Masataka Shibata

Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term

Received: 20 April 2012 / Revised: 20 February 2013 Published online: 3 May 2013

Abstract. The orbital stability of standing waves of nonlinear Schrödinger equations with a general nonlinear term is investigated in this paper. We study the corresponding minimizing problem with *L*2-constraint:

$$
E_{\alpha} = \inf \left\{ \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \int_{\mathbb{R}^N} F(|u|) dx; u \in H^1(\mathbb{R}^N), ||u||^2_{L^2(\mathbb{R}^N)} = \alpha \right\}.
$$

We discuss when a minimizing sequence with respect to E_α is precompact. We prove that there exists $\alpha_0 \ge 0$ such that there exists a global minimizer if $\alpha > \alpha_0$ and there exists no global minimizer if $\alpha < \alpha_0$. Moreover, some almost critical conditions which determine $\alpha_0 = 0$ or $\alpha_0 > 0$ are established, and the existence results with respect to E_{α_0} under some conditions are obtained.

1. Introduction and main results

In this paper, we study stability results regarding standing waves of nonlinear Schrödinger equations with general nonlinearity:

$$
iu_t + \Delta u + f(u) = 0 \quad \text{if } (t, x) \in \mathbb{R} \times \mathbb{R}^N,
$$
 (1)

where $N > 1$. We are interested in existence and orbital stability for standing waves for [\(1\)](#page-0-0). That is, solutions of (1) of the special form $u(t, x) = e^{i\mu t}v(x)$, where $\mu \in \mathbb{R}$ and $v \in H^1(\mathbb{R}^N)$. For the nonlinear term, we assume the following conditions throughout this paper:

- (F1) $f \in C(\mathbb{C}, \mathbb{C}), f(0) = 0.$
- (F2) $f(r) \in \mathbb{R}$ for $r \in \mathbb{R}$, $f(e^{i\theta}z) = e^{i\theta} f(z)$ for $\theta \in \mathbb{R}$, $z \in \mathbb{C}$.
- (F3) $\lim_{z\to 0} f(z)/|z| = 0$.
- (F4) $\lim_{|z| \to \infty} f(z)/|z|^{l-1} = 0$, where $l = 2 + 4/N$.
- (F5) There exists $s_0 > 0$ such that $F(s_0) > 0$, where $F(s) = \int_0^s f(\tau) d\tau$ for $s \in \mathbb{R}$.

M. Shibata (B): Department of Mathematics, Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. e-mail: shibata@math.titech.ac.jp *Mathematics Subject Classification (2010):* 35Q55, 35J20, 35B35

Under these conditions, for a solution u of (1) , it has been established that the following conservations laws:

$$
||u(t, \cdot)||_{L^2(\mathbb{R}^N)} = ||u(0, \cdot)||_{L^2(\mathbb{R}^N)}, \quad I[u(t, \cdot)] = I[u(0, \cdot)] \text{ for any } t \in \mathbb{R},
$$

where I is the energy functional associated with (1) defined by

$$
I[u] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \int_{\mathbb{R}^N} F(|u|) dx
$$

for any $u \in H^1(\mathbb{R}^N)$. Moreover, we consider the following conditions:

- (F6) There exist $K > 0$ and $p \in (2, 2^*)$ such that $|f(z_1) f(z_2)| \leq K(1 +$ $|z_1| + |z_2|$)^{*p*−2} $|z_1 - z_2|$ for $z_1, z_2 \in \mathbb{C}$, where $2^* = 2N/(N - 2)_{+}$.
- (F7) There exist $L > 0$ and $q \in (2, l)$ such that $F(|z|) \le L(|z|^2 + |z|^q)$ for *z* ∈ C.

It is recognized that the global well-posedness in $H^1(\mathbb{R}^N)$ about [\(1\)](#page-0-0) holds under assumptions (F1), (F2), (F6), and (F7). Regarding global well-posedness, see, for example, [\[5](#page-16-0)].

If *u* is a standing wave, i.e., $u(t, x) = e^{i\mu t} v(x)$, then $v \in H^1(\mathbb{R}^N)$ and $\mu \in \mathbb{R}$ satisfy the following equation:

$$
\Delta v + f(v) = \mu v \quad \text{if } x \in \mathbb{R}^N. \tag{2}
$$

In this paper, we look for solutions (v, μ) with a priori prescribed L^2 -norm. More precisely, we consider a constrained variational problem as follows. For a given $\alpha > 0$, we put

$$
M_{\alpha} = \left\{ u \in H^{1}(\mathbb{R}^{N}); \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} = \alpha \right\}.
$$

If v is a critical point of *I* on M_α , then v is a solution of [\(2\)](#page-1-0) where μ is determined as the Lagrange multiplier. Since *I* is bounded below by the assumption (*F*4), the energy

$$
E_{\alpha} = \inf_{u \in M_{\alpha}} I[u] \tag{3}
$$

is well-defined and the existence of a global minimizer of [\(3\)](#page-1-1) is expected. We define S_{α} by the set of all global minimizers, i.e.,

$$
S_{\alpha} = \{u \in M_{\alpha}; I[u] = E_{\alpha}\}.
$$

In this paper, we study the existence and the non-existence of global minimizers of E_α .

This type problem was first studied in the works of Stuart [\[11](#page-16-1)[,12](#page-16-2)]. Subsequently, in [\[4](#page-16-3)], orbital stability of the set of minimizers, which suppose to establish the compactness of any minimizing sequence, was obtained using the concentration compactness principle [\[10](#page-16-4)]. In [\[4](#page-16-3)], it is assumed that $E_\alpha < 0$ for all $\alpha > 0$ and that the strict subadditivity condition

$$
E_{\alpha+\beta} < E_{\alpha} + E_{\beta} \tag{4}
$$

holds. This strict inequality was established in the special case of $f(u)$ = $|u|^{p-2}u(2 < p < l)$ in [\[4\]](#page-16-3). However, for a general f, it is not clear if [\(4\)](#page-1-2) hold. Another difficulty is that $E_\alpha < 0$ for all $\alpha > 0$ may not be satisfied. Actually, under the assumptions (F1)–(F5), we show that there exists a $\alpha_0 \ge 0$ uniquely determined by *f* and *N* such that

$$
E_{\alpha} = 0 \quad \text{if } 0 \le \alpha \le \alpha_0, \quad E_{\alpha} < 0 \quad \text{if } \alpha > \alpha_0. \tag{5}
$$

These last years have seen a renew interest for L^2 -constraint minimizing problems, or more generally for constrained minimization problem, see, e.g., [\[1](#page-15-0)[,2](#page-15-1),[6](#page-16-5)[–9\]](#page-16-6). Our work uses in particular some arguments of [\[7\]](#page-16-7) where a new scaling is introduced to exclude the dichotomy of minimizing sequences on a related problem. Also note that a study of existence and non-existence of minimizers, in the same spirit as the present work, is made in [\[8\]](#page-16-8) on the Schrödinger-Poisson equation.

Our primarily goal is the following theorem:

Theorem 1.1. *Suppose* (*F1*)–(*F5*) and that a constant $\alpha_0 \geq 0$ *which satisfies* [\(5\)](#page-2-0) *is uniquely determined. If* $\alpha > \alpha_0$ *,*

- (i) *There exists a global minimizer with respect to* E_{α} *, i.e.,* $S_{\alpha} \neq \emptyset$ *.*
- (ii) *Under the assumptions (F6)–(F7),* S_{α} *is orbitally stable, i.e., for any* $\epsilon > 0$, *there exists* $\delta > 0$ *such that for any solution u of* [\(1\)](#page-0-0) *with* dist($u(0, \cdot)$, S_α) < δ , *it holds that*

$$
dist(u(t, \cdot), S_{\alpha}) < \epsilon \quad \text{for any } t \in \mathbb{R},
$$

where dist(ϕ , S_{α}) = inf_{$\psi \in S_{\alpha}$} $\|\phi - \psi\|_{H^1(\mathbb{R}^N)}$.

If $0 < \alpha < \alpha_0$, there is no global minimizer with respect to E_α .

Theorem [1.1](#page-2-1) is proved by the following Theorem [1.2](#page-2-2) and the argument presented by Cazenave and Lions [\[4](#page-16-3)].

Theorem 1.2. *Suppose* (F1)–(F5) and that $\alpha > 0$. If $\{u_n\}_{n \in \mathbb{N}} \subset M_\alpha$ is a minimizing *sequence with respect to E*α*, then one of the following holds:*

(i)

$$
\overline{\lim}_{n \to \infty} \sup_{z \in \mathbb{R}^N} \int_{B(z,1)} |u_n|^2 dx = 0.
$$
 (6)

(ii) *Taking a subsequence if necessary, there exist* $u \in M_\alpha$ *and a family* $\{y_n\}_{n\in\mathbb{N}} \subset$ \mathbb{R}^N *such that* $u_n(-y_n) \to u$ *in* $H^1(\mathbb{R}^N)$ *as* $n \to \infty$ *. Specifically, u is a global minimizer.*

It is a natural question that "When $\alpha_0 > 0$ holds". To answer the question, the behavior of *f* near 0 is important. We can show that the following results:

Theorem 1.3. *Suppose (F1)–(F5).*

- (i) *If* $\underline{\lim}_{s\to 0} F(s)/s^l = \infty$ *holds, then* $\alpha_0 = 0$ *holds.*
- (ii) *If* $\overline{\lim}_{s\to 0} F(s)/s^l < \infty$ *holds, then* $\alpha_0 > 0$ *holds.*

In the case $\alpha_0 > 0$, existence of a global minimizer with respect to E_{α_0} is still unknown. Under some conditions, we can obtain existence results as follows.

Theorem 1.4. *Suppose (F1)–(F5).*

- (i) If $\overline{\lim}_{s\to 0} F(s)/s^l = 0$ *holds, then there exists a global minimizer with respect to* E_{α_0} .
- (ii) *There exist positive constants C and* s_1 *<i>such that* $F(s) = C|s|^l$ *if* $|s| \leq s_1$ *. Then, there exists a global minimizer with respect to* E_{α_0} *.*

Finally, we can state the strict subadditivity condition.

Theorem 1.5. *Suppose (F1)–(F5). Then the strict subadditivity condition holds, i.e., for* α , $\beta > 0$ *with* $\alpha + \beta > \alpha_0$,

$$
E_{\alpha+\beta} < E_{\alpha} + E_{\beta}
$$

holds.

We remark that the condition $\alpha + \beta > \alpha_0$ is necessary because $E_\alpha = E_\beta =$ $E_{\alpha+\beta}=0$ if $\alpha+\beta\leq\alpha_0$.

In Sect. [2,](#page-3-0) we introduce the framework and provide the appropriate setting for the proof of our main theorem. In Sect. [3,](#page-6-0) we give the proof of Theorem [1.2.](#page-2-2) In Sect. [4,](#page-10-0) we give the proof of Theorem [1.1.](#page-2-1) In Sect. [5,](#page-11-0) we give the proof of the remaining theorems. In Sect. [6](#page-13-0) (Appendix), we give the proof of some lemmas stated in Sect. [2.](#page-3-0)

2. Preliminaries

In this paper, $L^p(\Omega)$ ($p \ge 1$) is the usual Lebesgue space and $H^1(\Omega)$ is the usual Sobolev space on a domain $\Omega \subset \mathbb{R}^N$. We denote the norm of $L^p(\Omega)$ and $H^1(\Omega)$ by $\|\cdot\|_{L^p(\Omega)}$ and $\|\cdot\|_{H^1(\Omega)}$, respectively. We consider $H^1(\Omega)$ as a real Hilbert space with the inner product

$$
(u, v)_{H^1(\Omega)} = \Re \int\limits_{\Omega} \nabla u \cdot \overline{\nabla v} + u \overline{v} dx.
$$

Under the assumptions $(F1)$ – $(F4)$, it is known that *I* is continuously differentiable in $H^1(\mathbb{R}^N)$ as follows.

Lemma 2.1. *The energy functional I is continuously differentiable in* $H^1(\mathbb{R}^N)$ *. Moreover, for u, v* \in $H^1(\mathbb{R}^N)$ *,*

$$
I'[u]v = \Re \int_{\mathbb{R}^N} \nabla u \cdot \overline{\nabla v} - f(u)\overline{v} dx
$$

holds. If u is a global minimizer with respect to E_α *, the following holds:*

$$
\Re \int_{\mathbb{R}^N} \nabla u \cdot \overline{\nabla \phi} - f(u)\overline{\phi} + \mu u \overline{\phi} dx = 0 \quad \text{for } \phi \in H^1(\mathbb{R}^N),
$$

where μ *is a Lagrange multiplier determined by*

$$
\mu = \frac{-1}{\alpha} \int_{\mathbb{R}^N} |\nabla u|^2 - f(|u|)|u| dx.
$$

In particular, u is a solution of [\(2\)](#page-1-0)*.*

Lemma [2.1](#page-3-1) is clear, so we omit the proof.

- **Lemma 2.2.** (i) Let $\{u_n\}_{n\in\mathbb{N}}$ be a bounded sequence in $H^1(\mathbb{R}^N)$. If either $\lim_{n\to\infty}$ $||u_n||_{L^2(\mathbb{R}^N)} = 0$ or $\lim_{n\to\infty}$ $||u_n||_{L^1(\mathbb{R}^N)} = 0$ holds, then it is true *that* $\lim_{n\to\infty} \int_{\mathbb{R}^N} F(|u_n|) dx = 0$.
	- (ii) *There exists a positive constant* $C(f, N, \alpha)$ *depending* f , N *and* α *such that*

$$
I[u] \ge \frac{1}{4} \int_{\mathbb{R}^N} |\nabla u|^2 dx - C(f, N, \alpha) \tag{7}
$$

holds for any u $\in M_\alpha$ *. Specifically, E_α > -C(f, N, α) > -*∞.

Proof. (i): By the assumptions (F1)–(F4), for any $\epsilon > 0$, there exists a positive constant $C(f, \epsilon)$ which depends on ϵ and f such that

$$
|F(|u|)| \leq C(f,\epsilon)|u|^2 + \epsilon |u|^l, \quad |F(|u|)| \leq \epsilon |u|^2 + C(f,\epsilon)|u|^l,
$$

where $l = 2 + 4/N$. For $u \in H^1(\mathbb{R}^N)$, we have

 $\overline{}$

 \mathbb{R}^n

 $\overline{1}$

$$
\left| \int_{\mathbb{R}^N} F(|u|) dx \right| \le C(f, \epsilon) \|u\|_{L^2(\mathbb{R}^N)}^2 + \epsilon \|u\|_{L^l(\mathbb{R}^N)}^l,
$$
\n(8)\n
$$
\left| \int_{\mathbb{R}^N} F(|u|) dx \right| \le \epsilon \|u\|_{L^2(\mathbb{R}^N)}^2 + C(f, \epsilon) \|u\|_{L^l(\mathbb{R}^N)}^l.
$$
\n(9)

The Gagliardo–Nirenberg inequality implies that

$$
||u||_{L^{l}(\mathbb{R}^{N})}^{l} \leq C(N)||\nabla u||_{L^{2}(\mathbb{R}^{N})}^{2}||u||_{L^{2}(\mathbb{R}^{N})}^{4/N},
$$

where $C(N)$ is a positive constant which depends on N. Thus, we obtain

$$
\left| \int\limits_{\mathbb{R}^N} F(|u|) dx \right| \leq C(f, \epsilon) \|u\|_{L^2(\mathbb{R}^N)}^2 + \epsilon C(N) \|\nabla u\|_{L^2(\mathbb{R}^N)}^2 \|u\|_{L^2(\mathbb{R}^N)}^{4/N}.
$$
 (10)

We take the case where $\{u_n\}_{n\in\mathbb{N}}$ is a bounded sequence in $H^1(\mathbb{R}^N)$ satisfying $\lim_{n\to\infty} ||u_n||_{L^2(\mathbb{R}^N)} = 0$. By [\(10\)](#page-4-0), we have $\lim_{n\to\infty} \int_{\mathbb{R}^N} F(|u_n|)dx = 0$. Alternatively, we can take the case where $\{u_n\}_{n\in\mathbb{N}}$ is a bounded sequence in $H^1(\mathbb{R}^N)$ satisfying $\lim_{n\to\infty}$ $||u_n||_{L^1(\mathbb{R}^N)} = 0$. By [\(9\)](#page-4-1), we have

$$
\overline{\lim}_{n\to\infty}\left|\int\limits_{\mathbb{R}^N}F(|u_n|)dx\right|\leq \epsilon \|u_n\|_{L^2(\mathbb{R}^N)}^2.
$$

Since we can choose $\epsilon > 0$ arbitrary, we obtain $\lim_{n \to \infty} \int_{\mathbb{R}^N} F(|u_n|) dx = 0$.

(ii): In [\(10\)](#page-4-0), we choose $\epsilon > 0$ satisfying $C(N)\alpha^{2/N} \epsilon = 1/4$. Then, for $u \in M_\alpha$, we have

$$
\int_{\mathbb{R}^N} F(|u|) dx \le C(f, N, \alpha) + \frac{1}{4} ||\nabla u||^2_{L^2(\mathbb{R}^N)} = \frac{1}{4} \int_{\mathbb{R}^N} |\nabla u|^2 dx + C(f, N, \alpha),
$$

where $C(f, N, \alpha)$ is a positive constant which depends on f, N and α . This implies [\(7\)](#page-4-2). \Box

In relation to the energy E_α , the following lemma holds.

Lemma 2.3. (i) $E_\alpha \leq 0$ *for* $\alpha > 0$. (ii) $E_{\alpha+\beta} \leq E_{\alpha} + E_{\beta}$ *for* $\alpha, \beta > 0$ *.* (iii) $\alpha \mapsto E_{\alpha}$ *is nonincreasing.* (iv) *For sufficiently large* α , $E_{\alpha} < 0$ *holds.* (v) $\alpha \mapsto E_{\alpha}$ *is continuous.*

We define α_0 by

$$
\alpha_0=\inf\{\alpha>0;\,E_\alpha<0\}.
$$

By Lemma [2.3,](#page-5-0) α_0 is well-defined and [\(5\)](#page-2-0) holds. We state the proof of Lemma [2.3](#page-5-0) in the Appendix.

Lemma 2.4. *Let* $\{u_n\}_{n\in\mathbb{N}}$ *be a bounded sequence in* $H^1(\mathbb{R}^N)$ *satisfying* $\lim_{n\to\infty}$ **Lemma 2.4.** Let $\{u_n\}_{n \in \mathbb{N}}$ be a bounded sequence in H (\mathbb{R}) satisfying $\lim_{n \to \infty}$
 $\|u_n\|_{L^2(\mathbb{R}^N)}^2 = \alpha > 0$. Let $a_n = \sqrt{\alpha}/\|u_n\|_{L^2(\mathbb{R}^N)}$ and $\tilde{u}_n = a_n u_n$. Then the *following holds:*

$$
\tilde{u}_n \in M_\alpha, \quad \lim_{n \to \infty} a_n = 1, \quad \lim_{n \to \infty} |I[\tilde{u}_n] - I[u_n]| = 0.
$$

Proof. Clearly, $\tilde{u}_n \in M_\alpha$ and $\lim_{n \to \infty} a_n = 1$ hold. We can compute

$$
I[\tilde{u}_n] - I[u_n]
$$

\n
$$
= \frac{(a_n^2 - 1)}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2 dx - \int_{\mathbb{R}^N} F(|a_n u_n|) - F(|u_n|) dx
$$

\n
$$
= \frac{(a_n^2 - 1)}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2 dx - \int_{\mathbb{R}^N} \left(\int_0^1 f(|u_n| + (|a_n| - 1)\theta |u_n|)(|a_n| - 1)|u_n| d\theta \right) dx
$$

\n
$$
= \frac{(a_n^2 - 1)}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2 dx - (|a_n| - 1) \int_{\mathbb{R}^N} \left(\int_0^1 f(|u_n| + (|a_n| - 1)\theta |u_n|)|u_n| d\theta \right) dx.
$$

We have $0 \leq |u_n| + (|a_n| - 1)\theta |u_n| \leq (|a_n| + 2)|u_n|$. Under the assumptions (F1)–(F4), we have $|f(s)| \le |s| + C(f)|s|^{l-1}$. Hence, we obtain

$$
\left| \int_{\mathbb{R}^N} \int_0^1 f(|u_n| + (|a_n| - 1)\theta |u_n|) |u_n| d\theta dx \right|
$$

\n
$$
\leq \int_{\mathbb{R}^N} \left(\int_0^1 (|a_n| + 2)|u_n|^2 + C(f)(|a_n| + 2)^{l-1} |u_n|^l d\theta \right) dx
$$

\n
$$
= \int_{\mathbb{R}^N} (|a_n| + 2)|u_n|^2 + C(f)(|a_n| + 2)^{l-1} |u_n|^l dx.
$$

Since $\{u_n\}_{n\in\mathbb{N}}$ is bounded in $H^1(\mathbb{R}^N)$, we achieve our conclusion. □

3. Proof of Theorem [1.2](#page-2-2)

In this section, we give the proof of Theorem [1.2.](#page-2-2) For our purposes, we will use the concentration-compactness argument. The following Lemma [3.1](#page-6-1) is necessary for this argument.

Lemma 3.1. (Lions [\[10](#page-16-4), Lemma I.1]) *Let* $\{u_n\}_{n\in\mathbb{N}}$ *be a bounded sequence in* $H^1(\mathbb{R}^N)$ *which satisfies*

$$
\sup_{z \in \mathbb{R}^n} \int\limits_{B(z,1)} |u_n|^2 dx \to 0 \quad \text{as } n \to \infty.
$$

Then, for $p \in (2, 2^*)$ *,*

$$
||u_n||_{L^p(\mathbb{R}^N)} \to 0 \quad as \quad n \to \infty
$$

holds, where $2^* = 2N/(N-2)_+$ *is the critical Sobolev exponent.*

To prove Theorem [1.2,](#page-2-2) the new scaling argument introduced in [\[7](#page-16-7)] plays important role. By using the scaling argument in [\[7\]](#page-16-7), similar to [\[8](#page-16-8), Lemma 3.2], we can obtain the following useful lemma.

- **Lemma 3.2.** (i) *Assume that there exists a global minimizer* $u \in M_a$ *with respect to* E_a *for some a* > 0*. Then* $E_b < E_a$ *for any* $b > a$ *. In particular, we have* $E_b < 0$ *for any* $b > a$.
	- (ii) Assume that there exist global minimizers $u \in M_a$ and $v \in M_b$ with respect to *E_a* and *E_b respectively for some a, b* > 0*. Then* $E_{a+b} < E_a + E_b$.

Proof. (i): By Lemma [2.3,](#page-5-0) we have $I[u] \le 0$. Now setting $\lambda = b/a > 1$ and $\tilde{u}(x) = u(\lambda^{-1/N}x)$, by the assumption, we have $\|\tilde{u}\|_{L^2(\mathbb{R}^N)}^2 = b$ and

$$
I[\tilde{u}] = \lambda \left(\frac{\lambda^{-2/N}}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \int_{\mathbb{R}^N} F(u) dx \right) < \lambda I[u] = \lambda E_a.
$$

Hence, we obtain $E_b \leq I[\tilde{u}] < \lambda E_a \leq E_a$.

(ii): By the assumption and the argument as above, we have

$$
E_{\lambda a} < \lambda E_a \quad \text{for any } \lambda > 1,
$$
\n
$$
E_{\tau b} \leq \tau E_b \quad \text{for any } \tau \geq 1.
$$

Noting that we can assume $0 < b \le a$ without loss of generality, taking $\lambda =$ $(a + b)/a$ and $\tau = a/b$, we obtain

$$
E_{a+b} < \frac{a+b}{a}E_a = E_a + \frac{b}{a}E_a \le E_a + E_b.
$$

It completes the lemma.

Proof of Theorem [1.2.](#page-2-2) Suppose that $\{u_n\}_{n\in\mathbb{N}} \subset M_\alpha$ is a minimizing sequence which does not satisfy (6) . It is sufficient to show that (ii) holds. Since (6) does not hold and $\{u_n\}_{n\in\mathbb{N}} \subset M_\alpha$, we have

$$
0 < \overline{\lim}_{n \to \infty} \sup_{z \in \mathbb{R}^N} \int\limits_{B(z,1)} |u_n|^2 dx \le \alpha < \infty.
$$

Taking a subsequence if necessary, there exists a family $\{y_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^N$ such that

$$
0 < \lim_{n \to \infty} \int_{B(0,1)} |u_n(x - y_n)|^2 \, dx < \infty. \tag{11}
$$

Since $\{u_n\}_{n\in\mathbb{N}} \subset M_\alpha$ is a minimizing sequence, Lemma [2.2](#page-4-3) (ii) asserts that $\{u_n\}_{n\in\mathbb{N}}$ is a bounded sequence in $H^1(\mathbb{R}^N)$. Hence $\{u_n(\cdot - y_n)\}_{n \in \mathbb{N}}$ is a bounded sequence in $H^1(\mathbb{R}^N)$. Using the weak compactness of a Hilbert space and the Rellich compactness, for some subsequence, there exists $u \in H^1(\mathbb{R}^N)$ such that

$$
u_n(\cdot - y_n) \rightharpoonup u \quad \text{weakly in } H^1(\mathbb{R}^N), \tag{12}
$$

$$
u_n(\cdot - y_n) \to u \quad \text{in } L^2_{loc}(\mathbb{R}^N), \tag{13}
$$

$$
u_n(\cdot - y_n) \to u \quad \text{a.e. in } \mathbb{R}^N. \tag{14}
$$

Equations [\(11\)](#page-7-0) and [\(13\)](#page-7-1) assert that $||u||_{L^2(\mathbb{R}^N)} > 0$. We put $v_n = u_n(\cdot - y_n) - u$. By [\(12\)](#page-7-2), $v_n \rightharpoonup 0$ weakly in $H^1(\mathbb{R}^N)$. Thus, we have

$$
\int_{\mathbb{R}^N} |\nabla u + \nabla v_n|^2 dx = \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v_n|^2 dx + 2\Re \int_{\mathbb{R}^N} \nabla u \cdot \overline{\nabla v_n}
$$

$$
= \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v_n|^2 dx + o(1) \quad \text{as } n \to \infty,
$$
(15)
$$
\int_{\mathbb{R}^N} |u + v_n|^2 dx = \int_{\mathbb{R}^N} |u|^2 + |v_n|^2 dx + 2\Re \int_{\mathbb{R}^N} u \overline{v_n}
$$

$$
\mathbb{R}^N
$$

=
$$
\int_{\mathbb{R}^N} |u|^2 + |v_n|^2 dx + o(1) \quad \text{as } n \to \infty.
$$
 (16)

Using (14) , the Brezis-Lieb theorem (see [\[3\]](#page-15-2)) implies that

$$
\int_{\mathbb{R}^N} F(|u + v_n|) dx = \int_{\mathbb{R}^N} F(|u|) + F(|v_n|) dx + o(1) \quad \text{as } n \to \infty.
$$

Since $I[u_n] = I[u_n(\cdot - y_n)] = I[u + v_n]$, we can obtain

$$
I[u_n] = I[u] + I[v_n] + o(1),
$$

\n
$$
||u_n||_{L^2(\mathbb{R}^N)}^2 = ||u||_{L^2(\mathbb{R}^N)}^2 + ||v_n||_{L^2(\mathbb{R}^N)}^2 + o(1) \text{ as } n \to \infty.
$$
\n(17)

We will show the following claim.

Claim.

$$
\overline{\lim}_{n \to \infty} \sup_{z \in \mathbb{R}^N} \int_{B(z,1)} |v_n|^2 dx = 0.
$$
 (18)

Suppose that [\(18\)](#page-8-0) does not hold. Since $\{v_n\}_{n\in\mathbb{N}}$ is bounded in $H^1(\mathbb{R}^N)$, similarly as above, for some subsequence, there exist a family $\{z_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^N$ and $v \in H^1(\mathbb{R}^N)$ satisfying $||v||_{L^2(\mathbb{R}^N)} > 0$ such that

$$
v_n(\cdot - z_n) \rightharpoonup v \quad \text{weakly in } H^1(\mathbb{R}^N),
$$

\n
$$
v_n(\cdot - z_n) \to v \quad \text{in } L^2_{\text{loc}}(\mathbb{R}^N),
$$

\n
$$
v_n(\cdot - z_n) \to v \quad \text{a.e. in } \mathbb{R}^N.
$$

We put $w_n = v_n(-z_n) - v$. Then, similarly as above, we can obtain

$$
I[v_n] = I[v+w_n] = I[v] + I[w_n] + o(1),
$$

\n
$$
||v_n||_{L^2(\mathbb{R}^N)}^2 = ||v||_{L^2(\mathbb{R}^N)}^2 + ||w_n||_{L^2(\mathbb{R}^N)}^2 + o(1) \text{ as } n \to \infty.
$$

Consequently, we have

$$
I[u_n] = I[u] + I[v] + I[w_n] + o(1) \quad \text{as } n \to \infty,
$$
\n(19)

$$
||u_n||_{L^2(\mathbb{R}^N)}^2 = ||u||_{L^2(\mathbb{R}^N)}^2 + ||v||_{L^2(\mathbb{R}^N)}^2 + ||w_n||_{L^2(\mathbb{R}^N)}^2 + o(1) \quad \text{as } n \to \infty. \tag{20}
$$

Here, we set $\beta = ||u||_{L^2(\mathbb{R}^N)}^2$, $\gamma = ||v||_{L^2(\mathbb{R}^N)}^2$ and $\delta = \alpha - \beta - \gamma$. Then, we have $\lim_{n\to\infty} \|w_n\|_{L^2(\mathbb{R}^N)}^2 = \delta \ge 0$. We will consider cases $\delta > 0$ and $\delta = 0$.

In the case $\delta > 0$, we set $\tilde{w}_n = a_n w_n$ and $a_n = \sqrt{\delta} / \|w_n\|_{L^2(\mathbb{R}^N)}$. By Lemma [2.4,](#page-5-1) we have $\tilde{w}_n \in M_\delta$ and $I[w_n] = I[\tilde{w}_n] + o(1)$. Thus, by [\(19\)](#page-8-1) and the definition of E_δ , we have

$$
I[u_n] = I[u] + I[v] + I[w_n] + o(1)
$$

= $I[u] + I[v] + I[\tilde{w}_n] + o(1)$
 $\geq I[u] + I[v] + E_\delta + o(1)$ as $n \to \infty$.

As $n \to \infty$, Lemma [2.3](#page-5-0) implies that

$$
E_{\alpha} \ge I[u] + I[v] + E_{\delta} \ge E_{\beta} + E_{\gamma} + E_{\delta} \ge E_{\beta + \gamma + \delta} = E_{\alpha}.
$$
 (21)

Hence *u* and *v* are global minimizers with respect to E_β and E_γ respectively. Here, we can apply Lemma [3.2](#page-6-2) (ii) to obtain

$$
E_{\beta+\gamma} < E_{\beta} + E_{\gamma}.
$$

It contradicts to (21) .

In the case $\delta = 0$, the equations $\alpha = \beta + \gamma$ and $\lim_{n \to \infty} ||w_n||_{L^2(\mathbb{R}^N)} = 0$ hold. By Lemma [2.2](#page-4-3) (i), we have

$$
\lim_{n\to\infty}\int\limits_{\mathbb{R}^N}F(|w_n|)dx=0.
$$

Thus, we obtain

$$
\underline{\lim}_{n\to\infty} I[w_n] \geq 0.
$$

As $n \to \infty$ in [\(19\)](#page-8-1), we have

$$
E_{\alpha} \ge I[u] + I[v] \ge E_{\beta} + E_{\gamma} \ge E_{\alpha}.
$$

Hence *u* and *v* are global minimizers with respect to E_β and E_γ respectively. Similarly as above, by Lemma [3.2](#page-6-2) (ii), we can obtain

$$
E_{\alpha}=E_{\beta+\gamma}
$$

which is a contradiction. It completes the proof of the claim.

By [\(18\)](#page-8-0) and Lemma [3.1,](#page-6-1) we have $\lim_{n\to\infty} ||v_n||_{L^1(\mathbb{R}^N)} = 0$. Lemma [2.2](#page-4-3) (i) asserts that

$$
\lim_{n \to \infty} \int\limits_{\mathbb{R}^N} F(|v_n|) dx = 0.
$$
 (22)

Next, we estimate the L^2 norm of v_n .

Claim. $\lim_{n \to \infty} ||v_n||_{L^2(\mathbb{R}^N)}^2 = 0$. In particular, $||u||_{L^2(\mathbb{R}^N)}^2 = \alpha$.

By [\(16\)](#page-7-4) and $β = ||u||^2_{\mathcal{L}^2}$, it is sufficient to show that $β = α$. Otherwise, $β < α$ holds because $\beta \le \alpha$. By [\(22\)](#page-9-1), we have

$$
\lim_{n \to \infty} I[v_n] \ge \lim_{n \to \infty} -\int_{\mathbb{R}^N} F(v_n|) dx = 0.
$$

Taking the limit in [\(17\)](#page-8-2), we obtain $E_\alpha \geq I[u]$. Using Lemma [2.3](#page-5-0) (iii) along with $u \in M_\beta$, we have

$$
E_{\alpha} \ge I[u] \ge E_{\beta} \ge E_{\alpha}.
$$
\n(23)

This requires $E_\beta = E_\alpha$. Moreover, *u* is a global minimizer with respect to E_β . By Lemma [3.2](#page-6-2) (i), we obtain $E_\beta > E_\alpha$ because $\beta < \alpha$. It contradicts to [\(23\)](#page-9-2).

Finally, we estimate the H^1 -norm of v_n . Using the above claim, $u \in M_\alpha$. This gives $I[u] \ge E_\alpha$. Therefore, we have

$$
I[u_n] = I[u] + I[v_n] + o(1) \ge E_{\alpha} + I[v_n] + o(1) \text{ as } n \to \infty.
$$

As $n \to \infty$, we obtain

$$
\overline{\lim}_{n\to\infty} I[v_n] \leq 0,
$$

while (22) asserts that

$$
\overline{\lim}_{n\to\infty}\frac{1}{2}\int\limits_{\mathbb{R}^N}|\nabla v_n|^2dx\leq \overline{\lim}_{n\to\infty}I[v_n]+\overline{\lim}_{n\to\infty}\int\limits_{\mathbb{R}^N}F(|v_n|)dx\leq 0.
$$

Since $\lim_{n\to\infty} ||v_n||^2_{L^2(\mathbb{R}^N)} = 0$, we have $\lim_{n\to\infty} ||v_n||^2_{H^1(\mathbb{R}^N)} = 0$. Hence lim_{n→∞} $u_n(\cdot - y_n) = u$ in $H^1(\mathbb{R}^N)$. \Box

4. Proof of Theorem [1.1](#page-2-1)

In this section, we will give a proof of Theorem [1.1.](#page-2-1) To our purpose, we show the following proposition.

Proposition 4.1. *Suppose that* $\alpha > \alpha_0$ *. If* $\{u_n\}_{n \in \mathbb{N}} \subset M_\alpha$ *is a minimizing sequence with respect to* E_α , *i.e.*, $\lim_{n\to\infty} I[u_n] = E_\alpha$. Then, taking a subsequence if neces*sary, there exist a family* $\{y_n\} \subset \mathbb{R}^N$ *and* $u \in M_\alpha$ *such that* $\lim_{n\to\infty} u_n(\cdot - y_n) = u$ *strongly in* $H^1(\mathbb{R}^N)$ *. In particular, u is a global minimizer, i.e.,* $u \in S_\alpha$ *.*

Proof. By the assumption of the proposition and [\(5\)](#page-2-0), we have E_α < 0. Let ${u_n}_{n\in\mathbb{N}}\subset M_\alpha$ be a minimizing sequence with respect to E_α . It is sufficient to show that $\{u_n\}_{n\in\mathbb{N}}$ satisfies (ii) in Theorem [1.2.](#page-2-2) Otherwise, by Theorem [1.2,](#page-2-2) $\{u_n\}_{n\in\mathbb{N}}$ sat-isfies [\(6\)](#page-2-3). By Lemma [2.2](#page-4-3) (ii), $\{u_n\}_{n\in\mathbb{N}}$ is bounded in $H^1(\mathbb{R}^N)$, so (6) and Lemma [3.1](#page-6-1) imply that $u_n \to 0$ in $L^l(\mathbb{R}^N)$. By Lemma [2.2](#page-4-3) (i), we have

$$
\lim_{n\to\infty}\int\limits_{\mathbb{R}^N}F(|u_n|)dx=0.
$$

Since $I[u_n] \ge -\int_{\mathbb{R}^N} F(|u_n|)$, we can obtain

$$
E_{\alpha} = \lim_{n \to \infty} I[u_n] \ge \lim_{n \to \infty} -\int_{\mathbb{R}^N} F(|u_n|) dx = 0,
$$

contradicting to $E_{\alpha} < 0$.

Now, we can show Theorem [1.1.](#page-2-1)

Proof of Theorem [1.1.](#page-2-1) First, we consider the case $0 < \alpha < \alpha_0$ and suppose by contradiction that there exists a global minimizer with respect to E_α . By the assumption, we have $E_\alpha = 0$. Here, Lemma [3.2](#page-6-2) (i) asserts that

$$
0=E_{\alpha}>E_{\alpha_0}.
$$

It contradicts to the definition of α_0 and Lemma [2.3](#page-5-0) (v).

Next, we consider the case $\alpha > \alpha_0$. Proposition [4.1](#page-10-1) asserts Theorem [1.1](#page-2-1) (i). Moreover, Theorem [1.1](#page-2-1) (ii) follows from Proposition [4.1](#page-10-1) according to $[4]$. So we omit the proof. \Box

5. Proof of Theorems [1.3,](#page-2-4) [1.4](#page-3-2) and [1.5](#page-3-3)

In this section, we give the proofs of the remaining theorems.

Proof of Theorem [1.3.](#page-2-4) (i): We fix $\alpha > 0$ and take some function $u \in M_\alpha \cap$ $C_0^{\infty}(\mathbb{R}^N) \setminus \{0\}$. For $\lambda > 0$, let $u_\lambda(x) = \lambda^{N/2}u(\lambda x)$. Then, we see that $u_\lambda \in M_\alpha$. By the assumption of (i), there exist a positive constant δ such that

$$
F(s) \ge C|s|^l \quad \text{if } |s| < \delta,
$$

where *C* is a constant determined by

$$
C = \int_{\mathbb{R}^N} |\nabla u|^2 dx / \int_{\mathbb{R}^N} |u|^l dx.
$$

Hence $F(|u_\lambda|) \geq C |u_\lambda|^l$ holds for a sufficiently small λ . Thus we have

$$
I[u_\lambda] \leq \frac{1}{2} \int\limits_{\mathbb{R}^N} |\nabla u_\lambda|^2 dx - C \int\limits_{\mathbb{R}^N} |u_\lambda|^l dx = -\frac{\lambda^2}{2} \int\limits_{\mathbb{R}^N} |\nabla u|^2 dx.
$$

It concludes that $E_\alpha \leq I[u_\lambda] < 0$ for any $\alpha > 0$.

(ii): By the assumption of (ii), there exists a positive constant $C(f)$ depending on *f* such that $F(s) \leq C(f)|s|^l$ holds for any $s \geq 0$. For $u \in M_\alpha$, using the Gagliardo-Nirenberg inequality, we have

$$
\int_{\mathbb{R}^N} F(|u|) dx \leq C(f) \|u\|_{L^l(\mathbb{R}^N)}^l \leq C(f) C(N) \|\nabla u\|_{L^2(\mathbb{R}^N)}^2 \alpha^{2/N}.
$$

For a sufficiently small $\alpha > 0$, it can be shown that $C(f)C(N)\alpha^{2/N} \leq 1/2$ holds. After choosing an appropriately small α , we have

$$
I[u] \geq \frac{1}{2} \|\nabla u\|_{L^2(\mathbb{R}^N)}^2 - \frac{1}{2} \|\nabla u\|_{L^2(\mathbb{R}^N)}^2 = 0.
$$

This means $E_\alpha \ge 0$ for a small $\alpha > 0$. Hence, we obtain $\alpha_0 > 0$.

Proof of Theorem [1.4.](#page-3-2) (i): By Theorem [1.3](#page-2-4) (ii), we have $\alpha_0 > 0$. Let $\alpha_n = \alpha_0 + 1/n$. By [\(5\)](#page-2-0), E_{α_n} < 0 holds. Moreover, Theorem [1.1](#page-2-1) asserts that there exists a global minimizer $u_n \in M_{\alpha_n}$ with respect to E_{α_n} . Using the symmetric rearrangement, we can assume that u_n is radially symmetric with respect to the origin and and that it is nonincreasing. Since $I[u_n]$ and $||u_n||_{L^2(\mathbb{R}^N)}$ are bounded, u_n is bounded in $H^1(\mathbb{R}^N)$. By the definition of u_n , we have $\lim_{n\to\infty} ||u_n||^2_{L^2(\mathbb{R}^N)} = \alpha_0$. Let $v_n = \sqrt{\alpha_0} u_n / ||u_n||_{L^2(\mathbb{R}^N)}$. Then, by Lemma [2.4,](#page-5-1) we can obtain $v_n \in M_{\alpha_0}$ and

$$
\overline{\lim}_{n\to\infty} I[v_n] = \overline{\lim}_{n\to\infty} I[u_n] = \overline{\lim}_{n\to\infty} E_{\alpha_0+1/n} \leq 0.
$$

On the other hand, by [\(5\)](#page-2-0), $E_{\alpha_0} = 0$. Thus, $\{v_n\}_{n \in \mathbb{N}}$ is a minimizing sequence with respect to E_{α_0} . We now show the following claim.

Claim. *For some subsequence, there exist a family* $\{y_n\}_{n\in\mathbb{N}}$ *and* $v \in H^1(\mathbb{R}^N)$ *such that* $\lim_{n\to\infty} v_n(\cdot - y_n) = v$ *in* $H^1(\mathbb{R}^N)$ *.*

If the claim holds, then ν is a global minimizer. Therefore, suppose instead that the claim does not hold. By Theorem [1.2,](#page-2-2) $\{v_n\}_{n\in\mathbb{N}}$ satisfies [\(6\)](#page-2-3). By the definition of v_n , we see that $\{u_n\}_{n\in\mathbb{N}}$ satisfies [\(6\)](#page-2-3). Here, u_n is a solution of

$$
-\Delta u_n + \mu_n u_n = f(u_n) \quad \text{in } \mathbb{R}^N.
$$

As $\{u_n\}_{n\in\mathbb{N}}$ is bounded in $H^1(\mathbb{R}^N)$, we find that μ_n is bounded in \mathbb{R} . Using the elliptic regularity theory, we see that $\{u_n\}_{n\in\mathbb{N}}$ is bounded in $C^1(\overline{B(0, 1)})$. Thus, by (6) , we have

$$
u_n(0) = \|u_n\|_{L^{\infty}(\mathbb{R}^N)} \to 0 \quad \text{as } n \to \infty.
$$

On the other hand, by the assumption $\overline{\lim}_{s\to 0} F(s)/s^l = 0$, for any $\epsilon > 0$, there exists $s_3 > 0$ such that $F(s) \le \epsilon |s|^l$ if $|s| < s_3$. Thus, for a sufficiently large *n*, we have

$$
\int_{\mathbb{R}^N} F(|u_n|) dx \leq \epsilon \|u_n\|_{L^l(\mathbb{R}^N)}^l \leq \epsilon C(N) \|\nabla u_n\|_{L^2(\mathbb{R}^N)}^2 \left(\alpha_0 + \frac{1}{n}\right)^{2/N}
$$

We choose $\epsilon > 0$ satisfying $\epsilon C(N)(\alpha_0+1)^{2/N} \leq 1/2$. We can then obtain $I[u_n] \geq$ 0, contradicting the definition of *un*.

(ii): By Theorem [1.3](#page-2-4) (ii), we have $\alpha_0 > 0$. Let u_n be a global minimizer with respect to $E_{\alpha_0+1/n}$. We can assume u_n is radially symmetric with respect to the origin and nonincreasing. Similar to the proof of (i), if there is no global minimizer with respect to E_{α_0} , then $\{u_n\}_{n\in\mathbb{N}}$ satisfies [\(6\)](#page-2-3). Moreover, we have $\lim_{n\to\infty} ||u_n||_{L^{\infty}(\mathbb{R}^N)} = 0$. Thus, we can choose a sufficiently large *n* such that $||u_n||_{L^{\infty}(\mathbb{R}^N)}$ ≤ *s*₁/2.

.

Let $v_{\lambda}(x) = \lambda^{N/2} u_n(\lambda x)$, so that $v_{\lambda} \in M_{\alpha_0+1/n}$. By the assumption of (ii), in the case $\lambda^{N/2} \le 2$, we see that $F(|v_\lambda|) = C|v_\lambda|^l$ holds. Hence, we have

$$
I[v_{\lambda}] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v_{\lambda}|^2 dx - C \int_{\mathbb{R}^N} |v_{\lambda}|^l dx
$$

=
$$
\frac{\lambda^2}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2 dx - \lambda^2 C \int_{\mathbb{R}^N} |u_n|^l dx = \lambda^2 I[u_n].
$$

Choose an λ which satisfies $\lambda > 1$ and $\lambda^{N/2} < 2$. As $I[u_n] < 0$, we can obtain

$$
E_{\alpha_0+1/n} \le I[\nu_\lambda] = \lambda^2 I[u_n] < I[u_n] = E_{\alpha_0+1/n},
$$

which is a contradiction.

Proof of Theorem [1.5.](#page-3-3) We can assume that $0 < \alpha \leq \beta$ without loss of generality. It is then sufficient to consider the following cases:

Case 1: $E_{\alpha} = E_{\beta} = 0$. Case 2: $E_{\alpha} = 0$, $E_{\beta} < 0$. Case 3: E_{α} , E_{β} < 0.

In Case 1, it is clear that $E_{\alpha} + E_{\beta} = 0 > E_{\alpha+\beta}$ because $\alpha + \beta > \alpha_0$.

In Case 2, there exists a minimizer with respect to E_β by Theorem [1.1.](#page-2-1) Thus, we can apply Lemma [3.2](#page-6-2) (i) to obtain

$$
E_{\alpha+\beta} < E_{\beta}.
$$

In Case 3, there exist a minimizers with respect to E_α and E_β by Theorem [1.1.](#page-2-1) Therefore Lemma [3.2](#page-6-2) (ii) asserts conclusion.

6. Appendix

In this appendix, we will give the proofs of Lemmas [2.3.](#page-5-0)

Proof of Lemma [2.3.](#page-5-0) (i): Let $u \in M_\alpha$. For $\lambda > 0$, we set $u_\lambda(x) = \lambda^{N/2} u(\lambda x)$, giving $u_{\lambda} \in M_{\alpha}$. Moreover, $||u_{\lambda}||_{L^{l}(\mathbb{R}^{N})}^{l} = \lambda^{2}||u||_{L^{l}(\mathbb{R}^{N})}^{l} \to 0$ as $\lambda \to 0$. By Lemma [2.2](#page-4-3) (i), we have

$$
\lim_{\lambda \to 0} \int\limits_{\mathbb{R}^N} F(|u_\lambda|) dx = 0.
$$

As $\|\nabla u_\lambda\|_{L^2(\mathbb{R}^N)}^2 = \lambda^2 \|\nabla u\|_{L^2(\mathbb{R}^N)}^2$, we see that $\lim_{\lambda \to 0} I[u_\lambda] = 0$ holds. By the definition of E_α , we have $E_\alpha \leq I[u_\lambda]$. Thus, we obtain $E_\alpha \leq 0$.

(ii): We fix $\epsilon > 0$. By the definition of E_α and E_β , there exist $u \in M_\alpha \cap C_0^\infty(\mathbb{R}^N)$ and $v \in M_\beta \cap C_0^\infty(\mathbb{R}^N)$ such that

$$
I[u] \le E_{\alpha} + \epsilon, \quad I[v] \le E_{\alpha} + \epsilon.
$$

Since u and v have compact support, by using parallel translation, we can assume supp $u \cap \text{supp } v = \emptyset$. Therefore, we have $u + v \in M_{\alpha+\beta}$. Thus, we find

$$
E_{\alpha+\beta} \le I[u+v] = I[u] + I[v] \le E_{\alpha} + E_{\beta} + 2\epsilon.
$$

As $\epsilon \to 0$, we have $E_{\alpha+\beta} \leq E_{\alpha} + E_{\beta}$.

 (iii) : By (i) and (ii) , we have

$$
E_{\alpha+\beta} \le E_{\alpha} + E_{\beta} \le E_{\alpha}
$$

for any α , $\beta > 0$. This gives (iii).

(iv): For $R > 0$, set $u_R \in H^1(\mathbb{R}^N)$ by according to the following:

$$
u_R(x) = \begin{cases} s_0 & \text{if } |x| \le R, \\ s_0(R+1-|x|) & \text{if } R < |x| \le R+1, \\ 0 & \text{if } |x| > R+1, \end{cases}
$$

where s_0 is a constant determined in (F5). We write $|S^{N-1}|$ for the surface area of the unit sphere. If $N = 1$, set $|S^0| = 2$. We estimate $I[u_R]$ as follows:

$$
I[u_R]
$$
\n
$$
= \int_{B(0,R)} \frac{1}{2} |\nabla u_R|^2 - F(|u_R|) dx + \int_{B(0,R+1)\setminus B(0,R)} \frac{1}{2} |\nabla u_R|^2 - F(|u_R|) dx
$$
\n
$$
\leq \int_{B(0,R)} -F(s_0) dx + \int_{B(0,R+1)\setminus B(0,R)} \frac{1}{2} s_0^2 + \sup_{0 \leq s \leq s_0} |F(s)| dx
$$
\n
$$
= -F(s_0) |S^{N-1}| \int_{0}^{R} r^{N-1} dr + \left(\frac{1}{2} s_0^2 + \sup_{0 \leq s \leq s_0} |F(s)|\right) |S^{N-1}| \int_{R}^{R+1} r^{N-1} dr
$$
\n
$$
= \frac{((R+1)^N - R^N) |S^{N-1}|}{N} \left(\frac{1}{2} s_0^2 + \sup_{0 \leq s \leq s_0} |F(s)| - \frac{R^N}{(R+1)^N - R^N} F(s_0)\right).
$$

Since

$$
\frac{R^N}{(R+1)^N - R^N} = \frac{1}{(1+1/R)^N - 1} \to \infty \quad \text{as } R \to \infty,
$$

for a sufficiently large *R*, we have $I[u_R] < 0$. By choosing such an *R* and setting $\alpha = ||u_R||_{L^2(\mathbb{R}^N)}^2$, we obtain $E_\alpha \le I[u_R] < 0$. By (iii), we have $E_\beta \le E_\alpha < 0$ if $\beta \geq \alpha$.

(v): We fix $\alpha > 0$. By (iii), $E_{\alpha-h}$ and $E_{\alpha+h}$ are monotonic and bounded as *h* → 0+0, so therefore they has limits. Moreover, $E_{\alpha-h} \ge E_{\alpha} \ge E_{\alpha+h}$ holds due to (iii). Thus, we obtain

$$
\lim_{h \to 0+0} E_{\alpha-h} \ge E_{\alpha} \ge \lim_{h \to 0+0} E_{\alpha+h}.
$$

Claim. $\lim_{h\to 0+0} E_{\alpha-h} \leq E_{\alpha}$.

This is clear if $E_\alpha = 0$, so we consider the case $E_\alpha < 0$. Take $u \in M_\alpha$ and let $u_h(x) = \sqrt{1 - h/\alpha} u(x)$ for $h > 0$. Since $||u_h||^2_{L^2(\mathbb{R}^N)} = (1 - h/\alpha)\alpha =$ $\alpha - h$, we have $u_h \in M_{\alpha-h}$. On the other hand, we have $||u_h - u||_{H^1(\mathbb{R}^N)} = (1 - \sqrt{1 - h/\alpha}) ||u||_{H^1(\mathbb{R}^N)} \to 0$ as $h \to 0+0$. Thus, we obtain $\lim_{h \to 0+0} I[u_h] = I[u]$. By $E_{\alpha-h} \leq I[u_h]$, we have

$$
\lim_{h \to 0+0} E_{\alpha - h} \le \lim_{h \to 0+0} I[u_h] = I[u].
$$

As we choose $u \in M_\alpha$ arbitrarily, for a minimizing sequence $\{u_n\}_{n \in \mathbb{N}} \subset M_\alpha$ with respect to E_α , we can obtain

$$
\lim_{h \to 0+0} E_{\alpha-h} \le I[u_n] \quad \text{for any } n \in \mathbb{N}.
$$

As $n \to \infty$, the claim holds.

Claim. $\lim_{h\to 0+0} E_{\alpha+h} > E_{\alpha}$.

Since the left hand side converges, it is sufficient to consider the case $h = 1/n$, where $n \in \mathbb{N}$. Choose a $\{u_n \in M_{\alpha+1/n}$ which satisfies $I[u_n] \leq E_{\alpha+1/n} + 1/n$ for each $n \in \mathbb{N}$. By (i), $I[u_n] \leq 1/n$. Lemma [2.2](#page-4-3) (ii) asserts that $\{u_n\}_{n \in \mathbb{N}}$ is a bounded sequence in $H^1(\mathbb{R}^N)$. By the definition of u_n , we have

$$
\lim_{n \to \infty} I[u_n] = \lim_{h \to 0+0} E_{\alpha+h}.
$$
\n(24)

Let $v_n = u_n / \sqrt{1 + 1/(\alpha n)}$ for $n \in \mathbb{N}$. Then, $\{v_n\}_{n \in \mathbb{N}}$ is also a bounded sequence in $H^1(\mathbb{R}^N)$. Moreover, we have

$$
||v_n||_{L^2(\mathbb{R}^N)}^2 = \frac{||u_n||_{L^2(\mathbb{R}^N)}^2}{1 + 1/(\alpha n)} = \frac{\alpha + 1/n}{1 + 1/(\alpha n)} = \alpha.
$$

Hence, $v_n \in M_\alpha$ holds. Since Lemma [2.4](#page-5-1) is independent of Lemma [2.3,](#page-5-0) we can use Lemma [2.4](#page-5-1) to obtain

$$
E_{\alpha} \le I[v_n] = I[u_n] + o(1) \quad \text{as } n \to \infty.
$$

By (24) , the claim holds.

Acknowledgments. The author would like to thank anonymous referee for valuable comments and suggestions.

References

- [1] Bellazzini, J., Siciliano, G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. **261**(9), 2486–2507 (2011)
- [2] Bellazzini, J., Siciliano, G.: Stable standing waves for a class of nonlinear Schrödingerpoisson equations. Z. Angew. Math. Phys. **62**(2), 267–280 (2011)
- [3] Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. **88**(3), 486–490 (1983)

- [4] Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. **85**(4), 549–561 (1982)
- [5] Cazenave, T.: Semilinear Schrödinger Equations, volume 10 of *Courant Lecture Notes in Mathematics*. New York University Courant Institute of Mathematical Sciences, New York (2003)
- [6] Cid, C., Felmer, P.: Orbital stability and standing waves for the nonlinear Schrödinger equation with potential. Rev. Math. Phys. **13**(12), 1529–1546 (2001)
- [7] Colin, M., Jeanjean, L., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity **23**(6), 1353–1385 (2010)
- [8] Jeanjean, L., Luo, T.: Sharp nonexistence results of prescribed *L*2-norm solutions for some class of Schrödinger-poisson and quasi-linear equations. Zeitschrift für angewandte Mathematik und Physik, pp. 1–18 (2012)
- [9] Jeanjean, L., Squassina, M.: An approach to minimization under a constraint: the added mass technique. Calc. Var. Partial Differ. Equ. **41**(3–4), 511–534 (2011)
- [10] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire **1**(4), 223– 283 (1984)
- [11] Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. (3) **45**(1), 169–192 (1982)
- [12] Stuart, C.A.: Bifurcation from the essential spectrum for some noncompact nonlinearities. Math. Methods Appl. Sci. **11**(4), 525–542 (1989)