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Abstract. Let M be a closed Riemannian manifold with a family of Riemannian metrics
8ij(t) evolving by geometric flow d;g;; = —25;;, where S;;(¢) is a family of smooth sym-
metric two-tensors on M. In this paper we derive differential Harnack estimates for positive
solutions to the nonlinear heat equation with potential:

af

5= Ay log f +aSf,
where y (¢) is a continuous function on ¢, a is a constant and S = gijS,:/ is the trace of Sj;.
Our Harnack estimates include many known results as special cases, and moreover lead to
new Harnack inequalities for a variety geometric flows.

1. Introduction

Let M be a closed Riemannian n-manifold with a one parameter family of Riemannian
metrics g(¢) evolving by the geometric flow

ad
5,85 = ~25ij. (1)

where S;;(7) is a one parameter family of smooth symmetric two-tensorson M and ¢ € [0, T).
In a recent article [7], the present authors studied Harnack inequalities for all positive
solutions to
af

5= —Af +yflog f +aSf

where y and a are constants. In the case where S;; = R;j, ¥ = 0 and a = 1, the above equa-
tion is Perelman’s conjugate heat equation, and Harnack estimates for all positive solutions
have been studied by Cao [2] and Kuang-Zhang [12].
The purpose of the current article is to study the forward nonlinear equations with
potential terms under (1):
of

i Af +y@)flog f +aSf, 2
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where y (¢) is a funtion on ¢ and «a is a constant. In the Ricci flow case, the consideration of
this equation is motivated by expanding gradient Ricci solitons. See [4] for more details. In
the Ricci flow, Cao—Hamilton [3] proved various Harnack inequalities of (2) for y () = 0.
For general geometric flows, many people have studied Harnack inequality for the time-
dependant heat equation, see for instance [1,5,16]. For a positive solution f of (2), let

u = —log f and a direct computation tells us that u satisfies
u 2
" = Au — |Vul”+y(t)u —aSs. 3)

Note that (2) and (3) are equivalent equations.
To state the main results, we introduce two quantities defined by Miiller [17].

Definition 1. Suppose that g() evolves by the geometric flow (1) and let X = X' % be a
vector field on M. One defines

as S

H(Sj X) = 5o+~ = 2V;SX' +28UX; X,
35S . o
D(Sj X) = 5 — AS =215 + (4v’s,-g - 2ws) xt 42 (Ru _ Su) XiX;

where the upper indices are lifted by the metric, for instance § V= gik glj Skl

We notice that H and D were firstly introduced by Miiller [17] to prove the monotonicity
of Perelman type reduced volume under (1). Later on they were used to prove entropy
monotonicity and Harnack inequalities in [6-8]. We also notice that when M is static,
namely when Sj; = 0 one has

H(0,X) =0, DO, X)=RIX;X;.
In the Ricci flow, namely when S;; = R;; one has

R R i ij
H(Rij,X)zg-k?—ZviRX + 2R Xin, D(R,-j,X)zo

and in this case H is nothing but Hamilton’s trace Harnack quantity.
For the Eq. (3) in the case where a = 1, we prove

Theorem A. Let g(¢) be a solution to the geometric flow (1) on a closed oriented smooth
n-manifold M. Assume for all X and ¢ € [0, T), it holds

2H(S;, X) + D(Sjj, X) =0, $=0 “4)

Let u be a solution to

a

X A= Vulr+yu—S

ot
with

2
-, =y®=0 (%)

for all time 7 € (0, T'). Then forallz € (0, T),

Q5=2Au—|Vu|2—SS—2;§0‘ (6)
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Notice that in [6], (6) was proved for y (f) = 0 under a slight different assumption. On the
other hand, notice that (5) is not satisfied for all time ¢ € (0, T') if y(¢) is a nonzero constant.
However, in the case where y (#) = —1, we are able to prove a similar result as follows:

Theorem B. Let g(7) be a solution to the geometric flow (1) on a closed oriented smooth
n-manifold M. Assume that (4) holds, namely 2H(S;;, X) + D(S;;, X) > 0 and § > 0. Let
u be a solution to

Bu 2
— =Au—|Vul"—u—-3S
ot

then for all time ¢ € (0, T'), the following holds:

Qs =2Au — |Vul> =35 — 2= <

(7

~ | S
I

For the Eq. (2) in the case where a = 0, we shall prove

Theorem C. Suppose that g(z), t € [0, T), evolves by the geometric flow (1) on a closed
oriented smooth n-manifold M with

(8. X) = (RV = $7) X;x; 2 0 )

for all X and all time ¢ € [0, 7). Let 0 < f < 1 be a positive solution to

9
Bf]; =Af+y@flogf,

andu = —log f.If y(¢) <O forall time ¢ € [0, T), then
Vul == <0 )

holds for all time t € (0, T').

We notice that the above theorems in the case where S;; = R;; imply the results proved
in [4] as special cases. In Theorems A and B, the assumptions are the same as stated by
(4). In Theorem C, the assumption is (8). In the following section we will discuss the
assumptions in various geometric flows, and replace them by natural geometric assumptions
in the corresponding flow. The rest of the article is devoted to proving the main theorems.

2. Examples

(1) Static Riemannian manifold. In this case S;; =0, H = 0and D = RV X i X j. Thus the
assumptions in Theorems A, B and C can be replaced by R;; > 0.
(2) The Ricci flow. In this case S;; = R;;. Therefore, (4) is equivalent to

dR R ; .
H(SU, X) = g + 7 — ZV,'RXI —|—2RUXI‘X]' >0, R>0.

Itis known [10] that these conditions are satisfied if the initial metric g (0) has weakly positive
curvature operator. Hence, the assumptions in Theorems A and B hold if g(0) has weakly
positive curvature operator. Moreover, the assumption (8) in Theorem C is automatically
satisfied. Notice that Theorem A in the case where y (1) = —2/(t + 2) is Theorem 1.2 in
[4]. On the other hand, our Theorem B is Theorem 1.1 in [4]. Theorem C in the case where
y(t) = —1 is nothing but Theorem 4.1 in [22].
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(3) List’s extended Ricci flow. In this case, Sjj = R;; —2V; ¥V we have
D(Syj, X) = 41y — Vxy|?
In particular, (4) is particularly satisfied if
H(Sj. X) = 0, R(0) = 2|Vy 2.

To the best our knowledge, it is still unknown whether H(S;;, X) > 0 is preserved by the
Bernhard List’s flow under a suitable assumption. The Ricci flow case is due to Hamilton
[10] as we already mentioned. On the other hand, (8) holds automatically.

(4) Miiller’s Ricci flow coupled with harmonic map flow. In this case, S;; = Rj; —

a(1)V;$V ;¢ and moreover D(Sj, X) = 2a(1) |7e¢ — Vx¢|* — (2%02)|Vg|2. Therefore
D(Sy, X) = 0 holds if w(r) > 0 and 249 < 0. In this case, (4) is particularly satisfied if
H(Sj. X) = 0, R(0) = a(0)| V|2,

As in the case of List’s flow, it is unknown whether H(S;;, X) > 0 is preserved by Miiller’s
flow under a suitable assumption. As in other examples (8) holds automatically.

3. General evolution equations

In this section, we shall prove general evolution equations of Harnack quantities under the
geometric flow, which are useful to prove the main results. See Theorems 1 and 2 stated
below. In the Ricci flow case, these general evolution equations are firstly proved by Cao
and Hamilton [3]. Theorems 1 and 2 can be seen as generalizations of Lemma 2.1 and Lemma
3.1 in [3] respectively.

3.1. Case of u = —log f

Let M be a closed Riemannian manifold with a Riemannian metric g;;(¢) evolving by a

geometric flow 9;g;; = —25;;. Let f be a positive solution of the following equation:

of

Sr= ALY log f —cSF. (10)
where ¢ is a constant and y(¢) is a function depneds on t. Let u = —log f. A direct

computation tells us that u satisfies

d

zTL: = Au—|Vul? + ¢S+ y . (11)
‘We introduce

Definition 2. Suppose that g(¢) evolves by (1) and let S be the trace of §j;. Let X = X i %
be a vector field on M. And a, « and B are constants. Then, one defines

9 ,
Dia.a.py(Sijs X) = a (5 —AS— 2|sl-,-|2) B (2vl Sip — vgs) x!

+2B(RY - STYX; X .
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Then we prove

Proposition 1. Let g(t) be a solution to the geometric flow (1) and u satisfies (11). Let
2 u n
Os =alAu — B|Vul”+aS — b; — d?,
where o, B, a, b and d are constants. Then Qg satisfies

90s i i 2
o = AQgs —2V' QsViu+2(a — Bc)V' SViu —2(a — B)|VVu|

, b b
—ZaRJVuV u—|—2aS]VV u—|—ochS—f|Vu| —ch—|— u—|—d

Q)
+2alS1? + Dig.,p) (S —Vae) +ay () Au — 2By (1) Vu* - b%u

Proof. First of all, notice that we have the following evolution equations, which follow from
standard computations:

—(Au)—ZS’JVVu—I—A du — g ar" Viu
at ot ’

i i Ou
5(|VM|2) = ZSUV,'MV]'M +2V! (5) Viu.
On the other hand, we also get the following by standard computations:

79 .
gl (—Ff.‘j) = gkt (2vl Sip — ws).

ot
By using these formulas and (11), we obtain the following:
005 d aS bou b n
— =a—(Au) — B—(|V —u+d—=
ot “ar( “) /3 (l ul’) +a w da 2t'tea

y i
:a(ZSUV,-Vju—l—A(a)—gU (Btr )Vku)

i [ Ou aS bou b n
—B(289Vuviu+2vi (= R A
ﬁ( vyt (81) )+a8t T TR TR

S (2sifv,~vju + A(Au — [Vul? + ¢S + y()u) + gk (2vis,~g - ws) Vku)

3 . 98
—B (2S’]Vl~uvju + 2V (Au— |Vul? + ¢S + J/(I)M)Viu) +ag-

b 2 b n
-7 (Au —|Vul“+cS+ y(t)u) + o —|—aft—2
= 2087V Viu + aA(Au) — aA(IVul?) + acAS +a (ZViSl-g - ws) viu
- 2,ssl'fv~uv u— ZﬁVi(Au)V'u + 2BV (IVu|>)Viu — 2BcViSViu
, b b S b
7|Vu| —ch—|— u—|—d 7 ta— ;Au +ay(t)Au

at
—2By(1)|Vul? —bgu.

On the other hand, we also have the following by the definition of Qg:

b
AQg = aA(Au) — BA(IVul?) +aAS — A

in o i 2 i¢ boi
V05 = Vi (Au) = BV (V) +avis - IV
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Therefore we get
i b
AQs — 2V QgViu = aA(Au) — BA(IVul*) + aAS — ~Au
i i 2 i 2b. o 0
—2aV' (Au)Viu + 28V (|Vul“)Viu — 2aV' SViu + 7|Vu| .
By using this, we are able to obtain

9 . .. .
% = AQs—2V'QOViu +2a8YV;Viu —28YV;uVu — (a — BA(Vul?)
+ (e — a)AS + a2V Sip — Vi S)Viu + 2(a — B)VI(Au)Vu

, b s b b n
+2(a — Bc)V' SV;u — ;IVMI2 +a¥ — ?cS + U +dt—2

+ay @) Au — 28y )| Vul? — b@u.

On the other hand, we also have the following Bochner-Weitzenbock type formula:
A(IVul?) = 2|V Vul? + 2V (Au)Viu + 2R7V;uV ;u.
By using this formula, we get
99s _ AQs — 2V QgViu + 2(a — Be)V SViu — 2(a — B)|VVul?
ot N SVi i
- 2(xR’jV,-uVju + ZaS"jV,'Vju +acAS — §|Vu|2 - ?cS + t%u + d[%

2 98 2 i ¢
+2al55> +a (5 — AS = 28517 ) +@VISip - VeS) V'

. . t
+2B(RY — S)YViuViu 4 ay () Au — 28y ()| Vu|? — b@u

= AQg — 2V QgViu+2(a — Bc)VISViu — 2(a — B)|VVul?

i i b 2 b b n
—2aR"ViuViu +2aS8YV;Vju+acAS — ;IVuI — ;cS—!— 7214 —|—dl—2

)

()
+2a15;1% + Diao.p) (Sij» —Vit) + ay (1) Au — 2By (1) Vul* — byTu

where we used Definition 2. m]

Theorem 1. Suppose that o # 0 and o # B. Then, the evolution equation in Proposition 1

can be rewritten as follows:

A 2

o
2a—p) 0T 28

5 ‘
% =AQs —2V'OsViu —2(a — B) ‘vl-v,»u -

_ _ 2 _ 2
+20a—poviuvs— e=Pr, L @ ’32)”)‘ _(;,er) |Vul
o t 2t o t
o 2 20— pra S 20— BA\ b

+ (2ot g )+ (enmbes HECEE) D (1 H2EE) B

2a - B)r\ d )
+ (1 - M) S+ acAS =20 RIViuVju + D) (Sj. ~ V)
o

Fay () Au — 2By (1) Vul® b@u,

where A is a constant.
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Proof. First of all, notice that a direct computation implies

A 2

—2(a—-p) ViVju—mS,-j—Eg,-j = —2(a — B)IVVul” 4+ 2a5YV;V;u
A Lo o? P (a—ﬂ)kzn
2a —B)ZAu — —8 — ——— |8 - ————.
2= p) Au—— 2(a_ﬂ)l il )

Therefore we get the following:

—2(a — B)|VVul? + 208UV, Vju + 2a|S;|?

o 2

A
2a—p) 0T 28U

(a — ,B)Azn o? )
+72t2 +(2a+2(a_ﬁ))|54,| .

By this and Lemma 1, we obtain

=—2a-p

ViVju —

A oS
mHe=P7 (A” B m)

d0g i - ’ 2
i = AQs = 2V'0sViu=2a = B) \ViVju = 5o S = 585
o R s (a — B)A%n
+2(a — o)V SViu — 2(a — B) P (Au 2(a — ﬂ)) 212

2
oo+ 2 |S"|2+acAS—2(xRUV-uV<u—équlz—écS
20—-p8)"Y R t t

b n 2 y (1)
+ TZM + d[—2 + D,a,p)(Sijs —=Vu) + ay () Au = 2By ()| Vu|” — bTu.

On the other hand, we also get the following by using the definition of Q:

A s
~2@-p)7 (Au - 72(:‘_ 5

_ _ 2 _
_ 2e=pig (b+ 2 amw) [vu +(1_ 2 ﬁ)x) b

- o t o 2

b_ 5 b . b n
——IVul* = —cS+ su+d—
¢ t 12 12

+ (ax—bc+72(“ ;ﬁ)'\“) S, (1 —L{_’m) 4

t o 2"

Using this equation, we get the claim. m]
As a special case, we obtain the following result:

Corollary 1. Let g(t) be a solution to the geometric flow (1) and u satisfies

ou 2
v Au — |Vul* —(@+4)S +y@)u.

Let

05 = 2Au — |Vul? +aS —d;,
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where a and d are constants. Then Qg satisfies

1

905
ViVju = Sij = 2 8jj

= AQs —2ViQgViu—2

2 1
- (; - 7/(1)) Os

+ (—%—y(t)) IVul>—ay(t)S +2(a + 2YH(Sij —Vll)+t%(2 - d)+dV(f)?

aS ;
— ((a + 4)5 — 2|S,‘j|2 + (3a + 8)AS) +2 (ZV’ Sie — VZS) viu
-2 (Rij + 2a + 5)Sij) ViuViu

Proof. By Theorem 1 in the case wherex =2, 8 = 1,b =0,¢c = —a —4, A = 2, we obtain

2

90s i 1
—— = AQs —2V' QgViu-2 ViVju—Sij — ;gij

2Q 2| |2 2( )
——Q0s——|Vul* —=2(a+4)AS
ot t § t

+2(1 +a)|Si|” +2(a +2) E—I—;—I—ZV SViu +28YV;uVu

N ’ )
~2(a+2)%> —4a + ST ViuVju — 4RIV;uVju + %(2 —d)

+Dq,2,1)(Sij, —Vu)
+2y(t)(Au — |Vul?)

2 9 2

1
—20s = JIVul® = 2(a + 4)AS

= AQg — 2V QgViu—2|V;Vju — S — —8i

+2(1 + a)lSijl2 +2(a + 2)H(Sjj, —Vu) —2(a + 2)% —4(a + 2)SijViuV.ju
—4RIV;uVu + t%(z — d) + Da.2.1)(Sij» —Vit) + 2 (1) (Au — [Vu]?).
Since we have
Dia2.1)(Sijy =Vi) = a (% ~AS— 2|sl~j|2) 12 (2visi£ - vgs) viu
+2(RY — ST)V;uVu,
we get

9 . 2
99s _ AQg—2VIQgViu —2

1
o ViVju—Sij—fgij

t
+2(a + 2)H(S;j, —Vu)—2 (R'f/+(2a+5)5’?/) ViuVju+2 (2v"s,-g—ws) viu

205 — 21Vup?
- - —_ = u
t s t

aS n
— ((a + 4)5 — 2|S,-j|2 + (3a + S)AS) + 72(2 —d)+2y(@)(Au — |Vu|2).
On the other hand, we also get the following by a direct computation:
n
2y ()(Au — |Vul®) =y (0Qs — y OIVul® —ay (S +dy (1)

Using this, we obtain the desired result. O
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3.2. Case of v = —log f — 5 log(4mt)

As in Sect. 3.1, let f be a positive solution of (10). Let v = —log f — % log(4mt). A direct
computation tells us that v satsifies
v

27— Av— Vo2 _n n .
o = Av— Vo]’ +¢S = = +y() (v+210g(47tt)) (12)

Theorem 2. Let g(t) be a solution to the geometric flow (1) and u satisfies (12). Let
2 v n
Rg = aAv — B|Vy| +aS—b?—d;,

where o, B, a, b and d are constants. Assume that o 7 0 and a # B. Then Rg satisfies
2

IRs _ RVt — 2 — B) Vi g
o = ARg —2V'RsViu —2(a — B) ‘VZ Viu @—5) Sjj o 8ij
_ _ 2 _ 2
+2(a —ﬁC)ViUV,'S — M&RS + m _ (b+ M) ﬂ
t 212 o t
o? ) 20— Bra\ S 2 — BA\ b

2a - p)r\ d )
+ (1 - M) En+acAS — 2RIV + Digap) (Sj, —Vv)
o t

B 2 Y@ oo bn
+ay()Av =28y ()|Vv]” —b ; (v+210g(4m))+2t2,

where A is a constant.

Proof. The idea of the proof is similar to that of Theorem 1. In fact, notice that we have
vV=u— %log(4m). Hence Vu = Vv and Au = Av hold. Moreover,

b
Rs = Qs + 2—':10g(4m).

Then Theorem 1 and direct computations imply the desired result. O
As a special case, we get
Corollary 2. Let g(t) be a solution to the geometric flow (1) and v satisfies
av

&= Av=[Vol — (@ +4)S - % ) (v + %10g(47tt)) .

Let
Rs = 2Av — [Vul? +as — d?,

2 1
- (; - y(t)) Rg

2
+ (—;—y(l)) |Vv|2—ay(t)S +2(a + 2)H(S;;, —Vv)-l—t%(Z - d)—l—dy(t);

where a and d are constants. Then Rg satisfies

ORg 1
— V,-Vjv—Sij—;gij

S = ARs - 2VIRgVijv —2

98 2 i ¢
— (@+95> — 205 + Ga+8)As +2(2V s,-e—ws)v v

-2 (Rif +Qa+ 5)sff) ViV
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Proof. The idea of proof is similar to that of Corollary 1. Use Theorem 2 in the case where
a=2,=1,b=0,c=—a—4,1=2. O

4. Proof of Theorem A

By Corollary 1 in the case where a = —3, we obtain

005
ot

1

= AQS —2V’Q5Vl-u -2 V,’Vju - Sij - ;g,/

2 1
- (? - V(l)) Os
n

+ (—% - y(t)) IVul® 43y S + 52— d) + dy(t);
— (2H(Sjj, —Vu) + D(Sjj, —Vu))
< AQs —2V' QsVju — (% - y(t)) Qs + (—% - y(t)) IVul® +3y(0)S
+ t%(z —d)+dy(1)= = (2H(Sj. =) + D(Sj. —Vu)) .
Now we assume that d > 2 holds. Moreover, by the assumption of Theorem A, we also get
2H(Sij, —=Vu) + D(S, —Vu) 20, § >0, —% <y <0.

Therefore we are able to obtain
00g . 2
o1 < AQs—2V'QgViu — (? - )/(f)) Os.

Notice that

Qs<0

holds for ¢ small enough which depends on d. By using the maximum principle, we get the
desired result.
Similarly, we get the following by using Corollary 2:

Theorem 3. Let g(t) be a solution to the geometric flow (1) on a closed oriented smooth
n-manifold M satisfying
2H(Sjj, X) +D(Sjj, X) =0, $>0.
hold for all vector fields X and all time t € [0, T') for which the flow exists. Let v satisfies
av

A VP tes— 2
ar 2t

and assume that y (t) satsisfies

+y(0) (u + glog(4m)) .

2
-7 =y =0
for for all time t € (0, T). Let
Rs = 2Av — |Vu|? — 35 — d?
where d > 2 is a constant. Then for all time t € (0, T),
Rs <0
holds.
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5. Proof of Theorem B

By Corollary 1 in the case where a = —3 and y (1) = y, where y is a constant, we obtain

0 .
—55 = AQg—2VIQgViu—2

1
ViVju — SU - ;g,,

..2 2
[ (e

2 2 n n
+(-7-7 [Vul +3yS+t—2(2—d)+dy?—(2'H(Sij,—Vu)—i—D(Sij,—Vu))

; 2 m2 (2 2 _ 5
< AQs =2V QViu—~ (Au—5-2) = (L —y) s - 2 Ivul
n t t t
n n
—y|Vu> +3yS + SC=d)+dy - (2H(Sj, —Vu) + D(S;j, —Vu))
; 2 n\2 2
< AQs =2V QsViu -~ (Au—5-2)" = (2 -y) 0
n 1 t

n n
—y|Vul® +3yS + SC-d)+dy - (2H(Sij, —Vu) + D(Sij, —Vu))
On the other hand, we have
2 _ e " _pe_e_",_
IVul _Z(Au s Z) 05— S—"d-2).

Therefore, we obtain the following:

005
ot

IA

2 2 (2
AQg — 2V QSVu—f(Au—S—z) —(?—y)QS

n n n
—y (2(du-s- ;) - QS—S—?(d—Z)) +3yS+ 5 Q- d) +dy
— (2H(S;. —Vu) + D(S;7, —Vur))

AQs 2V QsViu— = (Au—-5-2) = (Z-v)0s
n t t

n n n n
—2y (Au=$=2) 4y Qs +4yS+ yd -2+ 32 —d) +dy>

t t t t
— (2H(Sjj, —Vu) + D(Sjj, —Vu))

AQs — 2V QgViu — % (Au —5—2)2 - (% —2y) 052y (AM—S— ?)

2
FayS + Tny(d — 4+ t%(z —d) — (2H(S;, —Vu) + D(S;j, —Vu))

Since we also have the following by a direct computation:
n 2 n n\2 2 n\2 n
_Zy(Au—S—f) =7y(Au—S—f—7) —fy(Au—S—f) _I,.
t n r 2 n t
Hence, we obtain

9 2 (2
§<AQS—2V QSVu—f(l—i—)/)(Au—S—?) —(;—2]/)QS

42 (A s ”) ays+ P d—n+To—a
2 (py_g_m_n LS PN
n’ r 2 4 PR 2 27

— (2H(Sjj, —Vu) + D(Sjj, —Vu)) .
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Now suppose that —1 < y < 0. Then the above implies

5 S AQs—2VIQsViu— |- =2y ) Qs +4yS+ yd -1

+ t%(z —d) = 57 — (2H(Sj. =Vu) + D(Sj. ~Vu) .

Assume that d
following:

%

2 holds. Moreover, by the assumption of Theorem B, we also get the

2H(Sjj, —Vu) + D(Sjj, —Vu) = 0, § > 0.

Then we have

005
ot

IA

; 2 2n n
AQgs—2V'QsViu — (; - 2)’) Qs+ —vd—1 =7y

Since we also have

2 ) 05 = 2 ) (Q +n )+ n n o
p 14 s = p 14 S 4)’ 21]/ 2)’ ,
we obtain

% (e5+57) =a(os+57) -2V (25 +57) Viu - (% —Zy) (0s5+%7)

)10
= a(Qs+5y) =2V (Qs+ 37) Viu - (% - 2y) (os+77)

) 4
).

2
n 3
—yl2d—-—=) <0
Cy(20-3) =

under —1 < y < 0andd > 2. Finally, we get the following by taking y = —1:

2 (os-15) =a(es-5)-2v (Qs—%)viu—(§+2) (0s-%)

Notice that

where notice that

Qs<E
4

holds for # small enough which depends on d. By using the maximum principle, we obtain
the desired result.
Similarly, we get the following by using Corollary 2:

Theorem 4. Let g(t) be a solution to the geometric flow (1) on a closed oriented smooth
n-manifold M satisfying

2H(Sj, X) + D(S;, X) = 0, § = 0.
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hold for all vector fields X and all time t € [0, T') for which the flow exists. Let v satisfies

WA VP —s+ L (v +21 (4m))
ar 2t 2 %% ’
Let
2 n
Rs =280 = Vol =35 —d".

where d > 2 is any fixed constant. Then for all time t € (0, T),

Rg <
$=1
holds.
6. Proof of Theorem C
By Proposition 1 in the case where« =0, 8 = —1,a =c =0,b = 1,d = 0, we obtain

2 u
05 = |Vul® -~

and

005 ; 1 1
XS _ AQg —2VIQgViu — 2|VVul? — ?IVMIZ + 5t D,0,-1)(Sj. V)

ar
+2y(0)|Vul? — @u
y ()

i 1
= AQs =2V QViu — — 05 + 2y ()| Vul® — ==u+ D(o,0,-1) (S, Vi)

. I
=AQs—2V'QgsViu — (; - J/(t)) 05 +y®)|Vul*> — 27(Sij, —Vu),

where notice that Do o, —1)(Sjj, —Vu) = —2Z(S;j, —Vu). Since we assumed y () < 0 and
Z(Sjj, —Vu) > 0, the above implies

9 . 1
% < AQs—2V'QsViu— (? — )/(t)) Os.

Since

Qs <0

holds for ¢ small enough, the maximum principle tells us that the desired result holds.
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