (λ̃s, λỹ, z̃)).

Under the scaling operation we find

(∂t + �2
E )�λu = λ4�λ(∂t + �2

E )u. (3.1)
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Consequently, given the heat kernel HE for the Friedrichs extension of �2
E (or at

that stage any other self-adjoint extension), any multiple of �λHE still solves the
heat equation and also maps into the domain of �2

E . For the initial condition we
obtain substituting Ỹ = λỹ, S̃ = λ̃s

lim
t→0

∫

E
(�λHE )(t, s, y, z, s̃, ỹ, z̃)u(̃s, ỹ, z̃) s̃ f ds̃ d ỹ d z̃

= lim
t→0

λ−1−b− f
∫

E
HE (λ4t, λs, λy − Ỹ , z, S̃, Ỹ , z̃) u(S̃/λ, Ỹ/λ, z̃)S̃ f d S̃ dỸ d z̃

= λ−1−b− f u(λs/λ, λy/λ, z) = λ−1−b− f u(s, y, z).

By uniqueness of the heat kernel we obtain

�λHE = λ1−b− f HE . (3.2)

In addition to the homogeneity properties of HE , we also require a full asymp-
totic expansion of the biharmonic heat kernel as (s, s̃) → 0. We accomplish this by
establishing an explicit integral representation of HE . Under the unitary rescaling
(2.2) and a spectral decomposition of L2(F, gF ) into σ 2-eigenspaces of �F , we
may write for the rescaled model edge Laplacian

��
E = −∂2s + s−2

(
�F +

(
f − 1

2

)2

− 1

4

)
+ �Rb

=
⊕
σ

−∂2s + s−2

(
σ 2 +

(
f − 1

2

)2

− 1

4

)
+ �Rb =:

⊕
σ

lν(σ ) + �Rb ,

where ν(σ ) := √
σ 2 + ( f − 1)2/4 and lν(σ ) is defined on C∞

0 (0,∞). The
Friedrichs extension of �E is compatible with the decomposition, compare a sim-
ilar discussion in ([19], Proposition 4.9). As a special case of Lemma 2.4, lν has
unique self-adjoint extension Lν in L2(R+) for ν ≥ 1, and in case of ν ∈ [0, 1),
solutions u ∈ D(lν,max) admit a partial asymptotic expansion as s → 0

u(s) = ũ + c+[u] sν+1/2 + c−[u]
{
s−ν+1/2, ν ∈ (0, 1),√
s log(s), ν = 0,

ũ ∈ D(lν,min).

Then the Friedrichs extension Lν of lν is defined, similar to (2.3), by requiring
c−[u] = 0, and moreover, identifying �Rb with its unique self-adjoint extension
in L2(Rb), we may write

��
E,F =

⊕
σ

Lν(σ ) + �Rb . (3.3)

Consequently, it suffices to construct the biharmonic heat kernel for Lν + �Rb in
L2(R+ ×R

b). Denote by Jν the ν-th Bessel function of first kind and consider the
Hankel transform of order ν ≥ 0

(Hνu)(s) :=
∫ ∞

0

√
ss′ Jν(ss′)u(s′)ds′, u ∈ C∞

0 (0,∞). (3.4)
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By ([8], Chapter III) and also by ([13], Proposition 2.3.4), the Hankel transform
extends to a self-adjoint isometry on L2(R+). We denote by

(Fu)(ξ) := (2π)−b/2
∫

Rb
u(y)e−iy·ξdy, u ∈ C∞

0 (Rb),

the Fourier transform on R
b, which extends to an isometric automorphism of

L2(Rb). Consequently, Gν := Hν ◦ F defines an isometric automorphism of
L2(R+ ×R

b) such that G−1
ν = Hν ◦F−1. Applying ([13], Proposition 2.3.5), we

arrive at the following

Proposition 3.1. The isometric automorphism Gν diagonalizes Lν + �Rb . More
precisely,

D(Lν + �Rb) =
{
u ∈ L2(R+ × R

b) | (S2 + |�|2)Gνu ∈ L2(R+ × R
b)

}
,

Gν (Lν + �Rb)G−1
ν = S2 + |�|2,

where X, � denote multiplication operators by x ∈ R
+ and ξ ∈ R

b, respectively.

Similary, the isometry Gν diagonalizes the squared operator (Lν + �Rb )2,
identifying its action with (S2 + |�|2)2. Consequently we may express the bihar-
monic heat kernel of (Lν + �Rb )2 as an integral in terms of Bessel functions. For
u ∈ C∞

0 (R+ × R
b) we find

(
e−t (Lν+�

Rb )2u
)

(s, y) =
(
Gνe

−t (S2+|�|2)2G −1
ν u

)
(s, y)

= (2π)−b/2
∫

Rb

∫ ∞

0

(∫

Rb

∫ ∞

0
ei(y−ỹ)ξ

√
s̃s Jν(sρ)Jν (̃sρ) ρ e−t (ρ2+|ξ |2)2dρ dξ

)

× u(̃s, ỹ) ds̃ d ỹ.

Denote by φσ the normalized σ 2-eigenfunction of �F , where we count the eigen-
values σ 2 ∈ Spec(�F ) with their multiplicities. Then, as a consequence of (3.3),
we finally obtain for the �-rescaled biharmonic heat kernel on a model edge

H�
E = (2π)−b/2

⊕
σ

∫

Rb

∫ ∞

0
ei(y−ỹ)ξ

√
s̃s Jν(σ )(sρ)Jν(σ )(̃sρ)ρe−t (ρ2+|ξ |2)2dρ dξ

· φσ (z) ⊗ φσ (̃z).

The ν-th Bessel function of first kind admits an asymptotic expansion for small
arguments Jν(ζ ) ∼ ∑∞

j=0 a jζ
ν+2 j , as ζ → 0. This yields an asymptotic expansion

of H�
E as (s, s̃) → 0 and consequently, rescaling back, we obtain as s → 0

HE (t, s, y, z, s̃, ỹ, z̃) ∼
∑
γ

aν, j (t, s̃, y, ỹ, z, z̃)s
γ+2 j , (3.5)

where the summation is over all γ = −( f − 1)/2 + √
σ 2 + ( f − 1)2/4 with

σ 2 ∈ Spec�F , counted with multiplicity, and each coefficient aν, j lies in the
corresponding σ 2-eigenspace. We summarize the properties of HE , established
above, in a single proposition for later reference.
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Proposition 3.2. Consider the model edge (E = R
b × C (F), dy2 + g), where

(C (F) = (0,∞)× F, g = ds2 + s2gF ) is an exact unbounded cone over a closed
Riemannian manifold (F f , gF ). Fix the Friedrichs self-adjoint extension of the
associated Laplace Beltrami operator �E . Then the biharmonic heat kernel HE of
�2

E is homogeneous of order (−1 − b − f ) under the scaling operation (λ > 0)

�λ : C∞(R+ × E2) → C∞(R+ × E2),

(�λu)(t, (s, y, z), (̃s, ỹ, z̃)) = u(λ4t, (λs, λ(y − ỹ), z), (λ̃s, λỹ, z̃)).

Moreover, HE admits an asymptotic expansion as (s, s̃) → 0 with the index set
given by E + 2N0, where

E =
⎧⎨
⎩γ ≥ 0 | γ = − ( f − 1)

2
+

√
( f − 1)2

4
+ σ 2, σ 2 ∈ Spec�F

⎫⎬
⎭ ,

uniformly in other variables and with coefficients taking value in the corresponding
σ 2-eigenspace.

3.2. Construction of the biharmonic heat kernel

We can now proceed from the analysis of the heat kernel on the model edge to the
construction of the heat kernel H for the bi-Laplacian on a space (M, g) with an
incomplete admissible edge metric. The heat kernel construction here follows ad
verbatim the discussion in [15] for the edge Laplacian, with the only difference that
for the bi-Laplacian now rather t1/4 instead of

√
t is treated as a smooth variable.

In case the edge manifold is an exact edge (E = R
b × C (F), dy2 + g) where

(C (F) = (0,∞) × F f , g = ds2 + s2gF ), Proposition 3.2 implies that HE lifts to
a polyhomogeneous conormal distribution on the biharmonic heat space blowup,
of order (−m) at the front and the temporal diagonal faces, vanishing to infinite
order at tf, and with the index set at rf and lf given by E + 2N0, where

E =
⎧
⎨
⎩γ ≥ 0 | γ = − ( f − 1)

2
+

√
( f − 1)2

4
+ σ 2, σ 2 ∈ Spec�F

⎫
⎬
⎭ .

In the general case of an admissible edge space (M, g), HE is only an initial
parametrix, defines a polyhomogeneous function on the front face of M 2

h and
solves the heat equation only to first order. Repeating almost ad verbatim the heat
kernel construction in case of the edge Laplacian in [15], we arrive at the following

Proposition 3.3. Let (Mm, g) be an incomplete edge spacewith an admissible edge
metric g. Then the lift β∗H is polyhomogeneous on M 2

h of order (− dim M) at ff
and td, vanishing ot infinite order at tf, and with the index set at rf and lf given by
E + N0 where

E =
⎧⎨
⎩γ ≥ 0 | γ = − ( f − 1)

2
+

√
( f − 1)2

4
+ σ 2, σ 2 ∈ Spec�F,y

⎫⎬
⎭ .
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More precisely, if s denotes the boundary defining function of rf, we obtain

β∗H ∼
∑
γ∈E

⎛
⎝

∞∑
j=0

sγ+2 j aγ, j (β
∗H) +

∞∑
j=0

sγ+2+ j a′
γ, j (β

∗H)

⎞
⎠ as s → 0,

where the coefficients aγ, j (H) are of order (−m) at the front face and lie in their
corresponding �F,y eigenspaces. The higher coefficients a′

γ, j (β
∗H) are of order

(−m + 1) at ff.

Proof. Recall the heat kernel construction in [15], which we basically follow here.
Denote by � the Laplace Beltrami operator on (M, g). We write L := ∂t + �2

for the heat operator. The restriction of the lift β∗(tL) to ff is called the normal
operator Nff(tL)y0 at the front face (at the fibre over y0 ∈ B) and is given in
projective coordinates (2.7) explicitly as follows

Nff(tL)y0 = τ

(
∂τ +

(
−∂2s − f s−1∂s + s−2�F,y0 + �Rb

u

)2)

=: τ

(
∂τ +

(
�C (F)

s,y0 + �Rb

u

)2)
.

Nff(tL) does not involve derivatives with respect to (y0, x̃, ỹ, z̃) and hence acts
tangentially to the fibres of the front face. Consequently in our choice of an initial
parametrix H0 we note that the equation

Nff(tL) ◦ Nff(H0) = 0

is the heat equation for the bi-Laplace operator on the model edge C (F) × R
b.

Consequently, the initial parametrix H0 is defined by choosing Nff(H0) to equal the
fundamental solution for the heat operator Nff(tL), and extending Nff(H0) trivially
to a neighborhood of the front face. More precisely, consider the biharmonic heat
kernel HE,y on the model edge (C (F)×R

b, ds2 + s2gFy0 +du2 with the parameter
y0 ∈ B. Then in projective coordinates (τ, s, y0, z, x̃, u, z̃) near the right corner of
ff, where x̃ is the defining function of the front face, we set

H0(τ, s, u, y0, z, z̃) := x̃−mφ(̃x)HE,y0(τ, s, u, z, s̃ = 1, ũ = 0, z̃), (3.6)

where φ is a smooth cutoff function, φ ≡ 1 in an open neighborhood of x̃ = 0,
and with compact support in [0, 1). By Proposition 3.2, our initial parametrix H0
is polyhomogeneous on M2

h and solves the heat equation to first order at the front
face ff of M 2

h . Moreover Proposition 3.2 asserts

H0 ∼
∑
γ∈E

∞∑
j=0

sγ+2 j aγ, j (H0), s → 0, (3.7)

with each coefficient aγ, j (H0) lying in the corresponding �F,y0 eigenspace. The
error of the initial parametrix H0 is given by

β∗(tL)H0 =
(
β∗(t�2) − τ(�C (F)

s,y0 + �Rb

u )2
)
H0 =: P0.
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The leading order term in the expansion of β∗(tL) at td does not depend on the edge
geometry and corresponds to the bi-Laplacian on a closed manifold. Consequently,
classical arguments allow to refine the initial parametrix such that the error term
P0 is vanishing to infinite order at td, compare the corresponding discussion in
([15], Section 3.2). We need to understand the explicit structure of the asymptotic
expansion of P0 at ff and rf. By Definition 2.2 (iv) we find

β∗� = x̃−2
(
�C (F)

s,y0 + �Rb

u

)
+ x̃−1L1 + L2, (3.8)

where L1 is comprised of the derivatives ∂u∂z and L2 consists of edge derivatives
V2
e . Consequently, we obtain after taking squares

β∗(t�2) − τ
(
�C (F)

s,y0 + �R
b

u

)2 = τ x̃
((

�C (F)
s,y0 + �R

b

u

)
L1 + L1

(
�C (F)

s,y0 + �R
b

u

))

+ τ x̃2
((

�C (F)
s,y0 + �R

b

u

)
L2 + L2

(
�C (F)

s,y0 + �R
b

u

)
+ L2

1

)
+ τ x̃4L2

2.

We now apply each of the summands above to the asymptotic expansion (3.7) of
H0. Note that �

C (F)
s,y0 annihilates each sγ aγ,0(H0), γ ∈ E , and lowers the s-order

of sγ+2 j aγ, j (H0) by 2, if j ≥ 1. Consequently, we obtain as s → 0

P0 = β∗(tL)H0 ∼ x̃−m+1
∑
γ∈E

∞∑
j=0

sγ+ j−2cγ, j .

The next step in the construction of the heat kernel involves adding a kernel H ′
0

to H0, such that the new error term is vanishing to infinite order at rf. In order to
eliminate the term ska in the asymptotic expansion of P0 at rf, we only need to
solve

(−∂2s − f s−1∂s + s−2�F,y0)
2u = sk(τ−1a). (3.9)

This is because all other terms in the expansion of tL at rf lower the exponent in
s by at most one, while the indicial part lowers the exponent by two. The variables
(τ, u, x̃, y0, ỹ, z̃) enter the equation only as parameters. The equation is solved
by Mellin transform as well as spectral decomposition over F . The solution is
polyhomogeneous in all variables, including parameters and is of leading order
(k + 4). Consequently, the correcting kernel H ′

0 must be of leading order 2 at rf
and of leading order (−m + 1) at ff, since P0 is of order (−2) at rf and (−m + 1)
at ff and the defining function x̃ of the front face enters (3.9) only as a parameter.
Hence

H1 := H0 + H ′
0 ∼

∑
γ∈E

⎛
⎝

∞∑
j=0

sγ+2 j aγ, j (H1) +
∞∑
j=0

sγ+2+ j a′
γ, j (H1)

⎞
⎠ as s → 0,

where the coefficients aγ, j (H1) each lie in the corresponding �F,y0 eigenspace.
In the following correction steps the exact heat kernel is obtained from H1 by
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an iterative correction procedure, adding terms of the form H1 ◦ (P1)k , where
P1 := tLH1 is vanishing to infinite order at rf and td. This leads to an expansion

β∗H ∼
∑
γ∈E

⎛
⎝

∞∑
j=0

sγ+2 j aγ, j (β
∗H) +

∞∑
j=0

sγ+2+ j a′
γ, j (β

∗H)

⎞
⎠ as s → 0,

(3.10)

where the coefficients aγ, j (H) still lie in their corresponding �F,y0 eigenspaces,
and are of order (−m) at the front face. The higher coefficients a′

γ, j (β
∗H) are of

order (−m + 1) at ff.
Note that in the construction above,we have only usedDefinition 2.2 (i) and (iv).

The assumption of Definition 2.2 (iii) for admissible edge metrics is not required
there, but plays an essential role in the argument that H indeed takes values in
D(�2

F ). First note that H indeed takes values in D(�F ), since the expansion
(3.10) satisfies the characterization of maximal solutions in Lemma 2.4 and also
the condition in (2.3) under the rescaling �.

The conclusion that �H also takes values in D(�F ) is more intricate. Recall

(3.8). It is easily checked from (3.10) that x̃−2
(
�

C (F)
s,y0 + �Rb

u

)
H indeed takes

values in D(�F ) without any further assumptions. Application of (̃x−1L1 + L2)

to H preserves the expansion (3.10), however the coefficients in the expansion
need not lie in the correct �F,y0 eigenspaces, and hence we cannot deduce that
(̃x−1L1 + L2)H maps into D(�F ) in general.

By condition (iii) ofDefinition 2.2, anyγ �= 0 is automaticallyγ > 1, and hence
it then suffices to check whether the s0 coefficient in the expansion of (̃x−1L1 +
L2)H lies in the zero-eigenspace of �F , in other words is harmonic on fibres and
hence constant in z. The leading term s0a0,0(β∗H) in the expansion of β∗H is
annihilated by (s∂s), ∂z and is increased by β∗x∂y = s∂u + x̃s∂y . Consequently,
(̃x−1L1 + L2)H admits no s0 term and hence trivially maps into D(�F ).

The kernels H and �H thus both map into D(�F ) and hence by definition,
H indeed maps into D(�2

F ) and thus is the biharmonic heat kernel associated to
�2

F . ��

4. Mapping properties of the biharmonic heat operator

In this section we prove boundedness and strong continuity of the biharmonic heat
operator with respect to Banach spaces introduced in Definition 2.3.

Theorem 4.1. Let (Mm, g) be an incomplete edge space with an admissible edge
metric g. Fix the Friedrichs extension �F of the corresponding Laplace Beltrami
operator. PutD0 = 〈�〉 andD = 〈�, x−1 V2

e , x−1V ′
e,Ve〉, whereV ′

e ⊂ Ve consists
locally of all edge vector fields where x∂y is weighted with functions that are fibre-

wise constant. Then the associated biharmonic heat operator e−t�2
F is a bounded

map between the (weighted) Banach spaces

e−t�2
F : C 2k

ie (M,D0) → t−1/4C 2(k+1)
ie (M,D).
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Proof. First we prove the statement for k = 0. The explicit structure of the heat
kernel expansion in Proposition 3.3 implies that for any X ∈ D applied to the
biharmonic heat kernel H , the lift β∗(XH) admits the following behaviour near
the front face of the heat space M 2

h

β∗(XH) = O
(
(ρrfρlf)

0(ρffρtd)
−m−2ρ∞

tf

)
, (4.1)

where ρ∗ denotes a defining function of a boundary face ∗, ∗ ∈ {rf, lf, ff, td, tf}.
Consider the lift of the volume form in the various projective coordinates near

ff. We explify the transformation rules for the volume form near the lower left,
lower right and the top corner of the front face

near left corner: τ = t

x4
= ρtf, s = x̃

x
= ρlf, u = y − ỹ

x
, x = ρff, y, z, z̃,

β∗(̃x f d x̃ dvol∂M(̃x)) = h · xm s f ds du dz̃,

near right corner: τ̃ = t

x̃4
= ρtf, s̃ = x

x̃
= ρrf, ũ = y − ỹ

x̃
, z, x̃ = ρff, ỹ, z̃,

β∗(̃x f d x̃ dvol∂M(̃x)) = h · x̃m τ̃−1 d τ̃ dũ dz̃,

near top corner: ρ = t1/4 = ρff, ξ = x

ρ
= ρrf, ξ̃ = x̃

ρ
= ρlf, u

= y − ỹ

ρ
, y, z, z̃,

β∗(̃x f d x̃ dvol∂M(̃x)) = h · ρm ξ̃ f d ξ̃ du dz̃.
(4.2)

The projective coordinates and the transformation rule for the volume form where
the front and the temporal diagonal faces meet, is as follows

η = t1/4

x
= ρtd, S = x − x̃

t1/4
, U = y − ỹ

t1/4
, Z = x(z − z̃)

t1/4
, x = ρff, y, z,

β∗(̃x f d x̃ dvol∂M(̃x)) = h · xmηmdS dU dZ . (4.3)

When we combine the asymptotics of β∗(XH) in (4.1) with the behaviour of the
volume form in the various projective coordinates (4.2) and (4.3), we find that
β∗(XH x̃ f d x̃ dvol∂M(̃x)) has a singular behaviour of (ρffρtd)

−2 ≤ ct−1/4. Conse-
quently, we may estimate for X ∈ D and any continuous function, in particular for
any u ∈ C 0

ie(M)

‖Xe−t�2
F u‖∞ ≤ Ct−1/4‖u‖∞,

for some constant C > 0 independent of u. Furthermore, by Proposition 3.3,
β∗XH ∼ a0ρ0

rf, as ρrf → 0 for X ∈ D, where a0 is fibrewise constant,
i.e. independent of z ∈ F . Here the fact that for X ∈ x−1V ′

e its ∂y compo-
nent is weighted with a fibrewise constant function, is essential. Hence, indeed
Xe−t�2

F u ∈ t−1/4C 0
ie(M). This proves the statement for k = 0. The general

statement follows from the fact that due to (2.4), C 2k
ie (M,D) ⊂ D(�k

F ) and for
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any u ∈ D(�k
F ), �ke−t�2

F u = e−t�2
F �ku, by uniqueness of solutions to the

biharmonic heat equation with fixed initial condition.

Finally note that while t1/4Xe−t�2
F u is continuous even for X ∈ x−1 Ve, it

need not remain fibrewise constant at x = 0 since in general X may include vector
fields weightedwith z-dependent functions. Hence x−1 Ve is replaced by x1V ′

e inD,
where V ′

e ⊂ Ve consists locally of linear combinations of {x∂x , x∂y, ∂z}, weighted
with functions that are fibrewise constant. ��

Remark 4.2. A particular property1 of u ∈ C 2
ie(M,D) with {∂x , ∂y, x−1∂z} ⊂ D is

worth noticing. In the singular neighborhood of the edge, the distance defined by
the Riemannian edge metric g is equivalent to

d((x, y, z), (̃x, ỹ, z̃)) =
(
|x − x̃ |2 + |y − ỹ|2 + (x + x̃)2|z − z̃|2

)1/2
.

In local coordinates near the edge we find

u(x, y, z) − u(̃x, ỹ, z̃)

= u(x, y, z) − u(̃x, y, z) + u(̃x, y, z) − u(̃x, ỹ, z) + u(̃x, ỹ, z) − u(̃x, ỹ, z̃)

= ∂xu(ξ, y, z)(x − x̃) + ∂yu(̃x, γ, z)(y − ỹ) + x̃−1∂zu(̃x, ỹ, ζ ) x̃ (z − z̃).

Consequently we obtain

|u(x, y, z) − u(̃x, ỹ, z̃)| ≤ ||u||2 (|x − x̃ | + |y − ỹ| + (x + x̃)|z − z̃|)
≤ √

2 ||u||2 d((x, y, z), (̃x, ỹ, z̃)).

In other words, u ∈ C 2
ie(M,D) is automatically Lipschitz with respect to d.

Remark 4.3. We point out that Theorem 4.1 holds also when the basic space
C 0
ie(M) is replaced by the Banach space of sections continuous up to x = 0,

without the requirement of being fibrewise constant at ∂M . Also, we may set
D = 〈�, x−1 V2

e , x−1 Ve,Ve〉. The use of the refined space C 0
ie(M) and the restric-

tion of x−1 Ve to x−1V ′
e in D becomes however crucial in Theorem 5.3.

5. Short time existence of semi-linear equations of fourth order

In this section we explain how the mapping properties of the biharmonic heat
operator and its strong continuity yields short-time existence of solutions to certain
semilinear equations of fourth order.

1 It suffices that u is continuously differentiable to first order.
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5.1. The Banach fixed point argument

The underlying idea is based on a fixed point argument in the following theorem.

Theorem 5.1. [20, Proposition1.1 in 15]Let P be some, possibly unbounded, linear
operator in a Hilbert space H, bounded from below. Suppose that V,W ⊂ H are
Banach spaces, such that P : V → W is bounded and moreover

(i) e−t P : V −→ V is a strongly continuous semigroup, for t ≥ 0.
(ii) Q : V −→ W is locally Lipschitz,
(iii) e−t P : W −→ t−γ V bounded for some γ < 1.

Then for any u0 ∈ W, the initial value problem

∂t u − Pu = Q(u), u(0) = u0 ∈ W

has a unique solution u ∈ C([0, T ], V )2, for some T > 0, where T may be
estimated from below in terms of ||u0||V . The solution u is the fixed point of the
operator F : V → V with

F(u) = e−t Pu0 +
∫ t

0
e−(t−s)P Q(u)ds.

5.2. Strong continuity of the biharmonic heat operator

As seen fromTheorem 5.1, existence of solutions to certain semi-linear fourth order
equations crucially depends on the strong continuity property. Strong continuity
of the biharmonic heat operator with respect to the Banach space C 2k

ie (M,D) is
the content of the next theorem. Note that for strong continuity we will choose a
different spaceD′ of allowable operators, smaller than in Theorem 4.1. Beforehand
we note the following well-known functional analytic result.

Lemma 5.2. Let D be a self-adjoint non-negative unbounded operator in a Hilbert
space H. Then the following is true.

(i) A solution to (∂t + D2)u = 0, that is continuously differentiable in t > 0,
with u(t) ∈ D(D2) for t > 0 and limt→0 u(t) = u0 ∈ H, is unique, for any
fixed u0 ∈ H.

(ii) For any u0 ∈ D(D), we have De−t D2
u0 = e−t D2

Du0.

Proof. (i) For s ∈ (0, t] we compute

∂s e
−(t−s)D2

u(s) = −∂t e
−(t−s)D2

u(s) + e−(t−s)D2
∂s u(s)

= e−(t−s)D2
D2u(s) − e−(t−s)D2

D2u(s) = 0.

Consequently, e−(t−s)D2
u(s) is constant for s ∈ (0, t]. Since e−t D2

converges to
Id in the Hilbert space norm as t → 0 and, by assumption, u(t) is continuous at

2 Moreover, by [20, Proposition 1.2 in 15], u ∈ C∞((0, T ] × M).
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t = 0, we find that e−(t−s)D2
u(s) is constant for s ∈ [0, t]. Considering the limit

of e−(t−s)D2
u(s) as s → t and as s → 0 proves for any u0 ∈ H

u(t) = e−t D2
u0.

(ii) Consider λ ∈ Res(D2) in the resolvent set of D2. Then for any u0 ∈ D(D),
the resolvent (D2 − λ)−1u0 ∈ D(D2) and we compute

(D2 − λ)D(D2 − λ)−1u0 =D(D2 − λ)(D2 − λ)−1u0 = Du0,

⇒ D(D2 − λ)−1u0 = (D2 − λ)−1Du0.

The statement now follows by closedness of D and definition of the heat operator
as the strong limit e−t D2 := limn→∞

(
I + t D2/n

)−n
. ��

Theorem 5.3. Let (Mm, g) be an incomplete edge space with an admissible edge
metric g. Fix the Friedrichs extension �F of the corresponding Laplace–Beltrami
operator. Put D′ = 〈�,V2

e ,Ve〉. Then the associated biharmonic heat operator

e−t�2
F is a strongly continuous bounded map between Banach spaces

e−t�2
F : C 2k

ie (M,D′) → C 2k
ie (M,D′).

Proof. By (2.4), we have C 2k
ie (M,D′) ⊂ D(�k

F ) and hence for any u ∈
C 2k
ie (M,D′) we infer by the previous Lemma 5.2, �ke−t�2

F u = e−t�2
F �ku. This

reduces the statement to k = 1 and k = 0. Proof of both cases requires stochastic
completeness of the biharmonic heat kernel, which we explain below. Solutions to
the initial value problem

∂t u + �2u = 0, u(0) = u0, u(t) ∈ D(�2
F ), t > 0,

are unique and in fact given by u(t) = e−t�2
F u0 ∈ D(�2

F ). We have observed
in subsection 2.3 that, reversing eventual rescaling, the Friedrichs domain contains
precisely those elements in the maximal domain whose leading term in the weak
expansion as x → 0 is given by x0, with a fibrewise constant coefficient, cf. (2.4).
Consequently, the constant function 1 ∈ D(�F ). Moreover, �1 = 0 ∈ D(�F )

and consequently 1 ∈ D(�2
F ). The constant function 1 solves the heat equation

and hence we deduce by uniqueness of solutions the stochastic completeness

e−t�2
F 1 ≡

∫

M
H(t, p, p̃) dvolg( p̃) = 1, for all p ∈ M, t > 0. (5.1)

This reduces the case to k = 0, 1. We can now prove the statement for k =
0, basically repeating the arguments in ([2]) where the classical proof of strong
continuity of the heat operator on closed (non-singular) manifolds is adapted to the
present setup. Using stochastic completeness we find

(e−t�2
F u)(p, t) − u(p) =

∫

M
H (t, p, p̃) (u( p̃) − u(p)) dvolg( p̃).
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Consider the distance function d(p, p̃) induced by the incomplete edge metric g.
In the singular neighborhood of the edge, the distance is equivalent to

d((x, y, z), (̃x, ỹ, z̃)) =
(
|x − x̃ |2 + |y − ỹ|2 + (x + x̃)2|z − z̃|2

)1/2
.

Note that u ∈ C 0
ie(M) is continuous with respect to the topology induced by the

Riemannian metric g and hence by the distance function d. Hence for any ε > 0
there exists some δ(ε) > 0, such that for d(p, p̃) ≤ δ(ε) one has |u(p)−u( p̃)| ≤ ε.
For any given ε > 0 we separate the integration region into

M+
ε := { p̃ | d(p, p̃) ≥ δ(ε)},

M−
ε := { p̃ | d(p, p̃) ≤ δ(ε)}. (5.2)

Employing continuity of u we find

|e−t�2
F u − u| =

∣∣∣∣
∫

M
H (t, p, p̃) (u( p̃) − u(p)) dvolg( p̃)

∣∣∣∣

≤
∫

M+
|H (t, p, p̃) | · |u( p̃) − u(p)| dvolg( p̃)

+
∫

M−
|H (t, p, p̃) | · |u( p̃) − u(p)| dvolg( p̃)

≤ 2
t1/4

δ(ε)
‖u‖0

∫

M+
|H (t, p, p̃) | d(p, p̃)

t1/4
dvolg( p̃)

+ ε

∫

M−
|H (t, p, p̃) | dvolg( p̃).

It may be checked in the various projective coordinates around the front face in
the heat spaceM 2

h , that β
∗(|H | dvolg) and β∗(d(p, p̃)t−1/4)ρtf is bounded. Since

β∗|H | is vanishing to infinite order at tf, we find that both integrals above are
bounded uniformly in (t, p, ε). Therefore we obtain

‖e−t�u − u‖0 ≤ C

(
t1/4

δ(ε)
‖u‖0 + ε

)
.

Thus, for any given ε > 0 we can estimate ‖e−t�u − u‖0 ≤ 2εC for t1/4 <

εδ(ε)/‖u‖0. This proves strong continuity of the biharmonic heat operator on
C 0
ie(M). It remains to prove the case k = 1. Strong continuity of the biharmonic

heat operator with respect to C 2
ie(M) means ‖X (e−t�2

F u − u)‖0 → 0 as t → 0,
for u ∈ C 2

ie(M) and X ∈ D′. If X = �, this follows from the case k = 0, since

�e−t�2
F u = e−t�2

F �u for u ∈ C 2
ie(M) ⊂ D(�F ). For X ∈ {V2

e ,Ve} the leading
order of β∗H at the front face is preserved under X , so that away from td, the
estimates reduce to the case k = 0.

Near td, a priori XH admits ρ−2
td singular behaviour at the temporal diagonal.

However, integration by parts, exactly as worked out in detail in [2] allows to pass
derivatives X to u, so that the estimates again reduce to the case k = 0. We write
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down the argument for completeness. The edge vector fields obey the following
transformation rules in projective coordinates (2.8) near the temporal diagonal

β∗(x∂x ) = −η∂η + 1

η
∂S + Z∂Z + x∂x , β∗(x∂y)

= 1

η
∂U + x∂y, β∗(∂z) = 1

η
∂Z + ∂z .

By Proposition 3.3

β∗H(η, S,U, Z , x, y, z) = x−mη−mG(η, S,U, Z , x, y, z),

β∗(̃x f d x̃ dvol∂M(̃x)) = h(xη)m(1 − ηS) f dS dU dZ ,

where G is bounded in its entries, and in fact infinitely vanishing as |(S,U, Z)| →
∞, and h = h (η, x(1 − ηS), y − xηU, z − ηZ , x, y, z) is a bounded distribution
on M 2

h . We consider ||x∂x (e−t�u − u)||0. Using stochastic completeness of the
heat kernel, we find

F := x∂x (e
−t�u − u) =

∫
(x∂x H)u(̃x, ỹ, z̃)̃x f d x̃ dvol∂M(̃x)

−
∫

(x∂x )[Hu(x, y, z)̃x f d x̃ dvol∂M(̃x)] =: F1 − F2.

Next we transform to projective coordinates and integrate by parts in S, where the
boundary terms lie away from the diagonal and hence are vanishing to infinite order
for t → 0 by the asymptotic behaviour of the heat kernel. Omitting these irrelevant
terms, we obtain

F1 =
∫ (

−η∂η + 1

η
∂S + Z∂Z + x∂x

) [
(xη)−mG(η, S,U, Z , x, y, z)

]

× u (x(1 − ηS), y − xηU, z − ηZ) h(xη)m(1 − ηS) f dS dU dZ

=
∫ [

(−η∂η + Z∂Z + x∂x )(xη)−mG
] · u h(xη)m(1 − ηS) f dS dU dZ

−
∫

G

[(
1

η
∂S

)
u

]
h(1 − ηS) f dS dU dZ

−
∫

(xη)−mG · u
[(

1

η
∂S

)
h(xη)m(1 − ηS) f

]
dS dU dZ .

We perform similar computations for F2:

F2 =
∫ [

(x∂x H)u(x, y, z) + H(x∂xu)
]
x̃ f d x̃ dvol∂M(̃x)

=
∫ ([

−η∂η+1

η
∂S+Z∂Z+x∂x

]
(xη)−mG

)
u · h(xη)m(1 − ηS) f dS dU dZ

+
∫

G(η, S,U, Z , x, y, z)(x∂xu(x, y, z))h(1 − ηS) f dS dU dZ
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=
∫ [

(−η∂η + Z∂Z + x∂x )(xη)−mG
] · u h(xη)m(1 − ηS) f dS dU dZ

−
∫

(xη)−mG · u
[(

1

η
∂S

)
h(xη)m(1 − ηS) f

]
dS dU dZ

+
∫

G(η, S,U, Z , x, y, z)(x∂xu(x, y, z))h(1 − ηS) f dS dU dZ .

Thus F = F1 − F2 becomes

F =
∫ [

(−η∂η + Z∂Z + x∂x )(xη)−mG(η, S,U, Z , x, y, z)
]
h(xη)m(1 − ηS) f

× (u(x(1 − ηS), y − xηU, z − ηZ) − u(x, y, z))dS dU dZ

−
∫

G(η, S,U, Z , x, y, z)

[(
1

η
∂S

)
h · (1 − ηS) f

]

× (u(x(1 − ηS), y − xηU, z − ηZ) − u(x, y, z))dS dU dZ

−
∫

G

[
1

η
∂Su(x(1 − ηS), y − xηU, z − ηZ) + x∂xu(x, y, z)

]

× h(1 − ηS) f dS dU dZ .

Now, each of the three integrals is estimated as above for k = 0 by separating the
integration region into M+

ε and M−
ε for any given ε > 0. Note that in the final

integral we use the fact that u ∈ C 2
ie(M,D′) so that η−1∂Su and x∂xu are bounded.

Higher order and other edge derivatives may be estimated in a similar way. This
proves strong continuity in general and as a trivial consequence boundedness of the
biharmonic heat operator. ��

5.3. Existence and regularity of solutions

We can now establish our final existence and regularity results.

Corollary 5.4. Let (M, g) be an incomplete edge space with an admissible edge
metric g. PutD′ = 〈�,V2

e ,Ve〉 andD = 〈�, x−1 V2
e , x−1V ′

e,Ve〉, where V ′
e ⊂ Ve

consists locally of linear combinations of {x∂x , x∂y, ∂z}, where x∂y is weightedwith
functions that are fibrewise constant. Assume Q : C 2(k+1)

ie (M,D′) → C 2k
ie (M,D′)

is locally Lipschitz. Then the semilinear equation

∂t u + �2u = Q(u), u(0) = u0 ∈ C 2(k+1)
ie (M,D′)

has a unique solution u ∈ C([0, T ],C 2(k+1)
ie (M,D))∩C∞((0, T ]× M), for some

T > 0, where T may be estimated from below in terms of ||u0||2(k+1).

Proof. Consider first a slightly smaller set of operators D′ = 〈�,V2
e ,Ve〉 and set

W = C 2k
ie (M,D′), V = C 2(k+1)

ie (M,D′). In view of Theorem 4.1 and Theorem
5.3, the heat operator associated to�2

F satisfies the conditions of Theorem 5.1 with
γ = 1/4. Consequently, by Theorem 5.1 the unique solution u exists and lies in
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C 2(k+1)
ie (M,D′). This solution is the fixed point of the map F : C 2(k+1)

ie (M,D′) →
C 2(k+1)
ie (M,D′) with

F(u) = e−t�2
F u0 +

∫ t

0
e−(t−s)�2

F Q(u)ds.

However, by Theorem 4.1, F actually maps C 2(k+1)
ie (M,D′) ⊂ C 2(k+1)

ie (M,D0)

to C 2(k+1)
ie (M,D). Consequently, u ∈ C 2(k+1)

ie (M,D), with a slightly better regu-
larity, as claimed. ��

We now apply this general existence result to the example of the Cahn–Hilliard
equation on an incomplete edge manifold. We define

Q : C 2k+2
ie (M,D) → C 2k

ie (M,D), Q(u) := �(u − u3).

The mapping Q is indeed locally Lipschitz, since for any u, v ∈ C 2k+2
ie (M,D)

‖Q(u − v)‖2k ≤ ‖�(u − v)‖2k + ‖�(u − v)3‖2k
≤ ‖u − v‖2(k+1)

(
1 + ‖u − v‖22(k+1)

)
.

We hence arrive at our final result.

Corollary 5.5. Let (M, g) be an incomplete edge space with an admissible edge
metric g. PutD′ = 〈�,V2

e ,Ve〉 andD = 〈�, x−1 V2
e , x−1V ′

e,Ve〉, where V ′
e ⊂ Ve

consists locally of linear combinations of {x∂x , x∂y, ∂z}, where x∂y is weighted
with functions that are fibrewise constant. Then the Cahn–Hilliard equation

∂t u + �2u + �(u − u3) = 0, u(0) = u0 ∈ C 2(k+1)
ie (M,D′)

has a unique solution u ∈ C([0, T ],C 2k+2
ie (M,D)) ∩ C∞((0, T ] × M), for some

T > 0.
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