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Abstract. Let k be a non-Archimedean field, let � be a prime number distinct from the char-
acteristic of the residue field of k. If X is a separated k-scheme of finite type, Berkovich’s
theory of germs allows to define étale �-adic cohomology groups with compact support of
locally closed semi-algebraic subsets of X an . We prove that these vector spaces are finite
dimensional continuous representations of the Galois group of ksep/k, and satisfy the usual
long exact sequence and Künneth formula. This has been recently used by E. Hrushovski
and F. Loeser in a paper about the monodromy of the Milnor fibration. In this statement,
the main difficulty is the finiteness result, whose proof relies on a cohomological finiteness
result for affinoid spaces, recently proved by V. Berkovich.
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1. Introduction

Let k be a non-Archimedean1 field and X a separated k-scheme of finite type.
One can associate to it a k-analytic space X an [1]. Using [2] one can define �-
adic cohomology groups Hi

c (X an,Q�) which have good properties if � is different
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from char(k̃) (in particular, they are finite dimensional vector spaces when k is
algebraically closed).

If the k-scheme X =Spec(A) is affine, a subset U of X an is called semi-alge-
braic if it is a finite Boolean combination of subsets of the form {x ∈ X an

∣
∣ | f (x)| ≤

λ|g(x)|}where f and g belong to A and λ is a positive real number. This definition
of semi-algebraic subsets extends to general k-varieties (see Definition 2.8). If U
is a semi-algebraic subset of X an , using the theory of k-germs developed in [2],
it is possible to define cohomology groups of the k-germ (X an,U ), that we will
denote by Hi

c (U,Q�). We want to point out that in general, U is not equipped with
a structure of k-analytic space.

In this paper, we generalize the finiteness property mentioned above to locally
closed semi-algebraic subsets of X an . More precisely, let k̂a be the completion of the
algebraic closure of k and let us set X := X an⊗̂k k̂a and π : X → X an the natural
morphism. If U is a subset of X an , we set U := π−1(U ). Our main result is then:

Theorem. 5.14 Let X be a separated k-scheme of finite type of dimension d,U a
locally closed semi-algebraic subset of X an, and � �=char(k̃) be a prime number.

1. The groups Hi
c (U ,Q�) are finite dimensional Q�-vector spaces, on which

Gal(ksep/k) acts continuously, and Hi
c (U ,Q�) = 0 for i > 2d.

2. If V ⊂ U is a semi-algebraic subset which is open in U and F = U \ V , then
there is a long exact sequence of Galois modules

�� Hi
c (V ,Q�)

�� Hi
c (U ,Q�)

�� Hi
c (F,Q�)

�� Hi+1
c (V ,Q�) ��

3. For all integer n there are canonical isomorphisms of Galois modules:
⊕

i+ j=n

Hi
c

(

U ,Q�

)⊗ H j
c

(

V ,Q�

) � Hn
c

(

U × V ,Q�

)

.

We prove more generally this result when X is a separated A-scheme of finite
type where A is a k-affinoid algebra. The above result corresponds to the case
A = k.

This question was raised by F. Loeser and used in [8] where they study the
Milnor fibration associated to a morphism f : X → A1

C
where X is a smooth

complex algebraic variety. The non-Archimedean field is then k = C((t)).
In fact, the main point in the above theorem is to prove that when k is algebrai-

cally closed, the groups Hi
c (U ,Z/�

nZ) are finite. This is obtained as a consequence
of another analogous result which does not involve algebraic objects. If X is a k-affi-
noid space whose affinoid algebra is A, we say that a subset S of X is semianalytic if
it is a finite Boolean combination of subsets of the form {x ∈ X

∣
∣ | f (x)| ≤ λ|g(x)|}

where f and g belong to A and λ > 0. Now if X is a compact k-analytic space, we
say that a subset S ⊂ X is G-semianalytic if there exists a finite covering {Xi } of
X by some affinoid domains such that for each i, S ∩ Xi is semianalytic in Xi . We
then prove:

Proposition. 4.1 Let us assume that k is algebraically closed, and let X be a com-
pact k-analytic space. Then for any locally closed G-semianalytic subset S of X
and� a finite group whose cardinal is prime to char(k̃), the groups Hq

c ((X, S),�)
are finite.
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We want to point out that this result relies deeply on the cohomological finite-
ness of affinoid spaces which has been recently2 proved by V. Berkovich in [4].

We also want to mention that in the author’s thesis (Sect. 2.4) it is proved that our
finiteness result Proposition 3.3 is also true if we assume that S is an overconvergent
subanalytic subset3 of X .

Finally in Sect. 6, we explain some counterparts of these finiteness results for
Huber’s adic spaces.

Notations. In what follows, k will be a complete non-Archimedean field, X a
Hausdorff k-analytic space, and S ⊂ X will always be a locally closed subset of
X .

The étale site of a germ (see [2, 3.4]) If S is a subset of X, (X, S) is called a k-
germ. If (Y, T ) is another k-germ, a morphism of k-germs f : (Y, T )→ (X, S) is
a morphism of k-analytic spaces f : Y → X such that f (T ) ⊂ S. This defines the
category of k-germs.

Then the category of k-G erms is defined as the localization of the category
of k-germs by the morphisms of k-germs ϕ : (Y, T ) → (X, S) which induce an
isomorphism of Y with some open neighbourhood of S in X (this implies that ϕ
induces a homeomorphism between T and S). It is important to remark that the
functor k-A n→ k-G erms defined by X → (X, |X |) is fully faithful.

A morphism of k-G erms f is called étale if it has a representative ϕ : (Y, T )→
(X, S) such that ϕ : Y → X is étale and T = ϕ−1(S). Berkovich defines the small
étale site (X, S)ét of the k-germ (X, S), as the category of étale morphisms above

(X, S), a family (Yi , Ti )
fi−→ (Y, T ) being a covering if∪i fi (Ti ) = T . The category

of abelian sheaves on (X, S)ét is denoted by S(X, S)ét.

Cohomology groups with compact support (see [2, 5.1]) If S is a topological space,
a family of supports� is a family of closed subsets of S which is stable under finite
unions and such that if F is a closed subset of S and F ⊂ T for some T ∈ � then
F ∈ �. If � is a family of supports of S, and A ⊂ S we set

�A = {F ∈ �
∣
∣ F ⊂ A} (1)

which is a family of supports of A.
A family of supports � is said to be paracompactifying if for all A ∈ �, A is

paracompact, and if for all A ∈ �, there exists B ∈ � which is a neighbourhood
of A.

If � is a family of supports, the following functor

�� : S(X, S)’́et → Ab
F �→ {s ∈ F(X, S)

∣
∣ supp(s) ∈ �} (2)

2 In a previous version of this work (arXiv:1210.4521, [v1]), the results of [4] were not
available. Instead, we used [3, Corollary 5.5] which is a cohomological finiteness result for
affinoid spaces which are algebraizable in some sense. As a consequence, in this previous
version, we obtained less general results. In particular, we could not prove Proposition 3.3.

3 If X is a k-affinoid space, the class of overconvergent subanalytic subsets of X , intro-
duced by H. Schoutens in [14], properly contains the class of semianalytic subsets of X .
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is left exact. Its right derived functors are denoted by Hq
�((X, S), F).

Let us assume that S is locally closed in X , that T is an open subset of S, and
that R := S \ T . If � is a paracompactifying family of supports of S, and F is an
abelian sheaf on (X, S), there is a long exact sequence [2, 5.2.6 (ii)]:

· · · → Hq−1
�R

((X, R), F(X,R))→ Hq
�T
((X, T ), F(X,T ))

→ Hq
�((X, S), F)→ Hq

�R
((X, R), F(X,R))→ · · · . (3)

Now, we denote by CS the family of compact subsets of S. If S is Hausdorff,
this is a family of supports, and if S is locally compact, CS is paracompactifying.
Remind that if S is a locally closed subset of a locally compact topological set
X, S is also locally compact. Since we will always consider locally closed subsets
S of some Hausdorff k-analytic space X , the family of supports CS will then be
paracompactifying. If F ∈ S(X, S)ét, we will denote by

Hq
c ((X, S), F) := Hq

CS
((X, S), F)

the associated right derived functors.
Let T ⊂ S be an open subset of S and R := S \ T the complementary closed

subset of S. Then, (CS)T = CT because being compact in T or in S is equivalent;
likewise (CS)R = CR . In this context, the long exact sequence (3) can be written:

· · · → Hq−1
c ((X, R), F(X,R))→ Hq

c ((X, T ), F(X,T ))

→ Hq
c ((X, S), F)→ Hq

c ((X, R), F(X,R))→ · · · (4)

What we will look at Let � be a finite abelian group whose cardinal is prime to
the characteristic of k̃. We set

Hn
c (S,�) := Hn

c ((X, S),�) (5)

where� is the constant sheaf of value� on (X, S)ét . This notation is abusive since
the cohomology of S itself is meaningless, only the cohomology of the k-germ
(X, S) can be defined. Nonetheless, we will use the notation (5) to simplify the
exposition.

If we still denote by � the constant sheaf of value � on (X, S)ét , then if
U ⊂ S,�(X,U ) is isomorphic to the constant sheaf of value� on (X,U )ét . Hence,
if T is an open subset of S and R := S \ T , the long exact sequence (4) becomes

· · · → Hq−1
c (R,�)→ Hq

c (T,�)→ Hq
c (S,�)→ Hq

c (R,�)→ · · · (6)

Quasi-immersions (see [2, 4.3]) A morphism of k-germs ϕ : (Y, T )→ (X, S) is
called a quasi-immersion if ϕ induces a homeomorphism of T with its image ϕ(T )
and for all y ∈ T , if we set x := ϕ(y), the maximal purely inseparable extension
of H(x) in H(y) is everywhere dense in H(y).

Here are two examples of quasi-immersions that we will use frequently. If U
is an analytic domain of X , and ϕ : U → X is the natural inclusion morphism,
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then ϕ : (U,U )→ (X,U ) is a quasi-immersion. If ϕ : Z → X is a closed immer-
sion, then (Z , Z) → (X, Z) is a quasi-immersion. Moreover, quasi-immersions
are stable under composition and base change.

Quasi-immersions will be very important for us through the following result:

Proposition. [2, 4.3.4 (i)] If ϕ : (Y, T )→ (X, S) is a quasi-immersion of k-germs,
it induces an equivalence of categories

S(Y, T )’́et � S(X, ϕ(T ))ét.

In particular if U is an analytic domain of X , there are isomorphisms

Hq
c (U,�) � Hq

c ((U,U ),�) � Hq
c ((X,U ),�). (7)

Similarly, if Z is a closed k-analytic subset of X ,

Hq
c (Z ,�) � Hq

c ((Z , Z),�) � Hq
c ((X, Z),�). (8)

We want to stress out that (7) and (8) partly justify the abuse of the notation made
in (5).

2. Semianalytic and semi-algebraic sets

Definition 2.1. Let A be a k-affinoid algebra, and let X =M(A) be the associated
k-affinoid space. A subset S ⊂ X is called semianalytic if it is a finite Boolean
combination4 of sets of the form

{x ∈ X
∣
∣ | f (x)| ≤ λ|g(x)|} (9)

where f, g ∈ A, and λ is a positive real number.

If one takes g = 0 in (9), one sees that if f ∈ A, the hypersurface V ( f ) =
{x ∈ X

∣
∣ f (x) = 0} is semianalytic. More generally, any Zariski-closed subset of

X is semianalytic. Using the Gerritzen–Grauert theorem, one can also check that
any affinoid domain of X is semianalytic.

Definition 2.2. Let X be a compact k-analytic space. A subset S ⊆ X is called
G-semianalytic if there exists a finite cover X = ∪n

i=1Ui by affinoid domains such
that S ∩Ui is semianalytic in Ui for all i .

Remark 2.3. Let X be a k-affinoid space. If S is a semianalytic subset of X , then it
is also a G-semianalytic subset of X (just consider the trivial cover with n = 1 and
X1 = X ). The converse is false: if S ⊂ X is G-semianalytic, it is not necessarily
semianalytic in X .

We could have said that S is locally semianalytic if for each point x ∈ X , there
is some affinoid neighbourhood V of x such that S ∩ V is semianalytic in V . With

4 Since we authorize finite Boolean combinations, we could have also authorized some<
and = in this definition.
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this definition, for a subset S of a k-affinoid space X , the following implications
hold

S is semianalytic ⇒ S is locally semianalytic ⇒ S is G-semianalytic.

However, these three classes of subsets are pairwise distinct. For more details on
this, we refer to [11] and [12].

We remind the following definition of [6, 2.1]:

Definition 2.4. Let A be a k-affinoid algebra, B an A-algebra of finite type, and
X = Spec(B). A subset S ⊂ X an is called semi-algebraic if it is a Boolean
combination of subsets

{

x ∈ X an
∣
∣ | f (x)| ≤ λ|g(x)|}

where f, g ∈ B and λ ∈ R∗+.

Remark 2.5. We want to point out that this definition depends on the algebraic
datum X = Spec(B) and not only on the k-analytic space X an .

For instance, let us consider the case A = k and X = Spec(k[T1, T2]), so that

X an � A
2,an
k . (10)

Let us consider S = {x ∈ A
2,an
k

∣
∣ T2(x) = 0}. Then S is semi-algebraic in A

2,an
k

with respect to the presentation (10). Let then f = ∑

n≥0 anT n
1 be a series with

an ∈ k whose radius of convergence is infinite, and such that f is not a polynomial.
Let us then consider the automorphism of A

2,an
k defined by

ϕ : A2,an
k → A

2,an
k

(T1, T2) �→ (T1, T2 + f (T1)

It is easy to check that ϕ(S) ⊂ A
2,an
k is not semi-algebraic any more with respect

to the presentation (10).
So, in order to be precise, when one talks about a semi-algebraic subset S ⊂

X an , one should always specify the algebraic datum X . However, for simplicity,
we will not do it when the algebraic presentation will be clear from the context.

Lemma 2.6. Let A be a k-affinoid algebra, X an affine A-scheme of finite type,
and let X = U1 ∪ · · · ∪ Un be an affine covering of X . If S ⊂ X an, then S is
semi-algebraic in X an if and only if S ∩ Uan

i is semi-algebraic in Uan
i for all i .

Proof. Let S ⊂ X an .
In one hand it follows from Definition 2.4 that if S is semi-algebraic in X an , then

S ∩Uan
i is also semi-algebraic in Uan

i , using the restriction morphisms OX (X )→
OX (Ui ).

Conversely, if S ∩ Uan
i is semi-algebraic in Uan

i for all i , according to [6, 2.6],
S ∩Uan

i is also semi-algebraic in X an . Since S = ∪n
i=1(S ∩Uan

i ), it follows that S
is semi-algebraic in X an . ��
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Lemma 2.7. Let X be a separated A-scheme of finite type, and S ⊂ X an. Let
X = U1 ∪ · · · ∪ Un be some affine covering of X . The following statements are
equivalent:

1. For i = 1 . . . n, S ∩ Uan
i is semi-algebraic in Uan

i .
2. For every open affine subscheme V ⊂ X , S ∩ Van is semi-algebraic in Van.

Proof. Let us assume that the condition (1) is fulfilled. Let V be some open affine
subscheme of X . Then Ui ∩ V is an open affine subscheme of Ui (because X is
separated), and since S ∩ Uan

i is semi-algebraic in Uan
i , S ∩ (Ui ∩ V)an is semi-

algebraic in (Ui ∩ V)an . Since the family {Ui ∩ V} is a finite affine covering of V
and since S ∩ Van = ∪n

i=1S ∩ (Ui ∩ V)an , thanks to the previous lemma, S ∩ Van

is semi-algebraic in Van , that is to say (2) is true.
For the converse statement one just has to take V = Ui . ��

Definition 2.8. Let A be a k-affinoid algebra, and let X be a separated A-scheme
of finite type. A subset S ⊂ X an is called semi-algebraic if it satisfies one of the
two equivalent conditions of Lemma 2.7.

Remark 2.9. Thanks to Lemma 2.7, we can check whether S ⊂ X an is semi-alge-
braic, with an affine covering of X , and this does not depend on the covering.
Moreover, if X is affine, according to Lemma 2.6, the two Definitions 2.4 and 2.8
of a semi-algebraic set are equivalent.

We have already used the following result, which is proved as a consequence
of the quantifier elimination in ACVF:

Proposition. [6, 2.5] Let A be a k-affinoid algebra, X and Y some affine A-
schemes of finite type, f : X → Y an A-morphism of finite type, and S a semi-
algebraic subset of X an. Then f an(S) is a semialgebraic subset of Yan.

Thanks to Lemmas 2.6 and 2.7, it has the immediate generalization:

Proposition 2.10. Let A be a k-affinoid algebra, X and Y some separated A-
schemes of finite type, f : X → Y an A-morphism of finite type, and S a semi-
algebraic subset of X an. Then f an(S) is a semialgebraic subset of Yan.

Remark 2.11. We want to point out that Definition 2.8 both generalizes the defini-
tion of a semianalytic set of an affinoid space, and the more classical definition of
a semi-algebraic set of some X an where X is an affine k-scheme of finite type.

Remark 2.12. Let A be a k-affinoid algebra. Let X be an affine A-scheme of finite
type, V be an affinoid domain of X an , and let S ⊂ X an be a semi-algebraic set.
Then S∩V is semianalytic in V . This is a straightforward consequence of the above
definitions.

Lemma 2.13. Let X be a separated A-scheme of finite type, S ⊂ X an a semi-alge-
braic subset of X an and V an affinoid domain of X an. Then S∩V is G-semianalytic
in V .
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Proof. It is possible to find a finite covering of V by affinoid domains V = ∪n
i=1Vi ,

and some affine open subschemes Ui of X such that Vi ⊂ Uan
i for all i . Then S∩Vi =

(S ∩ Uan
i ) ∩ Vi , and since S ∩ Uan

i is semi-algebraic in Uan
i and Vi ⊂ Uan

i , S ∩ Vi

is semianalytic in Vi according to Remark 2.12. ��
In fact, in the above lemma, one can check that S ∩ V is even locally semianalytic.

3. A finiteness result in the affinoid case

In this section k will be a (complete) non-Archimedean algebraically closed field.
We consider a k-affinoid algebra A, and we set X =M(A). We remind that � is
a finite abelian group whose order is prime to the characteristic of k̃. The goal of
this section is to prove Proposition 3.3.

Lemma 3.1. Let n ∈ N, and for i = 1 . . . n, let fi , gi ∈ A,♦i ∈ {<,≤} and
λi > 0 be a positive real number. Let us consider

S =
n

⋂

i=1

{x ∈ X
∣
∣ | fi (x)|♦iλi |gi (x)|}.

Then, the groups Hq
c (S,�) are finite for all q ∈ N.

Proof. We prove the lemma by induction on n.
If n = 0, then S = X and the result is a consequence of the finiteness result [4,

Theorem 1.1.1].
Let n ≥ 0 and assume that the result is true for n. Let f, g ∈ A, λ > 0, and let

S =
n

⋂

i=1

{

x ∈ X
∣
∣ | fi (x)|♦iλi |gi (x)|, i = 1 . . . n

}

T ={x ∈ S
∣
∣ |g(x)|λ < | f (x)|}

R ={x ∈ S
∣
∣ | f (x)| ≤ λ|g(x)|} = S\T .

Let us show that the groups Hq
c (T,�) and Hq

c (R,�) are finite. This will achieve
our induction step.

By its definition, S is a locally closed subset of X, T is an open subset of S,
and R = S \ T is the complementary closed subset of S. So we can apply the long
exact sequence (6) to S, R and T . By induction hypothesis, the groups Hq

c (S,�)
are finite, so if we show that the groups Hq

c (R,�) are finite, this will also prove
the finiteness of the groups Hq

c (T,�). Let us then show that the groups Hq
c (R,�)

are finite.
Let Y = M (A{λ−1U }/( f −Ug)

)

and let ϕ : Y → X be the morphism
of affinoid spaces induced by the natural map A → A{λ−1U }/( f − Ug). The
morphism ϕ induces an isomorphism between the analytic domain of Y :

A = {y ∈ Y
∣
∣ g(y) �= 0}
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and the analytic domain of X :

B = {x ∈ X
∣
∣ | f (x)| ≤ λ|g(x)| and g(x) �= 0}.

As a consequence, ϕ induces a quasi-immersion ϕ : (Y, A)→ (X, B), and also a
quasi-immersion

(Y, A ∩ ϕ−1(S))→ (X, B ∩ S). (11)

But

ϕ−1(S) =
n

⋂

i=1

{y ∈ Y
∣
∣ | fi (y)|♦iλi |gi (y)|}.

Here we have written fi (resp. gi ) whereas we should rather have written ϕ∗( fi )

(resp. ϕ∗(gi )). Hence by induction hypothesis, the groups Hq
c ((Y, ϕ−1(S)),�) are

finite.
Now A∩ϕ−1(S) is an open subset of ϕ−1(S), whose complement in ϕ−1(S) is

ϕ−1(S) ∩ {y ∈ Y
∣
∣ g(y) = 0}. Let Z be the Zariski closed subset of Y defined by

Z = {y ∈ Y
∣
∣ g(y) = 0}

and ψ : Z → Y the associated closed immersion. We then obtain a quasi-immer-
sion:

(Z , ψ−1(ϕ−1(S)))→ (Y, Z ∩ ϕ−1(S)).

By the induction hypothesis the groups Hq
c (ψ

−1(ϕ−1(S)),�) are finite, therefore
it is also true for the groups Hq

c (Z ∩ ϕ−1(S),�). Thus in the long exact sequence

· · · → Hq
c (A ∩ ϕ−1(S),�)→ Hq

c (ϕ
−1(S),�)→ Hq

c (Z ∩ ϕ−1(S),�)→ · · ·
the written groups in the middle and in the right are finite and we conclude from
this that the groups Hq

c (A ∩ ϕ−1(S),�) are finite. We have already noticed that
(Y, A ∩ ϕ−1(S))→ (X, B ∩ S) is a quasi-immersion, hence

Hq
c (A ∩ ϕ−1(S),�) � Hq

c (B ∩ S,�).

From this, we conclude that the groups Hq
c (B ∩ S,�) are also finite.

If we go back to our starting point

B ∩ S = {x ∈ S
∣
∣ | f (x)| ≤ λ|g(x)| and g(x) �= 0}

is an open subset of

R = {x ∈ S
∣
∣ | f (x)| ≤ λ|g(x)|}.

The complementary subset of B ∩ S in R is

D = {x ∈ S
∣
∣ | f (x)| ≤ λ|g(x)| and g(x) = 0} = {x ∈ S

∣
∣ f (x) = g(x) = 0}.
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We denote by Z ′ the Zariski closed subset of X :

Z ′ = {x ∈ X
∣
∣ f (x) = g(x) = 0}

hence D = Z ′ ∩ S, and using the same kind of arguments as above we can conclude
that the groups Hq

c (D,�) are finite.
We use for the last time the long exact sequence

· · · → Hq
c (B ∩ S,�)→ Hq

c (R,�)→ Hq
c (D,�)→ · · ·

We have shown that the groups on the left, and on the right are finite, thus the groups
Hq

c (R,�) are also finite. ��
Next, we want to extend this result to an arbitrary locally closed semianalytic

subset of X . In order to do so, we introduce the following notation.
Let f1, . . . fr , g1, . . . gr ∈ A, and λ1, . . . , λr > 0. For a subset I ⊆ {1 . . . r}

we set

CI =
(

⋂

i∈I

{x ∈ X
∣
∣ | fi (x)| ≤ λi |gi (x)|}

)

∩
⎛

⎝
⋂

j /∈I

{x ∈ X
∣
∣ | f j (x)| > λ j |g j (x)|}

⎞

⎠ .

The subsets CI induce a partition of X , and each CI is a semianalytic set of X . If
A ⊆ P({1 . . . r}), let us set

CA =
∐

I∈A

CI .

This is a semianalytic subset of X , and in fact every semianalytic subset of X is of
this form.5 This follows from the fact that if S is a semianalytic subset of X , one
can find some f1, . . . , fr , g1, . . . , gr ∈ A such that S is a finite union of subsets
of the form

{x ∈ ∣
∣ | fi1(x)|♦i1 |gi1(x)| and · · · and | fim (x)|♦im |gim (x)|}

where 1 ≤ i1 < · · · < im ≤ r , and ♦ j ∈ {≤,>}.
For instance, if S = {| f1| ≤ |g1|} ∪ {| f2| > |g2|}, A = {{1, 2}, {1},∅} is

suitable:

S = {| f1| ≤ |g1| and | f2| ≤ |g2|} ∪ {| f1| ≤ |g1| and | f2| > |g2|}
∪{| f1| > |g1| and | f2| > |g2|}.

Lemma 3.2. Let r and n be two integers, f1, . . . , fr , g1, . . . gr , F1, . . . Fn,G1, . . .

Gn ∈ A, A ⊆ P({1 . . . r}),♦i ∈ {<,≤} for i = 1 . . . n andλ1, . . . , λr , μ1, . . . , μn

be some positive real numbers. Let us suppose that the semianalytic set of X

C = CA ∩
(

n
⋂

i=1

{x ∈ X
∣
∣ |Fi (x)|♦iμi |Gi (x)|}

)

is locally closed. Then the groups Hq
c (C,�) are finite.

5 This is some kind of disjunctive normal form.
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Proof. We prove this by induction on r .
If r = 0 this is precisely the preceding Lemma 3.1.
Let r ≥ 0 and let us assume that we are given f1, . . . fr+1, g1, . . . gr+1 ∈

A, A ⊂ P({1 . . . r + 1}), and

C = CA ∩
(

n
⋂

i=1

{x ∈ X
∣
∣ |Fi (x)|♦iμi |Gi (x)|}

)

a subset of X , assumed to be locally closed. Then we must show that the groups
Hq

c (C,�) are finite. The idea is to decompose C as

C={

x ∈C
∣
∣ | fr+1(x)|≤λr+1|gr+1(x)|

} ∐ {

x ∈ C
∣
∣ | fr+1(x)| > λr+1|gr+1(x)|

}

and to use our induction hypothesis to this partition of C .
To formalize this, we set

A1 = {P ∈ A
∣
∣ r + 1 ∈ P}

A2 = {P ∈ A
∣
∣ r + 1 /∈ P} = A \ A1.

Finally we set

B1 = {P \ {r + 1} ∣∣ P ∈ A1}
and B2 = A2. In addition, we see B1 and B2 as subsets of P({1 . . . r}).

We now consider the subsets of X,CB1 and CB2 , associated with f1, . . . fr , g1,

. . . gr and λ1, . . . , λr . Then, by definition of B1 and B2,

CA = ({x ∈ X
∣
∣ | fr+1(x)| ≤ λr+1|gr+1(x)|} ∩ CB1)

∐

({x ∈ X
∣
∣ | fr+1(x)|

> λr+1|gr+1(x)|} ∩ CB2).

Said more simply, we have partitioned the set CA =∐

I∈A CI in two parts: on the
left side, we have kept the C ′I s where the inequality | fr+1(x)| ≤ λr+1|gr+1(x)| ap-
pears, and on the right side, we have kept the C ′I s where the inequality | fr+1(x)| >
λr+1|gr+1(x)| appears, which allows us to restrict to subsets of {1 . . . r}. And now
we set:

C1=CB1 ∩
⎛

⎝{x ∈ X
∣
∣ | fr+1(x)|≤λr+1|gr+1(x)|}∩

n
⋂

i=1

{x ∈ X
∣
∣ |Fi (x)|♦iμi |Gi (x)|}

⎞

⎠

C2=CB2 ∩
⎛

⎝{x ∈ X
∣
∣ | fr+1(x)|>λr+1|gr+1(x)|}∩

n
⋂

i=1

{x ∈ X
∣
∣ |Fi (x)|♦iμi |Gi (x)|}

⎞

⎠.

The following holds:

C1 =
{

x ∈ C
∣
∣ | fr+1(x)| ≤ λr+1|gr+1(x)|

}

C2 =
{

x ∈ C
∣
∣ | fr+1(x)| > λr+1|gr+1(x)|

}

.



384 F. Martin

So C = C1
∐

C2,C2 is an open subset of C , and C1 is the closed complementary
subset attached to it, in particular, C1 and C2 are locally closed in X . But we can
now apply our induction hypothesis to C1 and C2: the groups Hq

c (Ci ,�) are finite
for i = 1, 2. Finally, according to long exact sequence (6) applied to C2 ⊂ C ⊃ C1,
the groups Hq

c (C,�) are finite. ��
The previous lemma, with n = 0 becomes:

Proposition 3.3. Let S be a locally closed semianalytic subset of X. The groups
Hq

c (S,�) are finite.

4. Global results

In this section, we will still assume that k is algebraically closed.

4.1. The compact case

Proposition 4.1. Let X be a compact k-analytic space, and let S be a locally closed
G-semianalytic subset of X. The groups Hq

c (S,�) are finite.

Proof. We prove by induction on m that if X is a Hausdorff k-analytic space which
is covered by m affinoid domains: X = ∪m

i=1Vi , and S ⊂ X is a locally closed
subset of X such that S ∩ Vi is semianalytic in Vi for all i (in particular S is
G-semianalytic in X ), then the groups Hq

c (S,�) are finite.
For m = 1 this is Proposition 3.3.
Let then m ≥ 1 and let us assume that X is covered by the affinoid domains

Vi , i = 1 . . .m + 1, and that S ⊂ X such that for all i, S ∩ Vi is semianalytic in
Vi . We set

R = S ∩ (V1 ∪ · · · ∪ Vm)

T = S \ R

= (Vm+1 ∩ S) \ (Vm+1 ∩ (V1 ∪ · · · ∪ Vm)). (12)

If X ′ := V1 ∪ · · · Vm , then X ′ is a compact analytic domain of X (not necessarily
good), and R is a locally closed G-semianalytic subset of X ′ such that R ∩ Vi

is semianalytic in Vi for i = 1 . . .m. Thus by induction hypothesis, the groups
Hq

c ((X ′, R),�) are finite. In addition, since (X ′, R)→ (X, R) is a quasi-immer-
sion (because X ′ is an analytic domain of X ), Hq

c ((X ′, R),�) � Hq
c ((X, R),�),

hence these are finite groups.
Next, we claim that T is a locally closed semianalytic set of Vm+1. Indeed,

for each i, Vm+1 ∩ Vi is an affinoid domain of Vm+1 (because X is separated),
hence closed and semianalytic in Vm+1 according to the Gerritzen–Grauert the-
orem. Hence Vm+1 ∩ (V1 ∪ · · · Vn) is a closed semianalytic set of Vm+1. Since
S ∩ Vm+1 is a locally closed semianalytic subset of Vm+1, according to (12), T is
a locally closed semianalytic subset of Vm+1. Hence according to Proposition 3.3,
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the groups Hq
c ((Vm+1, T ),�) are finite, and since (Vm+1, T )→ (X, T ) is a quasi-

immersion, Hq
c ((Vm+1, T ),�) � Hq

c ((X, T ),�), thus the groups Hq
c ((X, T ),�)

are finite.
Finally, since R is a closed subset of S and T = S \ R, the long exact sequence

(6) allows to conclude that the groups Hq
c ((X, S),�) are finite. ��

4.2. The semi-algebraic case

Proposition 4.2. Let A be a k-affinoid algebra, X a separated A-scheme of fi-
nite type, and S a locally closed semi-algebraic subset of X an. Then the groups
Hq

c ((X an, S),�) (that we abusively denote by Hq
c (S,�)) are finite.

Proof. According to Nagata’s compactification theorem (see [5] for a modern
proof), we can embed X as an open subscheme of a proper A-scheme X . Since
(X an,X an)→ (X an

,X an) is a quasi-immersion, and since quasi-immersions are
stable under base change, for all q ≥ 0 we have an isomorphism of groups:

Hq
c ((X an, S),�) � Hq

c ((X an
, S),�).

In addition, according to Proposition 2.10, S is still semi-algebraic in X an
. More-

over, S is still locally closed in X an
because X an is open in X an

. So we can assume
that X is proper.

In that case, X an is compact, and according to Lemma 2.13, S is G-semianalytic
in X an

, and the result follows from Proposition 4.1. ��

5. From torsion to �-adic coefficients

5.1. Continuous Galois action

From now on, we do not assume any more that k is algebraically closed. We still
consider X a Hausdorff k-analytic space. Let S be a locally closed subset of X
and let us set X = X⊗̂k k̂a, π : X → X , the projection, and S = π−1(S). This
is a locally closed subset of X . There is an action of Gal(ksep/k) on X which sta-
bilizes S. Hence Gal(ksep/k) acts on the k-germ (X , S). If F ∈ S(X, S), we set
F = π∗(F). The action of Gal(ksep/k) on (X , S) induces an action on Hi

c (S,F).
Indeed for σ ∈ Gal(ksep/k) we have the commutative diagram

(X , S)
π

����
��

��
��

�
σ �� (X , S)

π
�����

��
��

��

(X, S)

Then the action of σ on the cohomology is given by :

σ ∗ : Hi
c ((X , S),F) � Hi

c ((X , S), σ ∗F) � Hi
c ((X , S),F),
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the last isomorphism being a consequence of the isomorphism σ ∗ ◦ π∗(F) �
π∗(F). If (X, S) is a k-germ, and K is a complete extension of k, we consider
πK : X K = X⊗̂k K → X and we set SK = π−1

K (S), so that we can consider the
K -germ (X K , SK ).

Proposition 5.1. If X is a Hausdorff k-analytic space, F a locally closed subset of
X,F ∈ Sét(X), there is an isomorphism of Galois modules:

lim−→
K/k

Hq
c ((X K , FK ),FK ) � Hq

c ((X , F),F)

where the limit is taken over all finite separable extensions K of k contained in
ksep.

Proof. We will use that if Y is a Hausdorff k-analytic space and G ∈ Sét(Y ), the
following is true [2, 5.3.5]:

lim−→
K/k

Hq
c (YK ,GK ) � Hq

c (Y ,G),

and it is an isomorphism of Galois-modules.
Since F is locally closed, it can be written F = U ∩ F ′ where U is open in

X and F ′ is closed in X , and since (U, F) → (X, F) is a quasi-immersion, for
all q ≥ 0, Hq

c ((U, F),�) � Hq
c ((X, F),�). Now, F is closed in U , so we can

replace X by U and assume that F is closed.
In this situation, let U = X \F be the complementary open subset of X . For K a

finite separable extension of k, FK is a closed subset of X K whose complementary
open subset is UK . Hence we get a commutative diagram:

�� lim−→K/k
Hq

c (UK ,FK ) �� lim−→K/k
Hq

c (X K ,FK ) �� lim−→K/k
Hq

c ((X K , FK ),FK )

��

��

�� Hq
c (U ,F) �� Hq

c (X ,F) �� Hq
c ((X , F),F) ��

Thanks to the long exact sequence (4), the first row is exact because lim−→ is an exact
functor (we consider a filtered inductive limit), and the second row is exact. We can
then conclude thanks to the five lemma. ��

In particular, if A is a k-affinoid algebra, X is a separated A-scheme of finite
type, and if S is a locally closed subset of X an ,

Hq
c ((X , S),�)

is a continuous Galois module. Moreover, if T is an open subset of S and R = S\T ,
the long exact sequence

· · · → Hq
c ((X , T ),�)→ Hq

c ((X , S),�)→ Hq
c ((X , R),�)→ · · ·

is Galois equivariant.
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5.2. About the dimension

Let X be a Hausdorff k-analytic space. We denote by d the dimension of X (cf. [1,
p. 34] and [2, p. 23]).

Proposition 5.2. [2, Cor 5.3.8] Let Y be a Hausdorff k-analytic space of dimension
d,F a torsion abelian sheaf on Y , then for all i > 2d, Hi

c (Y,F) = 0.

We can generalize this result in the following way:

Proposition 5.3. Let X be a Hausdorff k-analytic space of dimension d. Let S be
a locally closed subset of X. For q > 2d, and F ∈ S(X) an abelian torsion sheaf
on X, Hq

c ((X, S), F) = 0.

Proof. Write S = U ∩ Z with U an open subset of X and Z a closed subset.
Set V = U \ S which is an open subset of U and X . Then Hq

c ((U, S), F) �
Hq

c ((X, S), F) and Hq
c (V, F) � Hq

c ((V, V ), F) � Hq
c ((U, V ), F), hence in the

long exact sequence (6)

· · · → Hq
c ((U, V ), F)→ Hq

c (U, F)→ Hq
c ((U, S), F)→ · · ·

according to the previous proposition, the groups are 0 on the left and in the middle
for q > 2d, so this must also occur for the groups on the right. ��

In our situation, this result can be refined. If A is a k-affinoid algebra, X a
separated A-scheme of finite type, and S ⊂ X an a semi-algebraic set, we set

Z := S
Zar

. Then since (Z , S)→ (X, S) is a quasi-immersion, Hq
c ((Z , S), F) �

Hq
c ((X, S), F). Hence if we set dim(S) := dim(Z), with the above notations,

Hq
c ((X, S), F) = 0 for all q > 2 dim(S).

5.3. Finiteness of the �-adic cohomology

In this subsection, we assume again that k is algebraically closed. We fix A a
k-affinoid algebra, X a separated A-scheme of finite type, S a locally closed semi-
algebraic subset of X an , and � a prime number different from the characteristic
of k̃.

In this situation, we have seen in Proposition 4.2 that for n ≥ 0, the groups
Hq

c (S,Z/�nZ) are finite (we remind that the notation Hq
c (S,Z/�nZ) is a shorthand

for Hq
c ((X, S),Z/�nZ)).

We then set

Hq
c (S,Z�) = lim←−

n>0

Hq
c (S,Z/�

nZ) (13)

and

Hq
c (S,Q�) = Hq

c (S,Z�)⊗Z� Q�. (14)

It is a classical fact that Proposition 4.2 implies that the groups Hq
c (S,Z�) are

finitely generated Z�-modules, and as a consequence, that Hq
c (S,Q�) are finite-

dimensional Q�-vector spaces. For completeness, we give here a proof as simple
as possible.
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Definition 5.4. A Z�-module M is called complete and separated (with respect to
the �-adic topology) if the canonical map

π : M → M̂ := lim←−
k≥1

M/�k M

is an isomorphism.

Proposition 5.5. Let us consider a projective system of abelian groups

M1
d1←− M2 ← · · · dn−1←−− Mn

dn←− · · ·

where each Mn is a finite Z/�nZ-module. Then

M := lim←−
n≥1

Mn

is a complete and separated Z�-module.

Proof. We must show that

π : M → M̂ = lim←−
k≥1

M/�k M

is an isomorphism.
We first prove that π is injective. If x = (xn) ∈ M , and π(x) = 0, this means

that x ∈ �k M for all k. Since for each n,Mn is a Z/�nZ-module, taking k = n, this
implies that xn ∈ �n Mn , so xn = 0 for all n, hence x = 0.

Let us now prove that π is surjective. For this, we consider a Cauchy sequence
(y(k))k≥1 in M , such that for all j ≥ k, y( j) ≡ y(k) mod �k M . In particular, if
j ≥ k, this implies that for all n,

y( j)
n ≡ y(k)n mod �k Mn . (15)

Now all we have to do is to find some x ∈ M such that for all k ≥ 1, x ≡ y(k)

mod �k M .
First, we define x = (xn) by

xn = (y(n)n )n≥1.

Thus we obtain:

dn(xn+1) = dn

(

y(n+1)
n+1

)

= y(n+1)
n ≡ y(n)n mod �n Mn,

the last congruence being a consequence of (15). But since Mn is a Z/�nZ-module,
ln Mn = {0}, thus dn(xn+1) = y(n)n = xn . Hence (xn) ∈ M .
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It is now sufficient to show that x ≡ y(k) mod �k M for all k ≥ 1. For this, let
us consider some n ∈ N∗. Then

xn − y(k)n = y(n)n − y(k)n .

If n < k, then according to (15), y(n)n − y(k)n ∈ �n Mn and since �n Mn = {0}, y(n)n =
y(k)n , so in particular y(n)n ≡ y(k)n mod �k Mk . If n ≥ k, still according to (15),
y(n)n − y(k)n ∈ �k Mk . So in any case (x − y(k))n ∈ �k Mn . But since the groups Mn

are all finite, according to the Mittag–Leffler condition,

�k lim←−
n≥1

Mn � lim←−
n≥1

�k Mn .

Hence x − y(k) ∈ �k M which concludes the proof. ��

Lemma 5.6. Let M be a complete and separated Z�-module. Then M is finitely
generated if and only if M/�M is finite.

Proof. First, if M is a finitely generated Z�-module, M/�M is a finitely generated
Z/�Z-module, hence is finite.

Conversely, if M/�M is generated by some elements m1, . . . ,m N from M ,
we show by induction on n that for each n ≥ 0, �n M/(�n+1 M) is generated by
�n(m1, . . .m N ). Indeed, this is true by hypothesis for n = 0. Now, if n > 0, and
x ∈ �n M , say x =∑N

i=1 �
n xi , then x = �∑N

i=1 �
n−1xi and by induction hypoth-

esis, there exists y ∈ �n−1(m1 . . .m N ) such that
∑N

i=1 �
n−1xi ≡ y mod �n M .

Hence �y ∈ �n(m1 . . .m N ) and �y ≡∑N
i=1 �

n xi mod �n+1 M .
Hence if x ∈ M , one can inductively define a sequence (xn)n≥0 such that

xn ∈ (m1 . . .m N ), xn = x mod �n M and xn+1 − xn ∈ �n(m1 . . .mn). Hence in
Z�(m1 . . .m N ), (xn) has a limit which is x . ��

Proposition 5.7. The groups Hq
c (S,Z�) are finitely generated Z�-modules. Hence,

Hq
c (S,Q�) is a finitely generated vector space for all q, and Hq

c (S,Q�) = {0} for
q > 2d, where d is the dimension of X an.

Proof. According to Propositions 4.2 and 5.5, Hq
c (S,Z�) is a complete Z�-module.

So according to Lemma 5.6, it only remains to prove that Hq
c (S,Z�)/�Hq

c (S,Z�)
is finite. Let us prove this.

For each n ≥ 0 we have the exact sequence of groups

0→ Z/�nZ
μn−→ Z/�n+1Z

π−→ Z/�Z→ 0

where

μn : Z/�nZ → Z/�n+1Z

x mod �n �→ �x mod �n+1
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and π is the reduction map. If we take the long exact sequence in cohomology
associated to this, we get the long exact sequence of projective systems:

�� Hi
c (S,Z/�

nZ)
μn ��

��

Hi
c (S,Z/�

n+1Z) ��

��

Hi
c (S,Z/�Z)

��

��

Hi+1
c (S,Z/�nZ)

��

��

�� Hi
c (S,Z/�

n+1Z)

α

��

μn+1 �� Hi
c (S,Z/�

n+2Z)

β

��

�� Hi
c (S,Z/�Z)

�� Hi+1
c (S,Z/�n+1Z)

��

��
�� �� �� ��

where the first two vertical arrows α and β correspond to the natural projections.
In addition, one checks that the composite μn ◦ α is just multiplication by �. By
the previous section, the groups are all finite, so the functor lim←−

n≥0

is exact (this is

a particular case of the Mittag–Leffler condition). So, once we apply the functor
lim←−n≥0

, we obtain the long exact sequence:

�� Hi
c (S,Z�)

×� �� Hi
c (S,Z�)

�� Hi
c (S,Z/�Z)

�� Hi+1
c (S,Z�) ��

In particular, this implies that we have an injection:

0→ Hq
c (S,Z�)/(�.H

q
c (S,Z�))→ Hq

c (S,Z/�Z)

and since Hq
c (S,Z/�Z) is finite, we conclude that Hq

c (S,Z�)/(�.H
q
c (S,Z�)) is

finite. ��

Using again the exactness of lim←− when all the groups are finite, and the long
exact sequence (6), when S is a locally closed semi-algebraic subset, V ⊆ S is a
semi-algebraic subset which is open in S and F = S \ V , then we get a long exact
sequence

· · · → Hi
c (V,Q�)→ Hi

c (S,Q�)→ Hi
c (F,Q�)→ · · ·

5.4. Künneth formula

Definition 5.8. Let� be a ring. A complex M• of�-modules is called strictly per-
fect if it is bounded, and for all n,Mn is a finitely generated projective �-module.
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Proposition 5.9. Let

(X ×S Y, R ×S T ) = (X, R)×S (Y, T )

h

��

g′��������������������
f ′

��������������������

(X, R)
f

������������������������ (Y, T )

g

������������������������

S

be a cartesian square of k-germs, where R (resp. T ) is locally closed in X (resp. in
Y ), X,Y and S being some Hausdorff k-analytic spaces. Let F ∈ D−(X,Z/�nZ)

and G ∈ D−(Y,Z/�nZ). Then there is a canonical isomorphism:

R f!F
L⊗

Z/�nZ
Rg!G � Rh!

(

(g′∗F) L⊗
Z/�nZ

( f ′∗(G)
)

Proof. Since R is locally closed, R = U ∩ F where U is an open subset of X , and
F a closed subset, so R is closed in U , and since the inclusion (U, R)→ (X, R)
is a quasi-immersion, replacing X by U , we can assume that R is closed in X . Let
us set U := X \ R the complementary open subset.

In a first step, let us assume that T = Y , that is to say that (Y, T ) = (Y,Y ) � Y .
Remark that (X,U ) and U are isomorphic as k-G erms. We then consider the fol-
lowing three cartesian diagrams:

(X, R)×S Y

h

��

g′

		����������
f ′



����������

(X, R)

f
�������������� Y

g
��												

S

U ×S Y

hU

��

g′U
















 f ′U

����
��

��
��

�

U

fU ����
��

��
��

�� Y

gU


















S

X ×S Y

h X

��

g′X
















 f ′X

����
��

��
��

�

X

fX ����
��

��
��

�� Y

gX


















S
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We then obtain a commutative diagram of distinguished triangles:

(

R fU !(F|U )
) L⊗

Z/�nZ
(Rg!G) 1 ��

��

RhU !
(

g′∗U (F|U )
L⊗

Z/�nZ
( f ′∗U (G))

)

��

(R fX !(F))
L⊗

Z/�nZ
(Rg!G)

��

2 �� Rh X !
(

g′∗X F L⊗
Z/�nZ

( f ′∗X (G))
)

��
(

R f!(F|(X,R))
) L⊗

Z/�nZ
(Rg!G) 3 ��

[−1]
��

Rh!
(

g′∗(F|(X,R))
L⊗

Z/�nZ
( f ′∗(G))

)

[−1]
��

According to [2, 7.7.3] the arrows 1 and 2 are isomorphisms. So 3 (which is con-
structed in the same way as in loc.cit.) is also an isomorphism.

Next, if (Y, T ) is a locally closed k-germ, as above we can assume that T is
closed in Y , so that if we set V := Y \T, V is an open subset of Y and V → (Y, V )
is a quasi-immersion. Hence according to the first step, the proposition holds for
the k-germs (Y, V ) and Y , so using again the distinguished triangle associated to
(Y, V ) and (Y, T ), we can conclude. ��

Exactly in the same way, we can generalize [2, 5.3.10] to k-germs:

Proposition 5.10. Let ϕ : Y → X be a Hausdorff morphism of finite dimension,
G ∈ Db(Y,Z/�nZ) of finite Tor-dimension, and F ∈ D(X,Z/�nZ). Let T be a
locally closed subspace of Y , and let us set f = ϕ|(Y,T ). Then R f!(G|(Y,T )) is also
of finite Tor-dimension, and there is a canonical isomorphism

F L⊗
Z/�nZ

R f!(G|(Y,T )) � R f!( f ∗(F) L⊗
Z/�nZ

G|(Y,T )).

We now apply Proposition 5.9 to the following situation: we assume that S =
M(k) and we consider the constant sheaves

F = Z/�nZ.

In that case R f! = R�c, and we have the following isomorphism in D−(Z/�nZ−
Mod):

R�c((X, R),Z/�nZ)
L⊗

Z/�nZ
R�c((Y, T ),Z/�nZ)�R�c((X×Y, R×T ),Z/�nZ).

(16)

Our goal is now to pass from Z/�nZ coefficients to Q� coefficients which is achieved
in Proposition 5.13. The following arguments are a rewriting of the exposition of
the �-adic Künneth formula for étale cohomology of schemes made in [13, VI 8].
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Using Proposition 5.10 with F = Z/�n−1Z and G = Z/�nZ yields the follow-
ing isomorphism in D−(Z/�n−1Z−Mod):

R�c((X, R),Z/�nZ)
L⊗

Z/�nZ
Z/�n−1Z � R�c((X, R),Z/�n−1Z) (17)

In what follows, we will work with complexes M• of Z� (resp. Z/�nZ) modules.
According to the context, we will either see M• as a complex of modules, or as
its image in the derived category D(Z� − Mod) (resp. D(Z/�nZ − Mod)). For
instance when we will consider projective limits lim←−n

M•n , this will always mean
that the M•n ’s are complexes of Z/�nZ-modules. In the same way, if M• and N •
are complexes of Z�-modules, M• ⊗Z� N • will denote the total tensor product of

complexes of Z�-modules, whereas M•
L⊗Z� N • will denote the total tensor product

of M• and N • seen as objects of the derived category.
Now we need the following lemma:

Lemma 5.11. For each n ≥ 1, let A•n and B•n be strictly perfect complexes of
Z/�nZ-modules, and for each n ≥ 2 let ϕn : A•n → A•n−1 (resp. ψn : B•n → B•n−1)
be a morphism of complex of Z/�nZ-modules, such that the canonical morphism
A•n ⊗

Z/�nZ
Z/�n−1Z→ A•n−1 (resp. B•n ⊗

Z/�nZ
Z/�n−1Z→ B•n−1) is a quasi-isomor-

phism. Then there is a canonical isomorphism in D(Z� −Mod):

lim←−
n≥1

(

A•n ⊗
Z/�nZ

B•n
)

�
(

lim←−
n≥1

A•n

)

L⊗
Z�

(

lim←−
n≥1

B•n

)

Proof. According to [7, I 12.5], there exists a strictly perfect complex A• of Z�-
modules and for each n a quasi-isomorphism αn : A•/(�n A•)→ A•n such that for
all n the following diagram commutes up to homotopy:

A•/(�n A•) αn ��

red
��

A•n
ϕn

��
A•/(�n−1 A•)

αn−1 �� A•n−1

(18)

and likewise there exists a strictly perfect complex of Z�-modules B• and some
quasi-isomorphisms βn : B•/(�n B•)→ B•n such that the following diagram com-
mutes up to homotopy:

B•/(�n B•)
βn ��

red
��

B•n
ψn

��
B•/(�n−1 B•)

βn−1 �� B•n−1

(19)

Remind that if M is a Z�-module of finite type, there is a functorial isomorphism:

M
∼→ lim←−

n≥1

M/(�n M) (20)
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We then obtain the following quasi-isomorphisms:

A• ∼→ lim←−
n

(A•/(�n A•)) ∼→ lim←−
n

(A•n), (21)

where the first arrow is an isomorphism of complexes according to (20) and the
second arrow is a quasi-isomorphism according to Mittag–Leffler condition and
the fact that all the modules involved are of finite type. The similar results holds
for B•.

We then obtain the following sequence of isomorphisms in D(Z� −Mod):

(lim←−
n

A•n)
L⊗
Z�

(lim←−
n

B•n )
∼← A•

L⊗
Z�

B• (22)

� A• ⊗
Z�

B• (23)

∼→ lim←−
n

(

(A• ⊗
Z�

B•)/(�n(A• ⊗
Z�

B•))
)

(24)

∼→ lim←−
n

(

(A•/(�n A•)) ⊗
Z/�nZ

(B•/(�n B•))
)

(25)

∼→ lim←−
n

(

A•n ⊗
Z/�nZ

(B•/(�n B•))
)

(26)

∼← lim←−
n

(A•n ⊗
Z/�nZ

B•n ). (27)

The isomorphism (22) holds thanks to (21), (23) holds because A• and B• are flat,
(24) is remark (20), (25) is base change for tensor product.

Finally to obtain (26) we take the tensor product of the first (resp. second)
line of diagram (18) with B•/(�n B•) (resp. B•/(�n−1 B•)). The resulting diagram
still commutes up to homotopy and since B•/(�n B•) is a projective complex, the
horizontal lines are still quasi-isomorphisms. Hence (thanks to Mittag–Leffler con-
dition), we obtain (26).

Similarly, for (27), we take the tensor product of the first (resp. second) line of
diagram (19) with A•n (resp. A•n−1). Since A•n is a projective complex, the horizontal
lines remain quasi-isomorphisms and we can conclude with the same argument.

��
Remark 5.12. Note that we have implicitly used the following result: if M•1 ,M•2
and M•3 are bounded above complexes of �-modules such that M•3 is projective,
and f : M•1 → M•2 is a quasi-isomorphism, then f ⊗ id : M•1 ⊗M•3 → M•2 ⊗M•3
is a quasi-isomorphism [15, 10.6.2]

Proposition 5.13. Let (X, R), (Y, T ) be k-germs such that for all (n,R�c((X, R),
Z/�nZ) and R�c((Y, T ),Z/�nZ) have finite cohomology groups. Then the coho-
mology groups of R�c((X, R) × (Y, T ),Z/�nZ) are also finite and for all r ≥ 0
we have a canonical isomorphism:

Hr
c ((X × Y, R × T ),Q�) �

⊕

p+q=r

H p
c ((X, R),Q�)⊗ Hq

c ((Y, T ),Q�) .
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Proof. The complexes R�c((X, R),Z/�nZ) and R�c((Y, T ),Z/�nZ)have bounded
cohomology groups, are of finite type by hypothesis, and according to Proposi-
tion 5.10 are of finite Tor-dimension, so we can choose some resolutions by some
strictly perfect complexes of the projective systems:

K •n → R�c((X, R),Z/�nZ)

P•n → R�c((Y, T ),Z/�nZ)

Q•n → R�c((X, R)× (Y, T ),Z/�nZ).

In addition, according to (16) we can find up to homotopy a quasi-isomorphism, of
projective systems:

K •n ⊗
Z/�nZ

P•n � Q•n . (28)

Moreover according to (17), K •n and P•n fulfil the hypothesis of Lemma 5.11. We
then denote by

K • = lim←−
n

(K •n )

P• = lim←−
n

(P•n )

Q• = lim←−
n

(Q•n).

Remark that (thanks to Mittag–Leffler property again)

H p(K •) � H p
c ((X, R),Z�) (29)

H p(P•) � H p
c ((Y, T ),Z�) (30)

H p(Q•) � H p
c ((X × Y, R × T ),Z�). (31)

In D(Z� −Mod) we consider the following sequence of isomorphisms:

K •
L⊗
Z�

P• � lim←−
n

(K •n )
L⊗
Z�

lim←−
n

(P•n ) (32)

� lim←−
n

(K •n ⊗
Z/�nZ

P•n ) (33)

� lim←−
n

(Q•n) (34)

� Q•. (35)

The isomorphism (32) holds by definition of K • and P•, (33) holds thanks to
Lemma 5.11, (34) is just a consequence of (28), and (35) holds by definition of
Q•.

We then obtain the following isomorphisms in D(Q� −Mod):
(

K •
L⊗
Z�

Q�

)
L⊗

Q�

(

P•
L⊗
Z�

Q�

)

�
(

K •
L⊗
Z�

P•
)

L⊗
Z�

Q� � Q•
L⊗
Z�

Q�
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But since Q� is flat over Z�, we can replace all the
L⊗
Z�

Q� by some ⊗Z�Q�. Finally,

since Q� is a field,

Hr
(

(K • ⊗Z� Q�)⊗Q�
(P• ⊗Z� Q�)

)

�
⊕

p+q=r

H p(K • ⊗Z� Q�)⊗Q�
Hq (P• ⊗Z� Q�).

The result then follows from the isomorphisms (29)–(31). ��
We must mention that the Proposition 5.9 is functorial in S. So let (X , R), (Y, T )

be k-germs, with X (resp. Y) a separated A-scheme (resp. B-scheme) of finite type,
A (resp. B) being some k-affinoid algebra and R (resp. T ) being some locally closed
semi-algebraic subset of X an (resp. Yan). Then, there are isomorphisms of Galois
modules:
⊕

p+q=r

H p
c

(

(X an, R),Q�

)⊗Hq
c

(

(Yan, T ),Q�

)�Hr
c

(

((X×Y)an, R × T ),Q�

)

.

5.5. Statement of the main theorem

We sum up all results of this section:

Theorem 5.14. Let k be a non-Archimedean complete valued field, A a k-affinoid
algebra, X a separated A-scheme of finite type of dimension d,U a locally closed
semi-algebraic subset of X an, and � �=char(k̃) be a prime number. We denote by
π : X an → X an the morphism defined in 5.1 and we set U = π−1(U ).

1. The groups Hi
c (U ,Q�) are finite dimensional Q�-vector spaces, endowed with

a continuous Gal(ksep/k)-action, and Hi
c (U ,Q�) = 0 for i > 2d.

2. Let V ⊂ U be a semi-algebraic subset which is open in U, and let F = U \ V .
Then there is a Gal(ksep/k)-equivariant long exact sequence

�� Hi
c (V ,Q�)

�� Hi
c (U ,Q�)

�� Hi
c (F,Q�)

�� Hi+1
c (V ,Q�)

��

3. For all integer n there are canonical Gal(ksep/k)-equivariant isomorphisms:
⊕

i+ j=n

Hi
c

(

U ,Q�

)⊗Q�
H j

c
(

V ,Q�

) � Hn
c

(

U × V ,Q�

)

.

6. Analogous statements for adic spaces

In this section, k will be a non-Archimedean algebraically closed non-trivially val-
ued field,� a finite group prime to the characteristic of k̃ and A a strictly k-affinoid
algebra.

We want to stress out that in the previous sections, instead of working with
the étale cohomology developed by Berkovich in [2], we could also have used the
theory of adic spaces and its étale cohomology theory, developed by Huber in [9].
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This might be interesting because this will define different groups (cf. Remark 6.1)
and will apply for different semianalytic (resp. semi-algebraic) subsets (cf. Remark
6.7). To avoid confusion, we will denote by Hq

c,ad(X,�) the groups defined by the
cohomology with compact support of adic spaces.

In this framework, the analogue of a a k-germ (X, S) is the notion of a pseudo-
adic space (X, S) over Spa(k, k◦) [ibid. 1.10.3]. The quasi-immersions will be
replaced by locally closed embeddings [ibid. 1.10.8 (ii) ], and the analogue of
[2, 4.3.4] which states that cohomology is invariant by quasi-immersion is [9,
2.3.8] which states the same thing for locally closed embeddings. In Huber’s the-
ory though, compactly supported cohomology isn’t defined as a derived functor,
but with some compactification, like in the étale cohomology of schemes. None-
theless, one can check that if i : (X, S) → (Y, T ) is a locally closed embed-
ding with i(S) = T , then Hq

c,ad((X, S), i∗(F)) � Hq
c,ad((Y, T ),F). Indeed, in

this case, i! = i∗ is an exact functor (it induces an equivalence of categories),
so R+i! = i! = i∗ [ibid. 5.4.1]. So R+i!(i∗F) � F , from what it follows that
Hq

c,ad((X, S), i∗(F)) � Hq
c,ad((Y, T ),F).

Remark 6.1. One has to keep in mind that compactly supported cohomology does
not give the same groups in both theories, for instance if X is the closed disc of
radius one:

i 0 1 2
Hi

c,Ber (X,�) � 0 0
Hi

c,ad(X,�) 0 0 �

In Sect. 3, we systematically used the long exact sequence

· · · Hq−1
c (R,�)→ Hq

c (T,�)→ Hq
c (S,�)→ Hq

c (R,�)→ · · ·

where

T = {x ∈ S
∣
∣ | f (x)| < |g(x)|} (36)

and R = S \ T . Although the closed-open long exact sequence is still valid for
pseudo-adic spaces [9, 5.5.11 (iv)], T as defined in (36) is not an open subset of S
any more, so we cannot apply this long exact sequence. In fact the typical example
of an open subset of an adic space is

T = {x ∈ S
∣
∣ | f (x)| ≤ |g(x)| �= 0}. (37)

It will be then possible in that case to apply this long exact sequence (which includes
the case { f �= 0} = {0 ≤ | f | �= 0}).
Remark 6.2. A subset S is a finite Boolean combination of subsets of the form
{| f | ≤ |g| �= 0} if and only if it is a finite Boolean combination of subsets of the
form {| f | ≤ |g|}.
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For instance, {| f | ≤ |g|} = {| f | ≤ |g| �= 0} ∪ ({g �= 0} ∪ { f �= 0})c.
Let A be a (strictly) k-affinoid algebra. We will say that a subset S ⊂

Spa(A,A◦) is semianalytic if it is a Boolean combination of subsets of the form

{x ∈ Spa(A,A◦) ∣
∣ | f (x)| ≤ |g(x)|}

where f, g ∈ A. This definition slightly differs from the one given for Berkovich
spaces: here we do not allow real constants in the inequalities.

Lemma 6.3. Let X = Spa(A,A◦) be the affinoid adic space associated to A, S =
∩n

i=1Si where for each i, Si is of the form Si = {x ∈ X
∣
∣ | fi (x)| ≤ |gi (x)| �= 0} or

Si = {x ∈ X
∣
∣ | fi (x)| > |gi (x)| or gi (x) = 0}, with fi , gi ∈ A. Then the groups

Hq
c,ad(S,�) are finite.

Proof. Mimic the proof of Lemma 3.1 using that

{x ∈ X
∣
∣ | fi (x)| ≤ |gi (x)| �= 0}c = {x ∈ X

∣
∣ | fi (x)| > |gi (x)| or gi (x) = 0}.

The key point here (that makes possible the base case of the induction) is that for
an affinoid adic space Y , the groups Hq

c,ad(Y,�) are finite [10, 5.1]. ��
Proposition 6.4. Let T be a locally closed, semianalytic subset of X = Spa(A,A◦).
Then the groups Hq

c,ad(T,�) are finite.

Proof. According to Remark 6.2, we can assume that T is a finite union of subsets
S as in Lemma 6.3. Hence we can adapt the proof of Lemma 3.2. ��

In this context, if X is a quasi-separated adic space of finite type over k, we will
say that S is locally semianalytic if there exists a finite affinoid covering {Ui } of X
such that S ∩Ui is semianalytic in Ui for all i . Adapting the proofs of Proposition
4.1, we obtain:

Proposition 6.5. Let X be a quasi-separated adic space of finite type over k, and
S a locally closed, locally semianalytic subset of X. Then the groups Hq

c,ad(S,�)
are finite.

We can define similarly semi-algebraic subsets S ⊂ X ad where X is an A-
scheme of finite type, like in Definition 2.4, but without the real constants λ. We
then obtain:

Proposition 6.6. Let X be a separated A-scheme of finite type, S a locally closed
semi-algebraic subset of X ad . Then the groups Hq

c,ad(S,�) are finite.

Remark 6.7. As indicated above, if X is a k-analytic (resp. adic) affinoid space,
the class of locally closed subspaces will be different according to the theories. To
illustrate this we want to give two examples. Let us consider X the closed bidisc
of radius 1: X =M(k{x, y}) or Spa(k{x, y}, k◦{x, y}) according to theory we are
using. Remind that a subset U is locally closed if and only if U is open in U .

A subset which is locally closed for the topology of adic spaces but not for the
Berkovich topology. Let V = {p ∈ X

∣
∣ |x(p)| > |y(p)|}∪{p0}. Here p0 is the rigid
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point corresponding to the origin. Then V is closed in the adic topology. Indeed its
complement is

V c = {p ∈ X \ {p0}
∣
∣ |x(p)| ≤ |y(p)|} = {p ∈ X

∣
∣ |x(p)| ≤ |y(p)| �= 0}

which is open by definition of the topology of adic spaces. But we claim that V is
not locally closed for the Berkovich topology. To show this, for r, s ≤ 1 let ηr,s ∈ X
be defined by

ηr,s

⎛

⎝
∑

i, j∈N
ai, j x i y j

⎞

⎠ = max
i, j∈N
|ai, j |r i s j .

Then for r > s, ηr,s ∈ V , and for 0 < r ≤ 1, ηr,r ∈ V \ V . Now, if V was open
in V , since it contains p0, it should contain ηr,r for r small enough which is a
contradiction.

A subset which is locally closed for the Berkovich topology but not for the
topology of adic spaces. Let us consider the set U = {p ∈ X

∣
∣ |x(p)| ≤ |y(p)|}.

Then U is closed for the Berkovich topology but not locally-closed for the topol-
ogy of adic spaces. Indeed, if p0 is the rigid point corresponding to the origin
(0, 0), p0 ∈ U , but U is not a neighbourhood of p0 in U with respect to the
topology of adic spaces. Otherwise for some ε > 0,U would contain a subset
B = {p ∈ U

∣
∣ |x(p)| ≤ ε and |y(p)| ≤ ε}. But then for 0 < α < ε with α ∈ |k×|,

we can define ηα ∈ U a valuation of rank 2 such that ηα(x) = α and ηα(y) = α−
where α− < α but is infinitesimally closed. Now, ηα ∈ U because ηα ∈ {ηα,α}
(cf. definition above). So by definition of B, ηα ∈ B. So we should have ηα ∈ U ,
which is false. So U is not locally closed for the adic topology.
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