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Abstract. We study a nonlinear equation with an elliptic operator having degenerate coer-
civity. We prove the existence of a unique W 1,1

0 (�) distributional solution under suitable
summability assumptions on the source in Lebesgue spaces. Moreover, we prove that our
problem has no solution if the source is a Radon measure concentrated on a set of zero
harmonic capacity.

1. Introduction and statement of the results

In this paper we are going to study the nonlinear elliptic equation

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇u)

(1 + |u|)γ
)

+ u = f in �,

u = 0 on ∂�,

(1.1)

under the following assumptions. The set� is a bounded, open subset of R
N , with

N > 2, γ > 0, f belongs to some Lebesgue space, and a : � × R
N → R

N is
a Carathéodory function (i.e., a(·, ξ) is measurable on � for every ξ in R

N , and
a(x, ·) is continuous on R

N for almost every x in �) such that

a(x, ξ) · ξ ≥ α|ξ |2, (1.2)

|a(x, ξ)| ≤ β|ξ |, (1.3)

[a(x, ξ)− a(x, η)] · (ξ − η) > 0, (1.4)

for almost every x in � and for every ξ and η in R
N , ξ �= η, where α and β are

positive constants. We are going to prove that, under suitable assumptions on γ and
f , problem (1.1) has a unique distributional solution u obtained by approximation,
with u belonging to the (nonreflexive) Sobolev space W 1,1

0 (�). Furthermore, we are
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going to prove that problem (1.1) does not have a solution if γ > 1 and the datum
f is a bounded Radon measure concentrated on a set of zero harmonic capacity.

Problems like (1.1) have been extensively studied in the past. In [7] (see also
[15,16,19]), existence and regularity results were proved, under the assumptions
that a(x, ξ) = A(x)ξ , with A a uniformly elliptic bounded matrix, and 0 < γ ≤ 1,
for the problem

⎧
⎪⎨

⎪⎩

−div

(
A(x)∇u

(1 + |u|)γ
)

= f in �,

u = 0 on ∂�,

(1.5)

where f belongs to Lm(�) for some m ≥ 1.
The main difficulty in dealing with problem (1.5) (or (1.1)) is that the differ-

ential operator, even if well defined between H1
0 (�) and its dual H−1(�), is not

coercive on H1
0 (�) due to the fact that if u is large, 1

(1+|u|)γ tends to zero (see [19]
for an explicit example).

This lack of coercivity implies that the classical methods used in order to prove
the existence of a solution for elliptic equations (see [18]) cannot be applied even
if the datum f is regular. However, in [7], a whole range of existence results
was proved, yielding solutions belonging to some Sobolev space W 1,q

0 (�), with
q = q(γ,m) ≤ 2, if f is regular enough. Under weaker summability assumptions
on f , the gradient of u (and even u itself) may not be in L1(�): in this case, it
is possible to give a meaning to solutions of problem (1.5), using the concept of
entropy solutions which has been introduced in [3].

If γ > 1, a non existence result for problem (1.5) was proved in [1] (where the
principal part is nonlinear with respect to the gradient), even for L∞(�) data f .
Therefore, if the operator becomes “too degenerate”, existence may be lost even
for data expected to give bounded solutions. However, as proved in [5], existence
of solutions can be recovered by adding a lower order term of order zero. Indeed,
if we consider the problem

⎧
⎪⎨

⎪⎩

−div

(
A(x)∇u

(1 + |u|)γ
)

+ u = f in �,

u = 0 on ∂�,

(1.6)

with f in Lm(�), then the following results can be proved in the case γ > 1 (see
[5,11]):

(i) if m > γ N
2 , then there exists a weak solution in H1

0 (�) ∩ L∞(�);
(ii) if m ≥ γ + 2, then there exists a weak solution in H1

0 (�) ∩ Lm(�);

(iii) if γ+2
2 < m < γ+2, then there exists a distributional solution in W

1, 2m
γ+2

0 (�)∩
Lm(�);

(iv) if 1 ≤ m ≤ γ+2
2 , then there exists an entropy solution in Lm(�) whose

gradient belongs to the Marcinkiewicz space M
2m
γ+2 (�).
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Note that if γ +2 ≤ m < γ N
2 and m tends to γ N

2 , the summability result of (ii)
is not “continuous” with the boundedness result of (i), according to the following
example (see also Example 3.3 of [5]).

Example 1.1. If 2
γ
< σ < N − 2, then u(x) = 1

|x|σ − 1 is a distributional solu-

tion of (1.6) with A(x) ≡ I , and f (x) = σ(N−2+σ(γ−1))
|x|2−σ(γ−1) + 1

|x|σ − 1. Due to the

assumptions on σ , both f and u belong to Lm(�), with m < γ N
2 . If m tends to

γ N
2 , i.e., if σ tends to 2

γ
, the solution u does not become bounded.

As stated before, this paper is concerned with two borderline cases connected
with point (iv) above:

A. if m = γ+2
2 , we will prove in Sect. 2 the existence of W 1,1

0 (�) distributional
solutions, and in Sect. 3 their uniqueness;

B. if f is a bounded Radon measure concentrated on a set E of zero harmonic
capacity and γ > 1, we will prove in Sect. 4 non existence of solutions.

In the linear case, i.e., for the boundary value problem (1.6), a simple proof of
the existence result is given in [6].

Remark 1.2. Let a(x, ξ) = A(x)ξ , with A a bounded and measurable uniformly
elliptic matrix, and let u ≥ 0 be a solution of

−div

(
A(x)∇u

(1 + u)γ

)

+ u = f,

with γ > 1 and f ≥ 0. If we define

z = 1

γ − 1

(

1 − 1

(1 + u)γ−1

)

,

then z is a solution of

−div(A(x)∇z)+
(

1

(1 − (γ − 1)z)
1

γ−1

− 1

)

= f,

which is an equation whose lower order term becomes singular as z tends to the
value 1

γ−1 . For a study of these problems, see [4,14].

Remark 1.3. We explicitely state that our existence results can be generalized to
equations with differential operators defined on W 1,p

0 (�), with p > 1: if γ ≥
(p−2)+

p−1 and if m = γ (p−1)+2
p , then it is possible to prove the existence of a distri-

butional solution u in W 1,1
0 (�) ∩ Lm(�) of the boundary value problem

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇u)

(1 + |u|)γ (p−1)

)

+ u = f in �,

u = 0 on ∂�,

(1.7)

where a(x, ξ) satisfies (1.2), (1.3) and (1.4) with p instead of 2 (in (1.3), a grows
as |ξ |p−1).
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2. Existence of a W
1,1
0 (�) solution

In this section we prove the existence of a W 1,1
0 (�) solution to problem (1.1). Our

result is the following.

Theorem 2.1. Let γ > 0, and let f be a function in L
γ+2

2 (�). Then there exists a

distributional solution u in W 1,1
0 (�) ∩ L

γ+2
2 (�) of (1.1), that is,

∫

�

a(x,∇u) · ∇ϕ
(1 + |u|)γ +

∫

�

u ϕ =
∫

�

f ϕ, ∀ϕ ∈ W 1,∞
0 (�). (2.1)

Remark 2.2. The previous result gives existence of a solution u in W 1,1
0 (�) to

(1.6) for every γ > 0. If 0 < γ ≤ 1 existence results for (1.1) can also be
proved by the same techniques of [7]. More precisely, if f belongs to Lm(�) with
m > N

N (1−γ )+1+γ then (1.1) has a solution in W 1,q
0 (�), with q = Nm(1−γ )

N−m(1+γ ) . Note

that when m tends to N
N (1−γ )+1+γ , then q tends to 1. We have now two cases: if

γ+2
2 > N

N (1−γ )+1+γ , that is, if 0 < γ < 2
N−1 , our result is weaker than the one in

[7]. On the other hand, if 2
N−1 ≤ γ ≤ 1, then our result, which strongly uses the

lower order term of order zero, is better.

Remark 2.3. The same existence result, with the same proof, holds for the following
boundary value problem

{−div(b(x, u,∇u))+ u = f in �,
u = 0 on ∂�,

with b : �× R × R
N → R

N a Carathéodory function such that

α|ξ |2
(1 + |s|)γ ≤ b(x, s, ξ) · ξ ≤ β|ξ |2,

where α, β, γ are positive constants.

To prove Theorem 2.1 we will work by approximation. First of all, let g be a
function in L∞(�). Then, by the results of [5], there exists a solution v in H1

0 (�)∩
L∞(�) of

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇v)
(1 + |v|)γ

)

+ v = g in �,

v = 0 on ∂�.

(2.2)

In order for this paper to be self contained, we give here the easy proof of this fact.
Let M = ‖g‖

L∞(�) + 1, and consider the problem

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇v)

(1 + |TM (v)|)γ
)

+ v = g in �,

v = 0 on ∂�.

(2.3)
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Here and in the following we define Tk(s) = max(−k,min(s, k)) for k ≥ 0 and s
in R. Since the differential operator is pseudomonotone and coercive thanks to the
assumptions on a and to the truncature, by the results of [18] there exists a weak
solution v in H1

0 (�) of (2.3). Choosing (|v|−‖g‖
L∞(�))+ sgn(v) as a test function

we obtain, dropping the nonnegative first term,
∫

�

|v| (|v| − ‖g‖
L∞(�))+ ≤

∫

�

‖g‖
L∞(�) (|v| − ‖g‖

L∞(�))+.

Thus,
∫

�

(|v| − ‖g‖
L∞(�)) (|v| − ‖g‖

L∞(�))+ ≤ 0,

so that |v| ≤ ‖g‖
L∞(�) < M . Therefore, TM (v) = v, and v is a bounded weak

solution of (2.2).
Let now fn be a sequence of L∞(�) functions which converges to f in

L
γ+2

2 (�), and such that | fn| ≤ | f | almost everywhere in �, and consider the
approximating problems

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇un)

(1 + |un|)γ
)

+ un = fn in �,

un = 0 on ∂�.

(2.4)

A solution un in H1
0 (�) ∩ L∞(�) exists choosing g = fn in (2.2). We begin with

some a priori estimates on the sequence {un}.
Lemma 2.4. If un is a solution to problem (2.4), then, for every k ≥ 0,

∫

{|un |≥k}
|un| γ+2

2 ≤
∫

{|un |≥k}
| f | γ+2

2 ; (2.5)

∫

{|un |≥k}

|∇un|2
(1 + |un|) γ+2

2

≤ C

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

2
γ+2

; (2.6)

∫

{|un |≥k}
|∇un| ≤ C

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

1
γ+2

; (2.7)

α

∫

�

|∇Tk(un)|2 ≤ k (1 + k)γ
∫

�

| f |. (2.8)

Here, and in the following, C denotes a positive constant depending on

α, γ,meas(�), and the norm of f in L
γ+2

2 (�).
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Proof. Let k ≥ 0, h > 0, and let ψh,k(s) be the function defined by

ψh,k(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 ≤ s ≤ k,
h (s − k) if k < s ≤ k + 1

h ,

1 if s > k + 1
h ,

ψh,k(s) = −ψh,k(−s) if s < 0.

Note that

lim
h→+∞ψh,k(s) =

⎧
⎨

⎩

1 if s > k,
0 if |s| ≤ k,

−1 if s < −k.

Let ε > 0, and choose (ε + |un|) γ2 ψh,k(un) as a test function in (2.4); such a test
function is admissible since un belongs to H1

0 (�) ∩ L∞(�) and ψh,k(0) = 0. We
obtain

γ

2

∫

�

a(x,∇un) · ∇un
(ε + |un|) γ2 −1

(1 + |un|)γ |ψh,k(un)|

+
∫

�

a(x,∇un) · ∇un

(1 + |un|)γ ψ ′
h,k(un) (ε + |un|) γ2

+
∫

�

un (ε + |un|) γ2 ψh,k(un)

=
∫

�

fn (ε + |un|)
γ
2 ψh,k(un). (2.9)

By (1.2), and since ψ ′
h,k(s) ≥ 0, the first two terms are nonnegative, so that we

obtain, recalling that | fn| ≤ | f |,
∫

�

un(ε + |un|)
γ
2 ψh,k(un) ≤

∫

�

| f |(ε + |un|) γ2 |ψh,k(un)|.

Letting ε tend to zero and h tend to infinity, we obtain, by Fatou’s lemma (on the
left hand side) and by Lebesgue’s theorem (on the right hand side, recall that un
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belongs to L∞(�)),
∫

{|un |≥k}
|un|

γ+2
2 ≤

∫

{|un |≥k}
| f | |un| γ2 .

Using Hölder’s inequality on the right hand side we obtain

∫

{|un |≥k}
|un| γ+2

2 ≤
⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

2
γ+2

⎡

⎢
⎣

∫

{|un |≥k}
|un|

γ+2
2

⎤

⎥
⎦

γ
γ+2

.

Simplifying equal terms we thus have
∫

{|un |≥k}
|un|

γ+2
2 ≤

∫

{|un |≥k}
| f | γ+2

2 ,

which is (2.5). Note that from (2.5), written for k = 0, it follows
∫

�

|un|
γ+2

2 ≤
∫

�

| f | γ+2
2 = ‖ f ‖

γ+2
2

L
γ+2

2 (�)

. (2.10)

Now we consider (2.9) written for ε = 1. Dropping the nonnegative second
and third terms, and using that | fn| ≤ | f |, we have

γ

2

∫

�

a(x,∇un) · ∇un

(1 + |un|) γ+2
2

|ψh,k(un)| ≤
∫

�

| f |(1 + |un|)
γ+2

2 |ψh,k(un)|.

Using (1.2), and letting h tend to infinity, we get (using again Fatou’s lemma and
Lebesgue’s theorem)

α
γ

2

∫

{|un |≥k}

|∇un|2
(1 + |un|) γ+2

2

≤
∫

{|un |≥k}
| f |(1 + |un|) γ2 .

Hölder’s inequality on the right hand side then gives

α
γ

2

∫

{|un |≥k}

|∇un|2
(1 + |un|) γ+2

2

≤
⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

2
γ+2

⎡

⎢
⎣

∫

{|un |≥k}
(1 + |un|) γ+2

2

⎤

⎥
⎦

γ
γ+2

≤
⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

2
γ+2 ⎡

⎣

∫

�

(1 + |un|) γ+2
2

⎤

⎦

γ
γ+2

,
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so that, by (2.10),

α
γ

2

∫

{|un |≥k}

|∇un|2
(1 + |un|) γ+2

2

≤ C

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

2
γ+2

,

which is (2.6).
Then, again by Hölder’s inequality, and by (2.6) and (2.10),

∫

{|un |≥k}
|∇un| =

∫

{|un |≥k}

|∇un|
(1 + |un|) γ+2

4

(1 + |un|)
γ+2

4

≤
⎡

⎢
⎣

∫

{|un |≥k}

|∇un|2
(1 + |un|) γ+2

2

⎤

⎥
⎦

1
2
⎡

⎢
⎣

∫

{|un |≥k}
(1 + |un|) γ+2

2

⎤

⎥
⎦

1
2

≤ C

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

1
γ+2 ⎡

⎣

∫

�

(1 + |un|)
γ+2

2

⎤

⎦

1
2

(2.11)

≤ C

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

1
γ+2

,

so that (2.7) is proved.
Finally, choosing Tk(un) as a test function in (2.4) we get, dropping the non-

negative linear term, and using (1.2),

α

∫

�

|∇Tk(un)|2 ≤ k(1 + k)γ
∫

�

| f |,

which is (2.8). ��
Lemma 2.5. If {un} is the sequence of solutions to (2.4), there exists a subsequence,

still denoted by {un}, and a function u in L
γ+2

2 (�), with Tk(u) belonging to H1
0 (�)

for every k > 0, such that un almost everywhere converges to u in �, and Tk(un)

weakly converges to Tk(u) in H1
0 (�).

Proof. Consider (2.6) written for k = 0:
∫

�

|∇un|2
(1 + |un|) γ+2

2

≤ C ‖ f ‖
L
γ+2

2 (�)
. (2.12)

Since (if γ �= 2)

|∇un|2
(1 + |un|) γ+2

2

= 16

(2 − γ )2
|∇

[
(1 + |un|)

2−γ
4 − 1

]
|2,
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the sequence vn = 4
2−γ [(1+|un|) 2−γ

4 −1]sgn(un) is bounded in H1
0 (�) by (2.12).

If γ = 2 we have

|∇un|2
(1 + |un|)2 = |∇ log(1 + |un|)|2,

so that vn = [log(1 + |un|)]sgn(un) is bounded in H1
0 (�). In both cases, up to a

subsequence still denoted by vn , vn converges to some function vweakly in H1
0 (�),

strongly in L2(�), and almost everywhere in �. If γ < 2, define

u(x) =
[(

2 − γ

4
|v(x)| + 1

) 4
2−γ − 1

]

sgn(v(x)),

if γ > 2 define

u(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(
2−γ

4 |v(x)| + 1
) 4

2−γ − 1

]

sgn(v(x)) if |v(x)| < 4
γ−2 ,

+∞ if v(x) = 4
γ−2 ,

−∞ if v(x) = − 4
γ−2 ,

while if γ = 2, define

u(x) = [e|v(x)| − 1]sgn(v(x)).

Thus, un almost everywhere converges, up to a subsequence still denoted by un , to
u. From now on, we will consider this particular subsequence, for which it holds
that un almost everywhere converges to u.

We use now (2.5) written for k = 0:
∫

�

|un| γ+2
2 ≤

∫

�

| f | γ+2
2 ≤ C.

Since un almost everywhere converges to u, we have from Fatou’s lemma that
∫

�

|u| γ+2
2 ≤ C.

Hence u belongs to L
γ+2

2 (�), which implies that u is almost everywhere finite (note
that if γ > 2 this fact did not follow from the definition of u, since |v| could have
assumed the value 4

γ−2 on a set of positive measure).
Let now k > 0; since from (2.8) it follows that the sequence {Tk(un)} is bounded

in H1
0 (�), there exists a subsequence Tk(un j ) which weakly converges to some

function vk in H1
0 (�). Using the almost everywhere convergence of un to u, we

have that vk = Tk(u). Since the limit is independent on the subsequence, then the
whole sequence {Tk(un)} weakly converges to Tk(u), for every k > 0. ��
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Remark 2.6. Using the fact that Tk(u) is in H1
0 (�) for every k > 0, and the results

of [3], we have that there exists a unique measurable function v with values in R
N ,

such that

∇Tk(u) = v χ {|u|≤k} almost everywhere in �, for every k > 0.

Following again [3], we will define ∇u = v, the approximate gradient of u.

Remark 2.7. We emphasize that if γ = 2, then (2.11), written for k = 0, becomes

∫

�

|∇un| ≤
⎡

⎣

∫

�

|∇un|2
(1 + |un|)2

⎤

⎦

1
2
⎡

⎣

∫

�

(1 + |un|)2
⎤

⎦

1
2

.

Since

|∇un|2
(1 + |un|)2 = |∇ log(1 + |un|)|2,

a nonlinear interpolation result follows: let A be in R
+ and let v in L2(�) be such

that log(A + |v|) belongs to H1
0 (�). Then v belongs to W 1,1

0 (�), and

∫

�

|∇v| ≤ ‖ log(A + |v|)‖
H1

0 (�)

⎡

⎣

∫

�

(A + |v|)2
⎤

⎦

1
2

.

Our next result deals with the strong convergence of Tk(un) in H1
0 (�).

Proposition 2.8. Let un and u be the sequence of solutions to problems (2.4) and

the function in L
γ+2

2 (�) given by Lemma 2.5. Then, for every fixed k > 0, Tk(un)

strongly converges to Tk(u) in H1
0 (�), as n tends to infinity.

Proof. We follow the proof of [17].
Let h > k and choose T2k[un − Th(un)+ Tk(un)− Tk(u)] as a test function in

(2.4). We have
∫

�

a(x,∇un) · ∇T2k[un − Th(un)+ Tk(un)− Tk(u)]
(1 + |un|)γ

= −
∫

�

(un − fn) T2k[un − Th(un)+ Tk(un)− Tk(u)]. (2.13)

We observe that the right hand side converges to zero as first n and then h tend to
infinity, since un converges to u almost everywhere in� and un and fn are bounded

in L
γ+2

2 (�). Thus, if we define ε(n, h) as any quantity such that

lim
h→+∞ lim

n→+∞ ε(n, h) = 0,



Nonlinear degenerate elliptic problems with W 1,1
0 (�) solutions 429

then
∫

�

(un − fn) T2k[un − Th(un)+ Tk(un)− Tk(u)] = ε(n, h).

Let M = 4k + h. Observing that ∇T2k[un − Th(un) + Tk(un) − Tk(u)] = 0 if
|un| ≥ M , by (2.13) we have

ε(n, h) =
∫

{|un |<k}

a(x,∇TM (un)) · ∇[un − Th(un)+ Tk(un)− Tk(u)]
(1 + |un|)γ

+
∫

{|un |≥k}

a(x,∇TM (un)) · ∇[un − Th(un)+ Tk(un)− Tk(u)]
(1 + |un|)γ .

Since un − Th(un) = 0 in {|un| ≤ k} and ∇Tk(un) = 0 in {|un| ≥ k}, we have,
using that a(x, 0) = 0,

ε(n, h)=
∫

�

a(x,∇Tk(un)) · ∇[Tk(un)− Tk(u)]
(1 + |un|)γ

+
∫

{|un |≥k}

a(x,∇TM (un)) · ∇[un − Th(un)]
(1 + |un|)γ

−
∫

{|un |≥k}

a(x,∇TM (un)) · ∇Tk(u)

(1 + |un|)γ .

The second term of the right hand side is positive, so that

ε(n, h)≥
∫

�

[a(x,∇Tk(un))− a(x,∇Tk(u))] · ∇[Tk(un)− Tk(u)]
(1 + k)γ

+
∫

�

a(x,∇Tk(u)) · ∇[Tk(un)− Tk(u)]
(1 + |un|)γ

−
∫

{|un |≥k}

a(x,∇TM (un)) · ∇Tk(u)

(1 + |un|)γ = In + Jn − Kn .

The last two terms tend to zero as n tends to infinity. Indeed

lim
n→+∞ Jn = lim

n→+∞

∫

�

a(x,∇Tk(u)) · ∇[Tk(un)− Tk(u)]
(1 + |un|)γ = 0,

since Tk(un) converges to Tk(u) weakly in H1
0 (�) and a(x,∇Tk (u))

(1+|un |)γ is strongly com-

pact in (L2(�))N by the growth assumption (1.3) on a. The last term can be
rewritten as

Kn =
∫

�

a(x,∇TM (un)) · ∇Tk(u)χ{|un |≥k}
(1 + |un|)γ .
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Since M is fixed with respect to n, then the sequence {a(x,∇TM (un))} is
bounded in (L2(�))N . Hence, there exists σ in (L2(�))N , and a subsequence
{a(x,∇TM (un j ))}, such that

lim
j→+∞ a(x,∇TM (un j )) = σ,

weakly in (L2(�))N . On the other hand,

lim
n→+∞

∇Tk(u)χ{k≤|un |}
(1 + |un|)γ = ∇Tk(u)χ{k≤|u|}

(1 + |u|)γ = 0,

strongly in (L2(�))N , and so

lim
j→+∞ Kn j = lim

j→+∞

∫

{|un j |≥k}

a(x,∇TM (un j )) · ∇Tk(u)

(1 + |un j |)γ
= 0.

Since the limit does not depend on the subsequence, we have

lim
n→+∞ Kn = lim

n→+∞

∫

{|un |≥k}

a(x,∇TM (un)) · ∇Tk(u)

(1 + |un|)γ = 0,

as desired. Therefore,

ε(n, h) ≥ In =
∫

�

[a(x,∇Tk(un))− a(x,∇Tk(u))] · ∇[Tk(un)− Tk(u)]
(1 + k)γ

,

so that, thanks to (1.4),

lim
n→+∞

∫

�

[a(x,∇Tk(un))− a(x,∇Tk(u))] · ∇[Tk(un)− Tk(u)] = 0.

Using this formula, (1.4) and the results of [8,10], we then conclude that Tk(un)

strongly converges to Tk(u) in H1
0 (�), as desired. ��

Corollary 2.9. Let un and u be as in Proposition 2.8. Then ∇un converges to ∇u
almost everywhere in �, where ∇u has been defined in Remark 2.6.

Lemma 2.10. Let un and u be as in Proposition 2.8. Then ∇un strongly converges

to ∇u in (L1(�))N . Moreover un strongly converges to u in L
γ+2

2 (�).

Proof. We begin by proving the convergence of ∇un to ∇u. Let ε > 0, and let
k > 0 be sufficiently large such that

⎡

⎢
⎣

∫

{|un |≥k}
| f | γ+2

2

⎤

⎥
⎦

1
γ+2

< ε, (2.14)
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uniformly with respect to n. This can be done thanks to (2.10) and to the absolute
continuity of the integral. Let E be a measurable set. Writing

∫

E

|∇un| =
∫

E

|∇Tk(un)| +
∫

E∩{|un |≥k}
|∇un|

we have, by (2.7), and by (2.14),
∫

E

|∇un| ≤
∫

E

|∇Tk(un)| + Cε.

Using Hölder’s inequality and (2.8), we obtain

∫

E

|∇un| ≤ C meas(E)
1
2 k

1
2 (1 + k)

γ
2

⎛

⎝

∫

�

| f |
⎞

⎠

1
2

+ Cε.

Choosing meas(E) small enough (recall that k is now fixed) we have
∫

E

|∇un| ≤ Cε,

uniformly with respect to n, where C does not depend on n or ε. Since ∇un almost
everywhere converges to ∇u by Corollary 2.9, we can apply Vitali’s theorem to
obtain the strong convergence of ∇un to ∇u in (L1(�))N .

As for the second convergence, by (2.5) we have
∫

E

|un|
γ+2

2 ≤
∫

E∩{|un |≤k}
|un| γ+2

2 +
∫

E∩{|un |≥k}
|un| γ+2

2

≤ k
γ+2

2 meas(E)+
∫

{|un |≥k}
| f | γ+2

2 .

As before, we first choose k such that the second integral is small, uniformly with
respect to n, and then the measure of E small enough such that the first term is
small. The almost everywhere convergence of un to u, and Vitali’s theorem, then

imply that un strongly converges to u in L
γ+2

2 (�). ��
Remark 2.11. Since we have proved that ∇un strongly converges to ∇u in
(L1(�))N , so that u belongs to W 1,1

0 (�), then the approximate gradient ∇u of
u is nothing but the distributional gradient of u (see [3]).

Proof of Theorem 2.1. Using the previous results, we pass to the limit, as n tends
to infinity, in the weak formulation of (2.4). Starting from

∫

�

a(x,∇un) · ∇ϕ
(1 + |un|)γ +

∫

�

un ϕ =
∫

�

fn ϕ, ϕ ∈ W 1,∞
0 (�),
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the limit of the second and the last integral is easy to compute; indeed, recall that
by Lemma 2.10, and by definition of fn , the sequences {un} and { fn} strongly con-

verge to u and f respectively in L
γ+2

2 (�), hence in L1(�). For the first integral,
we have that a(x,∇un) converges almost everywhere in � to a(x,∇u) thanks to
Corollary 2.9, and the continuity assumption on a(x, ·); furthermore, (1.3) implies
that

|a(x,∇un)| ≤ β|∇un|,
and the right hand side is compact in L1(�) by Lemma 2.10. Thus, by Vitali’s
theorem a(x,∇un) strongly converges to a(x,∇u) in (L1(�))N , so that

lim
n→+∞

∫

�

a(x,∇un) · ∇ϕ
(1 + |un|)γ =

∫

�

a(x,∇u) · ∇ϕ
(1 + |u|)γ ,

where we have also used that un almost everywhere converges to u, and Lebesgue’s
theorem. Thus, we have that

∫

�

a(x,∇u) · ∇ϕ
(1 + |u|)γ +

∫

�

u ϕ =
∫

�

f ϕ, ∀ϕ ∈ W 1,∞
0 (�),

i.e., u satisfies (2.1). ��

3. Uniqueness of the solution obtained by approximation

Let f ∈ L
γ+2

2 (�), let fn be a sequence of L∞(�) functions converging to f in

L
γ+2

2 (�), with | fn| ≤ | f |, and let un be a solution of (2.4). In Sect. 2 we proved

the existence of a distributional solution u in W 1,1
0 (�) ∩ L

γ+2
2 (�) to (1.1), such

that, up to a subsequence,

lim
n→+∞ ‖un − u‖

W 1,1
0 (�)∩L

γ+2
2 (�)

= 0. (3.1)

Now, let g ∈ L
γ+2

2 (�), let gn be a sequence of L∞(�) functions converging to g

in L
γ+2

2 (�), with |gn| ≤ |g|, and let zn in H1
0 (�) ∩ L∞(�) be a weak solution of

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇zn)

(1 + |zn|)γ
)

+ zn = gn in �,

zn = 0 on ∂�.

(3.2)

Then, up to a subsequence, we can assume that

lim
n→+∞ ‖zn − z‖

W 1,1
0 (�)∩L

γ+2
2 (�)

= 0, (3.3)
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where z in W 1,1
0 (�) ∩ L

γ+2
2 (�) is a distributional solution of

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇z)

(1 + |z|)γ
)

+ z = f in �,

z = 0 on ∂�.

(3.4)

Our result, which will imply the uniqueness of the solution by approximation (see
[12]) of (1.1), is the following.

Theorem 3.1. Assume that un and zn are solutions of (2.4) and (3.2) respectively,
and that (3.1) and (3.3) hold true, with u and z solutions of (1.1) and (3.4) respec-
tively. Then

∫

�

|u − z| ≤
∫

�

| f − g|. (3.5)

Moreover,

f ≤ g a.e. in � implies u ≤ z a.e. in �. (3.6)

Proof. Substracting (3.2) from (2.4) we obtain

−div

(
a(x,∇un)

(1 + |un|)γ − a(x,∇zn)

(1 + |zn|)γ
)

+ un − zn = fn − gn .

Choosing Th(un − zn) as a test function we have

∫

�

[
a(x,∇un)

(1 + |un|)γ − a(x,∇zn)

(1 + |zn|)γ
]

· ∇Th(un − zn)

+
∫

�

(un − zn)Th(un − zn) =
∫

�

( fn − gn)Th(un − zn).

This equality can be written in an equivalent way as

∫

�

[a(x,∇un)− a(x,∇zn)] · ∇Th(un − zn)

(1 + |un|)γ

+
∫

�

(un − zn)Th(un − zn) =
∫

�

( fn − gn)Th(un − zn)

−
∫

�

[
1

(1 + |un|)γ − 1

(1 + |zn|)γ
]

a(x,∇zn) · ∇Th(un − zn).

By (1.4), the first term of the left hand side is nonnegative, so that it can be dropped;
using Lagrange’s theorem on the last term of the right hand side, we therefore have,
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since the absolute value of the derivative of the function s �→ 1
(1+|s|)γ is bounded

by γ ,
∫

�

(un − zn)Th(un − zn) ≤
∫

�

( fn − gn)Th(un − zn)

+γ h
∫

�

|a(x,∇zn)||∇Th(un − zn)|.

Dividing by h we obtain
∫

�

(un − zn)
Th(un − zn)

h
≤

∫

�

| fn − gn| |Th(un − zn)|
h

+γ
∫

�

|a(x,∇zn)||∇Th(un − zn)|.

Since, for every fixed n, un and zn belong to H1
0 (�), and a(x, ξ) satisfies (1.3), the

limit as h tends to zero gives
∫

�

|un − zn| ≤
∫

�

| fn − gn|, (3.7)

which then yields (3.5) passing to the limit and using the second part of Lemma 2.10.
The use of Th(un − zn)

+ as a test function and the same technique as above
imply that

∫

�

(un − zn)
+ ≤

∫

{un≥zn}
( fn − gn).

Hence, passing to the limit as n tends to infinity, we obtain, if we suppose that
f ≤ g almost everywhere in �,

∫

�

(u − z)+ ≤
∫

{u≥z}
( f − g) ≤ 0,

so that (3.6) is proved. ��
Thanks to (3.5), we can prove that problem (1.1) has a unique solution obtained

by approximation.

Corollary 3.2. There exists a unique solution obtained by approximation of (1.1),

in the sense that the solution u in W 1,1
0 (�) ∩ L

γ+2
2 (�) obtained as limit of the

sequence un of solutions of (2.4) does not depend on the sequence fn chosen to

approximate the datum f in L
γ+2

2 (�).

Remark 3.3. Note that (3.7) implies the uniqueness of the solution of (2.2), while
(3.6) implies that if f ≥ 0, then the solution u of (1.1) is nonnegative.
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Remark 3.4. Corollary 3.2, together with estimates (3.5) and (2.5), implies that the

map S from L
γ+2

2 (�) into itself defined by S( f ) = u, where u is the solution of
(1.1) with datum f , is well defined and satisfies

‖S( f )− S(g)‖
L1(�)

≤ ‖ f − g‖
L1(�)

, ‖S( f )‖
L
γ+2

2 (�)
≤ ‖ f ‖

L
γ+2

2 (�)
.

4. A non existence result

As stated in the Introduction, we prove here a non existence result for solutions
of (1.1) if the datum is a bounded Radon measure concentrated on a set E of zero
harmonic capacity.

Theorem 4.1. Assume that γ > 1, and let μ be a nonnegative Radon measure,
concentrated on a set E of zero harmonic capacity. Then there is no solution to

⎧
⎪⎨

⎪⎩

−div

(
a(x,∇u)

(1 + u)γ

)

+ u = μ in �,

u = 0 on ∂�.

More precisely, if { fn} is a sequence of nonnegative L∞(�) functions which con-
verges to μ in the tight sense of measures, and if un is the sequence of solutions to
(2.4), then un tends to zero almost everyhwere in � and

lim
n→+∞

∫

�

un ϕ =
∫

�

ϕ dμ ∀ϕ ∈ W 1,∞
0 (�).

Remark 4.2. A similar non existence result for the case γ ≤ 1 is much more com-
plicated to obtain. Indeed, if for example a(x, ξ) = ξ , and γ = 1, the change of
variables v = log(1 + u) yields that v is a solution to

⎧
⎪⎨

⎪⎩

−�v + ev − 1 = μ in �,

u = 0 on ∂�.

Existence and non existence of solutions for such a problem has been studied in [9]
(where the concept of “good measure” was introduced) and in [20] (if N = 2) and
[2] (if N ≥ 3).

Proof. Let μ be as in the statement. Then (see [13]) for every δ > 0 there exists a
function ψδ in C∞

0 (�) such that

0 ≤ ψδ ≤ 1,
∫

�

|∇ψδ|2 ≤ δ,

∫

�

(1 − ψδ)dμ ≤ δ.

Note that, as a consequence of the estimate on ψδ in H1
0 (�), and of the fact that

0 ≤ ψδ ≤ 1, ψδ tends to zero in the weak∗ topology of L∞(�) as δ tends to zero.
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If fn is a sequence of nonnegative functions which converges to μ in the tight
convergence of measures, that is, if

lim
n→+∞

∫

�

fn ϕ =
∫

�

ϕ dμ, ∀ϕ ∈ C0(�),

then

0 ≤ lim
n→+∞

∫

�

fn (1 − ψδ) =
∫

�

(1 − ψδ) dμ ≤ δ. (4.1)

Let un be the nonnegative solution to the approximating problem (2.4). If we choose
1 − (1 + un)

1−γ as a test function in (2.4), we have, by (1.2), and dropping the
nonnegative lower order term,

α(γ − 1)
∫

�

∣
∣
∣
∣

∇un

(1 + un)γ

∣
∣
∣
∣

2

≤ (γ − 1)
∫

�

a(x,∇un) · ∇un

(1 + un)2γ
≤

∫

�

fn .

Recalling (1.3), we thus have
∫

�

∣
∣
∣
∣
a(x,∇un)

(1 + un)γ

∣
∣
∣
∣

2

≤ β

∫

�

∣
∣
∣
∣

∇un

(1 + un)γ

∣
∣
∣
∣

2

≤ C
∫

�

fn,

with C depending on α, β and γ . Therefore, up to a subsequence, there exist σ in
(L2(�))N and ρ in L2(�) such that

lim
n→+∞

a(x,∇un)

(1 + un)γ
= σ, lim

n→+∞

∣
∣
∣
∣

∇un

(1 + un)γ

∣
∣
∣
∣ = ρ, (4.2)

weakly in (L2(�))N and L2(�) respectively.
The choice of [1 − (1 + un)

1−γ ](1 − ψδ) as a test function in (2.4) gives

(γ − 1)
∫

�

a(x,∇un) · ∇un

(1 + un)2γ
(1 − ψδ)

+
∫

�

un[1 − (1 + un)
1−γ ](1 − ψδ)

=
∫

�

fn[1 − (1 + un)
1−γ ](1 − ψδ)

+
∫

�

a(x,∇un) · ∇ψδ
(1 + un)γ

[1 − (1 + un)
1−γ ]

≤
∫

�

fn(1 − ψδ)

+
∫

�

a(x,∇un) · ∇ψδ
(1 + un)γ

[1 − (1 + un)
1−γ ]. (4.3)
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We study the right hand side. For the first term, (4.1) implies that

lim
δ→0+ lim

n→+∞

∫

�

fn (1 − ψδ) = 0,

while for the second one, we have, using (4.2), and the boundedness of [1 − (1 +
un)

1−γ ],

lim
n→+∞

∫

�

a(x,∇un) · ∇ψδ
(1 + un)γ

[1 − (1 + un)
1−γ ] =

∫

�

σ · ∇ψδ[1 − (1 + u)1−γ ].

Recalling that σ is in (L2(�))N , that ψδ tends to zero in H1
0 (�), and using the

boundedness [1 − (1 + u)1−γ ], we have

lim
δ→0+ lim

n→+∞

∫

�

a(x,∇un) · ∇ψδ
(1 + un)γ

[1 − (1 + un)
1−γ ] = 0.

Therefore, since both terms of the left hand side of (4.3) are nonnegative, we obtain

lim
δ→0+ lim

n→+∞

∫

�

a(x,∇un) · ∇un

(1 + un)2γ
(1 − ψδ) = 0.

Assumption (1.2) then gives

lim
δ→0+ lim

n→+∞ α

∫

�

∣
∣
∣
∣

∇un

(1 + un)γ

∣
∣
∣
∣

2

(1 − ψδ)

≤ lim
δ→0+ lim

n→+∞

∫

�

a(x,∇un) · ∇un

(1 + un)2γ
(1 − ψδ) = 0.

Since the functional

v ∈ L2(�) �→
∫

�

|v|2(1 − ψδ)

is weakly lower semicontinuous on L2(�), we have

∫

�

|ρ|2 = lim
δ→0+

∫

�

|ρ|2(1 − ψδ) ≤ lim
δ→0+ lim

n→+∞

∫

�

∣
∣
∣
∣

∇un

(1 + un)γ

∣
∣
∣
∣

2

(1 − ψδ) = 0,

which implies that ρ = 0. Thus, since

∇un

(1 + un)γ
= 1

γ − 1
∇

(
1 − (1 + un)

1−γ )
,

by the second limit of (4.2) the sequence 1 − (1 + un)
1−γ weakly converges to

zero in H1
0 (�), and so (up to subsequences) it strongly converges to zero in L2(�).

Therefore un (up to subsequences) tends to zero almost everywhere in �. Since



438 L. Boccardo et al.

the limit does not depend on the subsequence, the whole sequence un tends to zero
almost everywhere in �.

We now have, for � in (L2(�))N , and by (1.3),
∣
∣
∣
∣
∣
∣

∫

�

a(x,∇un)

(1 + |un|)γ ·�
∣
∣
∣
∣
∣
∣
≤

∫

�

∣
∣
∣
∣

a(x,∇un)

(1 + |un|)γ
∣
∣
∣
∣ |�| ≤ β

∫

�

|∇un|
(1 + |un|)γ |�|.

Thus, by (4.2),
∣
∣
∣
∣
∣
∣

∫

�

σ ·�
∣
∣
∣
∣
∣
∣
= lim

n→+∞

∣
∣
∣
∣
∣
∣

∫

�

a(x,∇un)

(1 + |un|)γ ·�
∣
∣
∣
∣
∣
∣
≤ β

∫

�

ρ |�| = 0,

which implies that σ = 0. Therefore, passing to the limit in (2.4), that is, in
∫

�

a(x,∇un) · ∇ϕ
(1 + un)γ

+
∫

�

un ϕ =
∫

�

fn ϕ, ϕ ∈ W 1,∞
0 (�),

we get, since the first term tends to zero,

lim
n→+∞

∫

�

un ϕ =
∫

�

ϕ dμ,

for every ϕ in W 1,∞
0 (�), as desired. ��

Remark 4.3. With minor technical changes (see [13]) one can prove the same result
if μ is a signed Radon measure concentrated on a set E of zero harmonic capacity.
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