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Abstract. We consider systems of stochastic evolutionary equations of the type

du = div S(∇u) dt +Φ(u)dWt

where S is a non-linear operator, for instance the p-Laplacian

S(ξ) = (1 + |ξ |)p−2ξ , ξ ∈ R
d×D,

with p ∈ (1,∞) and Φ grows linearly. We extend known results about the deterministic
problem to the stochastic situation. First we verify the natural regularity:

E

[
sup

t∈(0,T )

∫
G ′

|∇u(t)|2 dx +
∫ T

0

∫
G ′

|∇F(∇u)|2 dx dt

]
< ∞,

where F(ξ) = (1 + |ξ |) p−2
2 ξ . If we have Uhlenbeck-structure then E

[‖∇u‖q
q
]

is finite for
all q < ∞ if the same is true for the initial data.

1. Introduction

We will study existence and regularity of solutions u : Q → R
D , Q := (0, T ) × G with

T > 0 and G ⊂ R
d bounded, to systems of stochastic PDE’s of the type

{
du = div S(∇u) dt +Φ(u)dWt
u(0) = u0

. (1.1)

Here S : R
d×D → R

d×D is a non-linear operator and u0 some in general random initial
datum. The most famous example is the p-Laplacian operator

S(ξ) = (1 + |ξ |)p−2ξ , ξ ∈ R
d×D, (1.2)

with p ∈ (1,∞). Equation (1.1) is an abbreviation for

u(t) = u0 +
∫ t

0
div S(∇u) dσ +

∫ t

0
Φ(u) dWσ (1.3)
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P ⊗ L1-a.e. We assume that W is a Brownian motion with values in a Hilbert space (see
Sect. 2 for details). We suppose linear growth of Φ-roughly speaking |Φ(u)| ≤ c(1 + |u|)
and |DΦ(u)| ≤ c (for a precise formulation see (2.9) in Sect. 2). The motivation for this
is an interaction between the solution and the random perturbation caused by the Brownian
motion. For large values of |u| we expect a larger perturbation than for small values.
Since the p-Laplace equation is a basic problem in non-linear PDEs it can be understood
as a model-problem to a large class of equations. In view of applications we especially
mention the flow of Non-Newtonian fluids (see for instance [10,20,37,41]) which might be
the topic of some future projects. The deterministic equivalent to the equation mentioned
above is already well understood, we refer to [24,25] and [42] for the stationary case and to
[17,34,43] for the evolutionary situation. We also refer to the survey papers [36] and [19]
giving a nice overview.
Regarding the stochastic problem there is a lot of literature regarding the existence of solu-
tions to nonlinear evolutionary equations. The popular variational approach by Pardoux [38]
for SPDEs provides an existence theory for a quite general class of equations. It requires a
Banach space V which is continuously embedded into the Hilbert space H on which the
equation is considered. The main part of the equation is to be understood in the dual V ∗. In
the situation (1.1)–(1.2) we have V = W̊ 1,p(G) and H = L2(G). Although this does not
include the case 1 < p ≤ 2d

d+2 (this bound arises from Sobolev’s Theorem) system (1.1)
can still be treated by slightly modified arguments. For recent developments we refer to [35]
and [39].
However, there is not much literature about the regularity for nonlinear stochastic problems
like (1.1). Only a few regularity results about nonlinear stochastic PDEs are known:

• In [27] and [28] semilinear stochastic PDEs are considered, were also regularity state-
ments are shown. Anyway, the elliptic part of the equations studied there is still linear.

• Zhang [44] observes non-linear stochastic PDEs but only in space-dimension one.
• Very recently the regularity of certain nonlinear parabolic systems with stochastic per-

turbation was investigated in [4]. The results are Cα-estimates for the solution under a
quadratic growth assumption.

The literature dedicated to the regularity theory for linear SPDEs is quite extensive, we refer
to [21,31–33] and the references therein. The situation in the non-linear case is different, as
explained above and to our best knowledge there is nothing about regularity for the stochastic
p-Laplacian system. Hence this is the aim of the present paper. We will prove the following
statements:

• The weak solution u is a strong solution to (1.1) and it holds

E

[
sup

t∈(0,T )

∫
G ′

|∇u(t)|2 dx +
∫ T

0

∫
G ′

|∇F(∇u)|2 dx dt

]
< ∞ (1.4)

for all G′ � G, where F(ξ) = (1 + |ξ |) p−2
2 ξ (see Theorems 4 and 5).

• Let S(ξ) = ν(|ξ |)ξ for ν : [0,∞) → [0,∞)1 and p > 2 − 4
d . Then the strong solution

u satisfies

E

[ ∫ T

0

∫
G ′

|∇u|q dx dt

]
< ∞ (1.5)

for all G′ � G and all q < ∞ (see Theorem 7).

1 Ihe so-called Uhlenbeck-structure, see [42].
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Remark 1. (a) The estimate in (1.4) is the natural extension of the results for non-linear
PDE’s in the deterministic situation to the stochastic setting, see [19] (chapter 5). In
the deterministic case, it is also quite standard to get regularity results in time: testing
with ∂2

t u gives ∂t u ∈ L∞(L2) and ∂t F(∇u) ∈ L2(Q). Due to the appearance of the
Brownian motion such a results cannot be true for the stochastic problem.

(b) We consider only the non-degenerated case, see (2.8). However, the regularity estimates
are independent of � which means it is possible to obtain results for the degenerate
case via approximation.

(c) It is only a technical matter to assume general Dirichlet boundary conditions. In order
to keep the proofs easier, we assume them to be zero.

(d) A lot of other statements which are known in the deterministic situation are still open
for the stochastic problem. For instance partial regularity for the parabolic problems
with p-structure which is shown in [18] via the A-caloric approximation method.

(e) The proof of (1.5) is based on Moser iteration (see for instance [26], ch. 8.5, for a
nice presentation in the stationary deterministic case). Moser iteration in the stochastic
setting also appears in [14–16]. The authors study estimates and maximum princples for
the solution to SPDEs with a linear operator in the main part. This paper is concerned
with gradient estimates for nonlinear systems of SPDEs.

Our procedure is as follows: In Sect. 3 we study the case p ≥ 2. We apply the difference
quotient method to gain higher differentiability and the corresponding estimates in the su-
perquadratic case (Sect. 4). Since this does not work immediately if p < 2 we approximate
by a quadratic problem and show uniform estimates. We have to combine the techniques
from non-linear PDE’s with stochastic calculus for martingales. Note that it is not possible
to work directly with test functions. Instead we apply Itô’s formula to certain functions of u.
Finally we prove arbitrarily high integrability of ∇u under special structure assumptions.
This is done by Moser iteration.

2. Probability framework

Let (�,F ,P) be a probability space equipped with a filtration {Ft , 0 ≤ t ≤ T }, which is
a nondecreasing family of sub-σ -fields of F , i.e. Fs ⊂ Ft for 0 ≤ s ≤ t ≤ T . We further
assume that {Ft , 0 ≤ t ≤ T } is right-continuous and F0 contains all the P-negligible events
in F .
For a Banach space (X, ‖ · ‖X ) we denote for 1 ≤ p < ∞ by L p(�,F ,P; X) the Banach
space of all F -measurable functions v : � → X such that

E
[‖v‖p

X

]
< ∞,

where the expectation is taken w.r.t. (�,F ,P).
Let U,H be two separable Hilbert spaces and let (ek)k∈N be an orthonormal basis of U .
We denote by L2(U,H ) the set of Hilbert-Schmidt operators from U to H . Throughout
the paper we consider a cylindrical Wiener process W = (Wt )t∈[0,T ] which has the form

W(σ ) =
∑
k∈N

βk(σ )ek (2.6)

with a sequence (βk) of independent real valued Brownian motions on (�,F ,P). Now
∫ t

0
ψ(σ)dWσ , ψ ∈ L2(�,F ,P; L2(0, T ; L2(U,H ))),
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withψ progressively (Ft )-measurable, defines a P-almost surely continuous L2(�)D valued
Ft -martingale.2 Moreover, we can multiply with test-functions since

〈 ∫ t

0
ψ(σ)dWσ ,ϕ

〉
H

=
∞∑

k=1

∫ t

0
〈ψ(σ)(ek),ϕ〉H dβk(σ ), ϕ ∈ H ,

is well-defined (the series converges in L2(�,F ,P; C[0, T ])).
Our actual aim is the study of the system (1.1), where H = L2(G), V = W̊ 1,p(G):

{
du = div S(∇u) dt +Φ(u) dWt
u(0) = u0

, (2.7)

where S : R
d×D → R

d×D is C1 and fulfils

λ(1 + |ξ |)p−2|ζ |2 ≤ DS(ξ)(ζ , ζ ) ≤ �(1 + |ξ |)p−2|ζ |2 (2.8)

for all ξ , ζ ∈ R
d×D with some positive constants λ,� and p ∈ (1,∞). Suppose that Φ

satisfies (2.9).

Definition 2. (weak solution)
Let W be a Brownian motion as in (2.6) on a probability space (�,F ,P) with filtration
(Ft ). A function u ∈ L2(�,F ,P; L∞(0, T ; L2(G)))∩ L p(�,F ,P; L p(0, T ; W̊ 1,p(G)))
which is progressively (Ft )-measureable is called a weak solutions to (1.1) if for every
ϕ ∈ C∞

0 (G) it holds for a.e. t

∫
G

u(t) · ϕ dx +
∫

G

∫ t

0
S(∇u(σ )) : ∇ϕ dx dσ

=
∫

G
u0 · ϕ dx +

∫
G

∫ t

0
Φ(u) dWσ · ϕ dx

P-almost surely.

In order to show regularity of solutions we suppose the following linear growth assumptions
on Φ (following [27]): For each z ∈ L2(G) there is a mapping Φ(z) : U → L2(G)D

defined by Φ(z)ek = gk(·, z(·)). In particular, we suppose that gk ∈ C1(G × R
D) and the

following conditions
∑
k∈N

|gk(x, ξ)|2 ≤ c(1 + |ξ |2),
∑
k∈N

|∇ξ gk(x, ξ)|2 ≤ c, ξ ∈ R
D,

∑
k∈N

|∇x gk(x, ξ)|2 ≤ c(1 + |ξ |2).
(2.9)

Definition 3. (strong solution)
A weak solution is called a strong solutions to (1.1) if div S(∇u) ∈ L1(�,F ,P; L1

loc(Q))
and

u(t) = u0 +
∫ t

0
div S(∇u) dσ +

∫ t

0
Φ(u) dWσ

holds P ⊗ Ld+1-a.e.

2 For stochastic calculus in infinite dimensions we refer to [12].
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3. Regularity for p ≥ 2

Throughout this section we study problems of the type (1.1) with (2.8) for p ≥ 2. In the
following section we consider subquadratic problems regularized by quadratic ones.

Theorem 4. (Regularity)
Assume u0 ∈ L2(�,F0,P, W̊ 1,2(G)), (2.8) with p ≥ 2 and (2.9). Then the unique weak
solution u to (1.1) is a strong solution and satisfies

E

[
sup

t∈(0,T )

∫
G ′

|∇u(t)|2 dx +
∫ T

0

∫
G ′

|∇F(∇u)|2 dx dt

]
< ∞

for all G′ � G.

Proof. Since u0 ∈ L2(�,F0,P, W̊ 1,2(G)) and p ≥ 2 the existence of a unique weak
solution (in the sense of defintion 2) follows by the common variational approach (see for
instance [39]) and satisfies
• u ∈ L2(�,F ,P; L∞(0, T ; L2(G)));
• u ∈ L p(�,F ,P; L p(0, T ; W̊ 1,p(G))).
We consider a cut-off function η ∈ C∞

0 (G) and the difference quotient γh in direction

γ ∈ {1, . . . , d} with |h| < 1
2 dist(supp η, ∂�). We apply Itô’s formula to the function

f (v) = 1
2 ‖ηγh v‖2

L2(G)
. In appropriate version it is shown in [13], Prop. A.1. Although

only the L2-case is considered there it is straightforward to extend it to the L p-setting. This
shows

1

2
‖ηγh u(t)‖2

L2(G) = 1

2
‖ηγh u0‖2

L2(G) +
∫ t

0
f ′(u)duσ + 1

2

∫ t

0
f ′′(u)d〈u〉σ

= 1

2
‖ηγh u0‖2

L2(G) +
∫

G

∫ t

0
η2〈γh u〉σ dx

+ 1

2

∫
G

∫ t

0
η2 d

〈 ∫ ·
0

γ
h

(
Φ(u) dW

)〉
σ

dx =: (I )+ (I I )+ (I I I ).

We consider the three integrals separately. For the second one we get

(I I ) = −(I I )1 − (I I )2 + (I I )3,

(I I )1 :=
∫ t

0

∫
G
η2

γ
h S(∇u) : γh ∇u dx dσ,

(I I )2 :=
∫ t

0

∫
G

γ
h S(∇u) : ∇η2 ⊗

γ
h u dx dσ,

(I I )3 :=
∫ t

0

∫
G
η2

γ
h u ·γh

(
Φ(u) dWσ

)
dx .

Using the assumptions for S in (2.8) we get

(I I )1 =
∫ t

0

∫
G
η2

∫ 1

0
DS(∇u + shγh ∇u) ds

(

γ
h ∇u,γh ∇u

)
dx dσ

≥ λ

∫ t

0

∫
G
η2

∫ 1

0
(1 + |∇u + shγh ∇u|)p−2 ds|γh ∇u|2 dx dσ

≥ c
∫ t

0

∫
G
η2(1 + |∇u| + |hγh ∇u|)p−2|γh ∇u|2 dx dσ

≥ c
∫ t

0

∫
G
η2|γh F(∇u)|2 dx dσ.
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In the second last step we used [1], Lemma 2.1. For the second term we obtain by similar
arguments

(I I )2 ≤ c
∫ t

0

∫
G
η

∫ 1

0
(1 + |∇u + shγh ∇u|)p−2 ds|γh ∇u||∇η||γh u| dx dσ

≤ δ

∫ t

0

∫
G
η2

∫ 1

0
(1 + |∇u + shγh ∇u|)p−2 ds|γh ∇u|2 dx dσ

+ c(δ)
∫ t

0

∫
G

∫ 1

0
(1 + |∇u + shγh ∇u|)p−2 ds|∇η|2|γh u| dx dσ

≤ c(δ)
∫ t

0

∫
supp η

(1 + |∇u| + |hγh ∇u|)p−2|γh u|2 dx dσ

+ δ

∫ t

0

∫
G
η2|γh F(∇u)|2 dx dσ.

Here we used Young’s inequality for an arbitrary δ > 0. Moreover, we have by (2.9)

(I I I ) = 1

2

∫
G

∫ t

0
η2 d

〈 ∫ ·
0

γ
h

(
Φ(u) dW

)〉
σ

dx

= 1

2

∑
k

∫
G

∫ t

0
η2 d

〈 ∫ ·
0

γ
h

(
Φ(u)ek

)
dβk

〉
σ

dx

≤ 1

2

∑
k

∫
G

∫ t

0
η2

∣∣∣
( ∫ 1

0
∇ξ gk(x + shey, u + shγh u) ds

)

γ
h u

∣∣∣2 dσ dx

+ 1

2

∑
k

∫
G

∫ t

0
η2

∣∣∣
∫ 1

0
∂γ gk(x + sheγ , u + shγh u) ds

∣∣∣2 dσ dx

≤ c
∫

G

∫ t

0
η2|γh u|2 dσ dx + c

∫
G

∫ t

0
|u|2 dσ dx .

Plugging all together and using E[(I I )3] = 0 we see

E

[ ∫
G
η2|γh u(t)|2 dx +

∫
Q
η2|γh F(∇u)|2 dx dt

]

≤ c E

[ ∫
G

|∇u0|2 dx

]
+ c

∫ t

0
E

[ ∫
G
η2(


γ
h u|2 + |u|2)

dx

]
dσ

+ c E

[ ∫ t

0

∫
supp η

η2(1 + |∇u| + |hγh ∇u|)p−2|γh u|2 dx dσ

]
.

By Gronwall’s Lemma and since u0 ∈ L2(�,F0,P; W̊ 1,2(G)) and u ∈ L2(� × Q) we
end up with

E

[ ∫
G
η2|γh u(t)|2 dx +

∫
Q
η2|γh F(∇u)|2 dx dt

]

≤ c(η)

(
1 + E

[ ∫ t

0

∫
supp η

(1 + |∇u| + |hγh ∇u|)p−2|γh u|2 dx dσ

])
.
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Here we also took into account u ∈ L2(� × Q). If p > 2 we gain by Young’s inequality
for the exponents p

2 and p
p−2

3

(RH S) ≤ c(η)

(
1 +

∫ t

0

∫
G

|∇u|p dx dσ +
∫ t

0

∫
supp η

|hγh ∇u|p dx dσ

)

≤ c(η)

(
1 +

∫ t

0

∫
G

|∇u|p dx dσ

)

which is bounded as well (independent of h). This means we have shown

E

[ ∫
G
η2|γh u(t)|2 dx +

∫
Q
η2|γh F(∇u)|2 dx dt

]
≤ c(η).

Now we want to interchange supremum and expectation value. Applying similar arguments
as before we obtain

E

[
sup
(0,T )

∫
G
η2|γh u(t)|2 dx

]
+ E

[ ∫
Q
η2|γh F(∇u)|2 dx dt

]

≤ c(η)+ c E

[
sup
(0,T )

|(I I )3|
]
.

(3.10)

Using the assumptions on W [see (2.9)] we see

(I I )3 =
∫

G

∫ t

0
η2

γ
h u ·γh

(
Φ(u)ek dβk(σ )

)
dx

=
∑

k

∫
G

∫ t

0
η2

γ
h u ·γh

(
gk(·,u) dβk(σ )

)
dx

=
∑

k

∫
G

∫ t

0
η2

( ∫ 1

0
∇ξ gk(x + shey, u + shγh u) ds

)
(
γ
h u,γh u) dβk(σ ) dx

+
∑

k

∫
G

∫ t

0
η2

γ
h u ·

(∫ 1

0
∂γ gk(x + sheγ , u + shγh u) ds

)
dβk(σ ) dx

=
∫

G

∫ t

0
η2Gξ (

γ
h u,γh u) dβk(σ ) dx

+
∫

G

∫ t

0
η2Gx (u) ·γh u dβk(σ ) dx

=: (I I )13 + (I I )23

where we abbreviated

Gξ :=
∑

k

Gξ
k :=

∑
k

(∫ 1

0
∇ξ gk(x + shey, u + shγh u) ds

)
,

Gx (u) :=
∑

k

Gx
k (u) :=

∑
k

∫ 1

0
∂γ gk(x + sheγ , u + shγh u) ds.

3 This step is trivial if p = 2.
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On account of assumption (2.9) Burkholder–Davis–Gundy inequality and Young’s inequality
imply for arbitrary δ > 0

E

[
sup

t∈(0,T )
|(I I )13|

]
≤ E

[
sup

t∈(0,T )

∣∣∣
∫ t

0

∑
k

∫
G
η2Gξ

k (
γ
h u,γh u) dx dβk(σ )

∣∣∣
]

≤ c E

[ ∫ T

0

( ∫
G
η2Gξ (

γ
h u,γh u) dx

)2
dt

] 1
2

≤ c E

[( ∫ T

0

(∫
G
η2|γh u|2 dx

)2
dt

] 1
2

≤ δ E

[
sup
(0,T )

∫
G
η2|γh u|2 dx

]
+ c(δ)E

[ ∫
Q
η2|γh u|2 dx dt

]
.

By similar arguments we gain

E

[
sup

t∈(0,T )
|(I I )23|

]
≤ c E

[ ∫ T

0

(∫
G
η2Gx (u) ·γh u dx

)2
dt

] 1
2

≤ c E

[(∫ T

0

( ∫
G
η2|γh u|

∫ 1

0
|u + shγh u| ds dx

)2
dt

] 1
2

≤ c E

[
sup
(0,T )

∫
G

|u|2 dx

]
+ c E

[ ∫
Q
η2|γh u|2 dx dt

]
.

Combining this with (3.10), using u ∈ L2(�,F ,P; L∞(0, T ; L2(G))) and choosing δ
sufficiently small shows

E

[
sup
(0,T )

∫
G
η2|γh u(t)|2 dx

]
+ E

[ ∫
Q
η2|γh F(∇u)|2 dx dt

]
≤ c(η). (3.11)

This finally proves the claim (see [4], section 3.2, for difference quotients and differen-
tiability in the stochastic setting). ��

4. The subquadratic case: p < 2

Throughout this section we study problems of the type (1.1) with (2.8) and p ≤ 2. We add
the Laplacian to the main part in order to get a problem with quadratic growth. Let uε be the
solution to {

duε = div
(
S(∇uε)

)
dt + εudt +Φ(uε)dWt ,

u(0) = u0.
(4.12)

From Theorem 4 we know that the solution has the following properties

• uε ∈ L2(�,F ,P; L∞(0, T ; L2(G)));
• ∇uε ∈ L2(�,F ,P; L2(0, T ; W 1,2

loc (G))).

We will prove the following a priori estimates which are uniform in ε:

E

[
sup

t∈(0,T )

∫
G

|uε(t)|2 dx +
∫
Q

|∇uε|p dx dt + ε

∫
Q

|∇uε|2 dx dt

]

≤ c

(
1 + E

[ ∫
G

|u0|2 dx

])
.

(4.13)
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We apply Itô’s formula to the function f (v) = 1
2 ‖v‖2

L2(G)
which shows

1

2
‖uε(t)‖2

L2(G) = 1

2
‖u0‖2

L2(G) +
∫ t

0
f ′(uε)duεσ + 1

2

∫ t

0
f ′′(uε) d〈uε〉σ

= 1

2
‖u0‖2

L2(G) − ε

∫
G

∫ t

0
|∇uε|2 dx dσ −

∫
G

∫ t

0
S(∇uε) : ∇uε dx dσ

+
∫

G

∫ t

0
uε ·Φ(uε) dWσ dx +

∫
G

∫ t

0
d
〈 ∫ ·

0
Φ(uε) dW

〉
σ

dx .

(4.14)

Now we can follow, building expectations and using (2.8), that

E

[ ∫
G

|uε(t)|2 dx + ε

∫ t

0

∫
G

|∇uε|2 dx dσ +
∫ t

0

∫
G

|∇uε|p dx dσ

≤ c
(
E

[
1 + ‖u0‖2

L2(G)

] + E
[
J1(t)

] + E
[
J2(t)

])
.

Here we abbreviated

J1(t) =
∫

G

∫ t

0
uε ·Φ(uε) dWσ dx,

J2(t) =
∫

G

∫ t

0
d
〈 ∫ ·

0
Φ(uε) dW

〉
σ

dx .

Using (2.9) we gain

E[J2] = E

[ ∫ t

0

∞∑
i=1

∫
G

|Φ(uε)ei |2 dx dσ

]

= E

[ ∫ t

0

∞∑
i=1

∫
G

|gi (·,uε)|2 dx dσ

]

≤ c E

[
1 +

∫ t

0

∫
G

|uε|2 dx dσ

]
.

Clearly, we have E[J1] = 0. So interchanging the time-integral and the expectation value
and applying Gronwall’s Lemma leads to

sup
t∈(0,T )

E

[ ∫
G

|uε(t)|2 dx

]
+ εE

[ ∫
Q

|∇uε|p dx dt

]
+ E

[ ∫
Q

|∇uε|p dx dt

]

≤ c E

[
1 +

∫
G

|u0|2 dx

]
.

(4.15)

A similar observation shows

E

[
sup

t∈(0,T )

∫
G

|uε(t)|2 dx

]
≤ c E

[
1 +

∫
G

|u0|2 dx +
∫ T

0

∫
G

|uε|2 dx dσ

]

+ c E

[
sup

t∈(0,T )
|J1(t)|

]
.

(4.16)
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On account of the Burkholder–Davis–Gundy inequality, (2.9) and Young’s inequality we
obtain for arbitrary κ > 0

E

[
sup

t∈(0,T )
|J1(t)|

]
= E

[
sup

t∈(0,T )

∣∣∣
∫ t

0

∫
G

uεΦ(uε) dx dWσ

∣∣∣
]

= E

[
sup

t∈(0,T )

∣∣∣
∫ t

0

∑
i

∫
G

uε · gi (·, uε) dx dβi (σ )
∣∣∣
]

≤ c E

[ ∫ T

0

∑
i

(∫
G

|uε|gi (·, uε) dx

)2
dt

] 1
2

≤ c E

[
1 +

( ∫ T

0

( ∫
G

|uε|2 dx

)2
dσ

] 1
2

≤ κE

[
sup

t∈(0,T )

∫
G

|uε|2 dx

]
+ c(κ)E

[
1 +

∫ T

0

∫
G

|uε|2 dx dσ

]

Inserting this in (4.16), choosing κ small enough and using (4.15) proves (4.13).
After passing to a (not relabeled) subsequence we have for a certain function u

uε ⇁ u in L p(�,F ,P; L p(Q)),
uε ⇁ u in L2(�,F ,P; Lr (0, T ; L2(G))) ∀r < ∞,

∇uε ⇁ ∇u in L p(�,F ,P; L p(Q)),
ε∇uε → 0 in L2(�,F ,P; L2(Q)).

(4.17)

Theorem 5. (Regularity)
Assume (2.8) with p ≤ 2, (2.9) and u0 ∈ L2(�,F0,P, W̊ 1,2(G)). Then there is a unique
weak solution u to (1.1) which is a strong solution and satisfies

E

[
sup

t∈(0,T )

∫
G ′

|∇u(t)|2 dx +
∫ T

0

∫
G ′

|∇F(∇u)|2 dx dt

]
< ∞

for all G′ � G, where F(ξ) = (1 + |ξ |) p−2
2 ξ .

Remark 6. In cthe ase 1 < p < 2d
d+2 even the existence of a weak solution is not contained

in literature. In this case no Gelfand triple is available and hence the general results for
evolutionary SPDEs based on the variational approach (see for instance [39, Thm. 4.2.4])
do not hold. The uniqueness is again classical and follows from the monotonicity of the
coefficients.

Proof. From the proof of Theorem 4 we can quote [recall (4.13)]

E

[ ∫
G
η2|γh uε(t)|2 dx +

∫
Q
η2|γh F(∇uε)|2 dx dt

]

≤ c(η)

(
1 + E

[ ∫ t

0

∫
supp η

(1 + |∇uε| + |hγh ∇uε|)p−2|γh uε|2 dx dσ

])

+ c(η)εE

[ ∫ t

0

∫
supp η

|γh uε|2 dx dσ

])
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since the arguments up to this step also work for p ≤ 2. All involved quantities have weak
derivatives so we can go to the limit h → 0. This shows by (4.13)

E

[ ∫
G
η2|∇uε(t)|2 dx +

∫
Q
η2|∇F(∇uε)|2 dx dt

]

≤ c(η)

(
1 + E

[ ∫ t

0

∫
G
(1 + |∇uε|)p−2|∇uε|2 dx dσ

])

+ c(η)εE

[ ∫ t

0

∫
G

|∇uε|2 dx dσ

])
.

≤ c(η)

(
1 + E

[ ∫ t

0

∫
G
(1 + |∇uε|)p−2|∇uε|2 dx dσ

])

≤ c(η)

(
1 + E

[ ∫ t

0

∫
G

|∇uε|p dx dσ

])
.

Using similar arguments as in the last section we can interchange supremum and integral
and conclude

E

[
sup

t∈(0,T )

∫
G
η2|∇uε(t)|2 dx +

∫
Q
η2|∇F(∇uε)|2 dx dt

]

≤ c(η)

(
1 + E

[ ∫
Q

|∇uε|p dx dσ

])
≤ c(η).

(4.18)

Now we have to go to the limit in the equation. We get

S(∇uε) ⇁: S̃ in L p′
(�,F ,P; L p′

(Q)),
Φ(uε) ⇁: Φ̃ in L2(�,F ,P; L2(0, T ; L2(U, L2(G)D))).

(4.19)

One can now pass to the limit in the equation to obtain the corresponding equation for u with
S̃ and Φ̃ instead of S(∇u) and Φ(u), respectively. The passage to the limit in the stochastic
integral is justified since the mapping

L2(�,F ,P; L2(0, T ; L2(U ; L2(G)))) → L2(�,F ,P; L2(0, T ; L2(G))),

ϕ �→
∫ t

0
ϕ dWσ ,

is continuous hence weakly continuous. We have to show that S̃ = S(∇u) and Φ̃ = Φ(u)
hold. Subtracting the formula for ‖uε‖2

L2(G)
and ‖u‖2

L2(G)
[see (4.14)] shows

1

2
E

[ ∫
G

|uε(T )− u(T )|2 dx

]

+ E

[ ∫
G

∫ T

0

(
S(∇uε)− S(∇u)

) : ∇(
uε − u

)
dx dσ

]
+ εE

[ ∫ T

0

∫
G

|∇uε|2 dx dσ

]

= E

[
−

∫
G

uε(T ) · u(T ) dx

]

+ E

[ ∫
G

∫ T

0

(
S̃ − S(∇uε)

) : ∇u dx dσ −
∫

G

∫ T

0
S(∇u) : ∇(

uε − u
)

dx dσ

]

+ E

[ ∫
G

∫ T

0

(
uε ·Φ(uε)dWσ − u · Φ̃dWσ

)
dx

]

+ E

[ ∫
G

∫ T

0
d
(〈 ∫ ·

0
Φ(uε)dW

〉
σ

−
〈 ∫ ·

0
Φ̃dW

〉
σ

)
dx

]
.
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By (4.17) uε(T ) is bounded in L2(�×G,P⊗Ld ). Which gives uε(T ) ⇁ u(T ) in the same
space at least for a subsequence (note that both are weakly continuous in L2(�×G,P⊗Ld )

with respect to t which can be shown by the equations). Letting ε → ∞ shows for a
subsequence using (4.17) and (4.19)

lim
ε

E

[ ∫
G

|uε(T )− u(T )|2 dx +
∫

G

∫ T

0

(
S(∇uε)− S(∇u)

) : ∇(
uε − u

)
dx dσ

]

≤ lim
ε

E

[ ∫
G

∫ T

0
d
(〈 ∫ ·

0
Φ(uε)dW

〉
σ

−
〈 ∫ ·

0
Φ̃dW

〉
σ

)
dx

]
.

Following essential ideas of [11] (section 6) the last integral T̃ can be written as

T̃ =
∑

i

E

[ ∫
G

∫ T

0
|Φ(uε)ei |2 dx dσ

]
−

∑
i

E

[ ∫
G

∫ T

0
|Φ̃ei |2 dx dσ

]

= E

[ ∫ T

0
‖Φ(uε)‖2

L2(U,L2(G)) dt

]
− E

[ ∫ T

0
‖Φ̃‖2

L2(U,L2(G)) dt

]

= E

[ ∫ T

0
‖Φ(uε)− Φ̃‖2

L2(U,L2(G)) dt

]
+ 2 E

[ ∫ T

0

〈
Φ(uε), Φ̃

〉
L2(U,L2(G)) dt

]

− 2 E

[ ∫ T

0
‖Φ̃‖2

L2(U,L2(G)) dt

]
.

On account of (4.19) for ε → 0 we only have to consider the first term which can be written
as

E

[ ∫ T

0
‖Φ(uε)− Φ̃‖2

L2(U,L2(G)) dt

]
= E

[ ∫ T

0
‖Φ(uε)−Φ(u)‖2

L2(U,L2(G)) dt

]

− E

[ ∫ T

0
‖Φ(u)− Φ̃‖2

L2(U,L2(G)) dt

]

+ 2 E

[ ∫ T

0

〈
Φ(uε)− Φ̃,Φ(u)− Φ̃

〉
L2(U,L2(G)) dt

]

Using again (4.19) and also (2.9) implies

lim
ε

T̃ ≤ lim
ε

E

[ ∫ T

0
‖Φ(uε)−Φ(u)‖2

L2(U,L2(G)) dt

]

≤ c lim
ε

E

[ ∫ T

0

∫
G

|uε − u|2 dx dt

]
.

We finally gain on account of Grownwall’s lemma after interchanging expectation and inte-
gral

E

[ ∫
G

∫ T

0

(
S(∇uε)− S(∇u)

) : ∇(
uε − u

)
dx dσ

]
= 0.

From this we deduce, by monotonicity of S that

∇uε −→ ∇u P ⊗ Ld+1 − a.e.

This means we have shown S̃ = S(∇u). Now we combine the uniform L p-estimates for
∇uε with Vitali’s Theorem to get

∇uε −→ ∇u in Lq (�× (0, T )× G; P ⊗ Ld+1) for all q < p. (4.20)
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Of course this also means compactness of uε in the same space (we have zero traces).
Therefore, we gain Φ̃ = Φ(u). Now we can pass to the limit in the approximated equation
and finish the proof of Theorem 5. ��

5. Uhlenbeck-structure

In order to get better results we assume Uhlenbeck structure for the non-linear tensor S. If
D ≥ 2 we suppose

S(ξ) = ν(|ξ |)ξ (5.21)

for a C1-function ν : [0,∞) → [0,∞).

Theorem 7. (Higher integrability)
Assume (2.8), (5.21), (2.9) and u0 ∈ Lq (�,F0,P, W̊ 1,q (G)) for all q < ∞. If p > 2 − 4

d
then the solution u to (1.1) satisfies

E

[ ∫ T

0

∫
G ′

|∇u|q dx dt

]
< ∞

for all G′ � G and all q < ∞.

Since we now assume higher moments for the initial data we gain higher moments for
the solution as well.

Lemma 8. Under the assumptions of Theorem 7 we have

E

[
sup

t∈(0,T )

∫
G

|u(t)|2 dx +
∫ T

0

∫
G

|∇u|p dx dt

]q
< ∞

for all q < ∞.

Proof. Due to the regularity results from Theorems 4 and 5 we have a strong solution and
Itô’s formula can be directly applied to the funtion f (v) = 1

2 ‖v‖2
L2(G)

. Using the growth

condition on S from (2.8), taking the supremum and the q-th power of both sides of the
equation and applying expectations shows

E

[
sup
(0,T )

∫
G

|u(t)|2 dx +
∫ T

0

∫
G

|∇u|p dx dσ

]q

≤ c

(
E

[
1 +

∫
G

|u0|2q dx

]
+ E

[
sup
(0,T )

|J1(t)|
]q

+ E

[
sup
(0,T )

|J2(t)|
]q)

,

J1(t) =
∫

G

∫ t

0
u ·Φ(u) dWσ dx,

J2(t) =
∫

G

∫ t

0
d
〈 ∫ ·

0
Φ(u) dW

〉
σ

dx .
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Using (2.9) we gain

E

[
sup

t∈(0,T )
|J2(t)|

]q
= E

[
sup

t∈(0,T )

∫ t

0

∞∑
i=1

∫
G

|Φ(u)ei |2 dx dσ

]q

≤ E

[ ∫ T

0

∞∑
i=1

∫
G

|gi (·,u)|2 dx dσ

]q

≤ c E

[
1 +

∫ T

0

∫
G

|u|2 dx dσ

]q
.

On account of the Burkholder–Davis–Gundi inequality, (2.9) and Young’s inequality we
obtain for arbitrary ε > 0

E

[
sup

t∈(0,T )
|J1(t)|

]q
= E

[
sup

t∈(0,T )

∣∣∣ ∑
i

∫ t

0

∫
G

u · gi (·, u) dx dβi (σ )
∣∣∣
]q

≤ c E

[ ∫ T

0

∑
i

(∫
G

u · gi (·, u) dx

)2
dt

] q
2

≤ c E

[
1 +

( ∫ T

0

( ∫
G

|u|2 dx

)2
dσ

] q
2

≤ εE

[
sup

t∈(0,T )

∫
G

|u|2 dx

]q
+ c(ε)E

[ ∫ T

0

∫
G

|u|2 dx dσ

]q
.

Choosing ε small enough and using Gronwall’s lemma proves the claim.
Since the calculations above are not well-defined a priori one can work with a quadratic
approximation for the function z �→ zq . ��

Before we begin with the proof of Theorem 7 which is based on the Moser iteration
(see [26] for a nice presentation in the easier elliptic case) we need some preparations. The
basic idea is estimating higher powers of |∇u| by lower powers and iterate this. Therefore,
we define

h(s) :=
∫ s

0
(1 + θ)αθ dθ, α ≥ 0,

which behaves like sα+2 for large s. Unfortunately we cannot work directly with h, we need
an approximation hL which grows quadratically and converges to h. We follow the approach
in [7] and define for L � 1

hL (s) :=
∫ s

0
τgL (τ ) dτ,

gL (τ ) := g(0)+
∫ τ

0
ψ(θ)g′(θ) dθ,

g(θ) := h′(θ)
θ

.

(5.22)

Here ψ ∈ C1([0,∞)) denotes a cut-off function with the properties 0 ≤ ψ ≤ 1, ψ ′ ≤ 0,
|ψ ′| ≤ c/L , ψ ≡ 1 on [0, 3L/2] and ψ ≡ 0 on [2L ,∞). For the function hL we obtain the
following properties (see [8], Lemma 2.1, and [9], Sect. 2)
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Lemma 9. For the sequence (hL ) we have:

(a) hL ∈ C2[0,∞), hL (s) = h(s) for all t ≤ 3L/2 and

lim
L→∞ hL (s) = h(s) for all s ≥ 0;

(b) hL ≤ h, gL ≤ g and h′′
L ≤ c(L) on [0,∞);

(c) It holds

h′
L (s)

s
≤ h′′

L (s) ≤ c(α + 1)
h′

L (s)

s

and h′
L (s)s ≤ chL (s) uniformly in L.

(d) We have for all s, t ≥ 0 uniformly in L

h′
L (s)

s
t2 ≤ c(α)

(
1 + hL (s)+ hL t2)

.

With this preparations the following calculations are well-defined by Theorems 4 and 5.

Lemma 10. Under the assumptions of Theorem 7 we have

E

[
sup

t∈(0,T )

∫
G

|u(t)|q dx

]
< ∞

for all q < ∞.

Proof. We apply Itô’s formula to the function

fL (v) :=
∫

G
HL (v) dx :=

∫
G

hL (|v|) dx,

where hL is defined in (5.22) and set α = q − 2. We obtain∫
G

hL (|u|) dx

=
∫

G
η2hL (|u0|) dx +

∫ t

0
f ′
L (u)duσ + 1

2

∫ t

0
f ′′
L (u) d〈uσ 〉σ

=
∫

G
η2hL (|u0|) dx +

∫
G

∫ t

0
DHL (u) · duσ dx

+
∫

G

∫ t

0
D2 HL (u) d

〈 ∫ ·
0
Φ(u) dW

〉
σ

dx

=: (I )q + (I I )q + (I I I )q .

We consider the three integrals separately and decompose the second one into

(I I )q = −(I I )1q − (I I )2α + (I I )3q ,

(I I )1q :=
∫ t

0

∫
G

h′
L (|u|)
|u| S(∇u) : ∇u dx,

(I I )2q :=
∫ t

0

∫
G

S(∇u) : ∇ h′
L (|u|)
|u| ⊗ u dx dσ,

(I I )3q :=
∫ t

0

∫
G

h′
L (|u|)
|u| u ·Φ(u) dWσ dx .
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Using the Uhlenbeck structure (5.21) and Lemma 9 c) we gain

(I I )1q =
∫ t

0

∫
G

h′
L (|u|)
|∇u| ν(|∇u|)|∇u|2 dx ≥ 0,

(I I )2q =
∫ t

0

∫
G
ν(|∇u|)∇u : h′′

L (|u|)|u|−h′
L (|u|)

|u|2 ∇|u| ⊗ u dx dσ

= 1

4

∫ t

0

∫
G
ν(|∇u|) h′′

L (|u|)|u|−h′
L (|u|)

|u|3
∣∣∇|∇u|2∣∣2 dx dσ ≥ 0.

This and the assumptions on u0 imply

E

[
sup

t∈(0,T )

∫
G

hL (|u|) dx

]
≤ c E

[
1 + sup

t∈(0,T )
|(I I )3q | + sup

t∈(0,T )
|(I I I )q |

]

We have by (2.9) and Lemma 9

sup
t∈(0,T )

|(I I I )q | = 1

2

∑
k

∫
G

∫ T

0
D2 HL (u) d

〈 ∫ ·
0

gk(·,u)dβk

〉
σ

dx

≤ 1

2

∑
k

∫
G

∫ T

0
|D2 HL (u)||gk(·, u)|2 dσ dx

≤ c(q)
∑

k

∫
G

∫ T

0

h′
L (|u|)
|u| |gk(·,u)|2 dσ dx

≤ c(q)
∫

G

∫ T

0
h′

L (|u|)|u| dσ dx

≤ c(q)
∫

G

∫ T

0
hL (|u|) dσ dx .

Similar to the proof of Theorem 4 we gain using
( h′

L (s)
s +h′′

L (s)
)
s2 ≤ c(q)hL (s) uniformly

in L [recall Lemma 9 c)]

E

[
sup

t∈(0,T )
|(I I )3q |

]
≤ c E

[(∫ T

0

( ∫
G

hL (|u|) dx

)2
dt

] 1
2

≤ δ E

[
sup
(0,T )

∫
G

hL (|u|) dx

]
+ c(δ)E

[ ∫
Q

hL (|u|) dx dt

]
.

Finally we have shown

E

[
sup

t∈(0,T )

∫
G

hL (|u|) dx

]
≤ c E

[
1 +

∫ T

0

∫
G

hL (|u|) dx dt

]

and by Gronwall’s Lemma

E

[
sup

t∈(0,T )

∫
G

hL (|u|) dx

]
≤ c

uniformly in L . Passing to the limit L → ∞ yields the claim. ��
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Proof of Theorem 7. We apply Itô’s formula to the function

fL (v) :=
∫

G
η2 HL (∇v) dx :=

∫
G
η2hL (|∇v|) dx,

where η ∈ C∞
0 (G) is a cut-off function and hL is defined in (5.22). We obtain∫
G
η2hL (|∇u|) dx

=
∫

G
η2hL (|∇u0|) dx +

∫ t

0
f ′
L (u)duσ + 1

2

∫ t

0
f ′′
L (u) d〈uσ 〉σ

=
∫

G
η2hL (|∇u0|) dx +

∫
G

∫ t

0
η2 DHL (∇u) : d∇uσ dx

+
∫

G

∫ t

0
η2 D2 HL (∇u) d

〈 ∫ ·
0

∇(
Φ(u) dW

)〉
σ

dx

=: (I )α + (I I )α + (I I I )α.

We consider the three integrals separately and decompose the second one into

(I I )α = −(I I )1α − (I I )2α − (I I )3α + (I I )4α,

(I I )1α :=
∫ t

0

∫
G
η2 h′

L (|∇u|)
|∇u| DS(∇u)

(
∂γ∇u, ∂γ∇u

)
,

(I I )2α :=
∫ t

0

∫
G

h′
L (|∇u|)
|∇u| DS(∇u)

(
∂γ∇u,∇η2 ⊗ ∂γ u

)
dx dσ,

(I I )3α :=
∫ t

0

∫
G
η2 DS(∇u)

(
∂γ∇u,∇ h′

L (|∇u|)
|∇u| ⊗ ∂γ u

)
dx dσ,

(I I )4α :=
∫ t

0

∫
G
η2 h′

L (|∇u|)
|∇u| ∇u : ∇(

Φ(u) dWσ

)
dx .

Using the assumptions on S, see (2.8), we obtain

(I I )1α ≥ c
∫ t

0

∫
G
η2 h′

L (|∇u|)
|∇u| (1 + |∇u|)p−2|∇2u|2 dx dσ.

For the second term we gain for every δ > 0 using Young’s inequality and Lemma 9

(I I )2α ≤ δ(I I )1α + c(δ)
∫ t

0

∫
supp η

h′
L (|∇u|)
|∇u| DS(∇u)

(∇η2 ⊗ ∂γ u,∇η2 ⊗ ∂γ u
)

dx dσ

≤ δ(I I )1α + c(δ)
∫ t

0

∫
supp η

(1 + |∇u|)p−2hL (|∇u|) dx dσ.

Thanks to assumption (5.21) and Lemma 9 it holds4

(I I )3α =
∫ t

0

∫
G
η2 DS

(
∂γ∇u,∇ h′

L (|∇u|)
|∇u| ⊗ ∂γ u

)
dx dσ

= 1

2

∫ t

0

∫
G
η2 DS

(
eγ ⊗ ∇ h′

L (|∇u|)
|∇u| , eγ ⊗ ∇|∇u|2)

dx dσ

= 1

2

∫ t

0

∫
G
η2 h′′

L (|∇u|)|∇u|−h′
L (|∇u|)

|∇u|3 DS
(
eγ ⊗ ∇|∇u|2, eγ ⊗ ∇|∇u|2)

dx dσ

≥ 0.

4 For a detailed explanation of this step we refer to [6], (32) on p. 62.
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Moreover, we have by (2.9) and Lemma 9

(I I I )α = 1

2

∑
k

∫
G

∫ t

0
η2 D2 HL (∇u) d

〈 ∫ ·
0

∇(
gk(·,u)

)
dβk

〉
σ

dx

≤ 1

2

∑
k

∫
G

∫ t

0
η2|D2 HL (∇u)||∇(·, gk(u)

)|2 dσ dx

≤
∑

k

∫
G

∫ t

0
η2

(
h′′

L (|∇u|)+ h′
L (|∇u|)
|∇u|

)
|∇(

gk(·, u)
)∣∣∣2 dσ dx

≤ c(α + 1)
∑

k

∫
G

∫ t

0
η2 h′

L (|∇u|)
|∇u|

(|∇ξ gk(·,u)∇u|2 + |∇x gk(·,u)|2)
dσ dx

≤ c(α + 1)
∫

G

∫ t

0
η2 h′

L (|∇u|)
|∇u|

(|∇u|2 + |u|2)
dσ dx

≤ c(α)
∫

G

∫ t

0
η2(

1 + hL (|∇u|)+ hL (|u|2)) dσ dx .

In the last step we applied Lemma 9 c) and d).Thus we obtain taking the supremum, the q-th
power and applying expectations

E

[
sup
(0,T )

∫
G
η2hL (|∇u|) dx +

∫ T

0

∫
G
η2 h′

L (|∇u|)
|∇u| (1 + |∇u|)p−2|∇2u|2 dx dσ

]q

≤ c(η, α)E

[
1 +

∫
G

hL (|∇u0|) dx +
∫ T

0

∫
supp η

(1 + |∇u|)p−2hL (|∇u|) dx dσ

]q

+ c(η, α)
∫ T

0
E

[ ∫
G
η2(

hL (|∇u|)+ hL (|u|2)) dx

]q
dσ

+ c E

[
sup
(0,T )

|(I I )4α(t)|
]q
. (5.23)

Similar to the proof of Theorem 4 we gain using
( h′

L (s)
s +h′′

L (s)
)
s2 ≤ c(α)hL (s) uniformly

in L [recall Lemma 9 c)]

E

[
sup

t∈(0,T )
|(I I )4α |

]q
≤ δ E

[
sup
(0,T )

∫
G
η2hL (|∇u|) dx

]q

+ c(δ)
∫ T

0
E

[ ∫
G
η2hL (|∇u|) dx

]q
dt

+ c E

[
sup
(0,T )

∫
G
η2hL (|u|) dx

]q
.

If we choose δ small enough we can remove the term involving (I I )4α from the right-hand-
side of (5.23). By Gronwall’s Lemma, the assumptions on u0 and Lemma 10 we end up
with

E

[ ∫
G
η2hL (|∇u(t)|) dx +

∫
Q
η2 h′

L (|∇u|)
|∇u| (1 + |∇u|)p−2|∇2u|2 dx dt

]q
(5.24)

≤ c(η, α)E

[
1 +

∫ t

0

∫
supp η

(1 + |∇u|)p−2hL (|∇u|) dx dσ

]q
.
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Assume for a moment that

∇u ∈ Lq (�,F ,P; L p+α((0, T )× G′)) ∀G′ � G, ∀q < ∞, (5.25)

u ∈ Lq (�,F ,P; L∞(0, T ; Lα+2(G′))) ∀G′ � G, ∀q < ∞, (5.26)

Then we are allowed to go to the limit L → ∞ on the r.h.s. of (5.24). By Fatou’s Theorem
we are now allowed to do this on the l.h.s. as well. We obtain

E

[
sup
(0,T )

∫
G
η2h(|∇u(t)|) dx +

∫
Q
η2|∇(1 + |∇u|) p+α

2 |2 dx dt

]q

≤ c(η, α)

(
1 + E

[ ∫ T

0

∫
supp η

|∇u|p+α dx dt

]q)
.

This yields

|∇u| p+α
2 ∈ Lq (�,F ,P; L2(0, T ; W 1,2

loc (G)))|∇u| p+α
2 ∈

Lq (�,F ,P; L∞(0, T ; L
2 α+2
α+p

loc (G))) ∀q < ∞.

A parabolic interpolation (see for instance [2], Thm. 3.1) shows on account of p > 2 − 4
d

∇u ∈ Lq (�,F ,P; Lω(α)(0, T )× G′)) ∀G′ � G, ∀q < ∞, (5.27)

ω(α) := (p + α)
(

1 + 2

d

α + 2

α + p

)
.

Since (5.25) is true for α = 0 (by Lemma 8) we start an iteration procedure by

α0 := 0, αk+1 := ω(αk)− p, k ∈ N.

On account of αk → ∞ the claim is proven. ��
Remark 11. As already observed in [17], Remark 2.1., for the deterministic problem, it is
not possible to obtain L∞-bounds for ∇u except of the case p = 2 via Moser iteration. So
it is an open question if one can gain Lipschitz regularity for the stochastic problem. In the
deterministic case this is shown using the DeGiorgi method (see [17], Lemma 2.3). However
it is not clear if similar arguments will work for stochastic problems.
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