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Abstract. We give a geometric obstruction to the non-negativity of the sectional curvature
in the total spaces of Riemannian submersions defined as pullbacks. Applications of this
obstruction to several examples are given.

1. Introduction

The study of manifolds which admit a metric of positive or non-negative sectional curvature
has lead to certain standard constructions and conditions that guarantee that these construc-
tions furnish a metric with the desired properties. The classical example is the following: let
M be a manifold of positive sectional curvature, G a compact Lie group and G · · · P → M
be a principal bundle-with-connection over a Riemannian manifold M . One can then endow
P with the so-called connection metric, constructed by declaring the vertical and horizontal
spaces orthogonal; inducing the metric on the horizontal space by the metric of M and on the
vertical space by some canonical metric on G (typically biinvariant). This procedure makes
the bundle a Riemannian submersion with totally geodesic fibers ([11], Proposition 2.7.1).
Grey–O’Neill theory then says that the geometry of the total space is mostly controlled by
the Grey–O’Neill tensor A and the metric on the base ([11,16]).

An immediate necessary condition for the positivity of curvature is that for X vertical
and U horizontal, the Grey–O’Neill tensor A∗

XU cannot be zero, since the vertizontal (un-

normalized) sectional curvatures are given by |A∗
XU |2 in this case. This condition, called

fatness [21], depends only on the connection on the bundle, and imposes upon it strong topo-
logical restrictions [5,10]. Assuming fatness, in [4] conditions are given for the total spaces
of these principal bundles to admit such metrics of positive curvature. These conditions take
the form of differential inequalities relating the curvatures of M and the bundle connection.

In this paper we are interested in non-negative curvature. The case of non-negative cur-
vature on compact Riemannianmanifolds still has many unanswered questions: for example,
do all 7-dimensional exotic spheres or any sphere of other dimension admit a metric of non-
negative curvature? (it is known to be true for exotic 7-spheres which can be realized as
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sphere bundles over S4, [12], and to be false for spheres which do not bound spinmanifolds,
see [14], for example). For non-negative curvature, the fatness condition on theGrey–O’Neill
tensor can in principle be relaxed, but we shall see that there is a lot of rigidity along the
degenerate directions.

Theorem 1. Let ξ : E→M be a principal Riemannian submersion with totally geodesic
fibers. Then, the set of vectors defined at each point of m ∈ M by

Dm = {X ∈ TmM | AX̂ = 0, X̂ = horizontal lift of X} (1.1)

defines a smooth involutive distributionD in an open and dense subset of M. Furthermore, a
necessary condition for the total space E to have non-negative curvature is that the integral
manifolds of D are totally geodesic.

We call the distributionD the A-flat distribution of the submersion.We distinguish the trivial
case of the A-flat distribution being 0-dimensional:

Definition 1.1. A Riemannian submersion is non-degenerate if the map X �→ AX is a
one-to-one mapping from the horizontal space into Hom(Horizontal,Vertical).

Like fatness, non-degeneracy only depends on the connection form of the bundle is a;
however, it is a much weaker condition. Fatness means that for each horizontal X �= 0 the
map AX : Horizontal → Vertical is onto and, which is a strong way of being non-zero, i.e.,
non-degenerate.

In the non-degenerate case, the leaves of the A-flat distribution are just the points of M
and the theorem gives no information. However, of particular interest are pullback bundles;
abstractly, because all principal bundles are topologically pullbacks of the universal bundles,
and also in practice, we have found that many of the relevant examples in the literature of
non-negative curvature are actually modeled as pullbacks where Theorem 3 applies non-
trivially.

There are two natural metrics on the total space of a pullback bundle: one is the con-
nection metric associated with the pullback connection and the other is the pullback metric
of Definition 2.1. On both cases the curvature of the connection will be degenerate at least
along the fibers of the pullback map, and, when we pull back a non-degenerate submersion,
the leaves of the A-flat distribution are the fibers.

The next two theorems are respectively specializations of Theorem 1 to the case of
pullback bundles for each of the two natural metrics of the previous paragraph:

Theorem 2. Let ξ : G · · · P → B be a non-degenerate principal Riemannian submersion
with totally geodesic fibers, M a Riemannian manifold, and f : M → B a differentiable
function. Endow the total space E of the pullback bundle f ∗ξ with the connection metric
relative to the pullback connection. A necessary condition for E to have non-negative curva-
ture in the connection metric is that for each regular value b ∈ B, f −1(b) is totally geodesic
in M.

When the bundle ξ is some canonical construction such as Hopf bundles, the easiest
way to represent a particular connection metric is to consider the total space of f ∗ξ as a
Riemannian submanifold of M × P . This imposes a change on the metric on M in order to
have a Riemannian submersion, but we will see (Lemma 2.4) that this is inconsequential.

Theorem 3. Let ξ : G · · · P → B be a non-degenerate principal Riemannian submersion
with totally geodesic fibers, M a Riemannian manifold, and f : M → B a differentiable
function. A necessary condition for the total space of the pullback f ∗ξ to have non-negative
curvature with the pullback metric is that for each regular value b ∈ B, f −1(b) is totally
geodesic in M.
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The Gromoll-Meyer construction of an exotic sphere as a quotient of Sp(2) falls within
the scope of these results, since Sp(2)with its canonical biinvariant metric is the pullback of
the Hopf bundle (Example 1). It has been recently realized that by studying other pullback
maps many further geometric models of exotic spheres can be constructed (see [9,20] and
Sect. 5).

The condition of each regular fiber of a map f : M → B being totally geodesic places
strong restrictions on the metric of M ; typically, there will be no metric on M for which the
regular leaves are totally geodesic. A key element of this analysis is the study of how the
map f behaves near the singular leaves. We offer here a simple stability result that is useful
in concrete examples.

Proposition 1.2. Let M be a complete Riemannian manifold and f : M → B be a map
whose regular fibers are totally geodesic. If S is a submanifold contained in a (possibly
singular) fiber of f , then fibers contained in a small enough neighbourhood of S immerse
into S.

Therefore, if one suspects that the total space of a pullback bundle admits non-negative
curvature, the first test should be to look at the behavior of the fibers of the pullback map
on the base space near singular points. We shall see in Sect. 5 how this test discards some
examples (in which a direct computation of the curvature would be rather involved), and
gives hope for others. In fact, Theorems 1–3 should not be seen as “structure theorems
for manifolds of non-negative curvature”; instead, their value is in the construction of new
examples of manifolds with non-negative curvature (which always use highly non-generic
set-ups), as a quick way to check if there is any hope in a given metric.

The paper is organized as follows: in the next section we study the geometry of pullback
bundles, in particular, the relationship between their two natural metrics we mentioned.
Section 3 contains the proofs of Theorems 1, 2 and 3. In Sect. 4 we prove Proposition 1.2
and Sect. 5 is devoted to applications.

Notation: Given aRiemannianmetric,∇ denotes its Levi–Civita connection, R the curvature
tensor R(X, Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z , and K the unnormalized sectional
curvature associated to R.Whennecessary, left superscriptswill be added to identify different
spaces, e.g. M∇.

In a Riemannian submersion, P
π→ B, given Yx ∈ TbB we denote its horizontal lift at

p ∈ π−1(y) ⊂ P by a hat, Ŷp ∈ Tp P . The Grey–O’Neill tensor will be denoted by the
letter A. Anywhere we give a property of a vector X ∈ TbB in terms of a horizontal lift X̂
in Tp P , it will be clear that the property is independent of the point p ∈ π−1(b).

2. Geometry of pullback bundles

Consider a principal bundle G · · · P π→ B. Let M be a Riemannian manifold, f : M → B
a differentiable map and consider the pullback G · · · f ∗P → M .

Definition 2.1. The pullback metric on f ∗P is the metric induced as a submanifold by the
definition of a pullback, i.e., f ∗P = {(m, p) ∈ M × P | f (m) = π(p)}, where we endow
M × P with the product metric.
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Example 1. The Lie group Sp(2) can be realized as the total space of the pullback of the
Hopf bundle by minus the Hopf map:

S3 S3

...
...

S3· · ·Sp(2) s−−−−−→ S7

f
⏐
⏐
�

⏐
⏐
�h

S3· · · S7 −−−−−→
a◦h S4

In the diagram, h denotes the Hopf map corresponding to the right Hopf action of S3

on S7, a the antipodal map of S4, and f and s denote the first and second columns of a
matrix in Sp(2). When both S7’s in the diagram have the same constant curvature, then the
pullback metric of Sp(2) is biinvariant (see [19] and proposition 2.1 in [22]).

Some more sophisticated examples will be considered in Sect. 5.
Let us establish somegeometrical properties of the pullback bundle. First, the submersion

G · · · f ∗P → M , where f ∗P has the pullback metric and M has its given metric, is not a
Riemannian submersion. It is easy to see that in order to make it a Riemannian submersion,
we must endow M with the graph metric induced from the embedding of M as a subset
� f = {(m, b) ∈ M × B | f (m) = b} ⊂ M × B, the later endowed with the product metric.
Indeed, let π : P → B be a principal G-bundle endowed with the connection metric defined
by a connection 1-form ω, an inner product β on the Lie algebra of G and a metric gB on B.

Proposition 2.2. Let π : P → (B, gB) be as above, M a Riemannian manifold and f :
M → B a smooth map. Then, the pullback metric on f ∗P is the connection metric defined
by the pullback connection f ∗ω and the graph metric g� f .

Proof. LetW = (X, Y ) be a vector tangent to f ∗P . So, by the definition of f ∗P , d f (X) =
dπ(Y ). Spelling out the induced metric on f ∗P , we have

g f ∗P (W,W ) = gM×P ((X, Y ), (X, Y )) = gM (X, X) + gP (Y, Y )

= gM (X, X) + gB(dπY, dπY ) + β(ω(Y ), ω(Y ))

= gM (X, X) + gB(d f X, d f X) + β(ω(Y ), ω(Y ))

= g� f (X, X) + β(ω(Y ), ω(Y ))

Now the proof follows by observing that Y is the image of W by the derivative of the
induced pullback map. In particular, ω(Y ) is the image of W by the pullback connection, as
desired. 
�
Remark 2.3. The fact that M has to change its original metric in order for f ∗P → M be
a Riemannian submersion is already present in the example from the introduction: with a
biinvariant metric the submersion Sp(2) → S7 subduces a metric on S7 that is not the round
one, a fact used in [7].

The vertical space is given by vectors of the form (0,U ), U ∈ T P vertical. Horizontal
vectors have the form (Z , ̂d f (Z)), Z ∈ T M . In particular, if Z is tangent to a level set of f ,
then (Z , 0) is horizontal.

The following property will be essential in Theorem 3:
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Lemma 2.4. Let M, B be Riemannian manifolds, f : M → B, and b ∈ B be a regular
value of f . Then f −1(b) is totally geodesic in M if and only if f −1(b) × {b} is totally
geodesic in the graph � f .

Proof. A regular level set L = f −1(b) ⊂ M is totally geodesic on M if and only if
f −1(b)×{b} is totally geodesic in M×B. For the last subset we have the chain of inclusions

f −1(b) × {b} ⊂ � f ⊂ M × B

If f −1(b)×{b} is totally geodesic in M × B, then it is totally geodesic in � f . The converse

statement follows from the fact that tangent vectors to f −1(b) × {b} inside of M × B have
the form (Y, 0). 
�

3. Flat vertizontal sections

In this section, G · · · E → M will be a Riemannian submersion with totally geodesic fibers;
in the typical applications the total space E will be assumed to have non-negative curvature.

We first need the following elementary lemma on flat sections on non-negatively curved
spaces:

Lemma 3.1. Let (Q, g) be a non-negatively curvedmanifold and suppose the plane spanned
by X and U has zero sectional curvature. Then Q R(X,U )X = 0.

Proof. This follows immediately by the well-known “quadratic trick” (see e.g. Proposition
1 in [17] or compare [4]): let Z be an arbitrary vector. Consider the sectional curvature of
the plane spanned by X and tU + Z . Unnormalized, this is

g(R(X, tU + Z)tU + Z , X) = t2K (X,U ) − 2tg(R(X,U )X, Z) + K (Z ,U ).

If K (X,U ) = 0 then the quadratic term vanishes and the resulting expression is a non-
negative linear function. Thusweget that K ≥ 0 implies that the linear coefficient g(R(X,U )

X, Z) = 0 for all Z ∈ T Q. 
�
Remark 3.2. The condition being symmetric in X and U , the conclusion also holds inter-
changing X and U . This means that what really happens is best explained in terms of
the curvature operator R : �2(T Q) → �2(T Q): given η ∈ �2(T Q) we define φη :
�2(T Q) → �4(T Q), φη(ξ) = η ∧ ξ . Then if K (X,U ) = 0, thenR(X ∧U ) ∈ ker φX∧U .
This gives some rigidity to zero curvature sections, an example of which is the main result
of this paper (see also proposition 1 in [17]).

Remark 3.3. One may notice that an analogous proof works in the non-positive curvature
case. In fact, being here where the non-negativity requirement enters, our main results work
replacing non-negatively curved by non-positively curved.

Definition 3.4. A vector X ∈ T M is said to be A-flat if AX̂ = 0. An A-flat vector X is
called regular if it can be locally extended to a vector field of A-flat vectors; we call such
fields A-flat vector fields.

We abuse notation by also calling A-flats, the horizontal vectors X̂ such that AX̂ = 0.
Grey–O’Neill equations imply that a vector is A-flat if and only if the curvature of all
vertizontal planes containing X̂ vanish.
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Theorem 3.5. Let G · · · E → M be a Riemannian submersion with totally geodesic fibers
such that E has non-negative curvature. If X is an A-flat vector field, then so is the covariant
acceleration ∇X X.

Proof. Let Z be another vector field on M , and U a vertical field on E .
Spelling out the curvature term in (3.1) and using the identities in [11], we have:

0 = gP (R(X̂ ,U )X̂ , Ẑ) = −
〈

∇X̂ (AX̂ Ẑ),U
〉

+
〈

A∇X̂ X̂
Ẑ ,U

〉

+
〈

AX̂∇X̂ Ẑ ,U
〉

=
〈

A∇X̂ X̂
Ẑ ,U

〉

and since the equality holds for all Ẑ and U , A∇X̂ X̂
= 0. The theorem follows from the

identity ̂∇X X = ∇X̂ X̂ . 
�
Definition 3.6. A submanifold S of M is said to be A-flat if vectors tangent to S are A-flat.
It is maximal if for all s ∈ S and X ∈ TsM , X A-flat implies that X ∈ Ts S.

If X is an A-flat vector field tangent to a submanifold S, the proof of Theorem 3.5
uses only information of the vector field X along the submanifold. Then, it follows from
Theorem 3.5 that

Theorem 3.7. Let G · · · E → M be a Riemannian submersion with totally geodesic fibers
such that E has non-negative curvature. Then a maximal A-flat submanifold S is totally
geodesic in M.

Now we see that there are plenty of maximal A-flat submanifolds:

Lemma 3.8. The set of all A-flat vector fields is in involution.

Proof. The key issue is that the A-tensor only depends on the horizontal distribution; if X̂ , Ẑ
are horizontal vector fields then AX̂ Ẑ is the vertical part of their Lie bracket. Therefore, a

vector field X on M is A-flat if and only if gE ([X̂ , Ẑ ],U ) = 0 for all vector fields Z on
M and U vertical vector field on E . Thus, the lemma can be expressed in terms of the
appropriate brackets: let X, Y, Z be vector fields on M where X and Y are A-flat then we
want to prove that gE ([̂[X, Y ], Ẑ ],U ) = 0 for all vertical U .

Since [Ŵ1, Ŵ2] = ̂[W1,W2] + AW1W2 for all fields W1, W2 on M , it follows that
̂[W1,W2] = [Ŵ1, Ŵ2] if one of them is A-flat.

gE ([̂[X, Y ], Ẑ ],U ) = gE ([[X̂ , Ŷ ], Ẑ ],U )

= gE ([[X̂ , Ẑ ], Ŷ ],U ) + gE ([[Ẑ , Ŷ ], X̂ ],U )

= gE ([Ŷ , ̂[Z , X ]],U ) + gE ([X̂ , ̂[Y, Z ]],U )

= 0

where the second equality follows by the Jacobi identity and the last one by the hypothesis
that X and Y are A-flat. 
�
Remark 3.9. Definition 3.4 establishes the A-flat, regular vectors as a nullity distribution as
in [18], section 2.3. It is fairly common for the leaves of such distribution to have geometric
properties (umbilic, totally geodesic, etc.); in our case, however, we need the simultaneous
nullity of the A-tensor as in Definition 3.4 and of the curvature operator as in Remark 3.2.
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To complete the proof of Theorem 1 we show that the A-flat vectors define a smooth
involutive distribution in an open and dense subset of M .

Let Dm be as in Theorem 1, i.e., the set of all A-flat vectors, then M is partitioned
according to 0 ≤ dimDm ≤ dim M . It is easy to see that the set of points in M such that
dimDm is locally minimal is open and dense. Indeed, Dm is the kernel of a continuous
family of linear maps parametrized by m ∈ M , and, as such, the function d : M → N,
d(m) = dim(Dm) is lower semicontinuous. Thus the set of local minima, on which the rank
of Dm is locally constant and Dm is a regular foliation, is open and dense (compare [13]).

Now let us deduce Theorems 2 and 3 from Theorem 1:
Recall that if G · · · E → M is a principal Riemannian submersion, then, for horizontal

fields X, Z andU vertical, theGrey–O’Neill tensor satisfies gP (AXU, Z) = −β(
(X, Z), ξU ),
where 
 is the curvature form of the bundle connection induced by the horizontal-vertical
decomposition, β is a biinvariant metric on G and ξU ∈ g is the infinitesimal generator of
U . Thus, the condition of being A-flat can be completely written in terms of the curvature
of the connection form of the bundle: it is in the kernel {X ∈ TmM : 
(X, Z) = 0 ∀ Z}

Consider now a pullback G · · · f ∗P → M of a non-degenerate principal Riemannian
submersion G · · · P → B, with bundle curvature form 
. Since the main theorem concerns
regular values b ∈ B, by restricting to the open set of regular values, we might assume that
f is a submersion.

The curvature formof the pullback bundle is just the pullback form f ∗
. Thus X ∈ TmM
is A-flat if and only if 
(d fm(X), d fm(Z)) = 0 for all Z ∈ TmM , and since f is a
submersion then for all Y ∈ T f (b)B there exists Z ∈ TmM such that d fm(Z) = Y . This
means that 
(d fm(X),Y ) = 0 for all Y ∈ T f (m)B, and since by hypothesis G · · · P → B
is non-degenerate, it follows that d fm(X) = 0. We have thus concluded that A-flat vectors
are tangent to level sets of f , and regular fibers of f are maximal A-flat submanifolds. Then
Theorem 3.7 implies that the fibers of f are totally geodesic on M .

For Theorem 3, put the graph metrics on the total space and on M . Then we have a
connection metric and we can apply Theorem 2 with respect to the graph metric of M .
However, Lemma 2.4 then finishes the proof.

4. Stability of regular totally geodesic fibers

In this section we prove Proposition 1.2.
Let S ⊂ M be a compact submanifold, possibly with boundary, and ν its normal bundle,

with δ-disk bundle νδ . For δ small enough, the exponential map exp : νδ → M is a diffeo-
morphism onto a tubular neighborhood Uδ ⊂ M . There is radial projection p : Uδ → S,
given by u �→ p(u), the (unique) closest point on S to U . With this context, we have

Proposition 4.1. There exists δ > 0 such that, if L is a complete totally geodesic submanifold
contained in Uδ , then p|L : L → S is an immersion.

Note that the kernel of Dp is given by vectors tangent to the fibers of the radial projection.
Since L is totally geodesic and complete, Proposition 4.1 is reduced to the following:

Lemma 4.2. There exists δ > 0 such that, if m ∈ Uδ and vm ∈ ker Dpm, then expm tv /∈ Uδ

for some t.

Proof. The proof essentially reflects the convexity of the squared distance function to a
submanifold in a sufficiently small tubular neighborhood. In the case S is a point, the method
of proof is similar to lemma 4.1 of [6]; see also [1].
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Let δ′ be small enough so that exp : νδ′ → Uδ′ is an embedding and denote ρ : Uδ′ → R

as the square of the distance function to S. Given a vector v tangent toUδ′ , we denote v⊥ as
the orthogonal projection onto ker dpm .

Then, at m ∈ S, we have:

(S1) The derivative dρm = 0;
(S2) the Hessian d2ρm(vm , vm) = 2|v⊥

m |2;
(S3) any geodesic such that γ (0) = m ∈ S and γ̇ (0) ∈ ker dpm satisfies that γ̇ (t) ∈

ker dpγ (t) for all t .

Given these conditions at S we can find δ < δ′ satisfying for every vm ∈ TmUδ :

(U1) |dρm(vm)| < 1
4 |vm |;

(U2) |d2ρm(vm , vm)| > |v⊥
m |2;

(U3) for any geodesic γ (t) such that γ̇ (0) ∈ ker dpm , |γ̇ (t)⊥| > 1
2 |γ̇ (t)| for |t | ≤ 2,

Given an unit geodesic γ (t), let l(t) = ρ ◦ γ (t); then l ′(t) = dργ (t)(γ̇ (t)) and l ′′(t) =
d2ργ (t)(γ̇ (t), γ̇ (t)).

Suppose that γ (t) is an unit geodesic such that γ (0) ∈ Uδ , γ̇ (0) ∈ ker dpγ (0) and that
γ (t) ∈ Uδ for all t . According to conditions (U1)–(U3), we have

|l ′(t)| =
∣
∣
∣
∣
l ′(0) +

∫ t

0
l ′′(s)ds

∣
∣
∣
∣
>

∣
∣
∣
∣

t

2
− 1

4

∣
∣
∣
∣

which contradicts (U1) for t ≥ 1. 
�
Now Proposition 1.2 is just stating Proposition 4.1 in the situation we are interested in,

that is, when S is a subset of a fiber of f : M → N .

5. Applications

In this section we provide several applications; in each one the obstructions apply in different
ways. Let us remark that, given Theorem 2, the obstruction apply not only for pullback
metrics, but also for connection metrics associated to the pullback connection.

• The first example is the family of bundles studied by Wilhelm [22] (5.1). This family
is a ladder of bundles, which extends Sp(2) as presented in the Example 1; there the
fibers are totally geodesic (just the Hopf fibers) and Sp(2) with the pullback metric has
non-negative curvature, whereas for the higher elements Sp(2,m) one must carefully
chose the metric in order to satisfy the hypothesis of Theorem 3.

• The bundles studied by Rigas [19] (5.2). For these bundles the main obstruction (The-
orem 3) vanishes for the canonical metrics. However, the “secondary” obstruction fur-
nished by Proposition 3.7 does not vanish for the canonical round metric on the base
sphere; a deformation is necessary to make all obstructions vanish.

• The examples given in Sects. 5.3, (5.4) study the geometric presentations of exotic
spheres constructed in [9] and [20]. In these cases, the obstruction is absolute: we show
that for the pullback maps presented, for any given metric the fibers cannot be totally
geodesic. These examples arise as pullbacks of the Gromoll–Meyer construction, which
we think in the context of the pullback of the Hopf map h : S7 → S4 as in Example 1;
that is, we pullback the fibration S3 · · · Sp(2) → S7 by appropriate maps f : X → S7.
However, since the canonical connection of S3 · · · Sp(2) → S7 is degenerate (being zero
along theHopffibers),wego all theway to theHopf bundle andpull back S3 · · · S7 → S4

by maps f : X → S4 of the form f = a ◦ h ◦ φ, where φ : X → S7 and a is the
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antipodal map of S4. All actions in sight will be isometric with respect to the induced
connections and metrics. In both examples, our results implies that one cannot put non-
negative curvature in the total space of these bundles via the pullback construction, be
it from using the pullback metric or the connection metric associated with the pullback
connection.

• Finally in 5.5, we describe the pullback structure of Kervaire spheres. Here, in contrast
with the previous examples, there is no topological obstruction to the presence of the
totally geodesic foliation, however the authors have not been able to describe a metric
with totally geodesic fibers in that case.

5.1. Wilhelm bundles

Consider the bundles constructed on [22]: let Sp(2,m) be the subset of m copies of S7

defined by the following condition

Sp(2,m) = {(u1, . . . , um) ∈ (S7)m | h(u1) = ah(u2), h̃(ui ) = ah(ui+1) f or i > 1}
where a and h are as in Example 1 and h̃ is the dual Hopf map corresponding to the left
S3-action on S7. Quotients of these bundles by free S3 × · · · × S3-actions give models of
3-sphere bundles over S4, and, in particular, exotic spheres.

As we observed earlier, the pull-back diagram of Sp(2) endowed with its canonical
metric does not have the obstruction given by Theorem 3.We also observe that Sp(2,m+1)
fits in the following diagram

Sp(2,m + 1)

��

prm+1 �� S7

ah
��

Sp(2,m)
h̃◦prm �� S4

(5.1)

where prm : Sp(2,m) → S7 is the projection in the last coordinate and the unnamed down
arrow is the projection in the first m coordinates. The right-hand side of the diagram is
the Hopf fibration, which is non-degenerate, and thus the A-flat sections are given by the
preimages of h̃ ◦ prm . Endowing Sp(2,m) with the metric induced as a submanifold of
(S7)m , the generic preimage is not totally geodesic.1 This implies, according to Theorem 3,
that Sp(2,m) has sections of negative curvatures in an open and dense set of points. However,
we can easily change the metric so that it satisfies the hypothesis of Theorem 3: the map
Sp(2,m) → S4 is actually principal bundle projection with fiber (S3)m ; then for any
connection metric the fibers are totally geodesic. Alternatively, we can also begin at m = 2,

where the map Sp(2)
h̃◦pr2−→ S4 is easily seen to be induced as the quotient map of the free

S3 × S3-action

(q, r) ·
(

a c
b d

)

=
(

q 0
0 q

)(

a c
b d

) (

r̄ 0
0 1

)

;

the r factors kills the first column whereas the q-factor induces Hopf in the second column.
Now, as above, endow Sp(2) with a connection metric, for which the fibers are totally

1 We thank F. Wilhelm for pointing this out to us.
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geodesic. Pullback diagrams like 5.1 preserve the “totally geodesic fibers” property: if we
have

P

p

��

�� E

f
��

M
g �� B

and the maps f and g have totally geodesic fibers, then so does the map g ◦ p if we endow
P with the pullback metric as a submanifold of the product M × B. Then we can proceed
inductively. This presentation shows that the failure of the hypothesis of Theorem 3 for the
canonical metric occurs at the Sp(2)-level, not at the maps Sp(2,m + 1) → Sp(2,m).

5.2. Rigas bundles

Let φk : S4 → S4 be a degree k map, and rk = φk ◦ h : S7 → S4. Then the bundles
P̃k constructed in [19] are defined as the pullback of Hopf by rk (for example, if φ−1 is
represented by the antipodal map of S4, then P̃−1 is S3 · · · Sp(2) → S7 as in Example 1).

P̃k

��

�� Pk ��

��

S7

h
��

S7
h �� S4

φk �� S4

(5.2)

We choose φk : S4 → S4 to be the suspension of pk , the quaternion kth power map
S3 → S3 (note that, for k = −1, this is different from the antipodal map). We suspend this
map in the simplest way,

S4 ⊃ R × H �
(

x
y

)
φk�→ 1

√

x2 + |y|2k
(

x
yk

)

.

The critical values of maps φk , and a fortiori fk , since the Hopf map is a submersion, are
given by (±1, 0)� and the suspensions of the meridians (x, cos(�π/k) + sin(�π/k)α̂), α

a purely imaginary quaternion and 1 < � < k. Restricted to the inverse images of the
complement of such points, φk is a local diffeomorphism. Therefore, the regular fibers of
rk will be given by sets of k disjoint standard Hopf fibers, and the obstruction given by
Theorem 3 also vanishes in this case for the canonical round metric on S7. However, if
|k| ≥ 2 the secondary obstruction given by Theorem 3.7 does not vanish for the round
metric on S7 which projects by the Hopf map to the round metric on S4, since the pullback
by Hopf of the suspensions of the meridians (x, cos(�π/k)+sin(�π/k)α̂)will not be totally
geodesic. Note that, by continuity, the singular fibers detect negative curvature in the regular
set that was invisible by just using Theorem 3.

Therefore, if one wants to construct a pullback metric of non-negative curvature on the
Rigas bundles, the metric on S4 must be changed so that this suspended meridians are totally
geodesic, (by making S3 to be a cylinder S2 × I , in a set that contains the meridians), and
then the metric on S7 is defined by the connection metric over the Hopf map.

5.3. Exotic 7-spheres

Consider the map φn : S7 → S7 given by the nth power of the Cayley octonions O. If
we write a unit octonion q = cos(t) + α sin(t) where α is purely imaginary, then φn(t) =



Non-negatively curved pullback submersions 521

cos(nt)+α sin(nt). Pullingback the bundle S3 · · · Sp(2) → S7 byφn weobtain principal S3-
bundles S3 · · · E10

n → S7. Now writing octonion as pairs (a, b)� of (column) quaternions,
then the total space is given by

En ∼=
{(

a c
b d

) ∣
∣
∣

(

φn

(

a
b

)

c
d

)

∈ Sp(2)

}

.

With the projection onto S7 given by the projection onto the first column (a, b)�. The unit
quaternions act on En , by

q �

(

a c
b d

)

=
(

qaq̄ qc
qbq̄ qd

)

.

The following is proven in [9]: the quotient of E10
n by this action is diffeomorphic to

�7
n , n-times the Gromoll-Meyer sphere in the group of 7-dimensional homotopy spheres.

Going all the way to the Hopf bundle, consider E10
n as the pullback of the Hopf bundle by

fn = a ◦ h ◦ φn , where a and h are as in Examples 1 and 5.1.

Ẽn

��

�� Sp(2) ��

��

S7

h
��

S7
φn �� S7

a◦h �� S4

(5.3)

Remark 5.1. It is instructive to compare these spaces to Rigas’ bundles on the previous
section; here the power map is on the Cayley numbers as the last map of the composition
giving the pullback, and there the power map (of the quaternions) is the first step in the
composition. Both cases are pullbacks of the Hopf bundle over S4 by functions S7 → S4,
and the total spaces P̃k of and En are diffeomorphically related by the formula En ∼= P̃k ,
where n = k(k + 1)/2 mod 12 [2]. However, for the presentation given by the pullback
by rk the main obstruction vanishes, and by modifying the metric all obstructions can be
eliminated, whereas we will presently see that this is impossible for the pullbacks by fn :
no metric on S7 makes the regular fibers totally geodesic, and thus any pullback metric on
En = f ∗

n Hopf has some negative curvature. In principle, the Grey–O’Neill tensor of the
exotic actions could push the curvature in the base exotic sphere to be non-negative, although
recent results suggests that the odds are not good [17]; this comment also applies to the exotic
8-spheres of next section.

We have

Lemma 5.2. The only singular value of f is the south pole (−1, 0) ∈ S4 ⊂ R × H.

Proof of lemma. Observe that the only singular values of φn are ±1 ∈ S7 ⊂ O, on the
preimage of which the derivative of φn has a kernel of dimension at least 6 (φ being constant
on the distance spheres cos( kπn ) + α sin( kπn ). Thus the only singular value of h ◦ φn is the

class of the Hopf fiber through 1, which maps to (1, 0) ∈ S4 ⊂ R × H. The lemma now
follows by composing with the antipodal map. 
�

Restricted to the set φ−1
n (±1), the map φn is a (trivial) n-fold covering. Thus, the inverse

image of regular values in S4 consists the inverse image of Hopf fibers by φn , which are n
disjoint 3-spheres, each one contained in a “belt” {cos(t) + α sin(t) | kπ

n < t <
(k+1)π

n }.
The singular set φ−1(−1, 0) is the union of the exponential 3-sphere (x, 0), x a unit

quaternion, with the distance spheres cos( kπn ) + α sin( kπn ).
We have now
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Proposition 5.3. if n > 1, there is nometric on S7 such that the inverse images of the regular
values of fn are totally geodesic.

The remaining of this example is devoted to the proof of Proposition 5.3; the idea is to
find a one parameter family of regular fibers of fn whose convergence to the singular fiber
contradicts Proposition 1.2.

Consider the one-dimensional manifold T of S4 ⊂ R × H given by points having
the second coordinate real, The inverse image of T by the Hopf map (and also by a ◦ h,
since T is invariant under the antipodal map) is the elements of S7 ⊂ H × H which have
both coordinates linearly dependent over the reals. This condition is invariant by the Cayley
power map, and thus the inverse image of T by fn = a ◦ h ◦ φn is also described by the real
dependence of the first and second coordinates.

Consider now the curve σ(θ) in T ⊂ S4 σ(t) = (cos(θ), sin(θ)), θ ∈ [π − ε, π), the
interval being chosen so that the trace of the curve curve is lies inside of the regular set, but
approaches the critical value (−1, 0) as θ → π .

The inverse image (a ◦ h ◦ φn)
−1(σ (θ)) is made of n disjoint 3-spheres, which we do

not need to characterize precisely. In order to apply Proposition 1.2 we need to describe the
evolution of these spheres as θ → π ; we will also consider just the connected component of
the preimage contained in the north polar cap N = {cos(t) + α sin(t) ∈ S7, | t ∈ [0, π/n]}.

Let then q be a unit Cayley number written as a pair of quaternions, q = (a, b)�, where
a = cos(t) + sin(t)p and b = sin(t)w, |p|2 + |w|2 = 1, t ∈ [0, π/n]. We have

fn(a, b)� = (2 sin2(nt)|w|2 − 1, �),

where the � in the second coordinate is determined by the first whenwe are close to (−1, 0) ∈
S4 and both coordinates are real. Given θ ∈ [π − ε, π), the formula for fn(a, b)� =
cos(θ), sin(θ) implies that neither w,sin(nt) nor sin(t) are zero. Then

2 sin2(nt)|w|2 − 1 = 2
sin2(nt)

sin2(t)
(sin2(t)|w|2) − 1 = η(t)|b|2 − 1,

where η(t) = 2 sin
2(nt)

sin2(t)
is bounded away from zero in the interval [0, π/n]. Then as θ → π ,

|b| → 0. Thismeans that the 3-spheres f −1
n (cos(θ), sin(θ))∩N converge to a set S contained

in the meridian (a, 0), |a| = 1, and being contained in the north polar cap we can also say
that S ⊂ {(a, 0) ∈ S7 | �(a) < 3π

2n }. This set is diffeomorphic to an open ball in R

3. Thus,

Proposition 1.2 would furnish an embedding of a 3-sphere into a 3-ball in R

3, which is
impossible. 
�

5.4. Exotic 8-sphere

Consider the map φ : S8 → S7 given by suspending the Hopf map η : S3 → S2 in a smooth
way. We write the Hopf map S3 → S2 using the quaternions, η(y) = yi ȳ, where y is a unit
quaternion and the image of η is contained in the unit purely imaginary quaternions. We also
extend η to all quaternions in the obvious way.

We write S8 as the unit sphere of H × R × H, and let ψ : S8 → R

8 ∼= H × H be given
by

ψ

⎛

⎝

x
λ

y

⎞

⎠ =
(

x
λ + η(y)

)
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The image does not fall in the Euclidean sphere S7. However since |ψ(x)| = |x |2 + λ2 +
|y|4 �= 0, we can normalize and φ = η

|η| : S8 → S7 clearly suspends the Hopf map.

Remark 5.4. There are other ways of building smooth suspensions of the Hopf map, which
in principle would furnish different examples of the application of Theorem 3. We present
the simplest one.

Then, the total space of the pull-back of S3 · · · Sp(2) → S7 by φ is readily identified
with the set

E11 =
⎧

⎨

⎩

⎛

⎝

x
λ

y

c
d

⎞

⎠ ∈ S8 × S7
∣
∣
∣

⎛

⎝φ

⎛

⎝

x
λ

y

⎞

⎠ ,

(

c
d

)
⎞

⎠ ∈ Sp(2),

⎫

⎬

⎭

The unit quaternions act on E11 as follows:

q �

⎛

⎝

qxq̄
λ

qy

c
d

⎞

⎠ =
⎛

⎝

qxq̄
λ

qy

qc
qd

⎞

⎠ ∈ E11 if

⎛

⎝

x
λ

y

c
d

⎞

⎠ ∈ E11 (5.4)

On one hand, the projection in the first column pr1 : E11 → S8 define it as the pull-
back bundle of Sp(2) → S7, on the other hand � in (5.4) defines a new free action on E11.
The quotient of this action is diffeomorphic to the only exotic sphere in dimension 8, [20].
Again, pulling back all the way from the Hopf map, we have that E11 is the pullback of the
Hopf bundle S3 · · · S7 → S4 by f = a ◦ h ◦ φ.

We now have to study the inverse images by f of its regular values. We have:

Lemma 5.5. The only singular value of f is the south pole (−1, 0) ∈ S4 ⊂ R × H.

Proof of lemma. Onecanfirst note that the derivative ofφ at p = (1, 0, 0)T isDφp(X,�, Y ) =
(X, �)which spans only one dimension transversal to the fiber (z, 0) ⊂ S7 making the point
(−1, 0) ∈ S4 singular for ahφ. On the other hand if y �= 0, φ is a submersion and therefore
so is f , and the last case in hand is p = (x, λ, 0)which goes to a fiber different from (z, 0). In
this last case, the differential of φ is again Dφp(X, �,Y ) = (X, �) however, now the space
spanned by this differential is completely transversal to the fiber of φ(p) since the tangent
space to the last is of the form (xξ, λξ), for purely imaginary quaternions ξ , in particular, it
has no real part in the second coordinate. 
�

Then we see that the inverse image of the singular point is S3 ⊂ S8 given by points
(x, 0, 0) ∈ S8. The inverse images of regular points are 4-dimensional submanifolds of
S3. In this case Proposition 1.2 applies immediately, since there can be no embedding of a
4-dimensional manifold into a 3-dimensional one.

5.5. Kervaire spheres

Consider the principal bundle of special orthonormal frames over the round S2n+1, I.e.,

consider the principal bundle SO(2n+ 1) · · · SO(2n+ 2)
pr→ S2n+1 given by projection on

the first column. Consider also τ : S2n → SO(2n+1)where τ(x) is defined as the reflection
by the hyperplane orthogonal to x . As a map from S4n+1 to S2n+1 we can consider Jτ ,
defined as

Jτ(x, y) = exp τ
( y

|y|
)

x
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where (x, y) ∈ R

2n+1 × R

2n+1. This map extends continuously to y = 0 and has an
appropriate equivariant smoothing with same fibers (this situation is quite common in this
kind of construction, see e.g. section 2.3 of [8]). Its homotopy type is the image of τ by the
Hopf-Whitehead J -homomorphism.

The bundle P = (Jτ)∗π → S4n+1 admits a free SO(2n+1) action (which is isometric
with respect to natural metrics) with quotient that can be identified with�4n+1, the Kervaire
sphere of dimension 4n + 1 as presented in Chapter I, section 7 of [3,20]. These examples
are known to be exotic [15] for infinitely many n’s.

P
�����

� ��

��

SO(2n + 2)
������

��
�4n+1 �� S2n+1

S4n+1 Jτ �� S2n+1

(5.5)

The fibers of the map Jτ are the spheres y = 0 and

{(τ (y)−1x, λy) | y ∈ S2n, λ ∈ [−1, 0)}
The information given by the dimensions and topology of the fibers is not sufficient to
perceive an obstruction to Theorems 3 and 3.7, making (Jτ)∗π a candidate to induce non-
negative curvature on �4n+1.
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