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Abstract. The orbital stability of standing waves of nonlinear Schrödinger equations with a
general nonlinear term is investigated in this paper. We study the corresponding minimizing
problem with L2-constraint:

Eα = inf

⎧
⎪⎨

⎪⎩

1

2

∫

RN

|∇u|2dx −
∫

RN

F(|u|)dx; u ∈ H1(RN ), ‖u‖2
L2(RN )

= α

⎫
⎪⎬

⎪⎭
.

We discuss when a minimizing sequence with respect to Eα is precompact. We prove that
there exists α0 ≥ 0 such that there exists a global minimizer if α > α0 and there exists no
global minimizer if α < α0. Moreover, some almost critical conditions which determine
α0 = 0 or α0 > 0 are established, and the existence results with respect to Eα0 under some
conditions are obtained.

1. Introduction and main results

In this paper, we study stability results regarding standing waves of nonlinear
Schrödinger equations with general nonlinearity:

iut +�u + f (u) = 0 if (t, x) ∈ R × R
N , (1)

where N ≥ 1. We are interested in existence and orbital stability for standing
waves for (1). That is, solutions of (1) of the special form u(t, x) = eiμtv(x),
where μ ∈ R and v ∈ H1(RN ). For the nonlinear term, we assume the following
conditions throughout this paper:

(F1) f ∈ C(C,C), f (0) = 0.
(F2) f (r) ∈ R for r ∈ R, f (eiθ z) = eiθ f (z) for θ ∈ R, z ∈ C.
(F3) limz→0 f (z)/|z| = 0.
(F4) lim|z|→∞ f (z)/|z|l−1 = 0, where l = 2 + 4/N .
(F5) There exists s0 > 0 such that F(s0) > 0, where F(s) = ∫ s

0 f (τ )dτ for
s ∈ R.
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Under these conditions, for a solution u of (1), it has been established that the
following conservations laws:

‖u(t, ·)‖L2(RN ) = ‖u(0, ·)‖L2(RN ), I [u(t, ·)] = I [u(0, ·)] for any t ∈ R,

where I is the energy functional associated with (1) defined by

I [u] = 1

2

∫

RN

|∇u|2dx −
∫

RN

F(|u|)dx

for any u ∈ H1(RN ). Moreover, we consider the following conditions:

(F6) There exist K > 0 and p ∈ (2, 2∗) such that | f (z1) − f (z2)| ≤ K (1 +
|z1| + |z2|)p−2|z1 − z2| for z1, z2 ∈ C, where 2∗ = 2N/(N − 2)+.

(F7) There exist L > 0 and q ∈ (2, l) such that F(|z|) ≤ L(|z|2 + |z|q) for
z ∈ C.

It is recognized that the global well-posedness in H1(RN ) about (1) holds under
assumptions (F1), (F2), (F6), and (F7). Regarding global well-posedness, see, for
example, [5].

If u is a standing wave, i.e., u(t, x) = eiμtv(x), then v ∈ H1(RN ) and μ ∈ R

satisfy the following equation:

�v + f (v) = μv if x ∈ R
N . (2)

In this paper, we look for solutions (v, μ) with a priori prescribed L2-norm. More
precisely, we consider a constrained variational problem as follows. For a given
α > 0, we put

Mα =
{

u ∈ H1(RN ); ‖u‖2
L2(RN )

= α
}
.

If v is a critical point of I on Mα , then v is a solution of (2) where μ is determined
as the Lagrange multiplier. Since I is bounded below by the assumption (F4), the
energy

Eα = inf
u∈Mα

I [u] (3)

is well-defined and the existence of a global minimizer of (3) is expected. We define
Sα by the set of all global minimizers, i.e.,

Sα = {u ∈ Mα; I [u] = Eα}.
In this paper, we study the existence and the non-existence of global minimizers

of Eα .
This type problem was first studied in the works of Stuart [11,12]. Subsequently,

in [4], orbital stability of the set of minimizers, which suppose to establish the
compactness of any minimizing sequence, was obtained using the concentration
compactness principle [10]. In [4], it is assumed that Eα < 0 for all α > 0 and that
the strict subadditivity condition

Eα+β < Eα + Eβ (4)
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holds. This strict inequality was established in the special case of f (u) =
|u|p−2u (2 < p < l) in [4]. However, for a general f , it is not clear if (4) hold.
Another difficulty is that Eα < 0 for all α > 0 may not be satisfied. Actually, under
the assumptions (F1)–(F5), we show that there exists a α0 ≥ 0 uniquely determined
by f and N such that

Eα = 0 if 0 ≤ α ≤ α0, Eα < 0 if α > α0. (5)

These last years have seen a renew interest for L2-constraint minimizing problems,
or more generally for constrained minimization problem, see, e.g., [1,2,6–9]. Our
work uses in particular some arguments of [7] where a new scaling is introduced to
exclude the dichotomy of minimizing sequences on a related problem. Also note
that a study of existence and non-existence of minimizers, in the same spirit as the
present work, is made in [8] on the Schrödinger-Poisson equation.

Our primarily goal is the following theorem:

Theorem 1.1. Suppose (F1)–(F5) and that a constant α0 ≥ 0 which satisfies (5) is
uniquely determined. If α > α0,

(i) There exists a global minimizer with respect to Eα , i.e., Sα 
= ∅.
(ii) Under the assumptions (F6)–(F7), Sα is orbitally stable, i.e., for any ε > 0,

there exists δ > 0 such that for any solution u of (1) with dist(u(0, ·), Sα) < δ,
it holds that

dist(u(t, ·), Sα) < ε for any t ∈ R,

where dist(φ, Sα) = infψ∈Sα ‖φ − ψ‖H1(RN ).

If 0 < α < α0, there is no global minimizer with respect to Eα .

Theorem 1.1 is proved by the following Theorem 1.2 and the argument presented
by Cazenave and Lions [4].

Theorem 1.2. Suppose (F1)–(F5) and thatα > 0. If {un}n∈N ⊂ Mα is a minimizing
sequence with respect to Eα , then one of the following holds:

(i)

lim
n→∞ sup

z∈RN

∫

B(z,1)

|un|2dx = 0. (6)

(ii) Taking a subsequence if necessary, there exist u ∈ Mα and a family {yn}n∈N ⊂
R

N such that un(·− yn) → u in H1(RN ) as n → ∞. Specifically, u is a global
minimizer.

It is a natural question that “When α0 > 0 holds”. To answer the question, the
behavior of f near 0 is important. We can show that the following results:

Theorem 1.3. Suppose (F1)–(F5).

(i) If lims→0 F(s)/sl = ∞ holds, then α0 = 0 holds.
(ii) If lims→0 F(s)/sl < ∞ holds, then α0 > 0 holds.
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In the case α0 > 0, existence of a global minimizer with respect to Eα0 is still
unknown. Under some conditions, we can obtain existence results as follows.

Theorem 1.4. Suppose (F1)–(F5).

(i) If lims→0 F(s)/sl = 0 holds, then there exists a global minimizer with respect
to Eα0 .

(ii) There exist positive constants C and s1 such that F(s) = C |s|l if |s| ≤ s1.
Then, there exists a global minimizer with respect to Eα0 .

Finally, we can state the strict subadditivity condition.

Theorem 1.5. Suppose (F1)–(F5). Then the strict subadditivity condition holds,
i.e., for α, β > 0 with α + β > α0,

Eα+β < Eα + Eβ

holds.

We remark that the condition α + β > α0 is necessary because Eα = Eβ =
Eα+β = 0 if α + β ≤ α0.

In Sect. 2, we introduce the framework and provide the appropriate setting for
the proof of our main theorem. In Sect. 3, we give the proof of Theorem 1.2. In
Sect. 4, we give the proof of Theorem 1.1. In Sect. 5, we give the proof of the
remaining theorems. In Sect. 6 (Appendix), we give the proof of some lemmas
stated in Sect. 2.

2. Preliminaries

In this paper, L p(�) (p ≥ 1) is the usual Lebesgue space and H1(�) is the usual
Sobolev space on a domain� ⊂ R

N . We denote the norm of L p(�) and H1(�) by
‖ · ‖L p(�) and ‖ · ‖H1(�), respectively. We consider H1(�) as a real Hilbert space
with the inner product

(u, v)H1(�) = 

∫

�

∇u · ∇v + uvdx .

Under the assumptions (F1)–(F4), it is known that I is continuously differentiable
in H1(RN ) as follows.

Lemma 2.1. The energy functional I is continuously differentiable in H1(RN ).
Moreover, for u, v ∈ H1(RN ),

I ′[u]v = 

∫

RN

∇u · ∇v − f (u)vdx

holds. If u is a global minimizer with respect to Eα , the following holds:



∫

RN

∇u · ∇φ − f (u)φ + μuφdx = 0 for φ ∈ H1(RN ),
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where μ is a Lagrange multiplier determined by

μ = −1

α

∫

RN

|∇u|2 − f (|u|)|u|dx .

In particular, u is a solution of (2).

Lemma 2.1 is clear, so we omit the proof.

Lemma 2.2. (i) Let {un}n∈N be a bounded sequence in H1(RN ). If either
limn→∞ ‖un‖L2(RN ) = 0 or limn→∞ ‖un‖Ll (RN ) = 0 holds, then it is true
that limn→∞

∫

RN F(|un|)dx = 0.
(ii) There exists a positive constant C( f, N , α) depending f, N and α such that

I [u] ≥ 1

4

∫

RN

|∇u|2dx − C( f, N , α) (7)

holds for any u ∈ Mα . Specifically, Eα ≥ −C( f, N , α) > −∞.

Proof. (i): By the assumptions (F1)–(F4), for any ε > 0, there exists a positive
constant C( f, ε) which depends on ε and f such that

|F(|u|)| ≤ C( f, ε)|u|2 + ε|u|l , |F(|u|)| ≤ ε|u|2 + C( f, ε)|u|l ,
where l = 2 + 4/N . For u ∈ H1(RN ), we have

∣
∣
∣
∣
∣
∣
∣

∫

RN

F(|u|)dx

∣
∣
∣
∣
∣
∣
∣

≤ C( f, ε)‖u‖2
L2(RN )

+ ε‖u‖l
Ll (RN )

, (8)

∣
∣
∣
∣
∣
∣
∣

∫

RN

F(|u|)dx

∣
∣
∣
∣
∣
∣
∣

≤ ε‖u‖2
L2(RN )

+ C( f, ε)‖u‖l
Ll (RN )

. (9)

The Gagliardo–Nirenberg inequality implies that

‖u‖l
Ll (RN )

≤ C(N )‖∇u‖2
L2(RN )

‖u‖4/N
L2(RN )

,

where C(N ) is a positive constant which depends on N . Thus, we obtain
∣
∣
∣
∣
∣
∣
∣

∫

RN

F(|u|)dx

∣
∣
∣
∣
∣
∣
∣

≤ C( f, ε)‖u‖2
L2(RN )

+ εC(N )‖∇u‖2
L2(RN )

‖u‖4/N
L2(RN )

. (10)

We take the case where {un}n∈N is a bounded sequence in H1(RN ) satisfying
limn→∞ ‖un‖L2(RN ) = 0. By (10), we have limn→∞

∫

RN F(|un|)dx = 0. Alter-
natively, we can take the case where {un}n∈N is a bounded sequence in H1(RN )

satisfying limn→∞ ‖un‖Ll (RN ) = 0. By (9), we have

lim
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

RN

F(|un|)dx

∣
∣
∣
∣
∣
∣
∣

≤ ε‖un‖2
L2(RN )

.
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Since we can choose ε > 0 arbitrary, we obtain limn→∞
∫

RN F(|un|)dx = 0.
(ii): In (10), we choose ε > 0 satisfying C(N )α2/N ε = 1/4. Then, for u ∈ Mα ,

we have

∫

RN

F(|u|)dx ≤ C( f, N , α)+ 1

4
‖∇u‖2

L2(RN )
= 1

4

∫

RN

|∇u|2dx + C( f, N , α),

where C( f, N , α) is a positive constant which depends on f, N and α. This
implies (7). ��

In relation to the energy Eα , the following lemma holds.

Lemma 2.3. (i) Eα ≤ 0 for α > 0.
(ii) Eα+β ≤ Eα + Eβ for α, β > 0.

(iii) α �→ Eα is nonincreasing.
(iv) For sufficiently large α, Eα < 0 holds.
(v) α �→ Eα is continuous.

We define α0 by

α0 = inf {α > 0; Eα < 0}.

By Lemma 2.3, α0 is well-defined and (5) holds. We state the proof of Lemma 2.3
in the Appendix.

Lemma 2.4. Let {un}n∈N be a bounded sequence in H1(RN ) satisfying limn→∞
‖un‖2

L2(RN )
= α > 0. Let an = √

α/‖un‖L2(RN ) and ũn = anun. Then the
following holds:

ũn ∈ Mα, lim
n→∞ an = 1, lim

n→∞ |I [ũn] − I [un]| = 0.

Proof. Clearly, ũn ∈ Mα and limn→∞ an = 1 hold. We can compute

I [ũn]− I [un]

= (a2
n −1)

2

∫

RN

|∇un|2dx−
∫

RN

F(|anun|)−F(|un|)dx

= (a2
n −1)

2

∫

RN

|∇un|2dx−
∫

RN

⎛

⎝

1∫

0

f (|un|+(|an|−1)θ |un|)(|an|−1)|un|dθ
⎞

⎠ dx

= (a2
n −1)

2

∫

RN

|∇un|2dx−(|an|−1)
∫

RN

⎛

⎝

1∫

0

f (|un|+(|an|−1)θ |un|)|un|dθ
⎞

⎠ dx .
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We have 0 ≤ |un| + (|an| − 1)θ |un| ≤ (|an| + 2)|un|. Under the assumptions
(F1)–(F4), we have | f (s)| ≤ |s| + C( f )|s|l−1. Hence, we obtain

∣
∣
∣
∣
∣
∣
∣

∫

RN

1∫

0

f (|un| + (|an| − 1)θ |un|)|un|dθdx

∣
∣
∣
∣
∣
∣
∣

≤
∫

RN

⎛

⎝

1∫

0

(|an| + 2)|un|2 + C( f )(|an| + 2)l−1|un|ldθ
⎞

⎠ dx

=
∫

RN

(|an| + 2)|un|2 + C( f )(|an| + 2)l−1|un|ldx .

Since {un}n∈N is bounded in H1(RN ), we achieve our conclusion. ��

3. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. For our purposes, we will use
the concentration-compactness argument. The following Lemma 3.1 is necessary
for this argument.

Lemma 3.1. (Lions [10, Lemma I.1]) Let {un}n∈N be a bounded sequence in
H1(RN ) which satisfies

sup
z∈Rn

∫

B(z,1)

|un|2dx → 0 as n → ∞.

Then, for p ∈ (2, 2∗),
‖un‖L p(RN ) → 0 as n → ∞

holds, where 2∗ = 2N/(N − 2)+ is the critical Sobolev exponent.

To prove Theorem 1.2, the new scaling argument introduced in [7] plays impor-
tant role. By using the scaling argument in [7], similar to [8, Lemma 3.2], we can
obtain the following useful lemma.

Lemma 3.2. (i) Assume that there exists a global minimizer u ∈ Ma with respect
to Ea for some a > 0. Then Eb < Ea for any b > a. In particular, we have
Eb < 0 for any b > a.

(ii) Assume that there exist global minimizers u ∈ Ma and v ∈ Mb with respect to
Ea and Eb respectively for some a, b > 0. Then Ea+b < Ea + Eb.

Proof. (i): By Lemma 2.3, we have I [u] ≤ 0. Now setting λ = b/a > 1 and
ũ(x) = u(λ−1/N x), by the assumption, we have ‖ũ‖2

L2(RN )
= b and

I [ũ] = λ

⎛

⎜
⎝
λ−2/N

2

∫

RN

|∇u|2dx −
∫

RN

F(u)dx

⎞

⎟
⎠ < λI [u] = λEa .

Hence, we obtain Eb ≤ I [ũ] < λEa ≤ Ea .
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(ii): By the assumption and the argument as above, we have

Eλa < λEa for any λ > 1,

Eτb ≤ τ Eb for any τ ≥ 1.

Noting that we can assume 0 < b ≤ a without loss of generality, taking λ =
(a + b)/a and τ = a/b, we obtain

Ea+b <
a + b

a
Ea = Ea + b

a
Ea ≤ Ea + Eb.

It completes the lemma. ��
Proof of Theorem 1.2. Suppose that {un}n∈N ⊂ Mα is a minimizing sequence
which does not satisfy (6). It is sufficient to show that (ii) holds. Since (6) does not
hold and {un}n∈N ⊂ Mα , we have

0 < lim
n→∞ sup

z∈RN

∫

B(z,1)

|un|2dx ≤ α < ∞.

Taking a subsequence if necessary, there exists a family {yn}n∈N ⊂ R
N such that

0 < lim
n→∞

∫

B(0,1)

|un(x − yn)|2dx < ∞. (11)

Since {un}n∈N ⊂ Mα is a minimizing sequence, Lemma 2.2 (ii) asserts that {un}n∈N

is a bounded sequence in H1(RN ). Hence {un(· − yn)}n∈N is a bounded sequence
in H1(RN ). Using the weak compactness of a Hilbert space and the Rellich com-
pactness, for some subsequence, there exists u ∈ H1(RN ) such that

un(· − yn) ⇀ u weakly in H1(RN ), (12)

un(· − yn) → u in L2
loc(R

N ), (13)

un(· − yn) → u a.e. in R
N . (14)

Equations (11) and (13) assert that ‖u‖L2(RN ) > 0. We put vn = un(· − yn) − u.
By (12), vn ⇀ 0 weakly in H1(RN ). Thus, we have

∫

RN

|∇u + ∇vn|2dx =
∫

RN

|∇u|2 + |∇vn|2dx + 2

∫

RN

∇u · ∇vn

=
∫

RN

|∇u|2 + |∇vn|2dx + o(1) as n → ∞, (15)

∫

RN

|u + vn|2dx =
∫

RN

|u|2 + |vn|2dx + 2

∫

RN

uvn

=
∫

RN

|u|2 + |vn|2dx + o(1) as n → ∞. (16)
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Using (14), the Brezis-Lieb theorem (see [3]) implies that
∫

RN

F(|u + vn|)dx =
∫

RN

F(|u|)+ F(|vn|)dx + o(1) as n → ∞.

Since I [un] = I [un(· − yn)] = I [u + vn], we can obtain

I [un] = I [u] + I [vn] + o(1), (17)

‖un‖2
L2(RN )

= ‖u‖2
L2(RN )

+ ‖vn‖2
L2(RN )

+ o(1) as n → ∞.

We will show the following claim.

Claim.

lim
n→∞ sup

z∈RN

∫

B(z,1)

|vn|2dx = 0. (18)

Suppose that (18) does not hold. Since {vn}n∈N is bounded in H1(RN ), similarly as
above, for some subsequence, there exist a family {zn}n∈N ⊂ R

N and v ∈ H1(RN )

satisfying ‖v‖L2(RN ) > 0 such that

vn(· − zn) ⇀ v weakly in H1(RN ),

vn(· − zn) → v in L2
loc(R

N ),

vn(· − zn) → v a.e. in R
N .

We put wn = vn(· − zn)− v. Then, similarly as above, we can obtain

I [vn]= I [v+wn]= I [v]+ I [wn]+o(1),

‖vn‖2
L2(RN )

=‖v‖2
L2(RN )

+‖wn‖2
L2(RN )

+o(1) as n → ∞.

Consequently, we have

I [un]= I [u]+ I [v]+ I [wn]+o(1) as n → ∞, (19)

‖un‖2
L2(RN )

=‖u‖2
L2(RN )

+‖v‖2
L2(RN )

+‖wn‖2
L2(RN )

+o(1) as n → ∞. (20)

Here, we set β = ‖u‖2
L2(RN )

, γ = ‖v‖2
L2(RN )

and δ = α − β − γ . Then, we have

limn→∞ ‖wn‖2
L2(RN )

= δ ≥ 0. We will consider cases δ > 0 and δ = 0.

In the case δ > 0, we set w̃n = anwn and an = √
δ/‖wn‖L2(RN ). By Lemma

2.4, we have w̃n ∈ Mδ and I [wn] = I [w̃n]+ o(1). Thus, by (19) and the definition
of Eδ , we have

I [un] = I [u] + I [v] + I [wn] + o(1)

= I [u] + I [v] + I [w̃n] + o(1)

≥ I [u] + I [v] + Eδ + o(1) as n → ∞.
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As n → ∞, Lemma 2.3 implies that

Eα ≥ I [u] + I [v] + Eδ ≥ Eβ + Eγ + Eδ ≥ Eβ+γ+δ = Eα. (21)

Hence u and v are global minimizers with respect to Eβ and Eγ respectively. Here,
we can apply Lemma 3.2 (ii) to obtain

Eβ+γ < Eβ + Eγ .

It contradicts to (21).
In the case δ = 0, the equations α = β+γ and limn→∞ ‖wn‖L2(RN ) = 0 hold.

By Lemma 2.2 (i), we have

lim
n→∞

∫

RN

F(|wn|)dx = 0.

Thus, we obtain

lim
n→∞

I [wn] ≥ 0.

As n → ∞ in (19), we have

Eα ≥ I [u] + I [v] ≥ Eβ + Eγ ≥ Eα.

Hence u and v are global minimizers with respect to Eβ and Eγ respectively.
Similarly as above, by Lemma 3.2 (ii), we can obtain

Eα = Eβ+γ < Eβ + Eγ ,

which is a contradiction. It completes the proof of the claim.
By (18) and Lemma 3.1, we have limn→∞ ‖vn‖Ll (RN ) = 0. Lemma 2.2 (i)

asserts that

lim
n→∞

∫

RN

F(|vn|)dx = 0. (22)

Next, we estimate the L2 norm of vn .

Claim. limn→∞ ‖vn‖2
L2(RN )

= 0. In particular, ‖u‖2
L2(RN )

= α.

By (16) and β = ‖u‖2
L2 , it is sufficient to show that β = α. Otherwise, β < α

holds because β ≤ α. By (22), we have

lim
n→∞

I [vn] ≥ lim
n→∞

−
∫

RN

F(|vn|)dx = 0.

Taking the limit in (17), we obtain Eα ≥ I [u]. Using Lemma 2.3 (iii) along with
u ∈ Mβ , we have

Eα ≥ I [u] ≥ Eβ ≥ Eα. (23)
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This requires Eβ = Eα . Moreover, u is a global minimizer with respect to Eβ . By
Lemma 3.2 (i), we obtain Eβ > Eα because β < α. It contradicts to (23).

Finally, we estimate the H1-norm of vn . Using the above claim, u ∈ Mα . This
gives I [u] ≥ Eα . Therefore, we have

I [un] = I [u] + I [vn] + o(1) ≥ Eα + I [vn] + o(1) as n → ∞.

As n → ∞, we obtain

lim
n→∞ I [vn] ≤ 0,

while (22) asserts that

lim
n→∞

1

2

∫

RN

|∇vn|2dx ≤ lim
n→∞ I [vn] + lim

n→∞

∫

RN

F(|vn|)dx ≤ 0.

Since limn→∞ ‖vn‖2
L2(RN )

= 0, we have limn→∞ ‖vn‖2
H1(RN )

= 0. Hence

limn→∞ un(· − yn) = u in H1(RN ). ��

4. Proof of Theorem 1.1

In this section, we will give a proof of Theorem 1.1. To our purpose, we show the
following proposition.

Proposition 4.1. Suppose that α > α0. If {un}n∈N ⊂ Mα is a minimizing sequence
with respect to Eα , i.e., limn→∞ I [un] = Eα . Then, taking a subsequence if neces-
sary, there exist a family {yn} ⊂ R

N and u ∈ Mα such that limn→∞ un(·− yn) = u
strongly in H1(RN ). In particular, u is a global minimizer, i.e., u ∈ Sα .

Proof. By the assumption of the proposition and (5), we have Eα < 0. Let
{un}n∈N ⊂ Mα be a minimizing sequence with respect to Eα . It is sufficient to show
that {un}n∈N satisfies (ii) in Theorem 1.2. Otherwise, by Theorem 1.2, {un}n∈N sat-
isfies (6). By Lemma 2.2 (ii), {un}n∈N is bounded in H1(RN ), so (6) and Lemma
3.1 imply that un → 0 in Ll(RN ). By Lemma 2.2 (i), we have

lim
n→∞

∫

RN

F(|un|)dx = 0.

Since I [un] ≥ − ∫

RN F(|un|), we can obtain

Eα = lim
n→∞ I [un] ≥ lim

n→∞
−

∫

RN

F(|un|)dx = 0,

contradicting to Eα < 0. ��
Now, we can show Theorem 1.1.
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Proof of Theorem 1.1. First, we consider the case 0 < α < α0 and suppose by con-
tradiction that there exists a global minimizer with respect to Eα . By the assumption,
we have Eα = 0. Here, Lemma 3.2 (i) asserts that

0 = Eα > Eα0 .

It contradicts to the definition of α0 and Lemma 2.3 (v).
Next, we consider the case α > α0. Proposition 4.1 asserts Theorem 1.1 (i).

Moreover, Theorem 1.1 (ii) follows from Proposition 4.1 according to [4]. So we
omit the proof. ��

5. Proof of Theorems 1.3, 1.4 and 1.5

In this section, we give the proofs of the remaining theorems.

Proof of Theorem 1.3. (i): We fix α > 0 and take some function u ∈ Mα ∩
C∞

0 (R
N ) \ {0}. For λ > 0, let uλ(x) = λN/2u(λx). Then, we see that uλ ∈ Mα .

By the assumption of (i), there exist a positive constant δ such that

F(s) ≥ C |s|l if |s| < δ,

where C is a constant determined by

C =
∫

RN

|∇u|2dx
/ ∫

RN

|u|ldx .

Hence F(|uλ|) ≥ C |uλ|l holds for a sufficiently small λ. Thus we have

I [uλ] ≤ 1

2

∫

RN

|∇uλ|2dx − C
∫

RN

|uλ|ldx = −λ
2

2

∫

RN

|∇u|2dx .

It concludes that Eα ≤ I [uλ] < 0 for any α > 0.
(ii): By the assumption of (ii), there exists a positive constant C( f ) depending

on f such that F(s) ≤ C( f )|s|l holds for any s ≥ 0. For u ∈ Mα , using the
Gagliardo-Nirenberg inequality, we have

∫

RN

F(|u|)dx ≤ C( f )‖u‖l
Ll (RN )

≤ C( f )C(N )‖∇u‖2
L2(RN )

α2/N .

For a sufficiently small α > 0, it can be shown that C( f )C(N )α2/N ≤ 1/2 holds.
After choosing an appropriately small α, we have

I [u] ≥ 1

2
‖∇u‖2

L2(RN )
− 1

2
‖∇u‖2

L2(RN )
= 0.

This means Eα ≥ 0 for a small α > 0. Hence, we obtain α0 > 0. ��
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Proof of Theorem 1.4. (i): By Theorem 1.3 (ii), we haveα0 > 0. Letαn = α0+1/n.
By (5), Eαn < 0 holds. Moreover, Theorem 1.1 asserts that there exists a global
minimizer un ∈ Mαn with respect to Eαn . Using the symmetric rearrangement,
we can assume that un is radially symmetric with respect to the origin and and
that it is nonincreasing. Since I [un] and ‖un‖L2(RN ) are bounded, un is bounded
in H1(RN ). By the definition of un , we have limn→∞ ‖un‖2

L2(RN )
= α0. Let

vn = √
α0un/‖un‖L2(RN ). Then, by Lemma 2.4, we can obtain vn ∈ Mα0 and

lim
n→∞ I [vn] = lim

n→∞ I [un] = lim
n→∞ Eα0+1/n ≤ 0.

On the other hand, by (5), Eα0 = 0. Thus, {vn}n∈N is a minimizing sequence with
respect to Eα0 . We now show the following claim.

Claim. For some subsequence, there exist a family {yn}n∈N and v ∈ H1(RN ) such
that limn→∞ vn(· − yn) = v in H1(RN ).

If the claim holds, then v is a global minimizer. Therefore, suppose instead that the
claim does not hold. By Theorem 1.2, {vn}n∈N satisfies (6). By the definition of vn ,
we see that {un}n∈N satisfies (6). Here, un is a solution of

−�un + μnun = f (un) in R
N .

As {un}n∈N is bounded in H1(RN ), we find that μn is bounded in R. Using the
elliptic regularity theory, we see that {un}n∈N is bounded in C1(B(0, 1)). Thus, by
(6), we have

un(0) = ‖un‖L∞(RN ) → 0 as n → ∞.

On the other hand, by the assumption lims→0 F(s)/sl = 0, for any ε > 0, there
exists s3 > 0 such that F(s) ≤ ε|s|l if |s| < s3. Thus, for a sufficiently large n, we
have

∫

RN

F(|un|)dx ≤ ε‖un‖l
Ll (RN )

≤ εC(N )‖∇un‖2
L2(RN )

(

α0 + 1

n

)2/N

.

We choose ε > 0 satisfying εC(N )(α0 +1)2/N ≤ 1/2. We can then obtain I [un] ≥
0, contradicting the definition of un .

(ii): By Theorem 1.3 (ii), we have α0 > 0. Let un be a global minimizer
with respect to Eα0+1/n . We can assume un is radially symmetric with respect
to the origin and nonincreasing. Similar to the proof of (i), if there is no global
minimizer with respect to Eα0 , then {un}n∈N satisfies (6). Moreover, we have
limn→∞ ‖un‖L∞(RN ) = 0. Thus, we can choose a sufficiently large n such that
‖un‖L∞(RN ) ≤ s1/2.
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Let vλ(x) = λN/2un(λx), so that vλ ∈ Mα0+1/n . By the assumption of (ii), in
the case λN/2 ≤ 2, we see that F(|vλ|) = C |vλ|l holds. Hence, we have

I [vλ] =1

2

∫

RN

|∇vλ|2dx − C
∫

RN

|vλ|ldx

=λ
2

2

∫

RN

|∇un|2dx − λ2C
∫

RN

|un|ldx = λ2 I [un].

Choose an λ which satisfies λ > 1 and λN/2 ≤ 2. As I [un] < 0, we can obtain

Eα0+1/n ≤ I [vλ] = λ2 I [un] < I [un] = Eα0+1/n,

which is a contradiction.

Proof of Theorem 1.5. We can assume that 0 < α ≤ β without loss of generality.
It is then sufficient to consider the following cases:

Case 1: Eα = Eβ = 0.
Case 2: Eα = 0, Eβ < 0.
Case 3: Eα, Eβ < 0.

In Case 1, it is clear that Eα + Eβ = 0 > Eα+β because α + β > α0.
In Case 2, there exists a minimizer with respect to Eβ by Theorem 1.1. Thus,

we can apply Lemma 3.2 (i) to obtain

Eα+β < Eβ.

In Case 3, there exist a minimizers with respect to Eα and Eβ by Theorem 1.1.
Therefore Lemma 3.2 (ii) asserts conclusion. ��

6. Appendix

In this appendix, we will give the proofs of Lemmas 2.3.

Proof of Lemma 2.3. (i): Let u ∈ Mα . For λ > 0, we set uλ(x) = λN/2u(λx),
giving uλ ∈ Mα . Moreover, ‖uλ‖l

Ll (RN )
= λ2‖u‖l

Ll (RN )
→ 0 as λ → 0. By

Lemma 2.2 (i), we have

lim
λ→0

∫

RN

F(|uλ|)dx = 0.

As ‖∇uλ‖2
L2(RN )

= λ2‖∇u‖2
L2(RN )

, we see that limλ→0 I [uλ] = 0 holds. By the
definition of Eα , we have Eα ≤ I [uλ]. Thus, we obtain Eα ≤ 0.

(ii): We fix ε > 0. By the definition of Eα and Eβ , there exist u ∈ Mα∩C∞
0 (R

N )

and v ∈ Mβ ∩ C∞
0 (R

N ) such that

I [u] ≤ Eα + ε, I [v] ≤ Eα + ε.
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Since u and v have compact support, by using parallel translation, we can assume
supp u ∩ supp v = ∅. Therefore, we have u + v ∈ Mα+β . Thus, we find

Eα+β ≤ I [u + v] = I [u] + I [v] ≤ Eα + Eβ + 2ε.

As ε → 0, we have Eα+β ≤ Eα + Eβ .
(iii): By (i) and (ii), we have

Eα+β ≤ Eα + Eβ ≤ Eα

for any α, β > 0. This gives (iii).
(iv): For R > 0, set u R ∈ H1(RN ) by according to the following:

u R(x) =
⎧
⎨

⎩

s0 if |x | ≤ R,
s0(R + 1 − |x |) if R < |x | ≤ R + 1,
0 if |x | > R + 1,

where s0 is a constant determined in (F5). We write |SN−1| for the surface area of
the unit sphere. If N = 1, set |S0| = 2. We estimate I [u R] as follows:

I [u R]
=

∫

B(0,R)

1

2
|∇u R |2−F(|u R |)dx+

∫

B(0,R+1)\B(0,R)

1

2
|∇u R |2−F(|u R |)dx

≤
∫

B(0,R)

−F(s0)dx+
∫

B(0,R+1)\B(0,R)

1

2
s2

0 + sup
0≤s≤s0

|F(s)|dx

= −F(s0)|SN−1|
R∫

0

r N−1dr +
(

1

2
s2

0 + sup
0≤s≤s0

|F(s)|
)

|SN−1|
R+1∫

R

r N−1dr

=
(
(R+1)N −RN

) |SN−1|
N

(
1

2
s2

0 + sup
0≤s≤s0

|F(s)|− RN

(R + 1)N −RN
F(s0)

)

.

Since

RN

(R + 1)N − RN
= 1

(1 + 1/R)N − 1
→ ∞ as R → ∞,

for a sufficiently large R, we have I [u R] < 0. By choosing such an R and setting
α = ‖u R‖2

L2(RN )
, we obtain Eα ≤ I [u R] < 0. By (iii), we have Eβ ≤ Eα < 0 if

β ≥ α.
(v): We fix α > 0. By (iii), Eα−h and Eα+h are monotonic and bounded as

h → 0 + 0, so therefore they has limits. Moreover, Eα−h ≥ Eα ≥ Eα+h holds due
to (iii). Thus, we obtain

lim
h→0+0

Eα−h ≥ Eα ≥ lim
h→0+0

Eα+h .

Claim. limh→0+0 Eα−h ≤ Eα .
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This is clear if Eα = 0, so we consider the case Eα < 0. Take u ∈ Mα and
let uh(x) = √

1 − h/α u(x) for h > 0. Since ‖uh‖2
L2(RN )

= (1 − h/α)α =
α − h, we have uh ∈ Mα−h . On the other hand, we have ‖uh − u‖H1(RN ) = (1 −√

1 − h/α)‖u‖H1(RN ) → 0 as h → 0+0. Thus, we obtain limh→0+0 I [uh] = I [u].
By Eα−h ≤ I [uh], we have

lim
h→0+0

Eα−h ≤ lim
h→0+0

I [uh] = I [u].

As we choose u ∈ Mα arbitrarily, for a minimizing sequence {un}n∈N ⊂ Mα with
respect to Eα , we can obtain

lim
h→0+0

Eα−h ≤ I [un] for any n ∈ N.

As n → ∞, the claim holds.

Claim. limh→0+0 Eα+h ≥ Eα .

Since the left hand side converges, it is sufficient to consider the case h = 1/n,
where n ∈ N. Choose a {un ∈ Mα+1/n which satisfies I [un] ≤ Eα+1/n + 1/n for
each n ∈ N. By (i), I [un] ≤ 1/n. Lemma 2.2 (ii) asserts that {un}n∈N is a bounded
sequence in H1(RN ). By the definition of un , we have

lim
n→∞ I [un] = lim

h→0+0
Eα+h . (24)

Let vn = un/
√

1 + 1/(αn) for n ∈ N. Then, {vn}n∈N is also a bounded sequence
in H1(RN ). Moreover, we have

‖vn‖2
L2(RN )

=
‖un‖2

L2(RN )

1 + 1/(αn)
= α + 1/n

1 + 1/(αn)
= α.

Hence, vn ∈ Mα holds. Since Lemma 2.4 is independent of Lemma 2.3, we can
use Lemma 2.4 to obtain

Eα ≤ I [vn] = I [un] + o(1) as n → ∞.

By (24), the claim holds. ��
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