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Abstract. We initiate a detailed study of the ramification locus for projective endomor-
phisms of the Berkovich projective line—the non-Archimedean analog of the Riemann
sphere.

1. Introduction

Given a nonconstant holomorphic map f : X → Y between compact Riemann
surfaces, one of the first objects we learn to construct is its ramification divisor R f ,
which describes the locus at which f fails to be locally injective. The divisor R f is
a formal linear combination of points of X that is combinatorially constrained by
the Hurwitz Formula: 2gX − 2 = deg( f )(2gY − 2)+ deg(R f ).

The goal of the present article is to initiate a study of the ramification locus
in the setting of non-Archimedean analytic geometry. Here the role of a Riemann
surface is played by a projective Berkovich analytic curve over a non-Archime-
dean field k. As these curves have many points that are not algebraic over k, some
new (non-algebraic) ramification behavior appears. For example, the ramification
locus is no longer a divisor, but rather a closed analytic subspace. Berkovich first
observed this “geometric ramification” in [4, 6.3].

We begin our study by restricting attention to rational functions, viewed as
endomorphisms of the projective line P1. This simplest first case has the benefit
of being approachable by concrete techniques, many of which were developed by
Rivera-Letelier [11–13], Favre and Rivera-Letelier [7], and Baker and Rumely [2].
As critical points occupy a central position in the study of complex dynamical
systems on the Riemann sphere, it is not unreasonable to suppose that a better
understanding of the Berkovich ramification locus for rational functions will have
applications to non-Archimedean dynamical systems. In fact, this work was initially
inspired by dynamical considerations in [7]. The simple structure of the ramification
locus for tame polynomials plays a fundamental role in the recent work of Trucco
[15]. The nature of the ramification locus for dynamical systems defined over the
formal Laurent series field C((t)) also sheds some light on degenerations of complex
dynamical systems. See [8,9].

X. Faber (B): Department of Mathematics, University of Hawaii, Honolulu, HI, USA.
e-mail: xander@math.hawaii.edu

Mathematics Subject Classification (2000): Primary: 14H05; Secondary: 11S15.

DOI: 10.1007/s00229-013-0611-4



440 X. Faber

Let k be an algebraically closed field that is complete with respect to a fixed non-
trivial non-Archimedean absolute value |·|. For example, k could be the completion
of an algebraic closure of Qp or of Fp((t)). Write P

1
k for the (algebraic) projective

line over k, and write P1 = P1
k for its Berkovich analytification. A rational func-

tion ϕ ∈ k(z), viewed as a morphism ϕ : P
1
k → P

1
k , extends functorially to a

morphism of P1 (which we also call ϕ). Intuitively, it describes the action of ϕ on
disks in P

1(k). As ϕ is a finite morphism, one may associate to each point x ∈ P1

a local degree or multiplicity mϕ(x): in a weak neighborhood of x , the map ϕ is
mϕ(x)-to-1. The Berkovich ramification locus is defined to be the set

Rϕ = {x ∈ P1 : mϕ(x) > 1}.
It is a closed subset of P1 with no isolated point. Our first main result provides a
bound for the number of connected components Rϕ .

Theorem A (Connected Components). Let ϕ ∈ k(z) be a nonconstant rational
function. Each connected component of the Berkovich ramification locus of ϕ con-
tains at least two critical points of ϕ, counted with weights.1 In particular, Rϕ has
at most deg(ϕ)− 1 connected components.

The theorem is optimal in the following sense. For any algebraically closed field
k that is complete with respect to a nontrivial non-Archimedean absolute value and
any integers 1 ≤ n < d, there exists a rational function ϕ ∈ k(z) of degree d whose
ramification locus has precisely n connected components.

A field k as above always admits nontrivial extensions by non-Archimedean
valued fields; it is one feature of non-Archimedean analysis that sets it apart from
complex analysis. Let K/k be an extension of algebraically closed and complete
non-Archimedean fields, so that the absolute value on K is an extension of the one
on k. There is a natural inclusion P

1(k) ↪→ P
1(K ), and this inclusion extends to the

Berkovich analytifications ι : P1
k ↪→ P1

K . However, this last map is not a morphism
of analytic spaces (unless K = k!), and so we must spend some time proving that
it preserves many of the features relevant to our study of ramification. In particular,
we will show that this inclusion is continuous, that it preserves multiplicities, and
that it preserves a certain natural metric on P1\P

1(k). The existence of the inclusion
ι is closely related to Berkovich’s notion of “peaked point” [3, 5.2] and Poineau’s
notion of “universal point” [10], although these latter notions extend to arbitrary
analytic spaces.

A rational function ϕ ∈ k(z) can act via an inseparable morphism on the local
rings of certain points of P1; Rivera-Letelier calls this “inseparable reduction at
a type II point.” We give a natural extension of Rivera-Letelier’s definition to all
points of P1 by enlarging the field k in such a way that all non-classical points
become type II points. As an application of this work on extension of scalars and
inseparable reduction, we are able to give a natural characterization of the interior
of the ramification locus for the strong topology on P1.

1 For a rational function ϕ ∈ k(z), a point at which the induced map on the tangent space
of P

1
k vanishes will be called a critical point. The order of vanishing is called the weight.
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Theorem B (Interior Points). Let ϕ ∈ k(z) be a nonconstant rational function.

1. The set of points at which ϕ has inseparable reduction coincides with the strong
interior of the Berkovich ramification locus.

2. The ramification locus has empty weak interior unless ϕ is itself inseparable,
in which case Rϕ = P1

Following Trucco [15], we say that a rational function ϕ is tame if its ramifi-
cation locus has only finitely many branch points. Theorem B allows us to give a
number of equivalent characterizations of tame rational functions (Corollary 7.13).
We remark that a sufficient condition for a rational function ϕ to be tame is that
res.char.(k) = 0 or res.char.(k) > deg(ϕ) (Corollary 6.6).

We also look at the special setting of rational functions with a totally ramified
point; i.e., a point x ∈ P1 such that mϕ(x) = deg(ϕ). For example, this includes
the important cases of polynomials (x = ∞) and rational functions with good
reduction (x is the Gauss point). For the following statement, let Hull(Crit(ϕ)) be
the connected hull of the critical points; i.e., the smallest closed connected subset
of P1 containing Crit(ϕ).

Theorem C (Totally Ramified Functions). Let ϕ ∈ k(z) be a nonconstant rational
function for which there exists a totally ramified point in P1. Then the ramification
locus Rϕ is connected. In particular, if ϕ is tame, then Rϕ = Hull(Crit(ϕ)).

In a sequel to this paper, we provide a detailed study of the geometry of the rami-
fication locus with respect to the hyperbolic PGL2(k)-invariant metric on P1\P

1(k)
[6].

We close with a detailed summary of the contents of the present paper. In Sect. 2
we recall all of the relevant features of P1 and its endomorphisms. While this section
is primarily designed to fix notation, it could also serve as a brief introduction to P1.
In Sect. 3 we discuss three notions of multiplicity function. The first is an extension
of the algebraic multiplicity mϕ on P

1(k) to the entire Berkovich projective line P1.
The second is the directional multiplicity, which allows one to accurately count the
number of solutions to the equation ϕ(z) = y in a particular open Berkovich disk
U , provided that ϕ(U ) �= P1. It can happen that ϕ(U ) = P1, and so we introduce
the notion of surplus multiplicity as the defect in this counting problem. The surplus
multiplicity of U is very closely tied to the number of critical points contained in
U . The first two multiplicities are well understood in the literature. This article is
the first to focus on the surplus multiplicity in its own right, although it does appear
in [13, Lem. 3.2].

Section 4 is devoted to constructing the canonical inclusion ιKk : P1
k → P1

K
and proving a number of useful properties, including its compatibility with rational
functions. The goal of Sect. 5 is to provide a definition of inseparable reduction at
an arbitrary point of P1. We also give an interesting criterion for when a rational
function has inseparable reduction at a type III point. In Sect. 6, we prove Theo-
rem A and a number of other results related to connectedness of the ramification
locus. For example, we show that every connected component of Rϕ meets the
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convex hull of the critical points. We describe the endpoints and interior points of
the ramification locus in Sect. 7; this includes a proof of Theorem B and a number
of characterizations of tame and locally tame rational functions. Finally, in Sect. 8
we discuss the locus of total ramification and some of the properties of rational
functions for which this locus is nonempty.

2. Notation and conventions

2.1. Non-Archimedean fields

For the duration of this paper, k will denote an algebraically closed field that is
complete with respect to a nontrivial non-Archimedean absolute value | · |. We use
the standard notation k◦ = {t ∈ k : |t | ≤ 1} and k◦◦ = {t ∈ k : |t | < 1} for the
valuation ring of k and for its maximal ideal, respectively, and we write k̃ = k◦/k◦◦
for the residue field. The residue characteristic of k will be denoted p. (Note p = 0
is allowed.) The value group of k will be denoted |k×|; as k is algebraically closed,
|k×| is a divisible group.

The normalized base associated to k is the constant

qk =
{

e if k has equicharacteristic p ≥ 0
|p|−1 if k has mixed characteristic.

Then qk > 1, and the function ordk(·) = − logqk
| · | is a valuation on k.

For a ∈ k and r ∈ R≥0, write

D(a, r)− = {x ∈ k : |x − a| < r} and D(a, r) = {x ∈ k : |x − a| ≤ r}
for the (classical) open disk and the (classical) closed disk of radius r about a,
respectively.

2.2. The Berkovich projective line

Here we summarize the definition and main properties of P1. For the most part we
follow the notation and treatment in [2, 1–2], although much of this material was
first presented in [12,13]. See also [1, Ch. 3].

2.2.1. The affine line The Berkovich affine line A1 = A1
k is defined to be the set

of all multiplicative seminorms on the polynomial algebra k[T ] that restrict to the
given absolute value on k. If x is a seminorm and f ∈ k[T ] is a polynomial, we
write | f (x)| for the value of f at x . For example, if a ∈ k and r ∈ R≥0, write ζa,r

for the multiplicative seminorm defined by

| f (ζa,r )| = sup
b∈D(a,r)

| f (b)|, f ∈ k[T ].

Berkovich has classified the points of A1:
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1. Type I. ζa,0 for some a ∈ k. (Such a point is called a classical point.)
2. Type II. ζa,r for some a ∈ k and r ∈ |k×|.
3. Type III. ζa,r for some a ∈ k and r �∈ |k×|.
4. Type IV. A limit of seminorms (ζai ,ri )i≥0, where the associated sequence of

closed disks (D(ai , ri ))i≥0 is descending and has empty intersection. (The field
k is called spherically closed if no such sequence of closed disks exists.)

This classification suggests a means for extending the notation to cover type IV
points. Given a decreasing sequence of closed disks D(a, r) = (D(ai , ri ))i≥0,
define ζa,r ∈ A1 to be the seminorm on k[T ] given by

| f (ζa,r)| = lim
i→∞ sup

b∈D(ai ,ri )

| f (b)|, f ∈ k[T ].

Note that ζa,r = ζa,r if D(a, r) is the constant sequence with term D(a, r). More
generally, if ∩i≥0 D(ai , ri ) = D(b, s) for some b ∈ k and s ∈ R≥0, then one verifies
easily that ζa,r = ζb,s . Moreover, we have the equality of seminorms ζa,r = ζa′,r′
if and only if the associated sequences D(a, r) and D(a′, r′) are cofinal in each
other.

We identify the set of classical points in A1 with k via the injection a �→ ζa,0.
The point ζ0,1 is called the Gauss point because the associated seminorm coincides
with the Gauss norm of a polynomial.

2.2.2. The weak topology The weak topology on A1 is the weakest topology
satisfying the following property: for each polynomial f ∈ k[T ], the function
x �→ | f (x)| is continuous on A1. The space A1 is locally compact, Hausdorff, and
uniquely path-connected for the weak topology.

The injection k ↪→ A1 given by a �→ ζa,0 is a dense homeomorphic embed-
ding relative to the absolute value topology on k and the weak topology on A1. The
type II points of A1 are dense in A1 for the weak topology.

For a ∈ k and r ∈ R≥0, the sets

D(a, r)− = {x ∈A1 : |(T −a)(x)|<r} and D(a, r)={x ∈A1 : |(T −a)(x)|≤r}
are the (standard) open Berkovich disk and the (standard) closed Berkovich disk of
radius r about a, respectively. The weak topology on A1 is generated by sets of the
form

D(a, r)− and A1 \ D(a, r)
for a ∈ k and r ∈ R>0.

2.2.3. The strong topology The affine line A1 admits a partial ordering � defined
by x � y if and only if | f (x)| ≤ | f (y)| for all polynomials f ∈ k[T ]. For exam-
ple, ζa,r � ζb,s if and only if D(a, r) ⊂ D(b, s). Given x, y ∈ A1, the least upper
bound with respect to the partial ordering is denoted x ∨ y. It always exists and is
unique. Type I and type IV points are the minimal elements with respect to �.

Define the affine diameter of the point ζa,r to be diam(ζa,r ) = r . More gener-
ally, if (ζai ,ri ) is a sequence of seminorms corresponding to a type IV point x ∈ A1,
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define diam(x) = lim ri . The limit exists since (ri ) is a decreasing sequence, and
diam(x) > 0 (else this sequence corresponds to a type I point).

The small metric on A1 is defined by

d(x, y) = [diam(x ∨ y)− diam(x)] + [diam(x ∨ y)− diam(y)] .

The topology on A1 induced by d is called the strong topology. It is strictly finer
than the weak topology.

Define the path-distance metricρ on the Berkovich hyperbolic space H = A1\k
via the formula

ρ(x, y) = logqk

diam(x ∨ y)

diam(x)
+ logqk

diam(x ∨ y)

diam(y)
.

The restriction of the strong topology to H coincides with the metric topology for
ρ. The space H is complete for this metric, but not locally compact. Note that our
choice of normalized base qk gives ρ(ζ0,qk , ζ0,1) = 1.

The group PGL2(k) acts by isometries for the path-distance metric: ρ(σ(x),
σ (y)) = ρ(x, y) for any x, y ∈ H and σ ∈ PGL2(k).

2.2.4. The projective line The Berkovich projective line over k, denoted P1 = P1
k ,

is given by gluing two copies of A1 along A1 \ {0} via the map T �→ 1/T . The
weak topology on P1 is induced by this gluing. We write {∞} = P1 \ A1, and the
dense homeomorphic embedding k ↪→ A1 extends to P

1(k) ↪→ P1. We also extend
the partial ordering � to P1 by setting x � ∞ for every x ∈ P1. For x � x ′ ∈ P1,
we define the closed segment [x, x ′] = {y ∈ P1 : x � y � x ′}, and extend this
notion to arbitrary pairs x, x ′ ∈ P1 by [x, x ′] = [x, x ∨ x ′] ∪ [x ′, x ∨ x ′]. Open and
half-open segments can be defined similarly.

The group PGL2(k) acts on P
1(k), and this action extends functorially to P1.

Moreover, the action preserves the type of a point in P1, and it is transitive on the
set of type I and type II points. The image of an open disk D(a, r)− ⊂ A1 under
the action of an element of PGL2(k) will be called an open Berkovich disk (and
similarly for a closed Berkovich disk). The weak topology on P1 is generated by
sets of the form D(a, r)− and P1 \ D(a, r) for a ∈ k and r ∈ R>0. The space P1

is compact, Hausdorff, and uniquely path-connected for the weak topology.
We close with the following important property of the strong and weak topol-

ogies on P1:

Proposition 2.1. ([2, Lem. B.18]) Let X ⊂ P1 be a subset. Then X is connected
for the weak topology on P1 if and only if it is connected for the strong topology on
P1.

Consequently, we may speak of the connected components of a subset X ⊂ P1

without reference to the topology.

2.2.5. Tangent vectors Let x ∈ P1 be a point. Write Tx for the set of connected
components of P1 \ {x}; an element �v ∈ Tx will be called a tangent vector at x .
If we wish to view a connected component �v ∈ Tx as a subset of P1, then we will
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write it as Bx (�v)−. Observe that the weak topology on P1 is generated by the sets
Bx (�v)− as x varies through P1 and �v varies through Tx .

The cardinality of the set Tx depends only on the type of the point x :

1. Type I. Tx consists of a single tangent vector.
2. Type II. Tx is in 1-to-1 correspondence with elements of P

1(k̃).
3. Type III. Tx consists of two tangent vectors.
4. Type IV. Tx consists of a single tangent vector.

In the case of a type II point x , the correspondence between Tx and P
1(k̃) is non-

canonical except when x = ζ0,1. The correspondence P
1(k̃)

∼→ Tζ0,1 is given by
a �→ �a, where �a is the connected component of P1 \ {ζ0,1} all of whose classical
points map to a under the canonical reduction map P

1(k) → P
1(k̃).

2.3. Rational functions

2.3.1. Generalities Let L be an algebraically closed field, and let ϕ ∈ L(z) be a
nonconstant rational function. Choose polynomials f, g ∈ L[z] with no common
root such that ϕ = f/g. Write deg(ϕ) = max{deg( f ), deg(g)}.

Suppose x ∈ P
1(L) and set y = ϕ(x). Select σ1, σ2 ∈ PGL2(L) such that

σ1(0) = x and σ2(y) = 0, and define ψ = σ2 ◦ ϕ ◦ σ1. The multiplicity of ϕ at x is
defined to be the integer mϕ(x) = ordz=0 ψ(z). Evidently 1 ≤ mϕ(x) ≤ deg(ϕ).
The weight of ϕ at x is defined as wϕ(x) = ordz=0 ψ

′(z). If ϕ′(z) ≡ 0, we set
wϕ(x) = +∞. The weight and multiplicity at x are independent of the choice of
σ1 and σ2.

If ϕ(x) = y with x, y �= ∞, then one verifies that

mϕ(x) = ordz=x (ϕ(z)− y) wϕ(x) = ordz=x
(
ϕ′(z)

)
.

As an immediate consequence, we obtain the following formula for each y ∈ P
1(L):

∑
x∈P

1(L)
ϕ(x)=y

mϕ(x) = deg(ϕ).

Remark 2.2. In some of the literature, the multiplicity mϕ(x) is referred to as the
“ramification index” or as the “local degree.” The weight wϕ(x) is a non-standard
terminology special to this paper; it is referred to as the “multiplicity” of a critical
point in most of the literature. As our focus is on certain multiplicity functions, we
have chosen an alternative terminology to avoid confusion.

Let p be the characteristic of L . The weight and multiplicity of a point are
related by

wϕ(x)

{= mϕ(x)− 1 if p � mϕ(x)
> mϕ(x)− 1 if p | mϕ(x).

We say that ϕ is ramified (resp. unramified) at x if mϕ(x) > 1 (resp. mϕ(x) = 1). If
p | mϕ(x), we say that ϕ is wildly ramified at x ; otherwise ϕ is tamely ramified at
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x . A point x with positive weight is called a critical point of ϕ; the above relations
between weights and multiplicities show that ϕ is ramified at x if and only if x is a
critical point. We write Crit(ϕ) for the set of critical points of ϕ.

If L has characteristic p > 0, a rational function ϕ ∈ L(z) is called inseparable
if ϕ(z) = ψ(z p) for some rational function ψ . Otherwise ϕ is said to be separable.
(Equivalently, ϕ is separable if and only if the extension of fields L(z)/L(ϕ(z)) is
separable.)

With this notation, the Hurwitz Formula may be written in the following way:

Proposition 2.3. (Hurwitz Formula) Let ϕ ∈ L(z) be a nonconstant rational func-
tion. The collection of weights for ϕ are related by

∑
x∈P1(L)

wϕ(x) =
{

2 deg(ϕ)− 2 if ϕ is separable
+∞ if ϕ is inseparable.

In particular, a nonconstant separable rational function has at most 2 deg(ϕ)− 2
distinct critical points.

For a nonconstant rational function ϕ ∈ L(z), choose polynomials f, g with no
common root such that ϕ = f/g. This choice is unique up to a common nonzero
factor in L . The Wronskian of ϕ = f/g ∈ L(z) is defined to be

Wrϕ = f ′g − f g′ ∈ L[z].

It is a polynomial of degree at most 2 deg(ϕ)−2 whose roots are precisely the affine
critical points of ϕ. (If one wants to recover all critical points, then one should work
with the homogeneous Wronskian Y 2 deg(ϕ)−2Wrϕ(X/Y ) ∈ L[X,Y ].) The Wrons-
kian depends on the choice of representation f/g, although we suppress this from
the notation. Note that the Hurwitz Formula may be proved by counting roots of
the Wronskian with appropriate weights.

To close this section, we derive an explicit formula for the Wronskian Wrϕ in
terms of the coefficients of f and g. Let d = deg(ϕ) and write

f (z) = ad zd + ad−1zd−1 + · · · + a0, g(z) = bd zd + bd−1zd−1 + · · · + b0,

for some coefficients ai , b j ∈ L . Let us make the convention that ai = bi = 0 if
i < 0 or i > d. Then the Wronskian of ϕ = f/g is given by

Wrϕ(z) = f ′(z)g(z)− f (z)g′(z) =
∑
i≥0

∑
j≥0

(iai b j − jai b j )z
i+ j−1.

Making the change of variable j �→ j − i + 1 gives

Wrϕ(z) =
∑
j≥0

⎧⎨
⎩

∑
i≥0

(2i − j − 1)ai b j+1−i

⎫⎬
⎭ z j . (2.1)
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2.3.2. Rational functions over non-Archimedean fields A rational function ϕ ∈
k(z), viewed as an endomorphism of P

1(k), extends functorially to an endomor-
phism of P1. By abuse of notation, we denote the extension by ϕ as well. The map
ϕ : P1 → P1 is continuous for both the weak and strong topologies.

Intuitively, the extension ϕ : P1 → P1 reflects the mapping properties of open
disks in P

1(k). More precisely, if ϕ is nonconstant, we can describe the extension
of ϕ to type II points in the following concrete fashion. Let S ⊂ k◦ be a complete
collection of coset representatives for k̃ = k◦/k◦◦. The closed disk D(0, 1) is a dis-
joint union of open disks D(b, 1)− as b varies through S. For all but finitely many
b ∈ S, the image ϕ(D(b, 1)−) is an open disk D(ϕ(b), s)− for some s ∈ |k×|. For
any such choice of b, we have ϕ(ζ0,1) = ζϕ(b),s . For an arbitrary type II point ζa,r ,
choose σ ∈ PGL2(k) so that σ(ζ0,1) = ζa,r , and apply the preceding discussion to
the rational function ϕ ◦ σ .

Let ϕ ∈ k(z) be a nonconstant rational function. We may write ϕ = f/g for
polynomials f, g ∈ k[z] with no common root. If f, g ∈ k◦[z] and if the maximum
absolute value of the coefficients of f and g is 1, then we say ϕ is normalized.

Given ϕ ∈ k(z), we may always choose polynomials f, g ∈ k◦[z] so that
ϕ = f/g is normalized. (It can be accomplished by dividing the numerator and
denominator of an arbitrary representation by a judicious choice of nonzero ele-
ment of k.) This choice of f and g is unique up to simultaneous multiplication by
an element in k with absolute value 1. Write f̃ and g̃ for the images of f and g in
k◦[z]/k◦◦[z], respectively. The reduction of ϕ is given by

ϕ̃(z) =
{

f̃ /g̃ if g �∈ k◦◦[z]
∞ if g ∈ k◦◦[z].

The degree of ϕ̃ is independent of the choice of normalized representationϕ = f/g.
(By convention, we set deg(∞) = 0.) We say that ϕ has constant reduction (resp.
nonconstant reduction) if the degree of ϕ̃ is zero (resp. positive).

Proposition 2.4. Let ϕ ∈ k(z) be a nonconstant rational function, and write ϕ =
f/g in normalized form. Then ϕ has nonconstant reduction if and only if ϕ(ζ0,1) =
ζ0,1.

Proof. This is essentially Lemma 2.17 of [2]. As the point at infinity plays a dis-
tinguished role in much of their theory, they do not treat the case in which ϕ has
constant reduction with value ∞. This issue can be remedied by replacing ϕ(z)
with 1/ϕ(1/z). ��

Let x be a point of P1 and �v a tangent direction at x . Then for every y ∈ Bx (�v)−
sufficiently close to x , the image segment ϕ((x, y)) does not contain ϕ(x), and
hence it lies entirely in a single connected component of P1

� {ϕ(x)}. In this way,
ϕ determines a surjective map ϕ∗ : Tx → Tϕ(x) [2, Cor. 9.20]. We have already
seen that Tζ0,1 is canonically identified with P

1(k̃). If ϕ(ζ0,1) = ζ0,1, then under
this identification we have ϕ̃ = ϕ∗.



448 X. Faber

3. Multiplicity functions

3.1. Extending mϕ to P1

Here we describe an extension of the multiplicity function mϕ on P
1(k) to the Ber-

kovich projective line P1, where k is a non-Archimedean field. There are a number
of equivalent ways to do this; see [2, 9.1], [4, 6.3.1], and [7, 2.2]. The definition
is relatively unimportant for our purposes in this paper (although we give one for
completeness); instead, we rely on various characterizations and properties of the
multiplicity function to be recalled below.

The most direct definition of the multiplicity function is as follows. Let k be
a non-Archimedean field, let ϕ ∈ k(z) be a nonconstant rational function, and let
OP1 be the analytic structure sheaf on P1. Then ϕ∗OP1 is a locally free OP1 module.
The multiplicity of ϕ at x ∈ P1 is defined as

mϕ(x) = rkOP1,y
(ϕ∗OP1)x = rkOP1,y

OP1,x , y = ϕ(x).

More intuitively, we have the following topological characterization that
appears in the work of Rivera-Letelier. It will be the first instance of many in
which we want to count a set of points “with multiplicities.” To be precise, if
X ⊂ P1 is a set, then to count X with multiplicities means to compute the quantity
#X = ∑

x∈X mϕ(x).

Proposition 3.1. ([2, Cor. 9.17]). For each x ∈ P1 and for each sufficiently small
ϕ-saturated neighborhood U of x (i.e., U is a connected component of ϕ−1(ϕ(U ))),
the multiplicity mϕ(x) is equal to #U ∩ ϕ−1({b}) for each b ∈ ϕ(U ) ∩ P

1(k).

Intuitively, this says that each classical point near ϕ(x) has mϕ(x) pre-images
when counted with multiplicities. More generally, it is true that if x ∈ P1 has mul-
tiplicity m = mϕ(x), then the map ϕ is locally m-to-1 in a neighborhood of x , pro-
vided that we count with multiplicities. The function mϕ : P1 → {1, . . . , deg(ϕ)}
is sometimes called the “local degree function” for this reason.

Definition 3.2. The (Berkovich) ramification locus of a nonconstant rational func-
tion ϕ ∈ k(z) is the set

Rϕ = {x ∈ P1 : mϕ(x) > 1}.
Remark 3.3. We call an arbitrary point x ∈ Rϕ a ramified point, while we reserve
the term “critical point” for the type I points in Rϕ . (A different convention is used
in [15].)

A rational function ϕ of degree 1 is an automorphism. Hence mϕ ≡ 1 on P1, so
that Rϕ is empty. A rational function ϕ with deg(ϕ) ≥ 2 has a critical point—i.e.,
a classical point of multiplicity at least 2—and so Rϕ is nonempty.

Proposition 3.4. ([2, Prop. 9.28]) Let ϕ ∈ k(z) be a nonconstant rational func-
tion. The multiplicity function mϕ : P1 → {1, . . . , deg(ϕ)} enjoys the following
properties.
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1. mϕ is upper semicontinuous with respect to the weak topology. That is, the set
{x ∈ P1 : mϕ(x) ≥ i} is weakly closed in P1 for each i = 1, 2, . . . , deg(ϕ).

2. The map ϕ : P1 → P1 is locally injective at a with respect to the weak topology
if mϕ(a) = 1. The converse holds if ϕ is separable.

3. If ψ(z) is another nonconstant rational function, then

mψ◦ϕ(x) = mψ(ϕ(x)) · mϕ(x) for all x ∈ P1.

Remark 3.5. Statements (3.4) and (3.4) are also true for the strong topology.

Remark 3.6. Part (3.4) of the proposition is proved in [2] under the hypothesis
that the characteristic of k is zero, but their proof applies mutatis mutandis if ϕ is
separable. See also [2,7].

Corollary 3.7. Let ϕ ∈ k(z) be a nonconstant rational function, and let σ1, σ2 ∈
PGL2(k). Set ψ = σ2 ◦ ϕ ◦ σ1. Then Rψ = σ−1

1 (Rϕ).

Proof. This result is an immediate consequence of part (3.4) of the proposition and
the fact that automorphisms are unramified:

mψ(x) = mσ2 (ϕ(σ1(x))) · mϕ (σ1(x)) · mσ1(x) = mϕ (σ1(x)) , x ∈ P1.

��
The fact that P1 is a tree implies that a rational function is injective on each

connected component of the complement of the ramification locus.

Corollary 3.8. Let ϕ ∈ k(z) be a nonconstant rational function, and let U ⊂ P1 be
a connected weak open subset. If ϕ|U is not injective, then U contains a ramified
point.

Proof. Let x, y be arbitrary distinct points of U . The segment [x, y] is contained
in U by connectedness. If U does not contain a ramified point, then ϕ is locally
injective at every point of [x, y] (Proposition 3.4). In particular, the image path
[x, y] → ϕ([x, y]) cannot have any backtracking. As P1 contains no loop, it
follows that ϕ(x) �= ϕ(y), so that ϕ is injective. ��

3.2. The directional multiplicity

Essentially all of the ideas in this section are due to Rivera-Letelier [4,12], although
we will adhere to the notation and terminology of Baker and Rumely [2, 9.1].

Proposition 3.9. ([2, pp. 261–266]) Let ϕ ∈ k(z) be a nonconstant rational func-
tion, let x ∈ P1, and let �v ∈ Tx . Then there is a positive integer m and a point
x ′ ∈ Bx (�v)− satisfying the following:

1. mϕ(y) = m for all y ∈ (x, x ′), and
2. ρ(ϕ(x), ϕ(y)) = m · ρ(x, y) for all y ∈ (x, x ′).
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The integer m in the proposition is called the directional multiplicity, and we denote
it by mϕ(x, �v). Part (3.9) shows that it satisfies mϕ(x, �v) ≤ deg(ϕ).

For the next statement, a generalized open Berkovich disk is a weakly open
set of the form Bx (�v)− for some point x ∈ P1 and some tangent vector �v at x .
Equivalently, a weak open subset is a generalized open Berkovich disk if and only
if it has exactly one boundary point.

Proposition 3.10. Let ϕ ∈ k(z) be a nonconstant rational function. Let B =
Bx (�v)− be a generalized open Berkovich disk. Then ϕ(B) always contains the
generalized open Berkovich disk B′ = Bϕ(x)(ϕ∗(�v))−, and either ϕ(B) = B′ or
ϕ(B) = P1. Set m = mϕ(x, �v) for the directional multiplicity.

1. If ϕ(B) = B′, then for each y ∈ B′ there are exactly m solutions to ϕ(z) = y
in B (counted with multiplicities).

2. If ϕ(B) = P1, then there is a unique integer s > 0 such that for each y ∈ B′,
there are s + m solutions to ϕ(z) = y in B (counted with multiplicities), and
for each y ∈ P1

� B′ there are s solutions to ϕ(z) = y in B (counted with
multiplicities).

Proof. The proposition seems to have been known to Rivera-Letelier [12, 4.1], but
it was only stated in the case where y is a classical point. Baker and Rumely give
a proof of the full statement except for the case where ϕ(B) = P1 and y = ϕ(x)
[2, Prop. 9.41]. If ϕ(B) = P1 and x is of type I or type IV, then y = ϕ(x) is the
unique point in P1

� B′. Evidently the desired result holds with s = deg(ϕ)− m.
We will supply the remaining case now using a perturbation argument.

Suppose that x is of type II or type III and ϕ(B) = P1. The result of Baker and
Rumely tells us that there is an integer s > 0 such that for each y ∈ P1

� B′, y
has s pre-images inside B (counted with multiplicities). We must now extend this
statement to the point y = ϕ(x). There exists a segment I = [x, x ′] with x ′ ∈ B
such that mϕ is constant with value m on the interior of I (Proposition 3.9) and such
that ϕ is injective on I [2, Thm. 9.35]. Fix an ancillary element y1 �= y in the com-
plement of B′. Select an open Berkovich disk B0 � B of the form B0 = Bx0(�v0)

−
satisfying the following properties:

• x0 lies in the interior of the segment I ;
• ϕ−1(y) ∩ B = ϕ−1(y) ∩ B0 and ϕ−1(y1) ∩ B = ϕ−1(y1) ∩ B0; and
• ϕ(B0) = P1.

Each of these three properties holds for any sufficiently large subdisk of B: the
second because each element of P1 has only finitely many pre-images under ϕ, and
the third by compactness.

Write B′
0 = Bϕ(x0)(ϕ∗(�v0))

−. Then B′
0 � B′ because ϕ is injective on I , and

hence y, y1 ∈ P1
� B′

0. Applying the case already proved by Baker and Rumely
to the disks B0 and B separately, we find that there is a unique integer s0 > 0 such
that y and y1 each has s0 pre-images in B0, counted with multiplicities. That is,

#(ϕ−1(y) ∩ B)=#(ϕ−1(y) ∩ B0)=s0 =#(ϕ−1(y1) ∩ B0)=#(ϕ−1(y1) ∩ B)=s.

��
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The next result gives an algebraic relationship between the multiplicity mϕ(x)
and the directional multiplicities mϕ(x, �v) for �v ∈ Tx .

Proposition 3.11. ([2, Thm. 9.22]) Let ϕ ∈ k(z) be a nonconstant rational function
and let x ∈ P1.

1. (Directional Multiplicity Formula) For each tangent vector �w at ϕ(x), we have

mϕ(x) =
∑
�v∈Tx

ϕ∗(�v)= �w

mϕ(x, �v).

2. The induced map ϕ∗ : Tx → Tϕ(x) is surjective. If x is of type I, III, or IV, then
mϕ(x) = mϕ(x, �v) for each tangent vector �v ∈ Tx . ��

Corollary 3.12. Let ϕ ∈ k(z) be a nonconstant rational function. Then Rϕ is a
closed subset of P1 with no isolated point (for both the weak and strong topolo-
gies).

Proof. Proposition 3.4(1) immediately implies that Rϕ is closed. Proposi-
tion 3.11(1) shows that if mϕ(x) > 1, then there is a direction �v ∈ Tx such that
mϕ(x, �v) > 1. It follows from Proposition 3.9(1) that there exists x ′ ∈ Bx (�v)−
such that mϕ(y) = mϕ(x, �v) > 1 for all y ∈ (x, x ′). Hence Rϕ has no isolated
point. ��

The following proposition, due to Rivera-Letelier, gives the best technique for
determining the value of the multiplicity function at a type II point.

Proposition 3.13. (Algebraic Reduction Formula, [2, Thm. 9.42]) Let ϕ ∈ k(z)
be a nonconstant rational function, and let x ∈ P1 be a point of type II. Put
y = ϕ(x), choose σ1, σ2 ∈ PGL2(k) such that σ1(x) = σ2(y) = ζ0,1, and set
ψ(z) = σ2 ◦ ϕ ◦ σ−1

1 . Then ψ has nonconstant reduction ψ̃ and

mϕ(x) = deg(ψ̃).

For each a ∈ P
1(k̃), if �va ∈ Tx is the associated tangent direction under the

bijection between Tx and P
1(k̃) afforded by (σ1)∗, we have

mϕ(x, �va) = mψ̃ (a).

As an application of the results in this section, we describe the ramification
locus for inseparable rational functions.

Proposition 3.14. Suppose k has characteristic p > 0 (and hence residue char-
acteristic p, in accordance with our conventions). Let ϕ ∈ k(z) be a nonconstant
inseparable rational function. Then Rϕ = P1.

Proof. We begin by showing that m F ≡ p, where F ∈ k(z) is the relative Frobe-
nius map defined by F(z) = z p. For a closed disk D(a, r) with rational radius and
any b ∈ D(a, r) with |a − b| = r , observe that

ψ(z) = b−p[F(bz + a)− F(a)] = F(z).
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Hence m F (ζa,r ) = m F (ζ0,1) = p by the Algebraic Reduction Formula. Since m F

takes the same value at any type II point, we conclude that m F ≡ p (Proposi-
tion 3.9(1)).

Now we may factor ϕ uniquely as ϕ = ψ ◦ F	, where ψ ∈ k(z) is separable,
	 ≥ 1, and F	 = F ◦ · · · ◦ F is the 	-fold iterate of F . By Proposition 3.4(3), we
see that

mϕ(x) = mψ

(
F	(x)

)
· m F

(
F	−1(x)

)
· m F

(
F	−2(x)

)
· · · m F (x)

= p	 · mψ

(
F	(x)

)
≥ p	.

As x is arbitrary, Rϕ = P1. ��

3.3. The surplus multiplicity

With the notation in Proposition 3.10, we define the surplus multiplicity sϕ(B) to
be zero if ϕ(B) is a generalized open Berkovich disk, and to be sϕ(B) = s if
ϕ(B) = P1. As B = Bx (�v)−, we will also write sϕ(x, �v) = sϕ(B). The intuition
behind the terminology “surplus multiplicity” is that for y ∈ B′, there are always
at least m solutions to ϕ(ζ ) = y with ζ ∈ B, and there are sϕ(B) “extra” solutions
depending on the nature of ϕ and B.

The surplus multiplicity gives a lower bound for the number of pre-images of a
given point inside certain open Berkovich disks. This fact—which follows imme-
diately from Proposition 3.10—is extremely important for bounding the number of
connected components of Rϕ .

Corollary 3.15. Let ϕ ∈ k(z) be a nonconstant rational function, and let B be a
generalized open Berkovich disk. For each y ∈ P1,

#{ζ ∈ B : ϕ(ζ ) = y} ≥ sϕ(B).
The surplus multiplicity of a disk is closely tied to the number of critical points

contained within it. The following result is the key to bounding the number of
connected components of the ramification locus.

Proposition 3.16. Letϕ ∈ k(z) be a nonconstant rational function. Suppose x ∈ P1

is a type II point and �v ∈ Tx is a tangent direction such that p � mϕ(x, �v). Then we
have the equality

∑
c∈Crit(ϕ)∩Bx (�v)−

wϕ(c) = 2sϕ(x, �v)+ mϕ(x, �v)− 1.

Before starting the proof, we give an alternate description of the surplus multi-
plicity at the Gauss point. Let ϕ = f/g be normalized. The surplus multiplicity is
invariant under postcomposition by an element of PGL2(k), so it suffices to assume
that ϕ(ζ0,1) = ζ0,1, in which case ϕ has nonconstant reduction. In particular, this
means that each of f and g has a coefficient with absolute value 1.
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Write F(X,Y ) = Y deg(ϕ) f (X/Y ) and G(X,Y ) = Y deg(ϕ)g(X/Y ) for the
homogenizations of f and g. Write F̃ and G̃ for the reductions of F and G, respec-
tively; these reductions are nonzero since f and g each has a coefficient with
absolute value 1. Let H = gcd(F̃, G̃) ∈ k̃[X,Y ]; it exists since F̃ and G̃ are
homogeneous, and it is unique up to multiplication by a nonzero element of the
residue field.

Now let a ∈ P
1(k̃), and write B = Bζ0,1(�a)− for the corresponding open Ber-

kovich disk. We claim that the surplus multiplicity of B is equal to the multiplicity
of a as a root of H . To see it, change coordinates on the source and target by an
element of PGL2(k◦) so that �a = ϕ∗(�a) = �0. The induced map Tζ0,1 → Tζ0,1 on
sets of tangent vectors is given in homogeneous coordinates by

ϕ∗ = ϕ̃ =
(

F̃

H
: G̃

H

)
.

Since ϕ∗ maps �0 to �0 with multiplicity m = mϕ(ζ0,1, �0), we see that Xm || F̃/H .
Let S ≥ 0 be defined by X S || H . It follows that Xm+S evenly divides F̃ , or equiv-
alently that F has m + S zeros in the disk D(0, 1)− (counted with multiplicity). In
fact, this same conclusion holds with zero replaced by any y ∈ D(0, 1)−, which
shows that S = sϕ(ζ0,1, �0) is the surplus multiplicity of the disk D(0, 1)−. We
summarize this conclusion as

Lemma 3.17. Let ϕ = f/g ∈ k(z) be a nonconstant normalized rational func-
tion with nonconstant reduction. Set F(X,Y ) = Y deg(ϕ) f (X/Y ) and G(X,Y ) =
Y deg(ϕ)g(X/Y ) for the homogenizations of f and g, respectively, and let H =
gcd(F̃, G̃) be a greatest common divisor of their reductions. For each a ∈ P

1(k̃),
the surplus multiplicity of the disk Bζ0,1(�a)− is equal to the multiplicity of a as a
root of H.

If x ∈ P1 is a type II point and ϕ ∈ k(z) is any nonconstant rational function,
then an immediate consequence of this characterization of the surplus multiplicity
and the Algebraic Reduction Formula is the following:

mϕ(x)+
∑
�v∈Tx

sϕ(x, �v) = deg(ϕ). (3.1)

And while we will not need it in what follows, this formula actually holds at any
x ∈ P1. The proof is trivial for points of type I or type IV since there is only one
tangent direction to consider, and one can use Corollary 4.4 below to reduce the
type III case to the type II case.

Proof of Proposition 3.16. Change coordinates on the source and target so that
x = ϕ(x) = ζ0,1 and Bx (�v)− = D(0, 1)−. Note that ϕ must be separable, else its
reduction ϕ̃ will be inseparable, so that mϕ(x, �v) ≥ p by the Algebraic Reduction
Formula. In particular, ϕ has only finitely many critical points, so there are only
finitely many connected components of P1

� {ζ0,1} that contain one. After a further
change of coordinate on the source if necessary, we may assume that no critical
point lies in the open Berkovich disk Bζ0,1( �∞)−; equivalently, each critical point
has absolute value at most 1.
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We may suppose ϕ = f/g is normalized, and set h = gcd( f̃ , g̃) with h monic.
Write f̃ = h f1 and g̃ = hg1 for some f1, g1 ∈ k̃[z]. We see that f1 vanishes to
order m = mϕ(ζ0,1, �0) at the origin, and g1(0) �= 0. As p � m, we have

ordz=0 Wrϕ̃ = ordz=0( f ′
1g1 − f1g′

1) = m − 1.

Since ϕ = f/g is normalized, we see that Wrϕ ∈ k◦[z], and we may compute

W̃rϕ = f̃ ′g̃ − f̃ g̃′

= (h′ f1 + h f ′
1)hg1 − h f1(hg′

1 + h′g1)

= Wrϕ̃ · h2.

With our choice of coordinates, all of the roots of Wrϕ have absolute value at most 1,
and hence∑

c∈Crit(ϕ)∩D(0,1)−
wϕ(c) = ordz=0 W̃rϕ = 2sϕ(ζ0,1, �0)+ mϕ(ζ0,1, �0)− 1,

where ordz=0(h) = sϕ(ζ0,1, �0) follows upon dehomogenizing Lemma 3.17. ��
We now give another useful description of the surplus multiplicity of an open

Berkovich disk B as a sum of “jumps” in the multiplicity function inside B.

Proposition 3.18. Let ϕ ∈ k(z) be a nonconstant rational function, and let B be a
generalized open Berkovich disk with boundary point ζ . Then

sϕ(B) =
∑
y∈B

max
{
mϕ(y)− mϕ(y, �vζ ), 0

}
,

where �vζ is the unique tangent vector at y containing ζ .

Remark 3.19. Since mϕ(y, �v) = mϕ(x) for all x ∈ (ζ, y) sufficiently close to y,
we can think of max

{
mϕ(y)− mϕ(y, �vζ ), 0

}
as the “jump” in multiplicity at y

along a path emanating from ζ .

Since the surplus multiplicity of a disk B is positive if and only if ϕ(B) = P1,
we obtain the following corollary. It appeared previously as [2, Thm. 9.42].

Corollary 3.20. Let ϕ ∈ k(z) be a nonconstant rational function, and let B be a
generalized open Berkovich disk with boundary point ζ . Then ϕ(B) is a generalized
open Berkovich disk if and only if for each c ∈ B, the multiplicity function mϕ is
nonincreasing on the directed segment [ζ, c].
Proof of Proposition 3.18. For the purpose of this proof, let us make two ad hoc
definitions. We will say that y ∈ B is a jumping point if mϕ(y) > mϕ(y, �vζ ); these
are precisely the points that contribute to the sum in the proposition. Note that a
jumping point is necessarily of type II (Proposition 3.11(2)). We say that a jumping
point y is visible from ζ if it is the unique jumping point on the path (ζ, y].

Let y ∈ B be a jumping point that is visible from ζ . We claim that ϕ is injective
on the segment (ζ, y). Otherwise ϕ would have to backtrack on this segment, which
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would imply there is x ∈ (ζ, y) and a tangent vector �u at x such thatϕ∗(�vζ ) = ϕ∗(�u).
But then

mϕ(x) ≥ mϕ(x, �vζ )+ mϕ(x, �u) > mϕ(x, �vζ ),
so that x is a jumping point. This contradicts the visibility of y.

Define a closed Berkovich disk D = P1
�By(�vζ )−. Write �w = ϕ∗(�vζ ) ∈ Tϕ(y).

Let �v1, . . . , �vn ∈ Ty be the distinct tangent vectors at y that are distinct from �vζ and
that satisfy ϕ∗(�vi ) = �w. Let �vn+1, . . . , �vN be the remaining tangent vectors distinct
from �vζ satisfying sϕ(y, �vi ) > 0. Set ζ ′ = ϕ(ζ ). By the Directional Multiplicity
Formula and Proposition 3.10, we find that

#
(
ϕ−1(ζ ′) ∩ D

)
=

n∑
i=1

mϕ(y, �vi )+
N∑

i=1

sϕ(y, �vi )

= mϕ(y)− mϕ(y, �vζ )+
∑

�v∈Ty\{�vζ }
sϕ(y, �v).

(3.2)

Here we are counting pre-images of ζ ′ with multiplicities. Since y is a jumping
point, we conclude that D contains a pre-image of ζ ′. It follows that there can be
only finitely many jumping points visible from ζ .

We now complete the proof by induction on the surplus multiplicity s = sϕ(B).
If s = 0, then ζ ′ �∈ ϕ(B). A visible jumping point y ∈ B would enable us to apply
(3.2); the right side would be strictly positive, which would force the existence of
a pre-image of ζ ′ in B. Hence there can be no jumping point when s = 0 and the
proposition is proved. Suppose now that the proposition holds for all open Berko-
vich disks with surplus multiplicity at most s − 1 for some s ≥ 1, and let B be a
disk with surplus multiplicity s. Let y1, . . . , y	 be the jumping points in B that are
visible from ζ . For i = 1, . . . , 	, let Di = P1

� Byi (�vζ )− be the closed Berko-
vich disk with boundary point yi that does not contain ζ . The argument given in
the first paragraph shows that any path (ζ, y] that contains a pre-image of ζ ′ must
necessarily contain a jumping point. Hence, (3.2) gives

#
(
ϕ−1(ζ ′) ∩ B

)
=

	∑
i=1

#
(
ϕ−1(ζ ′) ∩ Di

)

=
	∑

i=1

(
mϕ(yi )− mϕ(yi , �vζ )

) +
	∑

i=1

∑
�v∈Tyi �{�vζ }

sϕ(yi , �v).

But now observe that each of the surplus multiplicities sϕ(yi , �v) is necessarily
smaller than s, so that we may apply the inductive hypothesis to each of the open
disks Byi (�v)−. We conclude that

#(ϕ−1(ζ ′) ∩ B) =
∑
y∈B

max{mϕ(y)− mϕ(y, �vζ ), 0}.

Proposition 3.10 shows that the pre-image count on the left hand side is precisely
sϕ(B). ��
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4. Extension of scalars

Let K/k be an extension of algebraically closed and complete non-Archimedean
fields, where as usual we assume the absolute value on k is nontrivial (and hence
also on K ). To distinguish between objects defined over k and those over K , we will
decorate our notation with subscripts. For example, Dk(0, 1) and P1

k will denote
the classical closed unit disk and the Berkovich projective line defined over k,
respectively.

We will be occupied for most of this section with the proof of the following
result.

Theorem 4.1. To each extension K/k of algebraically closed and complete non-
Archimedean fields, there exists a canonical inclusion map ιKk : P1

k → P1
K with the

following properties:

1. ιKk (ζk,a,r) = ζK ,a,r for each decreasing sequence of closed disks Dk(a, r) =
(D(ai , ri ))i≥0 with ai ∈ k and ri ∈ R≥0. In particular, ιKk extends the natural
inclusion P

1(k) ↪→ P
1(K ) on classical points.

2. If K ′/K is a further extension, then ιK
′

k = ιK
′

K ◦ ιKk .
3. ιKk is continuous for the weak topologies on P1

k and P1
K . In particular, ιKk (P

1
k)

is a compact subset of P1
K for the weak topology.

4. ιKk is an isometry for the path-distance metric ρ.
5. Write ι = ιKk . For each x ∈ P1

k , there exists an injective map ι∗ : Tx → Tι(x)
such that property that ι(Bx (�v)−) ⊂ Bι(x)(ι∗(�v))− for every �v ∈ Tx .

Remark 4.2. The map ιKk in the theorem is not a morphism of k-analytic spaces
except in the case k = K , and so we cannot simply appeal to general principles in
analytic geometry to determine its properties. Indeed, if it were k-analytic, then its
construction below would imply the existence of a k-analytic morphism of Berko-
vich disks Dk(0, 1) → DK (0, 1). Passing to rings of functions, there would exist a
k-morphism of Tate algebras K {T } → k{T }. The image of K must lie in a subfield
of k{T } containing k, and so it must be k itself.

Remark 4.3. The existence ιKk and the fact that it is continuous for the weak topol-
ogy also follow from Poineau’s theory of universal points. See [10, Cor. 3.7, 3.14].
More generally, the hypothesis that k is algebraically closed guarantees that the base
extension morphism πK/k : XK → X has a continuous section for any analytic
space X/k and any extension of non-Archimedean fields K/k.

An important consequence of the continuity properties of the map ιKk is the
following application to multiplicities of rational functions.

Corollary 4.4. Let K/k be an extension of algebraically closed and complete non-
Archimedean fields, let ϕ ∈ k(z) be a nonconstant rational function, and let ι =
ιKk : P1

k → P1
K be the inclusion map from the theorem. The following assertions

hold:

1. If ϕK ∈ K (z) is given by extension of scalars, then ϕK ◦ ι = ι ◦ ϕ.
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2. For every x ∈ P1
k , we have mϕK (ι(x)) = mϕ(x). In particular, ι−1(RϕK ) = Rϕ .

3. For each x ∈ P1
k and each �v ∈ Tx , we have

mϕK (ι(x), ι∗(�v)) = mϕ(x, �v) and sϕK (ι(x), ι∗(�v)) = sϕ(x, �v).
Proof of Theorem 4.1. Define ιKk (ζk,a,r) = ζK ,a,r and ιKk (∞) = ∞. Since cofi-
nality of nested sequences of disks is preserved under base extension, this map is
evidently well-defined and injective. Compatibility of the family of maps ι•k is clear
from the definition.

For the remainder of the proof, we assume that the extension K/k is fixed and
write ι = ιKk for simplicity. To prove weak continuity of ι, we observe that it suffices
to prove ι−1(D(a, r)−) is open and ι−1(D(a, r)) is closed for every a ∈ K and
r ∈ R≥0. The proof breaks naturally into several cases.

Case 1. DK (a, r)− ∩ k �= ∅. Without loss of generality, we may assume that
a ∈ k. We claim that ι−1

(DK (a, r)−
) = Dk(a, r)−. Suppose first that ζk,b,s ∈

ι−1
(DK (a, r)−

)
. We see that

∣∣(T − a)(ζk,b,s)
∣∣ = lim

i→∞ sup
x∈Dk (bi ,si )

|x − a|

≤ lim
i→∞ sup

x∈DK (bi ,si )

|x − a| = ∣∣(T − a)(ζK ,b,s)
∣∣ < r.

Hence ζk,b,s ∈ Dk(a, r)−.
For the other containment, suppose that ζk,b,s ∈ Dk(a, r)−. Then si < r and

|(T − a)(ζk,bi ,si )| < r for i sufficiently large; fix such an i for the moment. For
arbitrary x ∈ DK (bi , si ) and x ′ ∈ Dk(bi , si ), we see that

|x − a| = |(x − bi )− (x ′ − bi )+ (x ′ − a)| ≤ max
{
si , |(T − a)(ζk,bi ,si )|

}
< r.

Taking the supremum over all x ∈ DK (bi , si ) shows ζK ,bi ,si ∈ DK (a, r)−. Letting
i tend to infinity, we see that ζK ,b,s ∈ DK (a, r)−. (Note that |(T − a)(ζK ,bi ,si )| is
by definition a nonincreasing sequence in the variable i .)

Case 2. DK (a, r)∩k �= ∅. The argument here is virtually identical to the previ-
ous case. If we assume (as we may without loss) that a ∈ k, then ι−1 (DK (a, r)) =
Dk(a, r).

Case 3. DK (a, r)− ∩ k = ∅. We will argue that ι−1
(DK (a, r)−

) = ∅. Suppose
to the contrary that there exists ζk,b,s such that |(T − a)(ζK ,b,s)| < r . Then for i
sufficiently large, we find that

|(T − a)(ζK ,bi ,si )| = sup
x∈DK (bi ,si )

|x − a| < r.

But then bi ∈ k ∩ DK (a, r)−, a contradiction.
Case 4. DK (a, r) ∩ k = ∅. Observe that

DK (a, r) = {ζK ,a,r } ∪
⋃

a′∈DK (a,r)

DK (a
′, r)−.

We have already shown that the pre-image of each of the latter sets is empty in
Case 3, so that ι−1 (DK (a, r)) = ι−1(ζK ,a,r ). As ι is injective, we conclude that
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ι−1 (DK (a, r)) is either empty or a single point. In either case, it is closed for the
weak topology.

Next, ι is an isometry for the path-distance metric because it preserves affine
diameters and because it is compatible with the partial orderings on P1

k and P1
K

in the following sense: For every x, x ′, y ∈ P1
k , we have x � x ′ ⇒ ι(x) � ι(x ′)

and ι(x ∨ y) = ι(x) ∨ ι(y). Indeed, these observations are immediate from the
definitions for points of types I, II, or III, and a limiting argument gives them for
type IV points.

By continuity and injectivity, the image of the connected set Bx (�v)− under ι
is connected and does not contain ι(x). So it must be contained in Bι(x)( �w)− for
some �w ∈ Tι(x). We define ι∗(�v) = �w.

We must show that ι∗ : Tx → Tι(x) is injective. This is clear if x is of type I
or type IV, since #Tx = 1. So we now assume that x is of type II or III. Let
�v1 �= �v2 ∈ Tx . Choose xi ∈ Bx (�vi )

− for i = 1, 2. It suffices to show ι(x1) and
ι(x2) lie in distinct connected components of P1

K � {ι(x)}. If Bx (�v2)
− contains ∞,

then x1 ≺ x ≺ x2. The ordering is compatible with ι, so that ι(x1) ≺ ι(x) ≺ ι(x2).
This last inequality implies that ι(x1) and ι(x2)must lie in distinct connected compo-
nents of P1

K �{ι(x)}. By symmetry, we obtain the same conclusion if ∞ ∈ Bx (�v1)
−.

Finally, suppose that ∞ �∈ Bx (�vi )
− for i = 1, 2. In that case, xi ≺ x for i = 1, 2,

and x1 and x2 are mutually incomparable under the partial ordering, and we have
x1 ∨ x2 = x . Then ι(x) = ι(x1) ∨ ι(x2), which means ι(x1) and ι(x2) again lie in
distinct connected components of P1

K � {ι(x)}. ��
Proof of Corollary 4.4. The first assertion is trivial for type I points of P1

k , and the
full equality ϕK ◦ ι = ι◦ϕ follows by weak continuity and the fact that type I points
are dense in P1

k .
For the second assertion, it evidently holds whenever x is a type I point by

the algebraic description of the multiplicity in that case. Now let x ∈ P1
k be arbi-

trary, and let V be a ϕK -saturated weak neighborhood of ι(x). Then the multi-
plicity m = mϕK (ι(x)) is equal to #V ∩ ϕ−1

K ({y}) for each y ∈ ϕK (V ) ∩ P
1(K )

(Proposition 3.1). Now observe that U = ι−1(V ) is a ϕ-saturated weak neighbor-
hood of x . Since ϕ is defined over the algebraically closed field k, we find that
#U ∩ ϕ−1({y}) = m for any y ∈ ϕ(U ) ∩ P

1(k). Thus mϕ(x) = m as well.
Finally, let x ∈ P1

k , �v ∈ Tx . Write Bk = Bx (�v)− and BK = Bι(x)(ι∗(�v))−. Then
the proof of the theorem shows ι−1(BK ) = Bk . The third assertion now follows
from Propositions 3.9 and 3.10, the compatibility of ι and ϕ, and what we have
already shown in the last paragraph. ��

5. The locus of inseparable reduction

The phenomenon of inseparable reduction at a type II point was first investigated
by Rivera-Letelier; we spend the present section extending this notion to points of
P1 of arbitrary type. In 7 we will characterize the strong interior of the ramification
locus in terms of inseparable reduction.

Let us begin by recalling Rivera-Letelier’s definition. Let ϕ ∈ k(z) be a non-
constant rational function and let x ∈ P1 be a type II point. Let σ1, σ2 ∈ PGL2(k)
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be chosen so that σ1(ζ0,1) = x and σ2(ϕ(x)) = ζ0,1. Then ψ = σ2 ◦ ϕ ◦ σ1
fixes the Gauss point, and so ψ has nonconstant reduction ψ̃ . The reduction ψ̃ is
well-defined up to pre- and post-composition with an element of PGL2(k̃). We say
that ϕ has inseparable reduction at x if k has positive residue characteristic and
ψ̃ ∈ k̃(z) is inseparable. We say that ϕ has separable reduction at x if it does not
have inseparable reduction. This definition is stable under extension of scalars:

Proposition 5.1. Let K/k be an extension of complete and algebraically closed
non-Archimedean fields, and let ιKk : P1

k ↪→ P1
K be the canonical inclusion. Then ι

maps type II points to type II points, and the function ϕ has inseparable reduction
at a type II point x ∈ P1

k if and only if ϕK has inseparable reduction at ιKk (x).

Proof. If x = ζk,a,r is a type II point, then r ∈ |k×| ⊂ |K ×|, and hence ιKk (x) =
ζK ,a,r is also a type II point. We may suppose that x = ζk,0,1 = ϕ(ζk,0,1) after
a change of coordinate on the source and target. Note that ιKk is compatible with
these changes of coordinate (Corollary 4.4). Since ϕ̃K = ϕ̃K̃ , we see that ϕ has
inseparable reduction at the Gauss point of P1

k if and only if ϕK has inseparable
reduction at the Gauss point of P1

K . ��
In order to generalize the definition of inseparable reduction, we will need to

know there exist certain kinds of extensions of the field k. The following result is
well-known, although its proof seems not to be.

Proposition 5.2. There exists an algebraically closed and complete extension K/k
with trivial residue extension such that K is spherically closed and |K ×| = R>0.
In particular, P1

K has no point of type III or type IV.

Proof. The construction of a universal field �p lying over the algebraic closure of
Qp given in [14, pp.137–140] applies mutatis mutandis to our setting. It gives an
extension K̂/k that is algebraically closed and complete, spherically closed, and
has the desired value group. However, there is no control over the residue field of
K̂ in this construction.

Let S be the set of intermediate extensions of K̂/k with trivial residue exten-
sion. Then S is nonempty, and the union of a linearly ordered collection of elements
of S is again an element of S. Zorn’s lemma guarantees the existence of a maximal
element K , which we claim satisfies the conclusion of the proposition.

Evidently K is complete, since otherwise its completion would be a strictly
larger element of S. Next we show that |K ×| = R>0. For otherwise, there exists
r ∈ R>0 � |K ×|. Let År be the generalized Tate algebra K {r−1T }; it is the K -alge-
bra of series f = ∑

i≥0 ai T i with K -coefficients such that |ai |r i → 0 as i → ∞.
The norm on År is ‖ f ‖r = supi≥0 |ai |r i . Then År is a domain, and its fraction
field Kr has residue field k̃ = K̃ and value group generated by r and |K ×|. Thus
Kr contradicts the maximality of K .

Now let K ′/K be a finite extension. Since the corresponding extension of res-
idue fields is finite, and since K̃ = k̃ is algebraically closed, we see that K̃ ′ = K̃ .
Hence K ′ = K by maximality.
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Finally, the spherical closure of K is the maximal extension with the same res-
idue field and value group as K . By maximality, we find K is itself spherically
closed. ��
Definition 5.3. Fix a nonconstant rational function ϕ ∈ k(z). We say that ϕ has
inseparable reduction at a type I point if and only if ϕ is an inseparable rational
function. We have already defined above what it means for ϕ to have inseparable
reduction at a point of type II. If x ∈ P1

k is a point of type III or type IV, then the
preceding proposition shows there exists an extension K/k of algebraically closed
and complete non-Archimedean fields such that ιKk (x) is a point of type II. We say
that ϕ has inseparable reduction at x if ϕK has inseparable reduction at ιKk (x). This
definition is independent of the choice of field K (Proposition 5.1).

The notion of inseparable reduction at a type I or type II point is evidently
intrinsic to the field k by the above definitions. This is also true of type III points:

Proposition 5.4. Suppose k has residue characteristic p > 0. Let ϕ ∈ k(z) be
a nonconstant rational function, and let x ∈ P1 be a type III point. Then ϕ has
inseparable reduction at x if and only if p | mϕ(x).

Proof. Write m = mϕ(x) = mϕ(x, �v1) = mϕ(x, �v2), where Tx = {�v1, �v2}. Let K
be an algebraically closed and complete extension of k such that xK = ιKk (x) is a
type II point of P1

K . Write �wi = (ιKk )∗(�vi ) for i = 1, 2. Choose σ1 ∈ PGL2(K ) so
that

σ1(ζK ,0,1) = x, (σ1)∗(�0) = �w1, (σ1)∗( �∞) = �w2.

Next choose σ2 ∈ PGL2(K ) so that

σ2(ϕK (x)) = ζK ,0,1, (σ2)∗ ((ϕK )∗( �w1)) = �0, (σ2)∗ ((ϕK )∗( �w2)) = �∞.

Then the map ψ = σ2 ◦ ϕK ◦ σ1 satisfies ψ(ζK ,0,1) = ζK ,0,1, ψ∗(�0) = �0, and
ψ∗( �∞) = �∞. Then m = mψ(ζK ,0,1) = mψ(ζK ,0,1, �0) = mψ(ζK ,0,1, �∞) (Cor-
ollary 4.4). The Algebraic Reduction Formula implies that ψ̃(z) = azm for some
nonzero a ∈ K̃ , and the proof is complete since p | m if and only if ψ has
inseparable reduction at ζK ,0,1 if and only if ϕ has inseparable reduction at x . ��

6. Connected components

We open this section by giving a bound on the number of connected components
that the ramification locus may have (Theorem A). Then we study the part of the
ramification locus lying off of the connected hull of the critical points. We also
give sufficient conditions for when Rϕ ⊂ Hull(Crit(ϕ)). Finally, we show that—
subject to the bound given by Theorem A—any number of connected components
is achievable.

Proposition 6.1. Let ϕ ∈ k(z) be a nonconstant rational function. Let x ∈ P1 be a
point with mϕ(x) > 1, and let X be the connected component of Rϕ containing x.
Then X contains at least 2mϕ(x)−2 ≥ 2 critical points of ϕ counted with weights.
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Proof of Theorem A. The proposition shows that each connected component of Rϕ

contains at least two critical points, while the Hurwitz formula bounds the number
of critical points of a separable rational function by 2 deg(ϕ)−2. Hence Theorem A
follows in the separable case. Recall that if ϕ is inseparable, then Rϕ = P1 and
Theorem A is trivial. ��
Remark 6.2. If the characteristic of the field k is positive, then it is possible to have
a connected component of Rϕ containing only one critical point (when counted
without weight). For example, this is the case for any polynomial function of the
form ϕ(z) = f (z p)+ az, where f ∈ k[z] is a nonconstant polynomial and a ∈ k
is nonzero.

Proof of Proposition 6.1. If ϕ is inseparable, then Rϕ = P1 = X , and ϕ has
infinitely many critical points. So the result is trivial in this case.

Suppose now that ϕ is separable. Let {Uα} be the collection of connected com-
ponents of P1

� X . Note that each Uα is an open Berkovich disk with a type II
endpoint xα (Proposition 3.11). Let �vα ∈ Txα be the tangent direction such that
Uα = Bxα (�vα)−. Then mϕ(xα, �vα) = 1, since otherwise Uα ∩ X would be non-
empty. Let y = ϕ(x). For each index α, we apply Corollary 3.15 and Proposi-
tion 3.16 to find that

#{ζ ∈ Uα : ϕ(ζ ) = y} ≥ sϕ(Uα) = 1

2

∑
c∈Crit(ϕ)∩Uα

wϕ(c).

Hence we obtain the estimate

deg(ϕ) = #{ζ ∈ P1 : ϕ(ζ ) = y} ≥ mϕ(x)+
∑
α

#{ζ ∈ Uα : ϕ(ζ ) = y}

≥ mϕ(x)+ 1

2

∑
α

∑
c∈Crit(ϕ)∩Uα

wϕ(c)

= mϕ(x)+ 1

2

∑
c∈Crit(ϕ)�X

wϕ(c).

Completing the sum over all critical points and applying the Hurwitz Formula gives
∑

c∈Crit(ϕ)∩X

wϕ(c) ≥
∑

c∈Crit(ϕ)

wϕ(c)+ 2[mϕ(x)− deg(ϕ)] = 2mϕ(x)− 2.

��
Before describing the part of the ramification locus lying outside the connected

hull of the critical points, we need a couple of technical lemmas.

Lemma 6.3. Let ϕ = f/g ∈ k(z) be a nonconstant rational function in normalized
form with nonconstant reduction. The following are equivalent:

1. (̃ϕ′) = 0
2. W̃rϕ = 0 (where Wrϕ is the Wronskian of ϕ = f/g)
3. ϕ has inseparable reduction at the Gauss point
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Proof. The equivalence of the first two statements is immediate since Wrϕ is the
numerator of ϕ′. Write h = gcd( f̃ , g̃), f1 = f̃ /h, and g1 = g̃/h. Then

(̃ϕ′)= f̃ ′g̃− f̃ g̃′

g̃2 = ( f1h′+ f ′
1h)g1h− f1h(g1h′ + g′

1h)

g2
1h2

= f ′
1g1 − f1g′

1

g2
1

= (ϕ̃)′.

Hence we may write ϕ̃′ without ambiguity. Inseparable rational functions are pre-
cisely the kernel of the formal derivative operator; equivalence of (6.3) and (6.3)
follows. ��
Lemma 6.4. Let ϕ ∈ k(z) be a nonconstant rational function satisfying the follow-
ing hypotheses:

• ϕ is not injective on the classical disk D(0, 1)−, and
• ϕ has no critical point in the classical disk D(0, 1)−.

Then 0 < p ≤ deg(ϕ) and ϕ has inseparable reduction at the Gauss point.

Proof. We may make a change of coordinates on the target so that ϕ(ζ0,1) = ζ0,1
and ϕ∗(�0) = �0. Write ϕ = f/g in normalized form with

f (z) = ad zd + ad−1zd−1 + · · · + a0,

g(z) = bd zd + bd−1zd−1 + · · · + b0,

where ai , b j ∈ k◦. Assume ad or bd is nonzero. Write m = mϕ(ζ0,1,P) and s =
sϕ(ζ0,1,P). The Proof of Lemma 3.17 shows zm+s || f̃ and zs || g̃. Equivalently, we
have

|ai | < 1 for 0 ≤ i ≤ m + s − 1 and |am+s | = 1;
|b j | < 1 for 0 ≤ j ≤ s − 1 and |bs | = 1.

We will now show that the first segment of the Newton polygon of the Wronski-
an Wrϕ has negative slope if p � m, which is equivalent to saying that D(0, 1)−
contains a root of the Wronskian—i.e., a critical point of ϕ. Evidently this is a
contradiction.

Write Wrϕ(z) = ∑
c j z j ∈ k◦[z]. From (2.1) we see that the constant coeffi-

cient of Wrϕ is c0 = a1b0 − a0b1. Since ϕ is not injective on D(0, 1)−, we find
s + m > 1, so that both a0, a1 ∈ k◦◦, which implies |c0| < 1. We also see that the
coefficient on the monomial z2s+m−1 is

c2s+m−1 =
∑

n �=m+s

(2n − 2s − m)anb2s+m−n + mas+mbs .

We know that |an| < 1 for n < s +m and that |b2s+m−n| < 1 for 2s +m −n < s, or
equivalently when n > s + m. So each of the terms in the above sum has absolute
value strictly less than 1, while the final term has absolute value |m|. If p � m,
the final term has absolute value 1 and hence dominates the sum. This means the
point (2s + m − 1, 0) lies on the Newton polygon of Wrϕ (although it may not be
a vertex). Hence the first segment of the Newton polygon of ϕ has negative slope.
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Thus we conclude that p | m ≤ deg(ϕ), which gives the desired bounds on
the residue characteristic in the lemma. Finally, observe that if any coefficient c	
has absolute value 1, then as above we deduce the existence of a critical point of
ϕ in the disk D(0, 1)−. Thus |c	| < 1 for all 	 ≥ 0. It follows that ϕ̃′ = 0, and an
application of Lemma 6.3 completes the proof. ��

Proposition 6.5. Let ϕ ∈ k(z) be a nonconstant rational function. Let U be an open
Berkovich disk disjoint from Hull(Crit(ϕ)) with type II boundary point x. Suppose
U ∩ Rϕ is nonempty. Then the following assertions are true:

1. 0 < p ≤ deg(ϕ);
2. ϕ has inseparable reduction at x; and
3. U ∩ Rϕ is connected (for both the weak and strong topologies).

Proof. Change coordinates on the source and target so that x = ϕ(x) = ζ0,1 and
U = D(0, 1)−. The assumption U ∩ Rϕ �= ∅ implies that ϕ is not injective on U .
Also, U contains no critical point by hypothesis. Thus ϕ has inseparable reduction
at x and 0 < p ≤ deg(ϕ) (Lemma 6.4).

If U ∩ Rϕ were disconnected, then U would contain an entire connected com-
ponent of Rϕ . As U contains no critical point, this contradicts Proposition 6.1. ��

Recall from the introduction that a rational function ϕ is tame if its ramification
locus has finitely many branch points.

Corollary 6.6. Let ϕ ∈ k(z) be a nonconstant rational function. Suppose that the
residue characteristic of k satisfies p = 0 or p > deg(ϕ). Then ϕ is tame.

Proof. Note ϕ has at least 2 distinct critical points, so that Hull(Crit(ϕ)) is not
reduced to a point. Suppose the result is false, and let B be a connected component
of P1

�Hull(Crit(ϕ)) that meets Rϕ . Then its boundary is of type II. Proposition 6.5
implies that 0 < p ≤ deg(ϕ), a contradiction. Hence Rϕ ⊂ Hull(Crit(ϕ)), and ϕ
is tame. ��

We close this section by showing that Theorem A is optimal.

Proposition 6.7. Let k be an algebraically closed field that is complete with respect
to a nontrivial non-Archimedean absolute value. Fix integers 1 ≤ n < d. Then there
exists a rational function ϕ ∈ k(z) of degree d whose ramification locus Rϕ has
precisely n connected components.

Proof. For the case n = 1, let ϕ be a polynomial of degree d. Then mϕ(∞) = d,
and so the connected component X of Rϕ containing ∞ must contain all of the
critical points of ϕ (Proposition 6.1). Any other connected component of Rϕ would
need to contain a critical point, so that X = Rϕ .

We assume for the remainder of the proof that n ≥ 2. It will be convenient to
set 	 = n − 1 and construct a rational function whose ramification locus has 	+ 1
connected components.
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Begin by selecting a rational function ψ = f/g ∈ k(z) with the following
properties:

• ψ has degree d − 	;
• ψ̃ ∈ k̃(z) is a separable rational function of degree d − 	;
• ∞ is not a critical point for ψ ;
• ψ = f/g is normalized (see Sect. 2.3.2); and
• f and g are monic of degree d − 	.

The set of separable rational functions in k̃(z) of degree d − 	 with simple critical
points and non-vanishing leading coefficient in numerator and denominator is a Za-
riski open subset of the space of all rational functions of degree d −	. Choose such
a rational function and lift its coefficients to k◦; if necessary, change coordinate on
the source so that ∞ is not a critical point. Scaling f and g and perhaps making a
scalar change of coordinate on the target allows one to assume f, g are monic.

Now select elements a1, a2, . . . , a	 ∈ k◦ with distinct nonzero images in the
residue field k̃. For each i = 2, . . . , 	, choose bi ∈ k◦ such that 0 < |ai − bi | < 1.
Choose t ∈ k◦◦

� {0}. Now we may define a rational function ϕ ∈ k(z) by

ϕ(z) = (z − a1)(z − a2) · · · (z − a	)

(z − b2) · · · (z − b	)
ψ(z/t).

Evidently the numerator and denominator of ϕ have degree d and d −1, respec-
tively. To show that ϕ has degree d, we must show that no root of the numerator of
ϕ coincides with a root of the denominator. Write

ψ(z) = zd−	 + αd−	−1zd−	−1 + · · · + α0

zd−	 + βd−	−1zd−	−1 + · · · + β0
.

Then

ψ(z/t) = zd−	 + tαd−	−1zd−	−1 + · · · + td−	α0

zd−	 + tβd−	−1zd−	−1 + · · · + td−	β0
.

A Newton polygon argument shows that the zeros and poles of ψ(z/t) all lie in
D(0, 1)−. The ai ’s and b j ’s all have absolute value 1, and ai �= b j for any i, j by
construction. Hence ϕ has degree d.

The reduction of ϕ is ϕ̃(z) = z − ã1. The Algebraic Reduction Formula shows
mϕ(ζ0,1) = 1, which means that each connected component of Rϕ lies inside a
connected component of P1

�{ζ0,1}. For each i = 2, . . . , 	, let Ui be the connected
component of P1

� {ζ0,1} containing ai (and bi ). First observe that the surplus mul-
tiplicity is sϕ(Ui ) = 1 (Proposition 3.17). So Ui contains exactly 2 critical points
(counted with weights) for i = 2, . . . , 	 (Proposition 3.16), and hence Ui contains
a single connected component of Rϕ (Proposition 6.1). Set U1 = D(0, 1)−. Then
sϕ(U1) = d −	, so that U1 contains 2(d −	) critical points (counted with weights).
It remains for us to show that U1 contains exactly two connected components of
Rϕ .

Define

η(z) = ϕ(t z) = (t z − a1)(t z − a2) · · · (t z − a	)

(t z − b2) · · · (t z − b	)
ψ(z).
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Then η̃(z) = (−ã1)ψ̃(z), which has degree d − 	, and so sη(ζ0,1, �∞) = 	

(Lemma 3.17). The open Berkovich disk Bζ0,|t |(�v)− contains 2	 critical points,
where �v is the tangent vector corresponding to the connected component of
P1

� {ζ0,|t |} containing ∞. We have already accounted for 2(	−1) of those critical
points above, and so there must be two more critical points — and hence exactly
one more component of Rϕ — in the open annulus {x ∈ A1 : |t | < |T (x)| < 1}.

The reduction of η shows mϕ(ζ0,|t |) = d − 	 (Algebraic Reduction Formula).
Proposition 6.1 shows the connected component of Rϕ containing ζ0,|t | also con-
tains at least 2(d − 	)− 2 critical points. We have accounted for 2(	− 1)+ 2 = 2	
critical points in the preceding paragraphs, and we have just located 2(d − 	)− 2
more. The Hurwitz formula shows we have now found all of the critical points, and
hence all of the connected components of Rϕ . That is, Rϕ has 	 + 1 connected
components. ��

7. Endpoints and interior points

Here we determine the interior and endpoints of Rϕ for both the weak and strong
topologies. We already saw in Proposition 3.14 that Rϕ = P1 if ϕ is itself an
inseparable rational function; here we show this is the only case in which the weak
interior of Rϕ is nonempty. Then we characterize the endpoints of the ramification
locus and show that the strong interior of Rϕ coincides with the locus of inseparable
reduction. (The definitions were chosen so that this statement holds even when ϕ
is inseparable.) We finish the section with a discussion of tame and locally tame
rational functions.

Proposition 7.1. The weak interior of the ramification locus of a separable non-
constant rational function is empty.

Proof. Suppose there exists a rational function ϕ ∈ k(z) such that the weak inte-
rior of its ramification locus is nonempty. Any weak open subset of P1 contains
infinitely many points of type I, and the type I points of the ramification locus are
precisely the critical points. Thus ϕ has infinitely many critical points, and hence
it must be inseparable by the Hurwitz formula. ��
Lemma 7.2. Suppose k has positive residue characteristic p, and supposeϕ ∈ k(z)
is a nonconstant rational function with nonconstant reduction. Let �v be a tangent
direction at the Gauss point of P1, and write m = mϕ(ζ0,1, �v). Then p | m if and
only if there exists a point x ∈ Bζ0,1(�v)− such that ϕ has inseparable reduction at
each point of the segment (ζ0,1, x).

Proof. Without loss of generality, we may replace k with an algebraically closed
and complete extension in order to assume that P1

k has no point of type III or IV.
(See Sects. 4, 5.) Moreover, we may change coordinates on the source and target in
order to assume that �v = ϕ∗(�v) = �0. Write m = mϕ(ζ0,1, �0), and for t ∈ k◦◦ \ {0},
define

ϕt (z) = t−mϕ(t z).
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To prove the lemma, it suffices to show that once ϕt is properly normalized, it has
reduction ϕ̃t (z) = czm for some nonzero c ∈ k̃ whenever t ∈ k◦◦ has absolute
value sufficiently close to 1. Indeed, if p | m, then this shows ϕ has inseparable
reduction at ζ0,|t |.

We begin by writing ϕ in normalized form as

ϕ(z) = ad zd + · · · + a0

bd zd + · · · + b0
,

with ai , b j ∈ k◦ and some coefficient in the numerator and denominator having
absolute value 1. Let s = sϕ(ζ0,1, �0) be the associated surplus multiplicity. The
Algebraic Reduction Formula and Lemma 3.17 shows that |am+s | = |bs | = 1, and
that |ai | < 1 for i < m + s and that |b j | < 1 for j < s. Now observe that

ϕt (z) = t−m−s

t−s
· ϕ(t z)

= ad td−m−s zd + · · · + am+s zm+s + · · · + t−m−sa0

bd td−s zd + · · · + bs zs + · · · + t−sb0
.

(7.1)

Define r0 to be the maximum element of the set

{|ai |1/(m+s−i) : i = 0, . . . ,m + s − 1} ∪ {|b j |1/(s− j) : j = 0, . . . , s − 1}.
If we assume that r0 < |t | < 1, then

∣∣∣ai t
i−m−s

∣∣∣
{
< 1 if i �= m + s
= 1 if i = m + s

,

∣∣∣b j t
j−s

∣∣∣
{
< 1 if j �= s
= 1 if j = s

(7.2)

Thus the presentation of ϕt given in (7.1) is normalized, and its reduction is given
by ϕ̃t (z) = (ãm+s/b̃s)zm , as desired. ��
Proposition 7.3. [Endpoints of Rϕ] Let ϕ ∈ k(z) be a nonconstant rational func-
tion, and suppose x ∈ Rϕ is an endpoint of the ramification locus. Then x is of
type I, II, or IV.

1. If x is of type I, then it is a critical point of ϕ.
2. If x is of type II or IV, then ϕ has inseparable reduction at every point of some

nonempty segment (x, y) ⊂ Rϕ . In particular, 0 < p ≤ deg(ϕ).

Proof. Suppose first that x ∈ Rϕ is of type III, so that it has exactly two tan-
gent directions �v1 and �v2. The local degree satisfies mϕ(x, �v1) = mϕ(x, �v2) > 1
(Proposition 3.11(2)). Hence x cannot be an endpoint of Rϕ (Proposition 3.9(1)).

Now let x ∈ Rϕ be of type I. Then mϕ(x) > 1 is the usual algebraic multiplicity,
and hence x must be a critical point of ϕ.

Next suppose that x is a type II endpoint of Rϕ . After a change of coordinate
on the source and target, we may suppose that x = ζ0,1 = ϕ(ζ0,1). Then ϕ has
nonconstant reduction at x . Since x is an endpoint, we see that mϕ(x, �v) > 1 for
precisely one tangent direction �v. If p � mϕ(x, �v), then the weight of the reduction
ϕ̃ at �v satisfies

wϕ̃(�v) = mϕ(x, �v)− 1 ≤ deg(ϕ)− 1 < 2 deg(ϕ)− 2,
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in contradiction to the Hurwitz Formula. So p | mϕ(x, �v), and the result follows
upon applying the preceding lemma.

Now suppose that x ∈ Rϕ is of type IV. Let y be the closest point to
x in Hull(Crit(ϕ)); more precisely, if U is the connected component of P1

k �

Hull(Crit(ϕ)) containing x , then y is the unique boundary point of U . Let K/k
be an extension of algebraically closed and complete non-Archimedean fields so
that P1

K has no point of type III or IV. Write xK = ιKk (x) and yK = ιKk (y). Propo-
sition 6.5 implies that ϕK has inseparable reduction at every (type II) point of the
segment (xK , yK ). Hence ϕ has inseparable reduction at every point of the segment
(x, y). ��
Remark 7.4. When x is an endpoint of Rϕ of type II, the induced rational function
ϕ∗ : Tx → Tϕ(x) on tangent spaces has a very special property: it is ramified in
only one direction. Such rational functions are called unicritical, and were studied
in [5]. One interesting fact is that the multiplicity at x must satisfy mϕ(x) ≡ 0 or 1
(mod p).

Rivera-Letelier has characterized when a type II point lies in the strong interior
of the ramification locus:

Proposition 7.5. ([13, Prop. 10.2]) Let ϕ ∈ k(z) be a nonconstant rational function
and let x ∈ P1 be a type II point. Then ϕ has inseparable reduction at x if and only
if there exists a strong neighborhood V of x such that mϕ(y) ≥ p for each y ∈ V .

Remark 7.6. While the result in [13] is stated over Cp, the proof is valid for an
arbitrary non-Archimedean field (with residue characteristic p > 0). Note that the
statement is vacuous if char(k̃) = 0 (Corollary 6.6).

Corollary 7.7. Let ϕ ∈ k(z) be a nonconstant rational function. If Y is a connected
component of Rϕ � Hull(Crit(ϕ)), then each point of Y is either a strong interior
point of Rϕ or an endpoint of Rϕ .

Remark 7.8. As a subspace of Rϕ , the unique relative boundary point of Y will be
of type II in general. However, if k has positive characteristic p, then it is possi-
ble for ϕ to have a single critical point (counted without weight), in which case
Hull(Crit(ϕ)) = ∂Y consists of a single point of type I. The statement of the
corollary applies in either case.

Proof. Suppose that y ∈ Y . If y is of type I or IV, it is an endpoint of P1, and hence
also of Rϕ . If y is of type II, define S ⊂ Ty to be the set of tangent directions �v such
that mϕ(y, �v) > 1. Then S is nonempty since Rϕ has no isolated point. If #S = 1,
then y is an endpoint. Otherwise, #S ≥ 2, and there exists an open Berkovich disk
U disjoint from Hull(Crit(ϕ)) with boundary point y such that U ∩ Rϕ �= ∅. Thus
ϕ has inseparable reduction at y (Proposition 6.5), and so y is a strong interior point
of Rϕ by the above proposition.

If y = ζa,r is of type III, then we will show it is an interior point of Rϕ . Let
K/k be an extension of algebraically closed and complete non-Archimedean fields
such that r ∈ |K ×|, and write yK = ιKk (y). Then yK is a type II point of P1

K that



468 X. Faber

lies off of the connected hull of the critical points of ϕK . A type III point can never
be an endpoint of the ramification locus; it follows that yK is not an endpoint of
RϕK (Proposition 4.4). The argument in the previous paragraph applied to yK and
ϕK shows that yK is a strong interior point of RϕK . If V ⊂ RϕK is a strong open
neighborhood of yK , then (ιKk )

−1(V ) ⊂ Rϕ is a strong open neighborhood of y
(Theorem 4.1). ��
Lemma 7.9. Suppose k has positive residue characteristic. Let ϕ ∈ k(z) be such
that sϕ(ζ0,1, �v) = 0 for all �v �= �∞, and suppose further that ϕ̃(z) = h(z p) + cz
for some nonconstant polynomial h ∈ k̃[z] and some nonzero c. Fix δ > 0. Then
there exists ε > 0 such that ζB,|A| �∈ Rϕ for any A, B ∈ k satisfying

0 < |A| < q−δ
k and 1 < |B| < qεk .

Proof. Let A, B ∈ k satisfy 0 < |A| < q−δ
k and |B| > 1. Set ψ(z) =

A−1 [ϕ(Az + B)− ϕ(B)]. If ϕ(z) = f (z)/g(z), then

ψ(z) = A−1[ f (Az + B)− f (B)]
g(Az + B)

+ A−1 f (B)[g(B)− g(Az + B)]
g(B)g(Az + B)

. (7.3)

We will show that the first term above reduces to a linear polynomial in k̃[z], and
that the second vanishes modulo k◦◦, provided that |B| is sufficiently close to 1.
The Algebraic Reduction Formula then implies mψ(ζ0,1) = 1 = mϕ(ζB,|A|), so
that ζB,|A| is not in the ramification locus.

Write ϕ in normalized form as

ϕ(z) = ad zd + · · · + a0

bd zd + · · · + b0
= f (z)

g(z)
.

Let D be the degree of the polynomial h in the statement of the lemma. The hypoth-
eses on the surplus multiplicity and on the reduction of ϕ are equivalent to saying
|b j | < 1 for j = 1, . . . , d, that |ai | < 1 for i > Dp, that |ai | < 1 for 1 < i < Dp
such that p � i , and that |b0| = 1 = |a1| = |aDp|.

In the remainder of the proof, we write β for any positive real function that
tends to zero as |B| → 1, independently of A. Note also that if |A| < q−δ

k , then A
is uniformly bounded away from 1. Consider the quantity

X j := A−1[a j (Az + B) j − a j B j ] = a j

∑
1≤i≤ j

(
j

i

)
Ai−1 B j−i zi . (7.4)

We will show that X̃ j = 0 for j �= 1 provided |B| is sufficiently close to 1. If
j > Dp and |B| is sufficiently close to 1, then |a j | < 1 implies every coefficient of
X j is bounded by |a j |(1 + β) < 1. If 1 < j < Dp and p � j , then each coefficient
of X j is bounded by |a j |(1 + β) < 1 for the same reason. If 1 < j ≤ Dp and
p | j , then

X j = ja j B j−1z + a j A
∑

2≤i≤ j

(
j

i

)
Ai−2 B j−i zi .
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The linear coefficient has absolute value bounded by |p|(1+β) < 1 since p | j , and
the remaining coefficients are bounded by |A|(1+β) < q−δ

k (1+β). The remaining
cases j = 0 and j = 1 are treated by observing that X0 = 0 and X1 = a1z.

Next observe that

g(Az + B)− b0 =
∑

1≤ j≤d

b j (Az + B) j .

Since |b j | < 1 for all j > 0, we see that ˜g(Az + B) = b̃0 provided |B| is suffi-
ciently close to 1. Hence

A−1[ f (Az + B)− f (B)]
g(Az + B)

=
∑

0≤ j≤d X j

g(Az + B)
≡ a1

b0
z (mod k◦◦).

Thus the first term in (7.3) has the desired reduction.
For the second term in (7.3), we observe that g(Az + B) = g(B)+ A · E(z),

where E ∈ k◦◦ is a polynomial whose coefficients are bounded by (1+β)max{|b j | :
j > 0}. Note also that | f (B)| ≤ 1 + β. Since g̃(B) = b̃0, it follows that

A−1 f (B) [g(B)− g(Az + B)]

g(B)g(Az + B)
= − f (B)E(z)

g(B) [g(B)+ A · E(z)]
≡ 0 (mod k◦◦).

We have now show that the second term in (7.3) has the desired reduction when
|B| is sufficiently close to 1, which completes the proof. ��
Proposition 7.10. Let ϕ ∈ k(z) be a nonconstant rational function, and let x ∈ P1.
Then ϕ has inseparable reduction at x if and only if x is an interior point of Rϕ

for the strong topology.

Proof. First, suppose x is of type I. By definition, the function ϕ has inseparable
reduction at x if and only if ϕ is itself inseparable. In the case that ϕ is insepara-
ble, we have Rϕ = P1 (Proposition 3.14), so that every classical point is a strong
interior point. If ϕ is separable, we must show that x fails to be a strong interior
point. A strong open neighborhood of x contains infinitely many type I points. But
the type I points of Rϕ are precisely the critical points, of which ϕ has only finitely
many. So x cannot be a strong interior point.

Now we suppose that x is of type II, III, or IV, and that ϕ has inseparable
reduction at x . Let K/k be an extension of algebraically closed and complete non-
Archimedean fields such that P1

K has only type I and type II points (Proposition 5.2).
Write ι = ιKk . Then ι(x) is a type II point, and Proposition 7.5 shows that ϕK has
inseparable reduction at ι(x) if and only if there exists a strong open neighborhood
V of ι(x) contained inside RϕK . By shrinking V if necessary, we may assume it
contains no type I point. Set U = ι−1(V ). Theorem 4.1 and its corollary show that
U ⊂ Rϕ is a strong open neighborhood of x . That is, x is a strong interior point
of Rϕ .

For the reverse implication, we assume that x ∈ P1 is a strong interior point of
Rϕ and show that ϕ has inseparable reduction at x . This is clear by Proposition 7.5
if x is of type II. Suppose x is of type III. The multiplicity mϕ(y) is constant with
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value m = mϕ(x) for all type II points y lying on some segment beginning at x
(Propositions 3.9, 3.11). Now each such point y that is sufficiently close to x in
the strong topology must lie in the strong interior of Rϕ . So ϕ has inseparable
reduction at y; hence p | mϕ(y) = mϕ(x); hence ϕ has inseparable reduction at x
(Proposition 5.4).

Finally, suppose x is a type IV point in the strong interior of Rϕ . Note that x
does not lie on the connected hull of the critical points ofϕ. Let K/k be an extension
of non-Archimedean fields as in the second paragraph. In particular, xK = ι(x) is a
type II point, so it must be either an endpoint or a strong interior point of RϕK (Cor-
ollary 7.7). In the latter case, ϕK has inseparable reduction at xK (Proposition 7.5),
and so ϕ has inseparable reduction at x (by definition).

It remains to show that xK cannot be an endpoint of the ramification locus of
ϕK . Suppose to the contrary that it is an endpoint. Let �v ∈ TxK be the unique
tangent direction such that mϕK (xK , �v) > 1. We may select σ1, σ2 ∈ PGL2(K )
so that σ−1

1 (xK ) = ζK ,0,1 = σ2(ϕK (xK )), and so that (σ1)
−1∗ (�v) = �∞ =

(σ2)∗((ϕK )∗(�v)). Set ψ(z) = σ2 ◦ ϕK ◦ σ1. Since x is a type IV point, mϕ(x) =
mϕK (xK ) = mϕK (xK , �v) > 1. So ψ̃ ∈ K (z) is a rational function that fixes ∞, and
the (algebraic) multiplicity at infinity equals the degree of ψ̃ . Thus ψ̃ is a polyno-
mial function. Moreover, ψ̃ has no finite critical point, and so its formal derivative
must be a nonzero constant c ∈ K̃ . We conclude that ψ̃(z) = h(z p)+ cz for some
nonconstant polynomial h ∈ K̃ [z]. Observe further that sψ(ζK ,0,1, �w) = 0 for all
�w �= �∞ since xK is the image of a type IV point in P1

k . We are now in a position
to apply Lemma 7.9.

Recall that we are assuming x is an interior point of Rϕ . Let δ0 > 0 be such
that the ρ-ball of radius δ0 about x lies in Rϕ . Set δ = δ0/3 and choose ε > 0 as
in the lemma. Let A, B ∈ K be such that (i) q−2δ

k < |A| < q−δ
k , (ii) 1 < |B| <

qmin{ε,δ0/6}
k , and (iii) there exists y ∈ P1

k such that ζB,|A| = σ−1
1 (ι(y)). This last

condition is possible because σ−1
1 (ι(Bx (�v)−)) is a connected subset of BζK ,0,1( �∞)−

and shares the same boundary point. Then y �∈ Rϕ by the lemma. But we also find
that

ρ(x, y) = ρ(ζK ,0,1, ζB,|A|) = 2 logqk
|B| − logqk

|A| < 2 logqk
|B| + 2δ < δ0.

Hence y ∈ Rϕ by our choice of δ0. This contradiction completes the proof. ��
Finally, we give a criterion to determine when a rational function is locally tame

near a point x—i.e., when there exists a neighborhood U of x such that Rϕ ∩ U is
a finite tree.

Proposition 7.11. Let ϕ ∈ k(z) be a nonconstant rational function, and let x ∈ P1.
The ramification locus is locally tame near x (for the weak or strong topology) if
and only if p � mϕ(x, �v) for all tangent vectors �v ∈ Tx .

Remark 7.12. When ϕ has nonconstant reduction, the proposition says that the ram-
ification locus is locally a finite tree at the Gauss point if and only if the reduction
ϕ̃ ∈ k̃(z) is tamely ramified.
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Proof. Evidently p | mϕ(x, �v) for all x and all �v ∈ Tx if ϕ is inseparable, and
Rϕ = P1, so we may exclude this case from the remainder of the proof. We may
also assume that mϕ(x) > 1; else, P1 \Rϕ is a weak and strong open neighborhood
on which the ramification locus is locally a finite (empty) tree near x .

Suppose first that p | mϕ(x, �v) for some tangent vector �v ∈ Tx . Let U be any
(weak or strong) open neighborhood of x , and let y ∈ Bx (�v)− ∩ U be a type II
point such that mϕ(y) = mϕ(y, �w) = mϕ(x, �v), where �w is the tangent vector
containing x . Lemma 7.2 implies that ϕ has inseparable reduction at some point
of the segment (x, y), so that Rϕ ∩ U is not a finite tree. As U was arbitrary, we
conclude that the ramification locus is not locally a finite tree near x .

Now suppose that p � mϕ(x, �v) for all tangent vectors �v ∈ Tx . In particular, ϕ
has separable reduction at x . It suffices to show that Rϕ is locally a finite tree near
x for the weak topology. We claim that there is a weak open neighborhood U of x
such that ϕ has separable reduction at all points of U . If not, there is a sequence (yn)

of type II points approaching x at which ϕ has inseparable reduction. Since ϕ has
separable reduction at x , there are only finitely many ramified tangent directions at
x . It follows that there is a finite set of tangent directions containing the sequence
(yn), else Rϕ would have infinitely many connected components. By passing to a
subsequence if necessary, we may assume that (yn) lies inside Bx (�v)− for some
tangent vector �v ∈ Tx . Moreover, the hyperbolic distance between yn and x must
tend to zero. There is a path (x, x ′) ⊂ Bx (�v)− on which mϕ(y) = mϕ(x, �v) for
y ∈ (x, x ′). In particular, p � mϕ(y). Thus yn �∈ (x, x ′) for any n. Since Rϕ has only
finitely many connected components, there must be infinitely many branch points
of Rϕ along (x, x ′). Each branch must contain a critical point, else Proposition 6.5
implies ϕ has inseparable reduction at each branch point. As there are only finitely
many critical points, we have reached a contradiction.

To complete the proof, let U be a weak neighborhood of x on which ϕ has
separable reduction. For each branch point y ∈ U ∩ Rϕ , each tangent direction
�v ∈ Ty that points along Rϕ must contain either a boundary point of U or a critical
point of ϕ (Proposition 6.5). Since there are only finitely many of each of these
types of point, there can be only finitely many branch points in U . ��

We conclude this section by giving several characterizations of tame rational
functions. In particular, this applies when the residue characteristic of k satisfies
p = 0 or p > deg(ϕ) (Corollary 6.6).

Corollary 7.13. [Tame Characterization] Let ϕ ∈ k(z) be a nonconstant separable
rational function. The following statements are equivalent:

1. ϕ is tame.
2. Rϕ ⊂ Hull(Crit(ϕ)).
3. The ramification locus Rϕ has empty strong interior.
4. ϕ has separable reduction at all points of P1.
5. ϕ has separable reduction at all type II points of P1.
6. The endpoints of the ramification locus are precisely the critical points of ϕ.

Remark 7.14. With a little more work, one can give another characterization of
inseparable reduction that is intrinsic to the field k. In the sequel [6], we introduce
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a strong continuous piecewise linear function τϕ : H → R≥0 — defined purely in
terms of the coefficients of ϕ — in order to study the behavior of the ramification
locus away from the connected hull of the critical points. It turns out that τϕ(x) > 0
if and only if ϕ has inseparable reduction at x . So one could add a further equivalent
statement to Corollary 7.13:

7. τϕ is identically zero on H = P1 \ P
1(k).

Proof of Corollary 7.13 1. ⇒ 2. Suppose not. Then there is a connected component
U of P1

� Hull(Crit(ϕ)) such that U ∩ Rϕ is nonempty. By Proposition 6.5, ϕ has
inseparable reduction at some point x ∈ Hull(Crit(ϕ)), so that ϕ is not locally tame
at x .

2. ⇒ 3. The separability hypothesis implies ϕ has finitely many critical points.
3. ⇒ 4. Proposition 7.10.
4. ⇒ 5. Clear.
5. ⇒ 6. Proposition 7.3.
6. ⇒ 1. Each of the finitely many connected components of Rϕ is a nontrivial

tree, and by hypothesis, the endpoints are precisely the critical points. Finitely many
endpoints implies finitely many branch points. ��

8. The locus of total ramification

Definition 8.1. Let ϕ ∈ k(z) be a nonconstant rational function. A point x ∈ P1 is
said to be totally ramified for ϕ if mϕ(x) = deg(ϕ). The locus of total ramification
for ϕ is defined as

Rtot
ϕ = {x ∈ P1 : mϕ(x) = deg(ϕ)}.

Any map of degree 2 admits a critical point, which must necessarily have mul-
tiplicity 2. Thus Rtot

ϕ �= ∅ when deg(ϕ) = 2. But when deg(ϕ) ≥ 3, the locus of
total ramification may be empty.

Theorem 8.2. Let ϕ ∈ k(z) be a nonconstant rational function. The locus of total
ramification Rtot

ϕ is a closed and connected subset of the ramification locus Rϕ . If
Rtot
ϕ �= ∅, then Rϕ is connected and contains Hull(Crit(ϕ)). In particular, if ϕ is

tame and Rtot
ϕ is nonempty, then Rϕ = Hull(Crit(ϕ)).

Proof. The result is trivial if Rtot
ϕ = ∅ or if deg(ϕ) = 1, so we will assume that we

are in neither of these cases in what follows.
Suppose ζ ∈ P1 is totally ramified for ϕ. Let c ∈ Rϕ � {ζ }, and let x ∈ P1 be

any point on the open segment (ζ, c). Then x is of type II or III. Write B for the
open Berkovich disk with boundary point x and containing c. Then the image ϕ(B)
does not contain ϕ(ζ ), and hence cannot be equal to P1, so the multiplicities satisfy
mϕ(x) ≥ mϕ(c) > 1 (Corollary 3.20). Thus the ramification locus is connected.
Taking c to be a critical point of ϕ, we also see that every point in the connected
hull of the critical points is a ramified point. This proves the second statement of
the theorem.



Topology and geometry of the Berkovich ramification locus 473

Now repeat the argument in the previous paragraph with c a totally ramified
point, so that mϕ(x) ≥ mϕ(c) = deg(ϕ) as well. This proves connectedness of
the locus of total ramification. The fact that Rtot

ϕ is closed is a consequence of
semicontinuity of mϕ (Proposition 3.4(1)).

The final statement follows from Corollary 7.13 and what we have already
shown. ��

Let us say that two rational functions ϕ,ψ ∈ k(z) are equivalent if there exist
σ1, σ2 ∈ PGL2(k) such that ϕ = σ2 ◦ ψ ◦ σ1.

Corollary 8.3. Let ϕ ∈ k(z) be a nonconstant rational function that is equivalent
to one of the following:

1. a polynomial or
2. a map with good reduction (i.e., deg(ϕ) = deg(ϕ̃)).

Then the ramification locus of ϕ is connected and contains Hull(Crit(ϕ)). If ϕ is
tame, then Rϕ = Hull(Crit(ϕ)).

Proof. If ϕ is a polynomial, then ∞ ∈ P
1(k) is totally ramified, and the theorem

applies. If ϕ has good reduction, then the Gauss point is totally ramified for ϕ,
and we may again use the theorem. The conclusions of the corollary are invariant
under change of equivalence class representative (Corollary 3.7), so the proof is
complete. ��
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