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Abstract. In this note, we obtain sharp bounds for the Green’s function of the linearized
Monge–Ampère operators associated to convex functions with either Hessian determinant
bounded away from zero and infinity or Monge–Ampère measure satisfying a doubling con-
dition.Our result is an affine invariant version of the classical result of Littman–Stampacchia–
Weinberger for uniformly elliptic operators in divergence form. We also obtain the L p inte-
grability for the gradient of the Green’s function in two dimensions. As an application, we
obtain a removable singularity result for the linearized Monge–Ampère equation.

1. Introduction and statement of the main result

In [7], Littman–Stampacchia–Weinberger established the fundamental sharpbounds
for the Green’s function of linear, uniformly elliptic operator in divergence form
L = −∂ j (ai j∂i ) on a smooth, bounded domain V ⊂ IRn . Here the coefficient
matrix (ai j ) is symmetric with real, bounded measurable entries and uniformly
elliptic, that is, there are positive constants λ,� such that

λIn ≤ (ai j ) ≤ �In . (1.1)

This condition is invariant under the orthogonal transformation of coordinates. Let
g(x, y) be the Green’s function of the operator L on V , that is, for each y ∈ V ,
g(·, y) is a positive solution of

Lg(·, y) = δy in V, and g(·, y) = 0 on ∂V .

Then, it was shown in [7] that g is comparable to theGreen’s function of the Laplace
operator −�. In particular, g satisfies the following sharp bounds in dimensions
n ≥ 3:

C−1|x − y|−(n−2) ≤ g(x, y) ≤ C |x − y|−(n−2) ∀y ∈ V (1.2)

where C = C(n, λ,�, V, dist (y, ∂V )). Other important properties of g such as
integrability and continuity of its gradient were studied by Grüter–Widman in [4].

This note is concerned with estimates, analogous to (1.2), for the Green’s func-
tion of the linearized Monge–Ampère equation, an affine invariant version of (1.1).
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Let � be a bounded, smooth, uniformly convex domain in IRn and μ a Borel mea-
sure in � with μ(�) < ∞. Let u be a convex function satisfying the following
Monge–Ampère equation in the sense of Aleksandrov (see [5])

det D2u = μ in �, u = 0 on ∂�. (1.3)

We consider two typical cases. The first case is when μ = f dx where f is
bounded from below and above by some positive constants λ,�:

λ ≤ f ≤ � in �. (1.4)

The second case is when μ is doubling with respect to the center of mass. This will
be made more precise later. We assume throughout the note that u is smooth but
our estimates do not depend on the smoothness of u.

Denote byU = (Ui j ) ≡ (det D2u)(D2u)−1 the cofactor matrix of the Hessian
matrix D2u. Then, the linearized operator of the Monge–Ampère equation (1.3) is
given by

Luv := −Ui jvi j ≡ −(Ui jv)i j .

The last equation is due to the fact that U = (Ui j ) is divergence-free. The reader
is referred to [2,12] and the references therein for more information on the theory
of linearized Monge–Ampère equation and its applications to fluid mechanics and
differential geometry.

The Monge–Ampère and linearized Monge–Ampère equations are invariant
under unimodular transformation of coordinates. Indeed, let T be a linear transfor-
mation with det T = 1. Then, the rescaled functions

ũ(x) = u(T x), ṽ(x) = v(T x),

satisfy

det D2ũ(x) = det D2u(x), Ũ i j ṽi j (x) = Ui jvi j (T x).

The linearizedMonge–Ampère operator Lu is in general not uniformly elliptic.
Under (1.3) and (1.4), the eigenvalues of U = (Ui j ) are not necessarily bounded
away from 0 and∞. The degeneracy is the main difficulty in establishing our affine
invariant analogue of (1.2). As in [2], we handle the degeneracy of Lu by working
with sections of solutions to the Monge–Ampère equations. These sections have
the same role as Euclidean balls have in the classical theory. The section of u with
center x0 and height t is defined by

Su(x0, t) = {x ∈ � : u(x) < u(x0) + ∇u(x0)(x − x0) + t}.
We say that the Borel measure μ is doubling with respect to the center of mass on
the sections of u if there exist constants β > 1 and 0 < α < 1 such that for all
sections Su(x0, t),

μ(Su(x0, t)) ≤ βμ(αSu(x0, t/2)). (1.5)

Here αSu(x0, t) denotes the α-dilation of Su(x0, t)with respect to its center of mass
x∗:

αSu(x0, t) = {x∗ + α(x − x∗) : x ∈ Su(x0, t)}.
Let gV (x, y) be the Green’s function of Lu in V where V ⊂⊂ �.
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1.1. The main result

In this note, we obtain the sharp upper bounds for gV in all dimensions when u
satisfies (1.3) and (1.4). We also obtain the sharp lower bounds for gV when μ

satisfies a more general doubling condition (1.5). Our main result states:

Theorem 1.1. Fix x0 ∈ V . Suppose that 0 < t < 1/4, Su(x0, 2t) ⊂⊂ V if n ≥ 3
and Su(x0, t1/2) ⊂⊂ V if n = 2.

(i) Assume that (1.3) and (1.4) are satisfied. Then, for x ∈ Su(x0, t), we have

gV (x, x0) ≥
{
c(n, λ,�)t− n−2

2 if n ≥ 3
c(n, λ,�)|log t | if n = 2.

Moreover, for x ∈ ∂Su(x0, t), we have

gV (x, x0) ≤
{
C(V,�, n, λ,�)t− n−2

2 if n ≥ 3
C(V,�, n, λ,�)|log t | if n = 2.

(ii) Assume that (1.3) and (1.5) are satisfied. Then, for x ∈ Su(x0, t), we have

gV (x, x0) ≥

⎧⎪⎨
⎪⎩
c(n, α, β)t (μ(Su(x0, t)))−1 if n ≥ 3

c(n, α, β)
|log t |2∫ t1/2

t
μ(Su(x0,s))ds

s2

if n = 2.

(iii) Suppose that n = 2 and (1.3) and (1.4) are satisfied. Then there exists
p∗(n, λ,�) > 1 such that for all 1 < p < p∗ and all Su(x0, r1/2) ⊂⊂ V , we
have

(∫
Su(x0,r)

|∇gV (x, x0)|pdx
) 1

p ≤ C(V,�, n, p, λ,�, r).

Our estimates in Theorem 1.1 depend only on the dimension, the upper and lower
bound of theHessian determinant. They do not depend on the bounds on eigenvalues
of the Hessian matrix D2u. Properties of the Green’s function gV have played an
important role in establishing Sobolev inequality for the Monge–Ampère quasi-
metric structure [8,11].

Remark 1.2. In Theorem 1.1 (iii), we can choose

p∗ = 1 + ε

2 + ε

where ε = ε(n, λ,�) comes from De Philippis–Figalli–Savin and Schmidt’s
W 2,1+ε estimates [3,10] for theMonge–Ampère equation satisfying (1.3) and (1.4).
Thus p∗ → 2 when ε → ∞. Hence, by Caffarelli’sW 2,p estimates for theMonge–
Ampère equations [1], we can take p∗ = 2 when f is continuous.
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Remark 1.3. In the case of Green’s function of uniformly elliptic operators, The-
orem 1.1 (iii) with all p < 2 is attributed to Stampacchia. In higher dimensions,
Grüter and Widman [4] proved the L p integrability of the gradient of the Green’s
function for all p < n

n−1 . It would be interesting to prove the L p integrability for
some p > 1 for the gradient of the Green’s function of the linearized Monge–
Ampère operator in dimensions n ≥ 3.

As a corollary, we use the sharp lower bound for the Green’s function in Theo-
rem 1.1 to prove a removable singularity result for the linearized Monge–Ampère
equation.

Corollary 1.4. Assume that V ⊂⊂ � and λ ≤ det D2u ≤ � in �. Suppose that a
function v solves Ui jvi j = 0 in Su(0, R)\{0} ⊂ V and satisfies

|v(x)| =
{
o(r

2−n
2 ) if n ≥ 3

o(|log r |) if n = 2
on ∂Su(0, r) as r → 0.

Then v has a removable singularity at 0.

1.2. Previous results

Various properties of the Green’s function of the linearized Monge–Ampère op-
erator Lu under different conditions on μ have been studied by several authors,
including Tian–Wang [11] and Maldonado [8]. Tian–Wang [11] proved a decay
estimate for the distribution function of gV under an (A∞) weight condition on μ

[called (CG) there] and certain conditions on the size of sections of u.

Proposition 1.5. ([11, Lemma 3.3])Assume thatμ satisfies the structure condition:
CG. For any given ε > 0, there exists δ > 0 such that for any convex set S ⊂ � and
any set E ⊂ S, if |E | ≤ δ|S|, then μ(E) ≤ εμ(S) where | · | denotes the Lebesgue
measure. Suppose that for any section Su(x, h) ⊂ � of u, we have

C1|Su(x, h)|1+θ ≤ μ(Su(x, h)) ≤ C2|Su(x, h)| 1
n−1+σ ,

where θ ≥ 0,C1,C2, σ > 0 are constants. Then, for any y ∈ V ,

μ{x ∈ V : gV (x, y) > t} ≤ Kt−
n(1+θ)

(n−1)(1+θ)−1 .

When μ satisfies (1.5) only, and V = Su(x, t), Maldonado [8] obtained a similar
result on the decay estimate for the distribution function of gV . His result can be
stated as follows.

Proposition 1.6. ([8, Theorem 3]) Suppose V = Su(x, t) ⊂⊂ �. There exists a
constant K1 depending only on n, α, β such that for all z ∈ Su(x, t/2), we have

μ({y ∈ V : gV (y, z) > T }) ≤ K1(μ(Su(x, t)))
− 1

n−1 t
n

n−1 T− n
n−1 ∀T > 0.
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Remark 1.7. 1. If u satisfies (1.3) and (1.4), then in dimensions n ≥ 3, Propo-
sition 1.5 gives a sharp upper bound for gV . In particular, for small t and
x ∈ ∂Su(x0, t), we have

gV (x, x0) ≤ Ct−
n−2
2 .

2. If u satisfies (1.3) and (1.5), then Proposition 1.6 gives a sharp upper bound for
gV in dimensions n ≥ 3 when V is a section of u. When V = Su(x0, t), we
have

gV (x, x0) ≤ K
n−1
n

1 t[μ(Su(x0, t)]− 1
n [μ(Su(x0, s))]− n−1

n

∀ x ∈ ∂Su(x0, s) (0 < s < t).

In particular, by Lemma 2.4, we have

gV (x, x0) ≤ C(K1, α, β)t[μ(Su(x0, t)]−1 ∀ x ∈ ∂Su(x0, t/2).

For reader’s convenient, we will prove the estimates in this remark in Sect. 3.
The proof of (1.2) in [7] was based on potential theory employing capacity

and the fundamental result of De Giorgi–Nash–Moser on Hölder continuity of
solutions of uniformly elliptic equations in divergence form. Our proof of Theorem
1.1 (i) is based on the fundamental result of Caffarelli–Gutiérrez [2] on Hölder
continuity of solutions of the linearized Monge–Ampère equation. We find a direct
argument for Theorem 1.1 (i) without using capacity; see Sect. 3. We also provide
an alternate proof for the lower bound of the Green’s function in Theorem 1.1
using capacity; see Sect. 4. This potential theoretic approach works for general
doubling Monge–Ampère measures, thus allowing us to prove Theorem 1.1 (ii);
one of the key ingredients here isMaldonado’s Harnack inequality [9] for linearized
Monge–Amnpère equations under a doubling condition. The proof of Theorem
1.1 (iii) makes use of De Philippis–Figalli–Savin and Schmidt’s W 2,1+ε estimates
[3,10] for the Monge–Ampère equation that are valid for all dimensions and the
Lq integrability of the Green’s function for all finite q in two dimensions.

2. Preliminaries

Throughout, we denote by c, C positive constants depending on λ, �, n, α, β,
and their values may change from line to line whenever there is no possibility of
confusion. We refer to such constants as universal constants.

2.1. Monge–Ampère measure bounded away from 0 and ∞

In this section, we assume that

λ ≤ det D2u ≤ � in �.

Throughout, we use the following volume growth for compactly supported sections:
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Lemma 2.1. If Su(x, t) ⊂⊂ � then

c1(n, λ,�)t
n
2 ≤ |Su(x, t)| ≤ C1(n, λ,�)t

n
2 .

The Caffarelli–Gutiérrez’s Harnack inequality for the linearized Monge–Ampère
equation states:

Theorem 2.2. ([2]) For each compactly supported section Su(x, t) ⊂⊂ �, and any
nonnegative solution v of Luv = 0 in Su(x, t), we have

sup
Su(x,τ t)

v ≤ C inf
Su(x,τ t)

v

for universal τ,C.

Since the linearized Monge–Ampère operator Luv can be written in both di-
vergence form and non-divergence form, Caffarelli–Gutiérrez’s theorem is the
affine invariant analogue of De Giorgi–Nash–Moser’s theorem and also Krylov–
Safonov’s theorem onHölder continuity of solutions of uniformly elliptic equations
in nondivergence form. Theorem 2.2 will play an important role in our proof of the
main result.

We also need the following Vitali type covering lemma.

Lemma 2.3. (Vitali covering, [3]) Let D be a compact set in � and assume that to
each x ∈ D we associate a corresponding section Su(x, h) ⊂⊂ �. Then we can
find a finite number of these sections Su(xi , hi ), i = 1, . . . ,m, such that

D ⊂
m⋃
i=1

Su(xi , hi ), with Su(xi , δhi ) disjoint,

where δ > 0 is a small constant that depends only on λ, � and n.

2.2. Monge–Ampère measure satisfying a doubling condition

In this section, we assume that det D2u = μ where μ satisfies (1.5). Then μ is
doubling with respect to the parameter on the sections of u:

Lemma 2.4. ([5], Corollary 3.3.2) If Su(x, 2t) ⊂⊂ � then there is a constant β ′
depending only on n, β and α such that

μ(Su(x, 2t)) ≤ β
′
μ(Su(x, t)).

Maldonado [9], extending the work of Caffarelli–Gutiérrez, proved the follow-
ingHarnack inequality for the linearizedMonge–Ampère underminimal geometric
condition, namely, the doubling condition (1.5).

Theorem 2.5. ([9]) For each compactly supported section Su(x, t) ⊂⊂ �, and any
nonnegative solution v of Luv = 0 in Su(x, t), we have for

sup
Su(x,τ t)

v ≤ C inf
Su(x,τ t)

v

for universal τ,C depending only on n, β and α.
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3. Bounding the Green’s function

In this section, we prove Theorem 1.1 (i) and (iii) and Corollary 1.4. Assume
throughout this section that (1.3) and (1.4) are satisfied.

The proof of Theorem 1.1 (i) relies on three Lemmas 3.1, 3.2 and 3.3. Lemma
3.1 gives the bounds for the Green’s function gV (x, x0) in the special case where
V is itself a section of u centered at x0. Lemma 3.2 estimates how the maximum
of gV (x, x0) on a section of u centered at x0 changes when we pass to a concentric
section with double height. Lemma 3.3 gives the upper bound for gV near ∂V .

Lemma 3.1. If V = Su(x0, t) then

gV (x, x0) ≥ c(n, λ,�)t−
n−2
2 ∀x ∈ Su(x0, t/2)

and

gV (x, x0) ≤ C(n, λ,�)t−
n−2
2 ∀x ∈ ∂Su(x0, t/2).

Lemma 3.2. If Su(x0, 2t) ⊂⊂ V , then

max
x∈∂Su(x0,t)

gV (x, x0) ≤ Ct−
n−2
2 + max

z∈∂Su(x0,2t)
gV (z, x0). (3.1)

Lemma 3.3. There exist constants r(V,�, n, λ,�) and C(V,�, n, λ,�) such
that

Su(x0, 2r) ⊂⊂ V and max
x∈∂Su(x0,r)

gV (x, x0) ≤ C(V,�, n, λ,�). (3.2)

Proof of Theorem 1.1. Part (i).We will prove the lower and upper bound for gV .
Lower bound for gV . Consider the following cases.
Case 1: n ≥ 3 and Su(x0, 2t) ⊂⊂ V . In this case, the difference w := gV (x, x0)−
gSu(x0,2t)(x, x0) solves

Ui jwi j = 0 in Su(x0, 2t), with w > 0 on ∂Su(x0, 2t).

Thus, by the maximum principle, w(x) ≥ 0 for x ∈ Su(x0, t). It follows from
Lemma 3.1 that

gV (x, x0) ≥ gSu(x0,2t)(x, x0) ≥ c(n, λ,�)t−
n−2
2 ∀x ∈ Su(x0, t).

Case 2: n = 2 and Su(x0, t1/2) ⊂⊂ V . Suppose that Su(x0, 2h) ⊂⊂ V . Then, the
function

w(x) = gV (x, x0) − inf
y∈∂Su(x0,2h)

gV (y, x0) − gSu(x0,2h)(x, x0)

satisfies

Luw = 0 in Su(x0, 2h) with w ≥ 0 on ∂Su(x0, 2h).
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By the maximum principle, we have w ≥ 0 in Su(x0, 2h). Thus, by Lemma 3.1,
we find that

gV (x, x0) − inf
y∈∂Su(x0,2h)

gV (y, x0) ≥ gSu(x0,2h)(x, x0) ≥ c ∀ x ∈ Su(x0, h).

(3.3)
Choose an integer k ≥ 1 such that 2k ≤ t−1/2 < 2k+1. Then

|log t| ≤ Ck and 2k t ≤ t1/2.

Applying (3.3) to h = t, 2t, . . . , 2k−1t , we get

inf
y∈∂Su(x0,t)

gV (y, x0)≥ inf
y∈∂Su(x0,2t)

gV (y, x0)+c ≥ · · ·≥ inf
y∈∂Su(x0,2k t)

gV (y, x0)+kc

≥ kc ≥ c|log t|.
Upper bound for gV . Our proof of the upper bound for gV just follows from
iterating the estimate in Lemma 3.2 and the upper bound for gV near ∂V in Lemma
3.3.
Part (iii). Recall that in this part n = 2. Let v(x) = gV (x, x0) and S = Su(x0, r).
Then the upper bound for v in Theorem 1.1 (i) implies that v ∈ Lq(S) for all q < ∞
with the bound

‖v‖Lq (S) ≤ C(V,�, λ,�, q, r). (3.4)

By [9, Theorem 6.2], we have
∫
S
Ui jvi (x)v j (x)

1

v(x)2
dx ≤ C(n, λ, λ)

μ(S)

r
≤ C(n, λ, λ) (3.5)

where we used the upper bound on volume of section in Lemma 2.1 in the last
inequality. Next, we use the following inequality

Ui jvi (x)v j (x) ≥ det D2u|∇v|2
�u

whose simple proof can be found in [2, Lemma2.1]. Thus, for all integrable function
f we have

|∇v|2| f |2 = (�u| f |2) |∇v|2
�u

≤ 1

λ
(�u| f |2)det D

2u|∇v|2
�u

≤ 1

λ
(�u| f |2v2)Ui jvi (x)v j (x)

1

v(x)2
.

Integrating over S and using Cauchy-Schwartz inequality and (3.5), one finds

∫
S
|∇v|| f | ≤ 1√

λ

(∫
S
Ui jvi (x)v j (x)

1

v(x)2

)1/2 (∫
S
�u| f |2v2

)1/2

≤ C(n, λ,�)

(∫
S
�u| f |2v2

)1/2

. (3.6)
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By the De Philippis–Figalli–Savin and Schmidt’sW 2,1+ε estimates for theMonge–
Ampère equation [3,10], there exists ε = ε(n, λ,�) > 0 such that D2u ∈
L1+ε
loc (�). Thus, by Hölder inequality,

∫
S
�u| f |2v2 ≤

(∫
S
(�u)1+ε

) 1
1+ε

(∫
S
| f | 2(1+ε)

ε v
2(1+ε)

ε

) ε
1+ε

≤ C(n, λ,�, r)

(∫
S
| f | 2(1+ε)

ε v
2(1+ε)

ε

) ε
1+ε

. (3.7)

From (3.4), we find that
(∫

S | f | 2(1+ε)
ε v

2(1+ε)
ε

) ε
1+ε

is finite if f ∈ L
p

p−1 (S) where
p

p−1 >
2(1+ε)

ε
, or

p < 1 + ε

2 + ε
:= p∗.

Combining (3.6) with (3.7) and (3.4), one finds that∫
S
|∇v|| f | ≤ C(V,�, n, p, λ,�, r)‖ f ‖

L
p

p−1 (S)

for all f ∈ L
p

p−1 (S) where 1 < p < p∗. Theorem 1.1 (iii) then follows from
duality. ��
Proof of Corollary 1.4. Let ṽ solves{

Ui j ṽi j = 0 in Su(0, R),

ṽ = v on ∂Su(0, R).

We will prove that v = ṽ in Su(0, R)\{0}. We only consider the case n ≥ 3. The
case n = 2 is similar. Let w = ṽ − v in Su(0, R)\{0} and Mr = max∂Su(0,r) |w|.
Let σ(x) = gSu(0,R)(x, 0). By the lower bound for the Green’s function in Theorem
1.1, it is obvious that

|w(x)| ≤ CMrr
n−2
2 σ(x) on Su(0, r).

Note that

Ui j (w − CMrr
n−2
2 σ(x))i j = 0 in Su(0, R)\Su(0, r).

Thus, by the maximum principle in Su(0, R)\Su(0, r), we have
|w(x)| ≤ CMrr

n−2
2 σ(x) in Su(0, R)\Su(0, r).

Observe that

Mr = max
∂Su(0,r)

|v − ṽ| ≤ M + max
∂Su(0,r)

|v|

where M = max∂Su(0,R) |ṽ|. For each fixed x �= 0, we can choose r small so that
x �∈ Su(0, r) and hence, by our hypothesis on the asymptotic behavior of v near 0,

|w(x)| ≤ CMr
n−2
2 σ(x) + Cσ(x)r

n−2
2 max

∂Su(0,r)
|v| → 0 as r → 0.

This proves v = ṽ in Su(0, R)\{0}. ��
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Proof of Lemma 3.1. By subtracting a linear function, we can assume that u ≥
0 and u(x0) = 0. For simplicity, let us denote σ(x) = gV (x, x0). Then on V =
Su(x0, t), σ satisfies {

Luσ = δx0 in V,

σ = 0 on ∂V .
(3.8)

Multiplying both sides of (3.8) by u(x) − t and integrating by parts twice, we get

−t = u(x0) − t =
∫
V
(Luσ)(u − t) =

∫
V

−Ui jσi j (u − t)

=
∫
V

−Ui jσui j =
∫
V

−n f σ.

The bounds on f then give the following bounds for the integral of σ :

t

nλ
≥

∫
V

σ ≥ t

n�
.

On the other hand, by the ABP estimate, for any ϕ ∈ Ln(V ), the solution ψ to

−Ui jψi j = ϕ in V, ψ = 0 on ∂V,

satisfies ∣∣∣∣
∫
V

σ(x)ϕ(x)dx

∣∣∣∣ = |ψ(x0)| ≤ C(n)|V |1/n
∥∥∥ ϕ

detU

∥∥∥
Ln(V )

≤ C(n, λ,�)|V |1/n‖ϕ‖Ln(V ).

Here we used the identity detU = (det D2u)n−1. By duality, we obtain

(∫
V

σ
n

n−1

) n−1
n ≤ C(n, λ,�)|V |1/n .

This is essentially inequality (2.3) in [8]. Hence, by Lemma 2.1,

‖σ‖
L

n
n−1 (Su(x0,t))

≤ C(n, λ,�)t1/2.

Let

K = (Su(x0, t)\Su(x0, r2t)) ∪ Su(x0, r1t)

where 0 < r1 < 1/2 < r2 < 1. Then, by [5, Lemma 6. 5. 1] and Lemma 2.1, we
can estimate

|K | ≤ n(1 − r2)|Su(x0, t)| + |Su(x0, r1t)|
≤ C1n(1 − r2)t

n/2 + C1(r1t)
n/2 ≤ εntn/2

for

ε = min

{
1

2C1(n, λ,�)n�
,

(
1

2c1

)1/n
}
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if r1, 1 − r2 are universally small. Then by Lemma 2.1,

c1
2
tn/2 ≤ |Su(x0, t)\K | ≤ C1t

n/2. (3.9)

On the other hand, by Holder inequality, we have
∫
K

σ ≤ ‖σ‖
L

n
n−1 (K )

|K |1/n ≤ C(n, λ,�)t1/2εt1/2 = t

2n�
.

It follows that
t

nλ
≥

∫
Su(x0,t)\K

σ ≥ t

2n�
. (3.10)

Given 0 < r1 < r2 < 1 as above, we have

sup
Su(x0,t)\K

σ ≤ C(n, λ,�) inf
Su(x0,t)\K

σ. (3.11)

Combining (3.9)–(3.11), we find that

C−1(n, λ,�)t−
n−2
2 ≤ σ(x) ≤ C(n, λ,�)t−

n−2
2 ∀x ∈ Su(x0, t)\K .

This line of argument is very similar to the proof of Lemma 5.1 in [6]. Since
r2 > 1/2 > r1, we obtain the desired upper bound for σ(x) = gV (x, x0) when
x ∈ ∂Su(x0, t/2) while from the maximum principle, we obtain the desired lower
bound for σ(x) = gV (x, x0) when x ∈ Su(x0, t/2).

For completeness, we include the details of (3.11). By [5, Theorem 3.3.10], we
can find a universal α ∈ (0, 1) such that for each x ∈ Su(x0, t)\K , the section
Su(x, αt) satisfies

x0 �∈ Su(x, αt) and Su(x, αt) ⊂ Su(x0, t).

Using Lemma 2.3, we can find a collection of sections Su(xi , ταt) with xi ∈
Su(x0, t)\K such that

Su(x0, t)\K ⊂
⋃
i∈I

Su(xi , ταt)

and Su(xi , δταt) are disjoint for some universal δ ∈ (0, 1). By using the volume
estimates in Lemma 2.1, we find that |I | is universally bounded. Now, we apply
Theorem 2.2 to each Su(xi , αt) to obtain (3.11). ��
Proof of Lemma 3.2. To prove (3.1), we consider

w(x) = gV (x, x0) − inf
y∈∂Su(x0,2t)

gV (y, x0) − gSu(x0,2t)(x, x0).

It satisfies

Luw = 0 in Su(x0, 2t) with w ≥ 0 on ∂Su(x0, 2t).
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In Su(x0, 2t), w attains its maximum value on the boundary ∂Su(x0, 2t). Thus, for
x ∈ ∂Su(x0, t), we have

gV (x, x0) − inf
y∈∂Su(x0,2t)

gV (y, x0) − gSu(x0,2t)(x, x0) ≤ max
z∈∂Su(x0,2t)

w

= max
z∈∂Su(x0,2t)

gV (z, x0) − inf
y∈∂Su(x0,2t)

gV (y, x0)

since gSu(x0,2t)(x, x0) = 0 on ∂Su(x0, 2t). This together with Lemma 3.1 gives

max
x∈∂Su(x0,t)

gV (x, x0) ≤ max
z∈∂Su(x0,t)

gSu(x0,2t)(z, x0) + max
z∈∂Su(x0,2t)

gV (z, x0)

≤ Ct−
n−2
2 + max

z∈∂Su(x0,2t)
gV (z, x0).

Therefore, (3.1) is proved. ��
Proof of Lemma 3.3. The existence of r(V,�, n, λ,�) is easy to prove by theC1,α

estimate for u which implies in particular that Su(x0, h) ⊂ B(x0,Chα). We now
prove

max
∂Su(x0,r)

gV (x, x0) ≤ C(V,�, n, λ,�).

To do this, we first multiply σ(x) := gV (x, x0) to Lu� for various choices of
� = �(x, u(x), Du(x)) and then integrate by parts. Let ν be the unit outer-normal
vector field on ∂V . Note that, on ∂V , we have ν = − Dσ

|Dσ | . Integrating by parts, we
get

∫
V
(Lu�)σ =

∫
V

−Ui jσ�i j =
∫
V
(Ui jσ)i� j −

∫
∂V

Ui jσ� jνi

=
∫
V

−(Ui jσ)i j� +
∫

∂V
Ui jσi�ν j

= �(x0, u(x0), Du(x0)) −
∫
V
Ui j�σi

σ j

|Dσ |
= �(x0, u(x0), Du(x0)) −

∫
V

�ρdS. (3.12)

Here, we denote

ρ = Ui jσi
σ j

|Dσ | .

First, we choose � ≡ 1. Then (3.12) gives
∫

∂V
ρdS = 1. (3.13)

Next, we choose � ≡ u. Then, since

Luu = −Ui jui j = −n det D2u = −n f,
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(3.12) gives ∫
V
n f gV (x, x0)dx =

∫
∂V

ρudS − u(x0).

By Aleksandrov’s maximum principle [5, Theorem 1.4.2], we have

|u(x0)|, max
x∈∂V

|u(x)| ≤ C(V,�, n, λ,�).

Combining these with (3.13), we get∫
Su(x0,2r)

gV (x, x0)dx ≤ C(V,�, n, λ,�).

Using the lower bound for volume of sections in Lemma 2.1 and Caffarelli–
Gutiérrez’s Harnack inequality in Theorem 2.2, we get the second inequality in
(3.2). ��

If we choose � ≡ |x |2 in (3.12) then, since Lu� = −2Ui jδi j = −2trace U,

we get from (3.12) that∫
V

−2trace Uσ =
∫
V
(Lu�)σ = |x0|2 −

∫
V

|x |2ρdS.

Thus, by (3.13),

2
∫
V
trace Uσ =

∫
∂V

|x |2ρdS − |x0|2 ≤ max
x∈∂V

|x |2 − |x0|2.

This combined with the lower bound of σ in Theorem 1.1 gives the following
Corollary.

Corollary 3.4. Assume that V ⊂⊂ �andλ ≤ det D2u ≤ � in�. If Su(x0, 2t) ⊂⊂
V or Su(x0, t1/2) ⊂⊂ V when n = 2 then, we have

∫
Su(x0,t)

trace U ≤
{
C(n, λ,�)t

n−2
2

(
maxx∈∂V |x |2 − |x0|2

)
if n ≥ 3

C(λ,�)|log t |−1
(
maxx∈∂V |x |2 − |x0|2

)
if n = 2

.

(3.14)

We end this section with the proof of Remark 1.7.

Proof of Remark 1.7. 1. In dimensions n ≥ 3, we can establish the upper bound
for gV by using Proposition 1.5. When u satisfies (1.3) and (1.4), this proposition
says that

|{x ∈ V : gV (x, x0) > T }| < K (V,�, n, λ,�)T− n
n−2 .

We show that for small t and x ∈ ∂Su(x0, t)

gV (x, x0) ≤
(
K

c1

) n−2
n

t−
n−2
2
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where c1 is the constant in Lemma 2.1. Indeed, assume that for some t > 0, we
have

T = max
x∈∂Su(x0,t)

gV (x, x0) >

(
K

c1

) n−2
n

t−
n−2
2 .

Then, by the maximum principle,

Su(x0, t) ⊂ {x ∈ V : gV (x, x0) > T }.
It follows from the lower bound on the volume of sections in Lemma 2.1 that

c1t
n
2 ≤ |Su(x0, t)| ≤ |{x ∈ V : gV (x, x0) > T }| ≤ K (V, n, λ,�)T− n

n−2

< K

((
K

c1

) n−2
n

t−
n−2
2

)− n
n−2

= c1t
n
2 .

This is a contradiction. Thus, we must have the desired upper bound.
2. The proof using Proposition 1.6 is similar to the above case and is thus omitted.

��
4. Capacity and lower bound for the Green’s function

In this section, we bound the Green’s function using capacity in potential theory
and give the proof for the lower bound of the Green’s function in Theorem 1.1 (ii).

Let u be convex with compact sections and satisfies the Monge–Ampère equa-
tion (1.3) with (1.5). Let V be a fixed, open, bounded set in IRn and let K be a
closed subset of V . We define the capacity of K with respect to the linearized
Monge–Ampère operator Lu := −Ui j∂i j and the set V as the infimum of

Qu(�) =
∫
V
Ui j�i� j

among functions� ∈ H1
0 (V ) satisfying� ≥ 1 on K . This infimumwill be denoted

by capLu (K , V ). In what follows, our arguments do not depend on the lower and
upper bounds of the eigenvalues of the matrix (Ui j ). Thus, when necessary, we can
assume that Lu is uniformly elliptic. In particular, we obtain as in [7] the following
theorem:

Theorem 4.1. Suppose that Su(x0, 2t) ⊂⊂ V . Let gV be the Green’s function for
Lu in V . Then there is a constant C(n, α, β) such that for all x ∈ ∂Su(x0, t)

C−1
[
capLu (Su(x0, t), V )

]−1 ≤ gV (x, x0) ≤ C
[
capLu (Su(x0, t), V )

]−1
.

Proof of the lower bound of the Green’s function in Theorem 1.1 (ii). In view of
Theorem 4.1 and the maximum principle, the lower bound for the Green’s function
in Theorem 1.1 (ii) follows from the following capacity estimates:

capLu (Su(x0, t), V ) ≤
⎧⎨
⎩
C(n, α, β)μ(Su(x0, t))t−1 if n ≥ 3

8

|log t|2
∫ t1/2

t

μ(Su(x0, s))ds

s2
if n = 2.

We will prove these estimates in Lemmas 4.2 and 4.3 below. ��
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Lemma 4.2. Assume n ≥ 3. Suppose that Su(x0, 2t) ⊂⊂ V . Then

capLu (Su(x0, t), V ) ≤ C(n, α, β)μ(Su(x0, t))t
−1.

Lemma 4.3. Assume n = 2. Suppose that Su(x0, t1/2) ⊂⊂ V and 0 < t < 1. Then

capLu (Su(x0, t), V ) ≤ 8

|log t|2
∫ t1/2

t

μ(Su(x0, s))ds

s2
. (4.1)

Remark 4.4. Lemma 4.2 can be deduced from the proof of [9, Theorem 7.2]. We
present here a slightly different proof whose idea leads to the sharp bound for
capacity in dimensions 2 in Lemma 4.3.

We now prove Lemmas 4.2 and 4.3. By subtracting a linear function, we can assume
that u ≥ 0, u(x0) = 0. Then u = s on ∂Su(x0, s) for all s > 0. In the proofs of
Lemmas 4.2 and 4.3, we use the following general fact:

Lemma 4.5. We have∫
∂Su(x0,s)

Ui j ui u j

|∇u| =
∫
Su(x0,s)

n det D2u.

Proof of Lemma 4.5. Let φ be any smooth function. Let ν = (ν1, . . . , νn) be the
unit outer-normal to ∂Su(x0, s). Then, integrating by parts twice, and noting that
ν = ∇u

|∇u| on ∂Su(x0, s), we get∫
Su (x0,s)

(Luφ)u =
∫
Su (x0,s)

−Ui jφi j u =
∫
Su (x0,s)

Ui jφi u j −
∫

∂Su (x0,s)
Ui jφi uν j

=
∫
Su (x0,s)

−Ui j ui jφ +
∫

∂Su(x0,s)
Ui j u jνiφ −

∫
∂Su(x0,s)

Ui jφi uν j

=
∫
Su (x0,s)

−Ui j ui jφ +
∫

∂Su(x0,s)
Ui j ui u j

|∇u|φ −
∫

∂Su(x0,s)
Ui j φi u j

|∇u|u.

With φ ≡ 1, using Ui jui j = n det D2u, we obtain the equality claimed in the
lemma. ��
Proof of Lemma 4.2. Let us consider h(x) = γ (u(x)) where

γ (s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s ≤ t

t
n−2
2

1−(1/2)
n−2
2

(
1

s
n−2
2

− 1

(2t)
n−2
2

)
if t ≤ s ≤ 2t

0 if s ≥ 2t.

Then

h ∈ H1
0 (Su(x0, 2t)) and h ≡ 1 in Su(x0, t).

We have

∇h(x) = γ ′(u(x))∇u(x) = −n − 2

2

t
n−2
2

1 − (1/2)
n−2
2

u− n
2 ∇u(x).
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Therefore, by the coarea formula and Lemma 4.5, we get

∫
V
Ui j hi h j =

[
n − 2

2

t
n−2
2

1 − (1/2)
n−2
2

]2 ∫
Su(x0,2t)\Su(x0,t)

Ui j ui u j

un

≤ C(n)tn−2
∫ 2t

t

(∫
∂Su(x0,s)

Ui j ui u j

sn
1

|∇u|
)
ds

= C(n)tn−2
∫ 2t

t

μ(Su(x0, s))

sn
ds

≤ C(n, α, β)μ(Su(x0, t))t
−1

where in the last inequality we used Lemma 2.4 which says that

μ(Su(x0, s)) ≤ Cμ(Su(x0, t)) for t ≤ s ≤ 2t.

We now find from the definition of capacity that

capLu (Su(x0, t), V ) ≤
∫
V
Ui j hi h j ≤ C(n, α, β)μ(Su(x0, t))t

−1.

��
Proof of Lemma 4.3. Let us consider h(x) = γ (u(x)) where γ is the logarithmic
cut off function

γ (s) = χ(−∞,t)(s) + (2log s/log t − 1)χ[t,t1/2](s).

Then

h ∈ H1
0 (Su(x0, t

1/2)) and h ≡ 1 in Su(x0, t).

We have

∇h(x) = γ ′(u(x))∇u(x) = 2

u log t
∇u(x).

Therefore, by the coarea formula and Lemma 4.5, we get∫
V
Ui j hi h j = 4

|log t|2
∫
Su(x0,t1/2)\Su(x0,t)

Ui j ui u j

u2

= 4

|logt |2
∫ t1/2

t

(∫
∂Su(x0,s)

Ui j ui u j

s2
1

|∇u|
)
ds

= 4

|log t|2
∫ t1/2

t

(
1

s2

∫
Su(x0,s)

n det D2u

)
ds

= 8

|log t|2
∫ t1/2

t

μ(Su(x0, s))ds

s2
.

In the last equality, we used n = 2. By the definition of capacity, we obtain (4.1).
��
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Sketch of proof of Theorem 4.1. We sketch here the proof of Theorem 4.1, follow-
ing [7]. We can assume that Lu := −Ui j∂i j is uniformly elliptic. The set of func-
tions � ∈ H1

0 (V ) satisfying � ≥ 1 on K is a closed convex set and H1
0 (V ) is

a Hilbert space. It is then easy to see that there is a unique function � ∈ H1
0 (V )

satisfying � ≥ 1 on K and

capLu (K , V ) = Qu(�).

This function � is called the capacitary potential of the set K with respect to the
operator Lu and the set V . Moreover, by a simple truncation argument, we find that
this � satisfies � ≡ 1 on K .

The capacitary potential � of the compact set K with respect to the operator
Lu and the set V has the following properties:

(i) � ≡ 1 on K , � = 0 on ∂V , 0 ≤ � ≤ 1 on V \K .

(ii) Lu� = 0 on V \K .

(iii) For all ϕ ∈ H1
0 (V ) with ϕ ≥ 0 on K , we have

∫
V
Ui j�iϕ j ≥ 0.

From (iii) and Schwartz’s theorem on positive distributions, there is a nonnegative
measureμ on K , called the capacitary distribution of K with respect to the operator
Lu and the set V , such that∫

V
Ui j�iϕ j =

∫
V

ϕdμ for all ϕ ∈ H1
0 (V ) with ϕ ≥ 0 on K . (4.2)

Since � ≡ 1 on K , the support of μ is on ∂K . Choosing ϕ = � in the above
equation, we find that

μ(K ) = capLu (K , V ). (4.3)

Moreover, we find from (4.2) that Lu� = μ in V . Thus, we have the representation

�(y) =
∫
V
gV (x, y)dμ(x)

where we recall that gV (x, y) is the Green’s function of Lu in V .
Consider the set

Ja = {x ∈ V : gV (x, x0) ≥ a}.
Let νa be the capacitary distribution of Ja with respect to the operator Lu and the
set V . Then the capacitary potential of Ja with respect to the operator Lu and the
set V is equal to 1 at x0. Thus

1 =
∫
V
gV (x, x0)dνa(x).

The support of νa is on ∂ Ja where gV (x, x0) = a. Thus, (4.3) gives

capLu (Ja, V ) = 1

a
.
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Let a = minx∈∂Su(x0,t) gV (x, x0). Then, by the maximum principle Su(x0, t) ⊂ Ja .
Therefore

capLu (Su(x0, t), V ) ≤ capLu (Ja, V ) = 1

a
= 1

minx∈∂Su(x0,t) gV (x, x0)
.

Similarly, if we let b = maxx∈∂Su(x0,t) gV (x, x0). Then

capLu (Su(x0, t), V ) ≤ capLu (Jb, V ) = 1

b
= 1

maxx∈∂Su(x0,t) gV (x, x0)
.

It follows that

min
x∈∂Su(x0,t)

gV (x, x0) ≤ (capLu (Su(x0, t), V ))−1 ≤ max
x∈∂Su(x0,t)

gV (x, x0). (4.4)

Since gV (x, x0) is a positive solution of LugV (·, x0) in V \{x0}, by Theorem 2.5,
for each t where Su(x0, 2t) ⊂⊂ V , we have

max
x∈∂Su(x0,t)

gV (x, x0) ≤ β min
x∈∂Su(x0,t)

g(x, x0).

This combined with (4.4) gives the desired conclusion. ��
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