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Abstract. Let k be a finitely generated field of characteristic 0 embedded into C, X a
smooth, separated and geometrically connected scheme over k with generic point η and
f : Y → X a smooth proper morphism. Let f an

C
: Yan

C
→ Xan

C
denote the associated

morphism of complex analytic spaces. For x ∈ X (C), write H for the Betti cohomology of
Yan
C,x with coefficients in Q and for x ∈ X , write H� for the �-adic cohomology of Yx with

coefficients in Q� (Under our assumptions on f : Y → X, H and H� are independent of
x). For every prime �, let Xex

�
be the set of all x ∈ X where the Zariski closure G�,x of the

image of the Galois representation �k(x) → GL(H�) has dimension strictly smaller than
the dimension of G�,η. By previous works of A. Tamagawa and the author, Xex

�
is ‘small’

in the sense that if X is a curve then for every integer δ ≥ 1 the set of all x ∈ Xex
�

with
[k(x) : k] ≤ δ is finite. Set Xex := ⋂

�X
ex
�
. The Tate conjectures predict that for every

x ∈ X the G�,x are defined over Q, reductive and independent of � hence, in particular,
that the sets Xex

�
are independent of �. Let G denote the Zariski closure of the image of

the monodromy representation π1(X
an
C

; x) → GL(H). Then G is a semi-simple algebraic

group of rank—say—r . The main result of this note is that for x /∈ Xex , G�,x ∩ GQ�

is a semi-simple algebraic group of rank r . This implies in particular that: (1) If G
Q

has

only simple factors of type An then Xex
�

is independent of �; (2) For every prime � and
x /∈ Xex the unipotent radical of G�,x coincides with the unipotent radical of G�,η and, in
particular, is independent of x /∈ Xex ; (3) For every prime �, if there exists x� ∈ X such
that G�,x�

is reductive then for every x /∈ Xex , G�,x is reductive. (3) applies in particular
when H is a geometrically irreducible G-module. This implies, for instance, that apart from
a few exceptional cases, for every r -tuple d = (d1, . . . , dr ) of integers ≥ 2 there exists a
non-singular complete intersection in P

n+r
Q

with multi-degree d for which the Tate semi-
simplicity conjecture holds (for every prime �).

1. Introduction

Given a field k, write �k for the absolute Galois group of k, which we also identify
with the étale fundamental group of spec(k).

Let k be a finitely generated field of characteristic 0 and S a scheme of finite type
over k. Given an algebraic closure k ↪→ k and a complex embedding k ↪→ C, write
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H(S) for the Betti cohomology with coefficients in Q of the associated complex
analytic space San

C
and H�(S) for the �-adic cohomology with coefficients in Q� of

S := Sk .
Given an algebraic groupG (over a field F of characteristic 0), let Z(G), D(G),

G◦, π0(G), Ru(G) and R(G) denote its center, derived subgroup, connected com-
ponent of identity, group of connected components, unipotent radical and radical
respectively. By convention, a reductive (resp. semi-simple) group is a (not neces-
sarily connected) algebraic groupwith trivial unipotent radical (resp. trivial radical).

1.1. The (motivated) Tate conjectures

The main motivation for the study of �-independency of the Galois image in fam-
ilies of �-adic Galois representations arising from �-adic cohomology stems from
the (motivated) Tate conjectures. More precisely, let P(k) denote the category
of smooth projective schemes over k and let M(k) and M�(k) denote the cat-
egories of pure motivated homological motives built on Betti cohomology and
�-adic cohomology respectively (see [1]; here, we take the auxilliary category V
to be P(k)). Recall that M(k) [resp. M�(k)] is a neutral semi-simple Tannakian
category with coefficients in Q (resp. Q�) and that the motivic cohomology functor
H : P(k) → vectQ (resp. H� : P(k) → vectQ�

) factors through the enriched
category HSQ of Q-Hodge structures (resp. the enriched category vectQ�

(�k) of
finite-dimensional, continous Q�-representations of �k).

For every Y ∈ P(k), the sub-Tannakian category 〈Y 〉⊗ ofM(k) [resp. ofM�(k)]
generated byY is equivalent to the category of finite-dimensionalQ-representations
of a reductive algebraic group1 G(Y ) over Q (resp. of finite-dimensional Q�-
representations of a reductive algebraic group G�(Y ) over Q�). Comparison be-
tween Betti and �-adic cohomology implies that G(Y )Q�

� G�(Y ) and, in partic-
ular that G�(Y ) is independent of �.

(Motivated) Tate conjectures: Let Y ∈ P(k). Then for every prime � one has
(Semi-simplicity) : The representation ρY,� : �k →GL(H�(Y )) is semi-simple;
(Fullness) : The functor H� : 〈Y 〉⊗ → vectQ�

(�k) is full.
The Tate conjectures can be reformulated as follows: for every prime � the Zariski

closure G�,Y of the image of ρ�,Y : �k → GL(H�(Y )) in GLH�(Y ) coincides with
G�(Y )(� G(Y )Q�

). In particular G�,Y should be reductive and independent of �.
Over finitely generated fields of characteristic 0, apart from partial results for

abelian motives, very little is known about the Tate conjectures, not even whether
they are independent of �. For a survey on the Tate conjectures, see [2, §7.3].

The idea underlying this note is to consider �-independency questions not only
for a given Y ∈ P(k) but for a family of such Y that is for the fibers of a smooth
proper2 morphism f : Y → X , where X is a scheme separated, smooth and geomet-
rically connected over k with generic point η. Then, outside a (small) exceptional

1 Explicitly, the group G(Y ) [resp. G�(Y )] is the closed subgroup of GLH(Y ) [resp.
GLH�(Y )] fixing all motivated homological cycles on all powers of Y .
2 The results of this note do not require the projectivity assumption.
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locus Xex ⊂ X the situation is ‘rigidified’ by the geometric monodromy group and
this yields refined results about the comparison between the G�,Yx , x /∈ Xex and
G�,Yη .

1.2. Families of �-adic representations of the étale fundamental group

Let k be a finitely generated field of characteristic 0 and let X be a smooth, sepa-
rated and geometrically connected scheme over k with generic point η. Since X is
geometrically connected over k, the sequence of profinite groups3

1 → π1(X) → π1(X) → �k → 1,

induced by functoriality of étale fundamental group from the sequence of mor-
phisms X → X → spec(k) is short exact. Still by functoriality, every point x ∈ X
with residue field k(x), regarded as a morphism x : spec(k(x)) → X over spec(k)
induces a commutative diagram:

1 �� π1(X) �� π1(X) �� �k �� 1

�k(x)

��
σx

�����������

,

where the image of �k(x) → �k is open in �k .
Fix an integer d ≥ 1, an infinite set L of primes, and for every � ∈ L a d-

dimensional Q�-vector space V� over which π1(X) acts continuously. Write ρ� :
π1(X) → GL(V�), � ∈ L for the resulting family of �-adic representations and
for every x ∈ X , write

ρ�,x := ρ� ◦ σx : �k(x) → GL(V�), � ∈ L

for the corresponding ‘local’ family. We will use the following notation.

�� := ρ�(π1(X)) ⊂ GL(V�); �� := ρ�(π1(X)) � ��;
��,x := ρ�,x (�k(x))

⊂ ��, x ∈ X

G�, G�, G�,x : Zariski closures of ��, ��, ��,x in GLV�
respectively.

Note that, ��, ��, ��,x , x ∈ X are closed (for the �-adic topology) subgroups of
GL(V�) hence are �-adic Lie groups. We will sometimes write ��,η, G�,η instead
of ��, G�.

3 In the following, we always omit the fiber functor in the notation for étale fundamental
group unless it helps understand the situation (see Sect. 3).
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We will say that a family of �-adic representations ρ� : π1(X) → GL(V�), � ∈
L is an abstract motivic family if

(RC) ρ� : π1(X) → GL(V�), � ∈ L is a rational compatible family;
(HT) For every � ∈ L , the representation ρ� : π1(X) → GL(V�) is

Hodge–Tate;
(SSG) There exists aQ-vector space V and a connected semi-simple

subgroup G ↪→ GLV such that for every
� ∈ L one has V ⊗Q Q� � V� and modulo this identification G

◦
� = GQ�

.

We refer to Sect. 3.1 for the definitions andproperties of rational compatible families
of representations and Hodge–Tate representations of étale fundamental group.

The families of �-adic representations arising from �-adic cohomology (see
Sect. 3.2), which we call geometric motivic families in the following, are abstract
motivic families (Theorem 3.5).

To every family of �-adic representations, one associates the family of �-adic
exceptional loci

Xex
� := {

x ∈ X | dim�(��,x ) < dim�(��)
}
, � ∈ L ,

where, here, the notation dim�(−) stands for the dimension as an �-adic Lie group.
In the case of abstract motivic families, the associated exceptional locus Xex

� can
also be defined (Proposition 3.1) as

Xex
� := {

x ∈ X | dim(G�,x ) < dim(G�)
}
,

where, here, the notation dim(−) stands for the dimension as an algebraic group
over Q�.

By definition X � Xex
� contains the generic point η of X and, in the case of

abstract motivic families, is ‘small’ in the sense that if X is a curve then for every
integer δ ≥ 1 the set of all x ∈ Xex

� with [k(x) : k] ≤ δ is finite [7,8]. Eventually,
set Xex := ⋂

�X
ex
� .

As recalled in Sect. 1.1, for geometric motivic families, the Tate conjectures
predict that G� � G(Yη)Q�

for every prime � and G�,x � G(Yx )Q�
for every prime

� and x ∈ X . In particular, they predict that G� and G�,x , x ∈ X are defined over
Q, reductive, independent of � and describe Xex

� as the set independent of � of all
points x ∈ X where G(Yx ) degenerates. This motivates the following ‘variational’
�-independency conjecture.

Conjecture 1.1. Let ρ� : π1(X) → GL(V�), � ∈ L be a geometric motivic family.
Then, Xex

� = Xex for every � ∈ L.

Conjecture 1.1 can also be formulated by saying that for every x /∈ Xex one has
G◦

�,x = G◦
�.

Currently, Conjecture 1.1 is only known when the family ρ� : π1(X) →
GL(V�), � ∈ L arises from the degree 1 cohomology (viz. the �-adic Tate mod-
ule) of the generic fiber of an abelian scheme Y → X (see [14], which derives it
from the Tate conjectures ‘for abelian varieties’ and the Borel–de Siebenthal The-
orem). The main result of this note is the following, which provides evidences for
Conjecture 1.1.
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Theorem 1.2. Let ρ� : π1(X) → GL(V�), � ∈ L be an abstract motivic family.

(1) If G
◦
Q�

has only simple factors of type An then Xex
� is independent of � (i.e.

Conjecture 1.1 holds);
(2) For every � ∈ L and x /∈ Xex one has Ru(G�,x ) = Ru(G�) (i.e. Conjecture 1.1

holds for the unipotent radical) and, in particular, is independent of x /∈ Xex ;
(3) For every � ∈ L if there exists x� ∈ X such that G�,x�

is reductive then for
every x /∈ Xex , the group G�,x is reductive.

To distinguish the inputs from algebraic group theory from those from arithmetic
geometry in the proof of Theorem1.2,we introduce the notion of generatingmotivic
triple, which only involves algebraic groups. The defining conditions of an abstract
motivic family ρ� : π1(X) → GL(V�), � ∈ L ensure that for every x /∈ Xex and
prime � ∈ L , the associated triple (G◦

�,G
◦
�,G

◦
�,x ) is generating motivic over Q�.

Theorem 1.2 then follows formally from general results about generating motivic
triples.

Theorem1.2 (3) applies in particular in the ‘largemonodromy case’ that is when
V is a geometrically irreducible G-module, a condition which can be checked in
practice. This, together with the ‘smallness’ of Xex , gives a variational method to
construct varieties over number fields for which the Tate semi-simplicity conjecture
holds (for every prime �).

The paper is organized as follows. In Sect. 2, we introduce motivic triples
and prove the main technical results about them (Theorem 2.1, Corollary 2.2). In
Sect. 3, we apply our results about motivic triples to motivic family. In Sect. 3.1,
we review Conditions (RC), (HT) and recall the �-independency properties they
ensure. We also explain there why these conditions give rise to generating motivic
triples (Corollary 3.3) and conclude the proof of Theorem 1.2. In Sect. 3.2, we
explain why geometric motivic families are abstract motivic (Theorem 3.5). In
Sect. 4, we give equivalent formulations of Conjecture 1.1 deduced from Theorem
1.2 (2) (Corollary 4.2), which might be of some use for further investigations and,
in the final Sect. 5, we apply our results to construct ‘lots of’ non-singular complete
intersections over number fields forwhich the semi-simplicity Tate conjecture holds
(for every prime �) (Proposition 5.1).

2. Motivic triples

2.1. Motivic triples

Let F be a field of characteristic 0 and let G be an algebraic group over F . The
reductive rank rd(G) ofG is the dimension of amaximal torus inG (or, equivalently,
in G/Ru(G)) and the semi-simple rank of G is

ss(G) := rd(G/R(G)) = rd(D(G/Ru(G))).

Note that

rd(G) − ss(G) = dim(Z(G/Ru(G))).
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If G is semi-simple then rd(G) = ss(G) and we simply call it the rank of G.
Wewill say that a triple (G,G, H) ismotivic of rank r over F ifG is a connected

algebraic group over F and G, H ↪→ G are closed connected algebraic subgroups
such that

(i) G is semi-simple of rank r and normal in G;
(ii) rd(H) = rd(G);
(iii) ss(H) = ss(G),

Wewill say that a motivic triple (G,G, H) is generating if, furthermore,G = GH .
Given a motivic triple (G,G, H) over F , set H := (H ∩ G)◦. The main results of
this section are the following

Theorem 2.1. Let (G,G, H) be a motivic triple of rank r over F. Then H ↪→ G
is a semi-simple subgroup of rank r .

Corollary 2.2. Let (G,G, H) be a generatingmotivic triple of rank r over F. Then,

(1) If GF has only simple factors of type An then H = G;
(2) Ru(H) = Ru(G) and R(H) = R(G). In particular, H is reductive (resp.

semi-simple) if G is.

2.2. Proofs of Theorem 2.1 and Corollary 2.2

We will use repeatedly the fact (see [4, 14.11]) that if ϕ : G � G ′ is a surjective
morphism of algebraic groups then

Ru(G
′) = ϕ(Ru(G)) and R(G ′) = ϕ(R(G))

and, in particular, that

– if G ′ is reductive (resp. semi-simple) then Ru(G) ⊂ ker(ϕ) [resp. R(G) ⊂
ker(ϕ)];

– a quotient (and a normal subgroup) of a reductive group is reductive;
– an extension of reductive groups is reductive.

Let (G,G, H) be a motivic triple of rank r over F . Fix a Levi factor L ↪→ H for
H [4, 11.22]; note that rd(H) = rd(L) and ss(H) = ss(L). Set L := (L ∩ G)◦.
As L is a normal connected subgroup of L , it is also reductive and, actually, it is a
Levi factor for H . We begin with the following elementary lemma.

Let π : G → G/Ru(G) denote the canonical projection.

Lemma 2.3. π(L) is isogenous to a Levi factor of π(H) and the triple (π(G),

π(G), π(H)) is motivic of rank r over F (and generating if (G,G, H) is).

Proof. By definition rd(G) = rd(π(G)) and ss(G) = ss(π(G)). Also, as G and L
are reductive, π : G → G/Ru(G) induces isogenies from G to π(G) and from L
to π(L) (so, in particular, π(L) is isogenous to a Levi factor of π(H)). Thus π(G)

is again a semi-simple normal subgroup of rank r in π(G) and

rd(π(H)) = rd(π(L)) = rd(L) = rd(H) = rd(G) = rd(π(G)),

ss(π(H)) = ss(π(L)) = ss(L) = ss(H) = ss(G) = ss(π(G)). ��
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2.2.1. Proof of Theorem 2.1 First, let us show that

Lemma 2.4. L ↪→ G is a semi-simple subgroup of rank r .

Proof. We proceed in two steps.

(1) rd(L) = rd(G).
(2) L is semi-simple. ��

Proof of (1).By assumption rd(L) = rd(G). In particular, everymaximal torus� in
L is also amaximal torus inG hence [4, Prop. 11.14 (1)] maps onto amaximal torus
�L/L in L/L and �G/G in G/G. As �L/L maps onto �G/G via L/L → G/G,

one deduces that rd (L/L) ≥ rd (G/G) and as L/L → G/G has finite kernel, one
deduces that rd (L/L) = rd (G/G). So

rd(L) − rd(L) = rd (L/L) = rd (G/G) = rd(G) − rd(G)

hence

rd(L) = rd(G).

Proof of (2).As the center of the reductive groupπ(G) is the kernel of the restriction
of the adjoint representation Ad: π(G) → GLLie(π(G)) to any maximal torus in
π(G), choosing a maximal torus of π(G) lying in π(L) (Lemma 2.3), one sees that
Z(π(G)) ⊂ π(L) hence that

Z(π(G)) ⊂ Z(π(L)).

Also one has (Lemma 2.3)

dim(Z(π(G)))= rd(π(G))−ss(π(G))= rd(π(L)) − ss(π(L)) = dim(Z(π(L)))

Hence Z(π(L))/Z(π(G)) is finite. But since π(L) is a normal reductive subgroup
in π(L) one also has Z(π(L)) ⊂ Z(π(L)); this follows from the so-called rigidity
property of groups of multiplicative type (Apply for instance [4, 8.10, Proposition]
with H = H ′ = Z(π(L)) and V = π(L)). In particular, if Z(π(L)) were not
finite then π(G) would contain a subgroup of Z(π(L)) of dimension ≥ 1 hence a
subgroup of Z(π(G)) of dimension≥ 1. This would contradict the semi-simplicity
of π(G). Thus Z(π(L)) is finite hence π(L) is semi-simple. But as L is reductive,
π : G → G/Ru(G) also induces an isogeny from L to π(L). So L is semi-simple
as well. ��

It remains to show that Ru(H) is trivial. Otherwise, it follows from4 [5, Cor.
3.2] that there exists a strict parabolic subgroup P � G containing H and whose

4 More precisely, if Ru(H) is non-trivial, one has the following inclusions

Ru(H) ⊂ H ⊂ NG(Ru(H)) � G,

where the last one is strict since G is reductive. If H = NG(Ru(H)) then, from [5, Cor.

3.2], H is parabolic. Otherwise, set P1 := NG(Ru(H)). Then, one has

Ru(P1) ⊃ Ru(H) ⊂ H � P1 ⊂ NG(Ru(P1)) � G.

Again, either P1 = NG(Ru(P1)) and P1 is parabolic or set P2 := NG(Ru(P1)) and iterate
the construction. By noetherianity, the process stops after finitely many steps.
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unipotent radical Ru(P) contains Ru(H). In particular,

Ru(H) = (Ru(P) ∩ H)◦.

So the morphism L � H/Ru(H) → P/Ru(P) has finite kernel. Since both L and
P/Ru(P) are reductive, one gets ss(L) = rank(D(L)) ≤ rank(D(P/Ru(P))) =
ss(P/Ru(P)). But as P � G is a strict parabolic subgroup, one has ss(P/Ru(P)) <

r (see [16, (End of) 30.2]), which contradicts Lemma 2.4.
This concludes the proof of Theorem 2.1.

2.2.2. Proof of Corollary 2.2

Proof of (1). As a semi-simple group which has only simple factors of type An

contains no strict semi-simple subgroup of the same rank (See for instance [6, Table
p. 14]), the assumption that GF has only simple factors of type An and Theorem
2.1 imply that H = G hence, since (G,G, H) is generating, that G = GH = H .

Proof of (2).As (G,G, H) is generating, the restriction of the canonical projection
π(G) → π(G)/π(G) to π(H) remains surjective so, as π(G)/π(G) is reductive,
one has Ru(π(H)) ⊂ π(G). But then, Ru(π(H)) is contained in Ru(π(H)∩π(G)),
which is trivial by Theorem 2.1 [applied to the triple (π(G), π(G), π(H))]. This
shows that Ru(H) ⊂ Ru(G). So to prove that Ru(H) = Ru(G), it is enough
to prove that dim(Ru(H)) = dim(Ru(G)). For this, observe that the canonical
projectionG → G/G induces isogenies from Ru(G) to Ru(G/G) and from Ru(H)

to Ru(G/G). Indeed, the fact that Ru(G) → Ru(G/G) has finite kernel follows
from the semi-simplicity of G and the surjectivity of Ru(G) → Ru(G/G) follows
from [4, 14.11]. The fact that Ru(H) → Ru(G/G) has finite kernel follows from
the inclusion (Ru(H) ∩ G)◦ ⊂ Ru(H) and Theorem 2.1 (applied to the triple
(G,G, H)) and the surjectivity of Ru(H) → Ru(G/G) follows from the fact that
(G,G, H) is generating and [4, 14.11]. The fact that Ru(H) = Ru(G) implies
that π(H) is reductive hence that π(H) = π(L), where, as before, L ↪→ H
denotes a Levi factor for H . But then, as already observed in step (2) of the proof of
Lemma 2.4, one has dim(Z(π(G))) = dim(Z(π(H))) and Z(π(G)) ⊂ Z(π(H))

so

R(π(G)) = Z(π(G))◦ = Z(π(H))◦ = R(π(H)).

whence R(G) = π−1(R(π(G))) = π−1(R(π(H))) = R(H). ��

3. Motivic families

3.1. Conditions (RC), (HT) and �-independency properties

The introduction of conditions (RC), (HT) and their applications to the study of �-
independency properties in families of �-adic Galois representations was originally
carried out over number fields.We recall themain results of this theory inSect. 3.1.1;
note that condition (HT) is a local condition, which is used to relate properties of
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the �-adic image to properties of its Zariski closure (Proposition 3.1) whereas con-
dition (RC) is a local-global condition, ensuring ‘weak’ �-independency properties
(Theorem 3.2). The extension of these results to families of �-adic Galois repre-
sentations over finitely generated fields of characteristic 0 and families of �-adic
representations of étale fundamental group is then essentially formal provided one
adjusts the standard definitions to these settings. This is done at the end of Sect. 3.1.1
and in Sect. 3.1.2.

3.1.1. Over number fields. In this section, k is a number field. Let �k denote the
set of all finite places of k and, for a prime �, let �k,� ⊂ �k denote the subset of all
finite places dividing �. For v ∈ �k , write k(v) for the corresponding residue field.
Recall that for every v ∈ �k the decomposition groups of v in�k are all conjugated.
If Dv is such a decomposition group then one has a canonical epimorphism of
profinite groups Dv � �k(v) � Ẑ whose kernel Iv is the inertia group at v in
Dv . Let kunrv denote the maximal algebraic extension of k in k unramified at v

that is the subfield of k fixed by all the �k-conjugates of Iv and let Dunr
v � Dv

denote the decomposition group of v in Gal(kunrv |k). Then the induced morphism
Dunr

v →̃�k(v) is an isomorphism and there exists a unique Fv ∈ Dunr
v lifting the

Frobenius element ϕv : x �→ x |k(v)| in �k(v).
Given an �-adic Galois representation ρ� : �k → GL(V�), set � := ρ�(�k) ⊂

GL(V�) and let D� denote the Zariski-closure of � in GLV�
.

For every v ∈ �k , one says that ρ� : �k → GL(V�) is unramified at v if
one (hence every) inertia group Iv lies in ker(ρ�). In that case, the restriction
ρ�|Dv : Dv → GL(V�) factors through Dv � Dunr

v hence it makes sense to talk
about the �-conjugacy class of ρ�(Fv) and the characteristic polynomial

Pρ�,v = det (1 − ρ�(Fv)T )

is well-defined and independent of the choice of the representative ρ�(Fv) in its�-
conjugacy class. One says that ρ� : �k → GL(V�) is rational if there exists a finite
subset Sρ�

⊂ �k such that ρ� is unramified outside Sρ�
∪ �k,� and Pρ�,v ∈ Q[T ]

for all v ∈ �k � Sρ�
∪ �k,�.

For every v ∈ �k,� let k̂v denote the completion of k at v and let Cv denote the
completion of an algebraic closure of k̂v . This is an algebraically closed field over
which Dv acts continuously. Let also χ� : �k → Z

×
� denote the �-adic cyclotomic

character and for each i ∈ Z introduce

V i
� :=

{
v ∈ V� ⊗Q�

Cv | (ρ�(σ ) ⊗ σ)(v) = χ�(σ )iv, σ ∈ Dv

}
,

which is a k̂v-submodule of V� ⊗Q�
Cv . Set V�(i) := V i

� ⊗k̂v Cv . The inclusion
V i

� ↪→ V� ⊗Q�
Cv induces a Cv-linear Dv-equivariant morphism V�(i) → V� ⊗Q�

Cv and the resulting morphism

αv :
⊕

i∈Z
V�(i) ↪→ V� ⊗Q�

Cv

is injective. One says that ρ� : �k → GL(V�) is Hodge–Tate at v if αv is an
isomorphism and that it is Hodge–Tate if it is Hodge–Tate at all v ∈ �k,�.

Hodge–Tate representations are algebraic in the following sense.
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Proposition 3.1. Let ρ� : �k → GL(V�) be an �-adic Hodge–Tate representation.
Then � is open in D�(Q�).

Proof. See [3]. ��
One says that a family ρ� : �k → GL(V�) � GLr� (Q�), � ∈ L of rational �-adic
representations is compatible if for all primes � �= �′ and v ∈ �k � Sρ�

∪ Sρ�′ ∪
�k,� ∪ �k,�′ ,

Pρ�,v(T ) = Pρ�′ ,v(T ).

(In particular the Q�-dimension of V� is independent of �).
Compatibility and rationality imply that the Zariski closure of the image of the

characteristic polynomial morphism

�k → GL(V�)
ch(Q�)→

(
Gm × A

d−1
)

(Q�)

is defined over Q and independent of �. (Here, ch : GLV�
→ Gm,Q�

× A
d−1
Q�

is
the map—actually defined over Q—sending an element g ∈ GLV�

to the coef-
ficients (ad(g), . . . , a1(g)) of its characteristic polynomial det(1 − gT ) = 1 +∑

1≤i≤d ai (g)T
i ). This has some striking consequences.

Theorem 3.2. Let ρ� : �k → GL(V�), � ∈ L be a compatible family of �-adic
rational representations. Then

(1) rd(D�);
(2) ss(D�);
(3) the kernel of the morphism κ� : �k → π0(D�)

are independent of �.

Proof. For (1) see [22], for (2) see [15, Thm. 3.19] and for (3) see [21, §3]. ��
Now, let X be a smooth, separated and geometrically connected scheme over k
and let ρ� : π1(X) → GL(V�), � ∈ L be a family of �-adic representations. We
retain the notation��, ��, ��,x , G�, G�, G�,x of Sect. 1.2.Write |X | for the set of
closed points in X . The Frattini/Hilbert-irreducibility argument of [21, §1] shows
that for every finite set of primes P there exists (infinitely many) x ∈ |X | such that
G� = G�,x for all � ∈ P . Consequently, any structural or �-independency result
for the local families (ρ�,x : �k(x) → GL(V�), � ∈ L), x ∈ |X | transfers to the
family ρ� : π1(X) → GL(V�), � ∈ L . For instance,

– If ρ�,x : �k(x) → GL(V�) is Hodge–Tate for every x ∈ |X | then �� is open in
G�(Q�).

– If ρ�,x : �k(x) → GL(V�), � ∈ L is a compatible family of �-adic rational
representations for every x ∈ |X | then

(1) rd(G�);
(2) ss(G�);
(3) the kernel of κ� : π1(X) → π0(G�)
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are independent of �.
As a result, we will say that an �-adic representation ρ� : π1(X) → GL(V�) is

rational (resp.Hodge–Tate) if the local representationsρ�,x : �k(x) → GL(V�), x ∈
|X | are, and that a family of �-adic representations ρ� : π1(X) → GL(V�), � ∈ L is
rational compatible if the local families (ρ�,x : �k(x) → GL(V�), � ∈ L), x ∈ |X |
are.

3.1.2. Over finitely generated fields of characteristic 0. We come back to the
general situation, where k is only assumed to be a finitely generated field of char-
acteristic 0.

We will say that an �-adic Galois representation ρ� : �k → GL(V�) admits a
model over a number field k# contained in k if there exists a scheme X , smooth,
separated and geometrically connected over k# with function field k such that the
�-adic representation ρ� : �k → GL(V�) factors through �k � π1(X). We call the
resulting pair (X, ρ� : π1(X) → GL(V�)) a model for ρ� : �k → GL(V�) over k#.

We will say that an �-adic Galois representation ρ� : �k → GL(V�) is Hodge–
Tate (resp. rational) if it admits amodel over a number field k# which isHodge–Tate
(resp. rational).

Wewill say that a family of �-adicGalois representationsρ� : �k → GL(V�), � ∈
L is rational compatible if for every � ∈ L , ρ� : �k → GL(V�) admits a model
(X�, ρ� : π1(X�) → GL(V�))over a numberfield k#� such that for every� �= �′ there
exists a connected étale cover X�,�′ of both X� and X ′

�, defined over a number field
k#
�,�′ and such that the restricted representations ρ�|π1(X�,�′ ) : π1(X�,�′) → GL(V�)

and ρ�′ |π1(X�,�′ ) : π1(X�,�′) → GL(V�′) are rational compatible.5

If an �-adic Galois representation ρ� : �k → GL(V�) admits a model (X, ρ� :
π1(X) → GL(V�)) over a number field k#, one can again apply the Frattini/Hilbert-
irreducibility argument of [21, §1] to ρ� : π1(X) → GL(V�) and shows that
Proposition 3.1 and Theorem 3.2 extend to �-adic representations of �k when k is
finitely generated field of characteristic 0.

Eventually, let X be a smooth, proper and geometrically connected scheme over
k.Wewill say that an �-adic representation ρ� : π1(X) → GL(V�) is rational (resp.
Hodge–Tate) if the local representations ρ�,x : �k(x) → GL(V�), x ∈ |X | are, and
that a family of �-adic representations ρ� : π1(X) → GL(V�), � ∈ L is rational
compatible if the local families (ρ�,x : �k(x) → GL(V�), � ∈ L), x ∈ |X | are.
Again, with these definitions, Proposition 3.1 and Theorem 3.2 extend to �-adic
representations of π1(X). In particular,

Corollary 3.3. Let ρ� : π1(X) → GL(V�), � ∈ L be an abstract motivic family.
Then for every x /∈ Xex and � ∈ L , (G◦

�,G
◦
�,G

◦
�,x ) is a generating motivic triple

over Q�. Furthermore, rd(G�), rd(G�), ss(G�) are independent of �.

Proof. As for every x ∈ X the groups �� and ��,x generate an open subgroup of
��, one always has G◦

� = G
◦
�G

◦
�,x . Indeed, since G� ⊃ G�G�,x and G

◦
�G

◦
�,x is

5 In practice, for families of �-adic representations arising from geometry, one can take
X� independently of �. See Example 3.4.
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connected, the inclusion G◦
� ⊃ G

◦
�G

◦
�,x is straightforward. On the other hand, one

has

dim(G�G�,x ) ≥ dim�(����,x ) = dim�(��)
(∗)= dim(G�),

where the equality (∗) follows from the étale fundamental group variant of Propo-
sition 3.1.

Next, fix x /∈ Xex that is (Proposition 3.1 and its étale fundamental group
variant) there exists � ∈ L such that G◦

�,x = G◦
�. In particular, rd(G�,x ) =

rd(G�), ss(G�,x ) = ss(G�). Hence, for every �′ ∈ L one has

rd(G�′,x )
(∗)= rd(G�,x ) = rd(G�)

(∗)= rd(G�′),

where the equalities (∗) follow from Conditions (RC), (HT) and Theorem 3.2 (1)
(and its étale fundamental group variant), and

ss(G�′,x )
(∗)= ss(G�,x ) = ss(G�)

(∗)= ss(G�′),

where the equalities (∗) follow from Conditions (RC), (HT) and Theorem 3.2 (2)
(and its étale fundamental group variant). The condition that G

◦
� is a semi-simple

subgroup of G◦
� is Condition (SSG). ��

We can now complete the proof of Theorem 1.2.

3.1.3. Proof of Theorem 1.2 From Corollary 3.3, for every x /∈ Xex and � ∈
L , (G◦

�,G
◦
�,G

◦
�,x ) is a generating motivated triple over Q�. So Theorem 1.2 (1)

follows from Corollary 2.2 (1) and Theorem 1.2 (2) follows from Corollary 2.2 (2).
For Theorem 1.2 (3), observe that G◦

� is an extension of G◦
�/G

◦
� by G

◦
�. But since

G◦
� = G

◦
�G

◦
�,x�

, the group G◦
�/G

◦
� is a quotient of G◦

�,x�
hence it is reductive. So

G◦
� is reductive as well (as an extension of reductive groups) and Theorem 1.2 (3)

follows from Corollary 2.2 (2).

3.2. Geometric motivic families

Let k be a finitely generated field of characteristic 0 and let X be a smooth, sep-
arated and geometrically connected scheme over k with generic point η. Fix a
separable closure k(η) ↪→ k(η) of the function field of X containing k and write
η : spec(k(η)) → X for the corresponding geometric point. The families of �-adic
representations we consider in this section are those arising from �-adic cohomol-
ogy.
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3.2.1. �-Adic cohomology More precisely, let f : Y → X be a smooth, proper
morphism. By the smooth-proper base-change theorem, for every prime � and inte-
ger n ≥ 1, the étale sheaf R f∗Z/�n is locally constant constructible hence, for every
x ∈ X , correspond to a representation of π1(X; x) on (R f∗Z/�n)x � H(Yx , Z/�n).
Taking projective limit and tensoring with Q�, one obtains a continuous represen-
tation of π1(X; x) on H�(Yx ), which we will denote by

ρ
(x)
� : π1 (X; x) → GL (H�(Yx )) .

For every x0, x1 ∈ X , the choice of an étale path from x0 to x1 yields an
isomorphism

H�(Yx0)→̃H�

(
Yx1

)

which is compatible with the corresponding isomorphism of étale fundamental
groups

π1(X; x0)→̃π1 (X; x1) .

When (x0, x1) = (η, x), the local representation ρ
(η)
�,x : �k(x) → GL(H�(Yη))

is identified via these isomorphisms with the ‘usual’ Galois representation ρ
(x)
�,x :

�k(x) → GL(H�(Yx )). Thus, in the following, we will identify H�(Yη) and H�(Yx ),

π1(X; η) and π1(X; x), ρ
(η)
� and ρ

(x)
� and will denote them by V�, π1(X) and ρ�

respectively.
By a slight abuse of language, we call families of �-adic representations of the

above form geometric motivic families.

Example 3.4. Let k be a finitely generated field of characteristic 0 and let T be a
smooth, proper and geometrically connected scheme over k. One can always find a
number field k#, a scheme S, smooth, separated and geometrically connected over
k# with generic point η and a smooth proper morphism T → S such that T � Tη

[over spec(k) = spec(k#(η))]. So, by the smooth-proper base change theorem, the
family of �-adic Galois representations π1(S) → GL(H�(Tη)), �: prime provides a
model over k# for the family �k → GL(H�(T )), �: prime. Using the results of [17,
Cor. 2.6] (see also [18]), this result extends to schemes T which are only assumed
to be a smooth, separated and geometrically connected over k.

3.2.2. Comparison with Betti cohomology Fix a complex embedding k ↪→ C.
The same formalism as above holds in the analytic setting. Namely, the analytic
sheaf R f an

C ∗Q is a local system hence, for every x ∈ X (C), corresponds to a
representation of π1(Xan

C
; x) on (R f an

C ∗Q)x � H(Yx ), which we will denote by

ρ(x) : π
top
1 (Xan

C
; x) → GL(H(Yx )).

For every x0, x1 ∈ Xan
C
, the choice of a topological path from x0 to x1 yields an

isomorphism

H(Yx0)→̃H(Yx1)
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which is compatible with the corresponding isomorphism of topological funda-
mental groups

π
top
1 (Xan

C
; x0)→̃π

top
1 (Xan

C
; x1).

Thus, in the following, we will identify H(Yx0) and H(Yx1), π
top
1 (Xan

C
; x0) and

π
top
1 (Xan

C
; x1), ρ(x0) and ρ(x1) and will denote them by V, π

top
1 (Xan

C
) and ρ re-

spectively.
Let (−)∧ denote profinite completion. The comparison isomorphism between

Betti and �-adic cohomology V ⊗Q Q�→̃V� is compatible with the comparison
isomorphism

π
top
1 (Xan

C
)∧→̃π1(XC)→̃π1(X).

Let G denote the Zariski closure in GLV of the image � of ρ : π
top
1 (Xan

C
) →

GL(V ). Then the base change of G together with its tautological representation
G ↪→ GLV to Q� identifies with G� together with its tautological representation
G� ↪→ GLV�

.

3.2.3. Geometric motivic versus abstract motivic families

Theorem 3.5. Every geometric motivic family ρ� : π1(X) → GL(V�), � ∈ L is an
abstractmotivic family. In particular, for every x /∈ Xex and � ∈ L , (G◦

�,G
◦
�,G

◦
�,x )

is a generating motivated triple over Q� and rd(G�), rd(G�), ss(G�) are indepen-
dent of �.

Proof. Condition (RC) follows from theWeil conjectures [10] and Condition (HT)
follows from works of Fontaine and Messing [12], Faltings [11] and Tsuji [23]
(See for instance [20, §1], for an overview). Conditions (SSG) follows from the
comparison between Betti and �-adic cohomologies as explained above and the
semi-simplicity theorem of Deligne [9, Cor. 4.2.9], which ensures that G is a semi-
simple algebraic group. ��
Remark 3.6. Let us point out that the notion of geometric motivic family is a pri-
ori 6 more restrictive than the notion of abstract motivic family. For instance, if
ρ� : π1(X) → GL(V�), � ∈ L is a geometric motivic family and for every
x ∈ X, (Xx , ρ�,x : π1(Xx ) → GL(V�)), � ∈ L is a model of ρ�,x : �k(x) →
GL(V�), � ∈ L over a number field k(x)# then for every t ∈ Xx , the representa-
tions ρ�,x,t : �k(x)#(t) → GL(V�), � ∈ L are rational, strictly compatible (that is
the sets Sρ�,x,t can be taken independently of �), satisfy the Weil conjectures (in
particular the Riemann hypothesis), are de Rham etc. Taking into account these ad-
ditional arithmetic-geometric properties may lead to refined versions of Theorem
1.2 for geometric motivic families.

6 Though, as pointed out by the referee, when the base field is a number field, it does not
seem easy to construct abstract motivic families which are not geometric.
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4. Reformulation of Conjecture 1.1

Let ρ� : π1(X) → GL(V�), � ∈ L be an abstract motivic family. From the étale
fundamental group variant of Theorem 3.2 (3), after replacing X by a connected
étale cover, we may and will assume that G� is connected for every prime �. Then,
for every x /∈ Xex there exists � ∈ L such that x /∈ Xex

� , which implies that
G�,x = G� is connected as well. Then, from Theorem 3.2 (3), this implies that
G�′,x is connected for every prime �′.

From Theorem 1.2 (2), to prove Conjecture 1.1, one can replace the ρ� :
π1(X) → GL(V�), � ∈ L by their π1(X)-semi-simplification hence assume that
the G�, G�,x , � ∈ L , x /∈ Xex are reductive. Under this assumption, Conjecture
1.1 reduces to a simple numerical statement ((iv) of Corollary 4.2 below). This is
a direct consequence of the following variant of the Borel–de Siebenthal Theo-
rem which, recall, asserts that if G is a connected reductive group over a field F
of characteristic �= 2, 3 and H ⊂ G is a connected reductive subgroup such that
rd(H) = rd(G) then H is the connected component of identity of the centralizer
of Z(H) in G—See for instance [13].

For a reductive subgroup G ⊂ GLV , set

m(G, V ) := dim
(
(V ⊗ V∨)G

)
.

Lemma 4.1. Let F be a field of characteristic 0, let V be a finite-dimensional F-
vector space and let H ⊂ G ⊂ GLV be connected reductive subgroups. Assume that
rd(H) = rd(G) and ss(H) = ss(G). Then the following assertions are equivalent

(i) Z(H) ⊂ Z(G);
(ii) Z(H) = Z(G);
(iii) |π0(Z(H))| = |π0(Z(G))|;
(iv) H is normal in G;
(v) m(G, V ) = m(H, V );
(vi) H = G.

Proof. We prove

(v)
��

(vi) ���� (iv) �� (i) �� �� (i i i) �� �� (i i) �� (vi).

(vi) ⇒ (iv), (v) is straightforward.
Also, note that as the center of the reductive group G is the kernel of the

restriction of the adjoint representation Ad: G → GLLie(G) to any maximal torus
in G, choosing a maximal torus of G lying in H (recall that rd(H) = rd(G)) one
sees that Z(G) ⊂ H hence that Z(G) ⊂ Z(H). Whence (i) ⇔ (i i) and one has a
canonical morphism

π0(Z(G)) → π0(Z(H)).

Furthermore, since both G and H are reductive, one has

dim(Z(G)) = rd(G) − ss(G) = rd(H) − ss(H) = dim(Z(H))
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hence Z(G)◦ = Z(H)◦ and the canonical morphism π0(Z(G)) → π0(Z(H)) is
injective. As π0(Z(G)), π0(Z(H)) are both finite, this shows (i i) ⇔ (i i i).

(iv) ⇒ (i): Since H is normal in G, G acts by conjugation on Z(H). The
induced morphism G → Aut(Z(H)/Z(G)) is trivial since G is connected and
Z(H)/Z(G) is finite. Thus, for every z ∈ Z(H) one has a morphism [−, z] : G →
D(G) ∩ Z(G). Again, as G is connected and D(G) ∩ Z(G) is finite (recall that G
is reductive), this morphism is trivial that is Z(H) ⊂ Z(G).

(v) ⇒ (i): As H ⊂ G, one has (V ⊗ V∨)G ⊂ (V ⊗ V∨)H hence (v) is
equivalent to (V ⊗ V∨)G = (V ⊗ V∨)H =: E . But, then

Z(H) = H ∩ E ⊂ G ∩ E = Z(G).

(i i) ⇒ (vi): this is the Borel–de Siebenthal Theorem. ��
Corollary 4.2. Assume that the G�, � ∈ L are connected reductive. Then Conjec-
ture 1.1 is equivalent to one of the following four assertions: For every x /∈ Xex

and prime �,

(i) Z(G�,x ) ⊂ Z(G�);
(ii) |π0(Z(G�,x ))| = |π0(Z(G�))|;
(iii) G�,x is normal in G�;
(iv) m(G�, V�) = m(G�,x , V�);

5. Non-singular complete intersections

In practice, one can often check that the G�, � ∈ L are reductive by showing that
V� decomposes as a direct sum of G�-modules over which G� acts geometrically
irreducibly. A standard example is given by non-singular complete intersections.
Indeed, let

Yd
f ��

��

��

Xd

P
n+r
Xd

		��������

be the universal family of non-singular complete intersections with multi-degree
d = (d1, . . . , dr ) (di ≥ 2, n ≥ 1). More precisely, set

X̃d := P

(
H0 (

P
n+r ,OPn+r (d1)

)) × · · · × P

(
H0 (

P
n+r ,OPn+r (dr )

))

and let Ỹd ↪→ P
n+r
X̃d

be the closed subscheme whose fiber at ([s1], . . . , [sr ]) ∈ X̃d

is given by s1 = · · · = sr = 0. Eventually, let Yd ↪→ P
n+r
Xd

→ Xd denote the

base-change of Ỹd ↪→ P
n+r
X̃d

→ X̃d to the open locus Xd ⊂ X̃d over which

Ỹd → X̃d is smooth. For m �= n, one has dim(Hm(Yd,η, Q�)) = 0 (m odd)
or 1 (m even). For m = n, let V (resp. V�) denote the middle cohomology
Hn(Yan

d,C,x , Q) (resp. Hn(Yd,η, Q�)) if n is odd and the primitive cohomology
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Hn(Yan
d,C,x , Q)prim ↪→Hn(Yan

d,C,x , Q) [resp. Hn(Yd,η, Q�)prim ↪→Hn(Yd,η, Q�)]
if n is even. Then V ↪→ Hn(Yan

d,C,x , Q) and V� ↪→ Hn(Yd,η, Q�) are pure moti-
vated submotives with VQ�

� V� (via the comparison between Betti and �-adic
cohomologies). When n is even, Hn(Yan

d,C,x , Q) decomposes as

Hn(Yan
d,C,x , Q) = V ⊕ D

(with D the π
top
1 (Xan

d,C
)-fixed part of Hn(Yan

d,C,x , Q) and dimQ(D) = 1) as π
top
1

(Xan
d,C

)-modules and Hn(Yd,η, Q�) decomposes as

Hn(Yd,η, Q�) = V� ⊕ DQ�

as π1(Xd)-modules.
When n is odd, G is the symplectic group acting on V through its natural rep-

resentation7 and, when n is even, G is the orthogonal group acting on V through its
natural representation4 except in the following exceptional cases: quadric hyper-
surfaces, cubic surfaces and even-dimensional intersections of two quadrics (where
it is finite). See for instance [19, (6.9)] for details. Assume we are not in one of the
exceptional cases listed above. Then,

Proposition 5.1.

(1) For every s /∈ Xex
d and every prime � the group G�,x is reductive (and non-

abelian) that is the semi-simplicity conjecture holds for Yd,x (and every prime
�).

(2) For every prime � one has

Xex
d,� = {

x ∈ Xd | m(G�,x , V�) > 1
}
.

In particular, it follows from Proposition 5.1 (1) and the ‘smallness’ of the excep-
tional locus that there exists a (infinitely many) non-singular complete intersection
inP

n+r
Q

withmulti-degree d = (d1, . . . , dr ) for which the Tate semi-simplicity con-
jecture holds (for every prime) and it follows from Proposition 5.1 (2) that Conjec-
ture 1.1 holds if and only if for every x /∈ Xex

d and prime �, one hasm(G�,d , V�) = 1.

Proof. Assertion (1) [resp. (2)] is a consequence of Theorem 1.2 (2) (resp. Theo-
rem 1.2 (2) and Corollary 4.2) and of the following inclusions

G� = G�(Yd,η) � G
n+2
m,Q�

× SpV�
if n is odd;

G
n+1
m,Q�

× SOV�
⊂ G� ⊂ G�(Yd,η) ⊂ G

n+2
m,Q�

× SOV�
if n is even.

These follow from the fact that GQ�
� G� ⊂ G� and the above description of G

(for the semi-simple part) and from Proposition 3.1, Riemann hypothesis [10] and
the description of the Zariski-closure of an element in a linear algebraic group [4,
7.3] (for the toric part). ��

Acknowledgments The author is partially supported by the project ANR-10-JCJC 0107 from
the Agence Nationale de la Recherche.

7 Once a polarization is fixed.
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