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Abstract. We prove, over a p-adic local field F , that an irreducible supercuspidal repre-
sentation of GL2n(F) is a local Langlands functorial transfer from SO2n+1(F) if and only
if it has a nonzero Shalika model (Corollary 5.2, Proposition 5.4 and Theorem 5.5). Based
on this, we verify (Sect. 6) in our cases a conjecture of Jacquet and Martin, a conjecture of
Kim, and a conjecture of Speh in the theory of automorphic forms.

1. Introduction

Shalika models or periods for irreducible cuspidal automorphic representations π
of GL2n(A), where A is the ring of adeles of a number field k was first introduced
in [22] to characterize the pole at s = 1 of the partial exterior square L-function
L S(s, π,�2). More precise relations among Shalika periods, the pole at s = 1 of
the exterior square L-function L S(s, π,�2), and the Langlands functorial transfer
property has been discussed in detail in Theorem 2.2 of [23], based on the precise
results about the Langlands functorial transfer from k-split SO2n+1 to GL2n for
irreducible generic cuspidal automorphic representations [6,13,26,27].

The objective of this paper is to discuss the characterizations of the local Lan-
glands functorial property for irreducible unitary supercuspidal representations τ
of GL2n(F), where F is a p-adic local field of characteristic zero, in terms of inva-
riance properties of τ as representations of GL2n(F). The invariance properties of
τ considered in this paper are

(1) the local Shalika model attached to τ , which will be defined in Sect. 2;
(2) the local exterior square L-function L(s, τ,�2) has a pole at s = 0;
(3) the local exterior square γ -factor γ (s, τ,�2, ψ) has a pole at s = 1;
(4) the unitarily induced representation I(s, τ ) of SO4n(F), which will be defined

in Sect. 2, is reducible at s = 1.
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It is clear that if irreducible unitary supercuspidal representations τ and τ ′
of GL2n(F) are isomorphic, then τ and τ ′ have the same local exterior square
L-function

L(s, τ,�2) = L(s, τ ′,�2),

and the same local exterior square γ -factor

γ (s, τ,�2, ψ) = γ (s, τ ′,�2, ψ),

and share the same Shalika model, which is unique ([20], see also [36]), and
the same reducibility at s = 1. It is clear that Property (2) and Property (3) are
equivalent by the relation between the local L-factor and the corresponding local
gamma factor. The equivalence between Property (3) and Property (4) was pro-
ved by F. Shahidi [41,42]. In [26] and [27], D. Soudry and the first named author
proved that Property (3) is equivalent to that the irreducible unitary supercuspi-
dal representations τ of GL2n(F) is the local Langlands functorial transfer from
SO2n+1(F). The characterization of Property (4) in terms of nonvanishing of cer-
tain orbital integrals was established by F. Shahidi in [42], which implies that
the irreducible unitary supercuspidal representations τ of GL2n(F) is the local
Langlands functorial transfer from SO2n+1(F), assuming the validity of the local
endoscopy transfer, i.e the fundamental lemma. This aspect was also discussed
in the recent work of G. Chenevier and L. Clozel [5]. For irreducible cuspidal
representations of GL2n(F) of level zero, the relation between Property (4) and
the local Langlands transfer property has also been established by P. Kutzko and
L. Morris [31] and G. Savin [39]. We refer to [39] and [28] for related arithmetic
application.

In this paper, we prove that Property (1) characterizes the local Langlands func-
torial transfer property, and hence is equivalent to each of the properties discussed
above (Corollary 5.2 and Proposition 5.4 and finally Theorem 5.5). First, we prove,
by a purely local method, that Property (1) implies Property (4) (Theorem 2.2).
Then by applying [41] and [26] and [27], we obtain Corollary 5.2, which says
that Property (1) implies the local Langlands functorial transfer property of τ . The
converse (Proposition 5.4) is proved by a global argument, which is given in Sect. 5.
We expect to have a purely local proof for the converse, but we omit the details here.
One also expect that Theorem 5.5 can be stated for more general, nonsupercuspidal
representations, which will be considered in our future work. As a consequence, we
show (Theorem 5.6) that for irreducible supercuspidal representations of GL2n(F),
the local Shalika model is equivalent to the linear model. It was proved by H. Jacquet
and S. Rallis [20] that if τ is an irreducible admissible representation of GL2n(F),
then the existence of nonzero local Shalika model for τ implies the existence of
a nonzero local linear model for τ . It is interesting to point out that for an irredu-
cible cuspidal automorphic representation τ of GL2n(A), the nonvanishing of the
Shalika period of τ is equivalent to the nonvanishing of the linear period of τ and
the nonvanishing of the central value of the standard L-function, L

( 1
2 , τ

)
[7]. See

Sect. 5.2 for details.
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It should be mentioned that our local method to prove Theorem 2.2 is based on a
general result on SO4n(F) (Proposition 2.3 and Theorem 3.1), which states that any
irreducible admissible representation of SO4n(F) can not have both nonzero gene-
ralized Shalika model and a nonzero degenerate Whittaker model of certain type.
In particular, it shows that any irreducible admissible representation of SO4n(F)
can not have both nonzero generalized Shalika model and a nonzero Whittaker
model. It is interesting to note that the proof is done by using the following fact: An
irreducible admissible representation of GL2n(F) can not have both nonzero Whit-
taker models and nonzero symplectic models (refer to [14]). We call this property
“disjointness of Whittaker models and symplectic models”.

In [25], we discovered that via the parabolic induction, the Shalika model for
an irreducible supercuspidal representation τ of GL2n(F) is closely related to the
generalized Shalika model of the Langlands quotient J(1, τ ) on SO4n(F). This was
also established in [25] for automorphic forms. The automorphic counter-part of
J(1, τ ) is a residual representation of SO4n(A). This residual representation is on
one hand the kernel function for the construction of the Ginzburg–Rallis–Soudry
descent from cuspidal automorphic forms on GL2n(A) to SO2n+1(A), which is
the inverse map of the corresponding Langlands functorial transfer [13]. On the
other hand, this residual representation has a nonzero generalized Shalika period
(as proved in [25]). The nonvanishing of the generalized Shalika model for this
residual representation is expected to produce a different argument to establish
the Ginzburg–Rallis–Soudry descent in this case. Instead of establishing the glo-
bal descent based on the generalized Shalika period, it is our on-going project
to establish the local descent from irreducible supercuspidal representations of
GL2n(F) to SO2n+1(F), based on the generalized Shalika model on SO4n(F). It
should be mentioned that the inverse map of the local Langlands functorial transfer
from GL2n(F) to SO2n+1(F) was established by using the local Ginzburg–Rallis–
Soudry descent from GL2n(F) to the metaplectic double cover of Sp2n(F) and the
local theta correspondence between SO2n+1(F) and the metaplectic double cover
of Sp2n(F) [26]. Our on-going project is to show that these two constructions
coincide. From this perspective, Theorem 2.3 is one of the key steps to establish
local Ginzburg–Rallis–Soudry descent from GL2n(F) to SO2n+1(F) based on the
generalized Shalika model on SO4n(F).

The local result (Theorem 5.5) has three interesting consequences in the theory
of automorphic forms, which will be discussed in Sect. 6. In Sect. 6.1, we discuss
the compatibility of the global Shalika periods with the global Jacquet–Langlands
correspondence (Theorem 6.1), which is a conjecture of H. Jacquet and K. Martin
[32]. Further discussions can be found in a recent work of W.-T Gan and S. Takeda
[8], and also in [24]). In Sect. 6.2, we prove (Theorems 6.4 and 6.5) special cases
of Conjecture 8.3 in [29], which deduces the existence of the pole of a relevant
Eisenstein series from the local supercuspidal reducibility of the cuspidal datum.
Finally in Sect. 6.3, we show (Theorems 6.7 and 6.9) in our case that the existence
of a pole at s = s0 > 0 of an Eisenstein series implies the local reducibility at
s = s0 of the corresponding unitarily induced representation, which are special
cases of a general conjecture of B. Speh [45].
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2. Shalika models and generalizations

Let F be a local field which is a finite extension of the p-adic field Qp for some prime
number p. We recall briefly the Shalika models and its nonsplit variant in Sect. 2.1,
and study the generalized Shalika model for irreducible admissible representations
of SO4n(F) in Sect. 2.2.

2.1. Shalika model and its nonsplit variant

Let Pn,n = Mn,n Nn,n be the maximal parabolic subgroup of GL2n , with

Mn,n = GLn × GLn,

and

Nn,n =
{

n(X) =
(

In X

0 In

)

∈ GL2n

}

.

Let ψ be a nontrivial character of F . Define a character

ψNn,n (n(X)) = ψ(tr(X)).

The stabilizer of ψNn,n in Mn,n is GL�n , the diagonal embedding of GLn into Mn,n .
Denote by

Sn = GL�n � Nn,n (2.1)

the Shalika subgroup. Denote by ψSn the extension of ψNn,n from Nn,n to the
Shalika subgroup Sn , such that ψSn is trivial on GL�n . The Shalika functionals of
an irreducible admissible representation (τ, Vτ ) of GL2n(F) is a nonzero functional
in the following space

HomSn(F)(Vτ , ψSn ).

Equivalently, a Shalika functional is a nontrivial functional f on Vτ satisfying

f (τ (s)v) = ψSn (s) f (v) for all s ∈ Sn, v ∈ Vτ .

Therefore Vτ allows a nontrivial embedding into the full induction IndGL2n(F)
Sn(F)

(ψSn ),
since by reciprocity

HomSn(F)(Vτ , ψSn )
∼= HomGL2n(F)

(
Vτ , IndGL2n(F)

Sn(F)
(ψSn )

)
.

By the local uniqueness of the Shalika model ([20] and also [36]), the dimension
of the space HomSn(F)(Vτ , ψSn ) is at most one. If it is nonzero, we say that τ has a
Shalika model. More precisely, if �ψSn

is a nonzero Shalika functional of (τ, Vτ ),
the Shalika model of τ consists of all the functions of form

SψSn ,v
(g) := �ψSn

(τ (g)(v)) (2.2)

for all v ∈ Vτ . It is clear that SψSn ,v
(g) belongs to the space IndGL2n(F)

Sn(F)
(ψSn ).
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One may also define nonsplit version of Shalika model as follows. Let D be a
division F-algebra of degree n. The Shalika subgroup SD of GL2(D) is defined by
{(

a
a

) (
ID X

0 ID

)

∈ GL2(D) | a ∈ D×, X ∈ D

}

= (D×)� � U (D), (2.3)

where U (D) =
{(

ID X

0 ID

)

∈ GL2(D) | X ∈ D

}

. The corresponding character

ψU (D) is given by

ψU (D)

((
ID X

0 ID

))

= ψ(trD/F (X)).

Denote by ψSD the extension of ψU (D) from U (D) to the Shalika subgroup SD ,
such that ψSD is trivial on (D×)�. The ψSD -Shalika functionals of an irreducible
admissible representation (τ D, Vτ D ) of GL2(D) is a nonzero functional in the
following space

HomSD(F)(Vτ D , ψSD ).

By the local uniqueness of the ψSD -Shalika model ([37] and also [36]), the dimen-
sion of the space HomSD(F)(Vτ D , ψSD ) is at most one. If it is nonzero, we say that
τ D has a ψSD -Shalika model.

The Shalika periods will be discussed in Sect. 4.

2.2. Generalized Shalika model

Let ν2 =
(

1
1

)
and inductively define

ν2n =
⎛

⎝
1

ν2n−2
1

⎞

⎠ , for n ≥ 2, n ∈ N. (2.4)

Let SO4n be the even special orthogonal group attached to the nondegenerate
4n-dimensional quadratic vector space over F with respect to ν4n . That is

SO4n = {g ∈ GL4n| t g · ν4n · g = ν4n}.
Let P = M̄ N̄ be the Siegel parabolic subgroup of SO4n consists of elements of the
following form:

(g, X) =
(

g 0

0 ν2n
t g−1ν2n

)(
In X

In

)

, g ∈ GL2n and t X = −ν2n Xν2n . (2.5)

The generalized Shalika subgroup H2n of SO4n was introduced in [25], which is
the subgroup of P consisting of elements (g, X) with g ∈ Sp2n . The symplectic
group is given by
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Sp2n = {g ∈ GL2n| t g · J2n · g = J2n},
where J2n is defined inductively by

J2n =
⎛

⎝
1

J2n−2
−1

⎞

⎠ , J2 =
(

1
−1

)
.

Define a character ψH of H2n(F) (We write H = H2n , when n is understood.) by
letting

ψH((g, X)) = ψ(tr(J2n Xν2n)) (2.6)

= ψ

(
tr

((−In

In

)
X

))
. (2.7)

It is well defined. The generalized Shalika functional or ψH-functional of an irre-
ducible admissible representation (σ, Vσ ) of SO4n(F) is a nonzero functional in
the following space

HomSO4n(F)(Vσ , IndSO4n(F)
H2n(F)

(ψH)) = HomH2n(F)(Vσ , ψH).

Similarly, one can use a nonzero generalized Shalika functional to define a genera-
lized Shalika model for σ . On the other hand, it was proved in [25] that the Shalika
model on GL2n(F) and the generalized Shalika model on SO4n(F) are compatible
with respect to a unitarily parabolic induction, which is a special case of model-
comparison principle for liftings of irreducible admissible representations. More
precise description of this local result obtained in [25] can be given as follows.

For an irreducible, unitary, supercuspidal representation (τ, Vτ ) of GL2n(F),
we consider the unitarily induced representation I(s, τ ) of SO4n(F) from the Siegel
parabolic subgroup P = M̄ N̄ , where the Levi part M̄ ∼= GL2n via the following
bijection

a ∈ GL2n �→ m(a) :=
(

a
νt

2na−1ν2n

)
∈ M̄ .

More precisely, a section φτ,s in I(s, τ ) is a smooth function from SO4n(F) to Vτ ,
such that

φτ,s(m(a)ng) = | det a| s
2 + 2n−1

2 τ(a)φτ,s(g),

where m(a) ∈ M with a ∈ GL2n(F). In other words, one has

I(s, τ ) = IndSO4n(F)
P(F) (| det | s

2 · τ).
We recall from [25] the following result.

Theorem 2.1. (Theorem 3.1, [25]) The induced representation I(s, τ ) admits no
nonzero generalized Shalika functionals except when s = 1. When s = 1, I(1, τ )
admits a nonzero generalized Shalika functional if and only if the supercuspidal
datum τ admits a nonzero Shalika functional. In this case, the generalized Shalika
functionals of I(1, τ ) is unique and the nonzero generalized Shalika functionals of
I(1, τ ) must factor through the unique Langlands quotient J(1, τ ).
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One of the key local results we prove in this paper is

Theorem 2.2. Let τ be an irreducible unitary supercuspidal representation of
GL2n(F). If τ has a nonzero Shalika model, then the unitarily induced repre-
sentation I(s, τ ) of SO4n(F) reduces at s = 1.

For the proof, we need

Proposition 2.3. Any irreducible admissible representation of SO4n(F) can not
admit both a nonzero Whittaker functional and a nonzero generalized Shalika func-
tional (i.e. ψH-functional).

This is a special case of Theorem 3.1 in Sect. 3, which addresses the relation
between the generalized Shalika model and a certain family of degenerate Whittaker
models. Based on Proposition 2.3, we can prove Theorem 2.2.

If τ has a nonzero Shalika model, then by Theorem 2.1, the unique Langlands
quotient J(1, τ ) of the unitarily induced representation I(1, τ ) has a nonzero ψH-
functional, i.e. a nonzero generalized Shalika model. On the other hand, since τ
is generic, the unitarily induced representation I(1, τ ) has a nonzero Whittaker
functional. If I(1, τ ) is not reducible, then we have

I(1, τ ) = J(1, τ ).

It follows that the unique Langlands quotient, which is irreducible, has both a
nonzero Whittaker functional and a nonzero ψH-functional. This is impossible by
Proposition 2.3. Hence I(1, τ ) must reduces at s = 1. This proves Theorem 2.2.

Remark 2.4. We will prove the converse of Theorem 2.2 in Sect. 5, by using a
global argument. A purely local argument is also expected. However, it involves a
detailed calculations of local Shalika functionals and will be considered in a future
work. The purely local argument is important if one wants to extend the main result
(Theorem 5.3) to cover more general representations of GL2n(F).

Remark 2.5. According to a general result of Shahidi [41], when an irreducible uni-
tary supercuspidal representation τ of GL2n(F) has a nonzero Shalika functional,
then for Re(s) ≥ 0, s = 1 is the only reducible point of I(s, τ ).

3. Generalized Shalika models and certain degenerate Whittaker models

In this section we prove a more general version of Proposition 2.3, which addresses
the relation between the generalized Shalika model and the Bessel models of certain
type.

3.1. A family of degenerate Whittaker models

We consider a family of degenerate Whittaker models on SO4n(F), which are rela-
ted to the family of Bessel models considered in [11] for construction of auto-
morphic L-functions of orthogonal groups, and in [12] for construction of the
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Ginzburg–Rallis–Soudry global descents. More precisely, for 1 ≤ k ≤ 2n, we
take a family of unipotent subgroups Nk of SO4n , which consists of elements of
following type

n = n(u, b, z) =
⎛

⎜
⎝

u b z

I2k b′

u′

⎞

⎟
⎠ ∈ SO4n, (3.1)

where u = (ui, j ) ∈ U2n−k , the maximal unipotent subgroup of GL2n−k consis-
ting of all upper triangular unipotent matrices in GL2n−k , b = (bi, j ) is of size
(2n − k)× (2k) and b′, u′ are determined by b, u such that n belongs to SO4n .We
define a character ψk on Nk

ψk(n) := ψ(u1,2 + · · · + u2n−k−1,2n−k)ψ(b2n−k,k + b2n−k,k+1). (3.2)

When k = 1, N1 coincides with the unipotent radical N of the Borel subgroup
of SO4n , and ψ1 is the generic character of N . Let σ be an irreducible admissible
representation (σ, Vσ ) of SO4n(F). Then σ has a nonzero ψk-functional if the
following space

HomSO4n(F)(Vσ , IndSO4n(F)
Nk(F)

(ψk)) ∼= HomNk (F)(Vσ , ψk) �= 0. (3.3)

In this case, a nonzero element in HomNk (F)(Vσ , ψk) is called a ψk-functional
of Vσ , or more precisely, a ψk-degenerate Whittaker functional of Vσ . For each
ψk-functional �ψk , we define

Wψk ,v(g) := �ψk (σ (g)(v)) (3.4)

for v ∈ Vσ , which yields a ψk-degenerate Whittaker model (also refer to as
Nk-model) for Vσ . In particular, when k = 1, it produces a Whittaker model for Vσ .
By a theorem of Shalika [40], the Whittaker model of Vσ is unique. However, by a
theorem of Moeglin and Waldspurger [33], these ψk-degenerate Whittaker models
are not unique in general.

The main result in this section is

Theorem 3.1. For 1 ≤ k ≤ n, an irreducible admissible representation of SO4n(F)
can not admit both a nonzero ψk-functional and a nonzero generalized Shalika
functional (i.e. ψH-functional).

We prove this theorem by showing that there are no nonzero distributions on
SO4n(F)which satisfy the required left and right quasi-invariant property determi-
ned by these models. By using Bernstein’s localization principle, we have to show
that there are no admissible double cosets in the decomposition Nk(F)\SO4n(F)/
H2n(F). The admissibility of double cosets are defined as follows.

Definition 3.2. We say that a double coset Nk(F)wH2n(F), w ∈ SO4n(F) is
admissible if

ψH((h, X)) = ψk(w(h, X)w−1) (3.5)

for all (h, X) ∈ w−1 Nk(F)w ∩ H2n(F).
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We claim the following

Proposition 3.3. For 1 ≤ k ≤ n, there is no admissible double coset in Nk\SO4n/

H2n.

The proposition is a key step to prove Theorem 3.1. The proof of Proposition 3.3
involves tedious calculations of the double cosets, which will be given in Sect. 4.

3.2. Proof of Theorem 3.1

In order to prove Theorem 3.1, we extend the notion of generalized Shalika groups
as follows.

Let A be a nonsingular skew-symmetric matrix of size 2n × 2n. Define

HA = Sp2n(A)N̄ .

Then elements in HA are (h, X) ∈ P with h ∈ Sp2n(A), where

Sp2n(A) = {g ∈ GL2n|g A t g = A}.
Define a character ψHA on HA(F) by

ψHA (h, X) = ψ(tr(−A−1 Xν2n)), (h, X) ∈ HA(F). (3.6)

This is a well defined character: for h ∈ Sp2n(A, F), since

ψHA ((h, 0)(1, X)(h−1, 0)) = ψHA (1, h X t h)

= ψ(tr(−A−1h Xν2n
t h))

= ψ(tr(−t h A−1h Xν2n))

= ψ(tr(−(h−1 A t h−1)−1 Xν2n))

= ψ(tr(−A−1 Xν2n)).

It is clear that when A = J2n , HA = H2n is the generalized Shalika group defined
before, and ψHA = ψH. Similarly, we say that a double coset Nk(F)wHA(F),
w ∈ SO4n(F) is admissible if

ψHA ((h, X)) = ψk(w(h, X)w−1) (3.7)

for all (h, X) ∈ w−1 Nk(F)w ∩ HA(F).
We recall Bernstein’s localization principle for our case below, and refer to [30]

and [46] for the notation and known results.
Let C∞

c (X) denote the space of smooth, compactly supported functions on a
p-adic space X, and D(X) denotes the space of complex-valued linear functionals
on C∞

c (X). Elements of D(X) are called distributions. Given a Lie group G, define
the left and right translations lg and rg on G; C∞

c (G) and D(G) as the following:

lg · x = gx; rg · x = xg−1;
(lg · f )(x) = f (g−1x); (rg · f )(x) = f (xg);
(lg · T )( f ) = T (lg−1 · f ); (rg · T )( f ) = T (rg−1 · f ),

where g, x ∈ G; f ∈ C∞
c (G) and T ∈ D(G).
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If G acts on a p-adic space X , we define the action of lg, g ∈ G on X, C∞
c (X)

and D(G) in a similar manner.

Lemma 3.4. (Bernstein’s localization principle, Theorem 6.9, [3]) Assume that a
p-adic group G acts on a p-adic space X constructively, which means that the
graph {(x, gx)|g ∈ G, x ∈ X} of G is the union of finitely many locally closed
subsets of X × X. If there are no non-zero G-invariant distributions on any G-orbit
of X, then there are no non-zero G-invariant distributions on X.

The result of Bernstein’s localization principle can be extend to quasi-invariant
distributions with slight modification to its proof (see [43] for instance.).

Now we show that Proposition 3.3 implies Theorem 3.1.1

Letπ be an irreducible representation of G = SO4n(F).Assume thatπ has non-
trivial embeddings in both IndG

Nk
ψk and IndG

HψH. By the result of [40], the contra-

gradient π̃ of π also admits a Whittaker model. The dual of HomG(π̃, IndG
Nk
ψk) �=

0 gives HomG(indG
Nk
ψ−1

k , π) �= 0 (refer to [9] or [3]). The composition of nontri-
vial

T1 ∈ HomG(indG
Nk
ψ−1

k , π) and T2 ∈ HomG(π, IndG
HψH)

produces a nontrivial intertwining operator (since π is irreducible) in

HomG(indG
Nk
ψ−1

k , IndG
HψH).

Consider T ∈ D(Nk\G). The right action of H on Nk\G is constructive by
Theorem A, 6.15, [3]. The restriction of T to the coset NkwH is associated with
indH

H∩w−1 Nkw
ψ−w

k , where ψ−w
k (g) = ψ−1

k (wgw−1), for g ∈ H ∩w−1 Nkw. Fro-
benius reciprocity gives

HomH(indH
H∩w−1 Nkw

ψ−w
k , ψH) ∼= HomH∩w−1 Nkw

(ψ−w
k , ψH).

By Proposition 3.3, HomH∩w−1 Nkw
(ψ−w

k , ψH) = 0 for all w ∈ G. Hence by
Bernstein’s localization principle

HomG(indG
Nk
ψ−1

k , IndG
HψH) = 0,

which contradicts our assumption. Therefore, for 1 ≤ k ≤ n, π cannot possess
both Nk-model and generalized Shalika model. Especially, π cannot possess both
Whittaker model and generalized Shalika model. This proves Theorem 3.1.

4. Proof of Proposition 3.3

Let W = W (SO4n) and W (P) denote the Weyl group of SO4n(F) and P(F),
respectively. Then the generalized Bruhat decomposition

N (F)\SO4n(F)/P(F)

can be parametrized by W/W (P) with suitable chosen representatives.

1 Although the proof is routine (refer to Theorem 3.1 and Theorem 3.2.2, [14]), we keep
it here for the sake of completion.
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Lemma 4.1. ([10], Lemma 5.1) The set � of elements having minimal length in
each coset of W/W (P) comprises a complete set of representatives of W/W (P).
Elements of� can be described as follows. For w ∈ �, there is some even number
0 ≤ kw ≤ 2n, a sequence of kw numbers: ι1 < · · · < ιkw and a sequence of 2n−kw
numbers ιk+1 > · · · > ι2n such that

w(e j ) = eι j , if j ≤ kw;
w(e j ) = −eι j , if j > kw.

(4.1)

Then in each generalized Bruhat cell N (F)wP(F) with w ∈ �, we study the
double coset decomposition

N (F)\N (F)wP(F)/H2n(F).

It is clear that each double coset in the above decomposition has a representative
wg, for some w ∈ �, g ∈ GL2n(F). Moreover, the representative wg has the
following property.

Lemma 4.2. If w,w′ ∈ �, g, g′ ∈ GL2n(F), then the double cosets

N (F)wgH2n(F) = N (F)w′g′H2n(F)

if and only if

w = w′, U2n(F)gSp2n(F) = U2n(F)g
′Sp2n(F).

Proof. We firs prove that if N (F)wgH2n(F) = N (F)w′g′H2n(F), then w = w′
and U2n(F)gSp2n(F) = U2n(F)g′Sp2n(F).

For simplicity, we write N , H, P , U, GL2n , Sp2n for N (F), H2n(F), P(F),
U2n(F), GL2n(F), and Sp2n(F), respectively.

If NwgH = Nw′g′H, then Nwg P = Nw′g′ P . Since g, g′ ∈ P ,

NwP = Nw′ P.

Note that w,w′ ∈ � which is a complete set of representatives of N\SO4n(F)/P ,
hence w = w′.

Assume w is of the form in (4.1). Since NwgH = Nwg′H, there is some
u ∈ N , h ∈ H such that

uwgh = wg′.

Hence g′ = w−1uwgh, and

w−1uw = g′h−1g−1 ∈ P. (4.2)

By the action of w on roots of SO4n(F), we see that

w−1 Nw ∩ P = (w−1 Nw ∩ GL2n)(w
−1 Nw ∩ N̄ ).

One deduces from (4.2) that

(w−1 Nw ∩ P)g′H = (w−1 Nw ∩ P)gH.
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This is equivalent to

(w−1 Nw ∩ GL2n)(w
−1 Nw ∩ N̄ )g′H = (w−1 Nw ∩ GL2n)(w

−1 Nw ∩ N̄ )gH.
That is,

(w−1 Nw ∩ GL2n)(w
−1 Nw ∩ N̄ )g′Sp2n(F)N̄

= (w−1 Nw ∩ GL2n)(w
−1 Nw ∩ N̄ )gSp2n N̄ .

Note that elements in GL2n normalize N̄ , hence

(w−1 Nw ∩ GL2n)g
′Sp2n N̄ = (w−1 Nw ∩ GL2n)gSp2n N̄ ,

(w−1 Nw ∩ GL2n)g
′Sp2n = (w−1 Nw ∩ GL2n)gSp2n .

In the following we compute w−1 Nw ∩ GL2n . The set of roots of SO4n is


 = {ei − e j , ei + e j |1 ≤ i, j ≤ 2n, i �= j}.
The maximal upper triangular unipotent subgroup N of SO4n determines a set of
positive roots of SO4n , denoted by


+ = {ei − e j , ei + e j |1 ≤ i < j ≤ 2n}.
For w ∈ W , its action on 
 is given by

w(ei − e j ) = w(ei )− w(e j ),

w(ei + e j ) = w(ei )+ w(e j ).

The set of roots of GL2n is


′ = {ei − e j , for 1 ≤ i, j ≤ 2n, i �= j},
and the set of its positive roots determined by U2n is


′+ = {ei − e j , for 1 ≤ i < j ≤ 2n}.
For α ∈ 
′, let Uα be the root group corresponding to α. Then

w−1 Nw ∩ GL2n =
∏

α∈
′,w(α)∈
+
Uα.

Next we compute the set

C = {α ∈ 
′| w(α) ∈ 
+}.
Let α = ei − e j , then w(α) = w(ei ) − w(e j ). According to the formula of w in
(4.1), we have the following four cases:

(1) i, j ≤ kw. Then w(ei − e j ) = eιi − eι j . In this case, ιi < ι j if and only if
i < j . Hence

ei − e j ∈ C, for i < j ≤ kw.
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(2) i ≤ kw, j > kw. Then w(ei − e j ) = eιi + eι j ∈ 
+. Hence

ei − e j ∈ C, for i ≤ kw, j > kw.

(3) i > kw, j ≤ kw. Then w(ei − e j ) = −eιi − eι j �∈ 
+.
(4) i > kw, j > kw. Then w(ei − e j ) = −eιi + eι j . In this case ιi > ι j if and only

if i < j , by (4.1). Hence

ei − e j ∈ C, for kw < i < j.

The above discussion shows that

w−1 Nw ∩ GL2n = U2n .

The proof for the reverse direction is similar and we omit it. ��
Lemma 4.2 reduces the computation of N\SO4n(F)/H to the computation of

U2n\GL2n/Sp2n , whose representatives were calculated by Jacquet and Rallis in
[19]. Let

A = {A ∈ GL2n| t A = −A}
be the set of nonsingular skew-symmetric matrices of size 2n × 2n. The group
GL2n operates on A by:

A �→ g A t g.

The stabilizer of J2n is Sp2n . Then U2n operates on A and its orbits is the set of
double cosets U2n\GL2n/Sp2n .

Lemma 4.3. ([19], Lemma 2) Every nonsingular skew symmetric matrix of degree
2n can be written in the form

s = uw′λ t u

with u ∈ U2n, λ is a diagonal matrix in GL2n, w′ ∈ W (GL2n) the Weyl group of
GL2n such that

w′2 = 1, w′λw′−1 = −λ.
Let A = w′λ = (ai, j ), λ = (λ1, . . . , λ2n). Then A is a nonsingular skew symmetric
matrix with one and only one nonzero element at each row and column:

ai, j =
{
λ j , if w′(i) = j;
0, otherwise.

Let g ∈ GL2n be such that A = g J2n
t g. Consider the double coset NwgH, for

w ∈ �. By Lemma 4.2, the double coset is independent of the choice of g.
Recall the following:
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For ω ∈ �, there is an even number kω, 0 ≤ kω ≤ 2n, such that

ι1 < · · · < ιkω , ιkω+1 > · · · > ι2n, and ω :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e1 �→ eιi
· · ·

ekω �→ eιkω
ekω+1 �→ −eιkω+1

· · ·
e2n �→ −ek2n

. (4.3)

The action of ω ∈ � on 
 is given by

ω(ei + e j ) =

⎧
⎪⎪⎨

⎪⎪⎩

eιi + eι j , if i ≤ kω, j ≤ kω;
eιi − eι j , if i ≤ kω, j > kω;

−eιi + eι j , if i > kω, j ≤ kω;
−eιi − eι j , if i > kω, j > kω;

(4.4)

ω(ei − e j ) =

⎧
⎪⎪⎨

⎪⎪⎩

eιi − eι j , if i ≤ kω, j ≤ kω;
eιi + eι j , if i ≤ kω, j > kω;

−eιi − eι j , if i > kω, j ≤ kω;
−eιi + eι j , if i > kω, j > kω.

(4.5)

Lemma 4.4. The subgroup ω−1 Nkω ∩ P consists of elements (g, X) of P, where

g =
⎛

⎜
⎝

u b z

Ik b′

u′

⎞

⎟
⎠ , X =

⎛

⎜
⎝

C Y Z

0 0 Y ′

0 0 C ′

⎞

⎟
⎠ , (4.6)

u ∈ Ui0 , u′ ∈ U j0 , Z ∈ Mi0×i0 , Y ∈ Mi0×k,

i0 = max
i≤kω

{ιi ≤ 2n − k}, j0 = 2n − min
j>kω

{ι j ≤ 2n − k} + 1 = 2n − k − i0,

(4.7)

and Ci, j = 0 for ιi ≥ ι2n− j .

Proof. Let 
k be the set of roots of Nk . That is 
k ⊂ 
 consists of roots

ei − e j (i < j and i ≤ 2n − k); (4.8)

ei + e j (i ≤ 2n − k or j ≤ 2n − k). (4.9)

By (4.4), we see that ω(ei +e j ) ∈ 
k if and only if one of the following conditions
holds.

(1) i ≤ kω, j ≤ kω such that ιi ≤ 2n − k or ι j ≤ 2n − k;
(2) i ≤ kω, j > kω such that ιi ≤ 2n − k, and ιi < ι j ;
(3) i > kω, j ≤ kω such that ι j ≤ 2n − k and ιi > ι j .

By (4.5), we see that ω(ei −e j ) ∈ 
k if and only if one of the following conditions
holds.

(1) i < j ≤ kω and ιi ≤ 2n − k;
(2) i ≤ kω, j > kω such that ιi ≤ 2n − k or ι j ≤ 2n − k;
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(3) j > i > kω and ι j ≤ 2n − k.

The lemma follows. ��
Lemma 4.5. Any representatives of double cosets for Nk\SO4n/H can be chosen
to be in the form of

uωg, (4.10)

for some ω ∈ �, g ∈ U2n\GL2n/Sp2n such that A = g J2n
t g have one and only

one nonzero element in each row and column, and u ∈ U2k ∩ SO2k is embedded in
SO4n by

⎛

⎝
I2n−k

u
I2n−k

⎞

⎠ . (4.11)

Lemma 4.6. Let x = uwg, where notations u, w, g are as in Lemma 4.5. Then the
followings are equivalent:
(1) Nk xH is admissible;
(2) NkuωHA is admissible.

Proof. NkwgH is admissible if and only if

ψH(h, X) = ψk(wg(h, X)g−1w−1) (4.12)

for all (h, X) ∈ g−1w−1 Nkwg ∩ H. Let

(h′, X ′) = g(h, X)g−1 = (ghg−1, gX t g).

Since

(h, X) ∈ g−1w−1 Nkwg ∩ H
⇐⇒ g(h, X)g−1 ∈ w−1 Nkw ∩ gHg−1 = w−1 Nkw ∩ HA,

and

ψH(h, X) = ψ(tr(J2n Xν2n)) = ψ(tr(J2ng−1 X ′ν2n
t g−1)

= ψ(tr( t g−1 J2ng−1 X ′ν2n))

= ψ(tr((−g J2n
t g)−1 X ′ν2n))

= ψ(tr(−A−1 X ′ν2n))

= ψHA (h
′, X ′),

the conclusion follows. ��
Lemma 4.7. Let X be a matrix in the form of (4.6). Then (1, X) ∈ SO4n if and
only if

Z = −νi0
t Zνi0 , Y = −νi0

t Y ′νk, C = −νi0
t C ′ν j0 . (4.13)
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Proof. The result follows from

t Xν2n = −ν2n X. (4.14)

��
We record a formula for ψHA on N̄ ∩ ω−1 Nkω here for later use. (N̄ is the

unipotent radical of P .) Write

A−1 =
⎛

⎜
⎝

A11 A12 A13

−t A12 A22 A23

−t A13 −t A23 A33

⎞

⎟
⎠ (4.15)

with block size (i0, k, j0). The formula of ψHA on N̄ ∩ ω−1 Nkω is then given by:

ψHA((1, X)) = ψ ◦ tr(−A−1 Xν2n)

= ψ ◦ tr(−A11 Zνi0 + A12
t (Yνk)+ A13

t (Cν j0)

+ t A12Yνk + t A13Cν j0)

= ψ ◦ tr(−A11 Zνi0 + 2A12
t (Yνk)+ 2A13

t (Cν j0)) (4.16)

4.1. Reduction to the case of i0 = 0

For α ∈ F , m, l ≤ 2n,m �= l, we let Xm,l(α) denote the 2n × 2n matrix such that
the entries of Xm,l(α)ν2n are all zeros except the (m, l)th entry is α and (l,m)th
entry is −α. Then (1, Xm,l(α)) ∈ N̄ belongs to the root group corresponding to
em + el . Let Em,l be the 2n × 2n elementary matrix with 1 at the (m, l)-entry and
0 at other entries.

For the rest of this section, we fix an arbitrary double coset Nk xH, x = uwg,
with u, w, g and A = g J2n

t g as described in Lemma 4.5.

Lemma 4.8. Assume that Nk xH is admissible, and i0 �= 0. Then

ι−1(2n − k) = 2n − j0 + 1. (4.17)

Proof. On the contrary, assume that ι−1(2n − k) = i0. Then m := ι−1(2n) > i0. It
is either m = kω or m = kω + 1, and we want to show that both cases are invalid.

For the case of m = kω, the element (1, Xi0,kω(α)) belongs to N̄ ∩ ω−1 Nkω.
Note that ω(ei0 + ekω) = e2n−k + e2n ,

ω(1, Xi0,kω(α))ω
−1 = (1, X2n−k,2n(α)) ∈ Nk . (4.18)

We write (1, X2n−k,2n(α)) in blocks as follows
⎛

⎜
⎝

I2n−k b 0

I2k b′

I2n−k

⎞

⎟
⎠ , b = (bi, j ). (4.19)
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Note that

u(1, X2n−k,2n(α))u
−1 =

⎛

⎜
⎝

1

u

1

⎞

⎟
⎠

⎛

⎜
⎝

I2n−k b 0

I2k b′

I2n−k

⎞

⎟
⎠

⎛

⎜
⎝

1

u−1

1

⎞

⎟
⎠

=
⎛

⎜
⎝

I2n−k bu−1 0

I2k ub′

I2n−k

⎞

⎟
⎠ .

Since b2n−k,k+1 = α is the only nonzero entry of b and u is an upper triangular
unipotent matrix,

ψk(uω(1, Xi0,kω(α)ω
−1u−1)) = ψ(α), (4.20)

which is not 1 for suitably chosen α. By admissibility of Nk xH and the formula
(4.16) of ψHA , the (i0, kω)-th entry of A is nonzero.

Let g = 1 + αEi0,kω . It is a unipotent element in Sp2n(A) corresponding to
ei0 − ekω . Since ω(ei0 − ekω) = e2n−k − e2n ,

ωgω−1 = 1 + αE2n−k,2n ∈ Nk . (4.21)

Write ωgω−1 ∈ SO4n in blocks as the following

ωgω−1 =
⎛

⎜
⎝

I2n−k d 0

I2k d ′

I2n−k

⎞

⎟
⎠ , d = (di, j ) (4.22)

Notice

uωgω−1u−1 =
⎛

⎝
1

u
1

⎞

⎠

⎛

⎜
⎝

I2n−k d 0

I2k d ′

I2n−k

⎞

⎟
⎠

⎛

⎜
⎝

1

u−1

1

⎞

⎟
⎠

=
⎛

⎜
⎝

I2n−k du−1 0

I2k ud ′

I2n−k

⎞

⎟
⎠ .

Since d2n−k,k = α is the only nonzero entry of d and u is an upper triangular
unipotent matrix,

ψk(uωgω−1u−1) (4.23)

is nontrivial for suitably chosen α ∈ F , which contradicts to the fact that
ψHA ((g, 0)) = 1 for all g ∈ Sp2n(A). Therefore Nk xH is not admissible.

Similar arguments also works for the case of m = kω + 1 and the conclusion
follows. ��
Lemma 4.9. Assume that Nk xH is admissible. If there is some s ≤ i0, ιs < 2n − k
such that l = ι−1(ιs + 1) ≥ k + i0, then As,l �= 0. Conversely, if As,l �= 0 for some
s ≤ i0, ιs < 2n − k and l ≥ k + i0, then ιl = ιs + 1.
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Proof. The equalities ιl = ιs + 1 ≤ 2n − k and k + i0 = 2n − j0 implies l > kω.
For (1, Xs,l(α)) ∈ ω−1 Nkω ∩ N̄ ,

uω(1, Xs,l(α))ω
−1u−1 = ω(1, Xs,l(α))ω

−1 = 1 + αEιs ,ιs+1 ∈ Nk . (4.24)

Since

ψk(uω(1, Xs,l(α))ω
−1u−1) = ψ(α) = ψ(tr AXs,l(α)ν2n), (4.25)

As,l must be nonzero for Nk xH to be admissible. ��
Lemma 4.10. Assume that Nk xH is admissible. Then

Ai, j = 0, for i ≤ i0, j ≤ kω. (4.26)

Proof. Write A = (ai j ). Since A is a nonsingular anti-symmetric matrix with one
and only one elements in each row and column, so does A−1 and the nonzero entries
of A−1 are at the same positions as those of A. If i0 = 0, there is nothing to prove.
For i0 �= 0, assume on the contrary that Ai, j �= 0 for some i ≤ i0, j ≤ kω.Consider
(1, Xi, j (α)) ∈ N̄ . By the definition of ψHA ,

ψHA ((1, Xi, j (α))) �= 1 (4.27)

for suitably chosen α. Since ω(ei + e j ) = eιi + eι j ,

ω(1, Xi, j (α))ω
−1 = (1, X ιi ,ι j (α)). (4.28)

Because ιi0 �= 2n − k by Lemma 4.8, the adjoint action of u on (1, Xi, j (α)) does
not affect the value of ψk . That is

ψk(uω(1, X ιi ,ι j (α))ω
−1u−1) = ψk(1, X ιi ,ι j j (α)) = 1, (4.29)

for all α ∈ F . This contradicts to the admissibility of Nk xH. ��
Here we record one simple observation.

Remark 4.11. Let u = (ui, j ) ∈ U2n and b = (bi, j ) ∈ M2n×2n . If we write
b = t (r1, . . . , r2n) and b = (c1, . . . , c2n) as row vectors and column vectors,
respectively, then

bu = (c′
1, . . . , c′

2n), ub = (r ′
1, . . . , r

′
2n), (4.30)

where

c′
j =

∑

l≤ j

clul j , r ′
j =

∑

l≥ j

rlu jl . (4.31)

Lemma 4.12. Assume that Nk xH is admissible. Then i0 = 0.
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Proof. If i0 �= 0, then ιk+1+i0 = 2n − k by Lemma 4.8. Because 2n is the biggest
integer between 1 and 2n, we have either

ιkω = 2n or ιkω+1 = 2n. (4.32)

We need to show that both cases are invalid. Same argument works for both cases
and we will only show the proof for the case of ιkω = 2n.

First, we claim that ιi0 �= 2n − k − 1. If on the contrary ιi0 = 2n − k − 1, then
by Lemma 4.9

Ai0,k+i0 �= 0. (4.33)

Assume A j,kω �= 0 for some j . Then j > i0 by Lemma 4.10. Let

g = I2n + αEkω,k+i0 + βEi0, j (4.34)

where α and β are chosen such that g ∈ Sp2n(A). This kind of g exists, because

Ai0,k+i0 �= 0, A j,kω �= 0. (4.35)

This trick is played often throughout the proof of non-admissibility. Since

ω(ekω − ek+i0) = e2n + e2n−k, ω(ei0 − e j ) = e2n−k−1 ± eι j , (4.36)

these two roots belong to 
k . Hence ωgω−1 ∈ Nk and for suitably chosen α

ψk(uωgω−1u−1) �= 1 (4.37)

by Remark 4.11. It contradicts to admissibility of Nk xHA. Hence ιi0 �= 2n − k − 1
and

ιi0+k+2 = 2n − k − 1. (4.38)

Next we use mathematical induction to show

ιi0+k+ j = 2n − k − j + 1, for 1 ≤ j ≤ j0. (4.39)

We have shown the cases for j = 1, 2. Assume that Eq. 4.39 is correct for
integers less than or equal to j . Then Am,i0+k+ j−1 �= 0 for some m > i0 by
Lemma 4.10. Now, we assume on the contrary that ιi0 = 2n − k − j . Then by
Lemma 4.9, Ai0,2n−k− j+1 �= 0. Let

g = I2n + αEi0+k+ j−1,i0+k+ j + βEi0,m (4.40)

where α and β are chosen such that g ∈ Sp2n(A). Note that

ω(ei0+k+ j−1 − ei0+k+ j ) = e2n−k− j+1 − e2n−k− j , ω(ei0 − em)

= e2n−k− j ± eιm . (4.41)

Since m > i0, these two roots belongs to 
k . For suitably chosen α,

ψk(uωgω−1u−1) �= 1 (4.42)

by Remark 4.11. This contradicts to the admissibility of Nk xHA and Eq. 4.39 holds.
It follows that i0 = 0. ��
We summarize that i0 = 0 for admissible double cosets Nk xHA, and hence ωmust
be of the following form

ω : ek+ j �→ −e2n−k− j+1, j = 1, . . . , j0. (4.43)
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4.2. Non-admissibility for the case of k ≤ n

For k ≤ n, we want to show that there are no admissible double cosets in
Nk\SO4n/H. Define by η = ηA a permutation on {1, . . . , 2n} according to A
such that

At,ηt �= 0 for 1 ≤ t ≤ 2n. (4.44)

Lemma 4.13. Let k ≤ n. Assume that Nk xH is admissible. If ηt+1 ≤ k for some
k + 2 ≤ t, then ηt ≤ k.

Proof. Assume on the contrary that ηt ≥ k + 1. Consider

g = I2n + αEt,t+1 + βEηt+1,ηt , (4.45)

where α and β are chosen such that g ∈ Sp2n(A). Note that

ω(et − et+1) = e2n−t − e2n−t+1, ω(ηt+1 − ηt ) = eιηt
± eιηt+1

. (4.46)

These two roots belongs to 
k , so ωgω−1 ∈ Nk . By Remark 4.11, we see that
ψHA (g) = 1 and

ψk(uωgω−1u−1) �= 1 for suitably chosen α, (4.47)

which contradicts to the admissibility. ��
Lemma 4.14. k ≤ n. Assume that Nk xH is admissible and ω is in the form of
(4.43). Let ιm = 2n. Then Am,l �= 0, for some l ≤ k.

Proof. Assume on the contrary that Am,l �= 0 for some l > k.
By the definition of ω, m equals either kω or kω + 1. Same argument works

for both cases and we will only show the proof for m = kω. Recall that ιk+1 =
2n − k. Suppose that A j,k+1 �= 0 for some j . Then j �= m. (Otherwise by taking
g = I2n +αEk+1,m ∈ Sp2n(A), ψk(uωgω−1u−1) = ψ(±α) and ψHA (g) = 1 will
reach a contradiction.) Consider the element

g = I2n + αEm,k+1 + βE j,l , (4.48)

where α and β are chosen such that g ∈ Sp2n(A). Note that

ω(em − ek+1) = e2n−k + e2n, ω(e j − el) = ±eι j + eιl . (4.49)

The above two roots belong to 
k , so ωgω−1 ∈ Nk . Unless j = l − 1 > k, (i.e.
ω(e j − el) = eιl − eιl+1) by Remark 4.11, we see that

ψk(uωgω−1u−1) �= 1 for suitably chosen α. (4.50)

If j = l − 1 > k, then

ηt = l − t + k − 1 > k for t ≥ k
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by similar arguments and mathematics induction. Hence A is in the form of

A =
(

A1
A0

)
,

where A0 is a nonsingular anti-symmetric matrix of size 2n −k. We reach a contra-
diction, since Whittaker models and Sp4n−2k(A0)-models are disjoint [14]. It com-
pletes the proof. ��
Proof of Proposition (3.3) Keep the same notations as before and let k ≤ n. By
Lemma 4.13, one of the following statements is true

(1) ηk+ j ≤ k for all 1 ≤ j ≤ 2n−k.By Lemma 4.14, there are at least 2n−k+1 t’s
satisfying ηt ≤ k, which contradicts to 2n − k + 1 > k.

(2) There exists some 1 ≤ j0 < 2n − k − 1 such that

ηk+ j ≤ k, for 1 ≤ j ≤ j0, and ηk+ j > k for j ≥ j0 + 1.

That is

A =
(

A1
A0

)
(4.51)

for some A1, A0 nonsingular anti-symmetric matrices of size k + j0 and k0 =
2n − k − j0, respectively.

Again, by the disjointness of Sp2k0
-models and Whittaker models, Nk xH is not

admissible. ��

5. Local Langlands functorial transfer

We first recall briefly the local Langlands conjecture for GLm(F), which is a Theo-
rem of M. Harris and R. Taylor [15], and of G. Henniart [16]. Let WF be the Weil
group of F . A local Langlands parameter for GLm(F) is a group homomorphism

ϕ : WF × SL2(C) → GLm(C)

such that the restriction of ϕ to WF is continuous with respect to the topology
of the Weil group and the topology of the complex Lie group GLm(C) and the
restriction of ϕ to SL2(C) is algebraic. By the local Langlands conjecture for
GLm(F), the set of equivalence classes of all irreducible admissible representations
of GLm(F) is parametrized by the GLm(C)-conjugacy classes of all m-dimensional
local Langlands parameters.

Let ι be the natural embedding of the complex symplectic group Sp2n(C) into
GL2n(C). Note that Sp2n(C) is the complex dual group of SO2n+1(F). For any
irreducible admissible representation τ of GL2n(F), let ϕτ be the local Langlands
parameter for τ by the local Langlands conjecture for GL2n(F). Then τ is a local
Langlands functorial transfer from SO2n+1(F) to GL2n(F) if the local parameter
ϕτ have its image in Sp2n(C), i.e.,

ϕτ (WF × SL2(C)) ⊂ Sp2n(C).
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In this case, an irreducible admissible representationπ of SO2n+1(F)was explicitly
constructed in [26] and [27] in terms of the local parameter ϕτ , such that τ is the
image of the local Langlands functorial transfer from π . In such a circumstance, the
local exterior square L-function or the local exterior square gamma factor attached
to τ plays crucial roles. Recall from Sect. 7, [41], the relation between these local
factors are given by

γ (s, π,�2, ψ) = ε(s, π,�2, ψ)
L(1 − s, π,�2)

L(s, π,�2)
,

where ε(s, π,�2, ψ) is the exterior square local ε-factor of τ . It follows that the
local exterior square L-function L(s, π,�2) has a pole at s = 0 if and only if the
exterior square local gamma factor γ (s, π,�2, ψ) has a pole at s = 1.

Theorem 5.1. ([26]) An irreducible unitary supercuspidal representation τ of
GL2n(F) is a local Langlands functorial transfer from SO2n+1(F) if and only
if the exterior square local gamma factor

γ (s, τ,�2, ψ)

has a pole at s = 1. In this case, τ must be self-dual.

5.1. Characterization in terms of Shalika models

We show that the local Langlands functorial transfer of τ can also be characterized
in terms of the existence of a nonzero local Shalika model of τ .

In fact, by Theorem 2.2, if an irreducible supercuspidal representation τ of
GL2n(F) has a nonzero Shalika model, then the unitarily induced representation
I(s, τ ) reduces at s = 1. By [41], I(s, τ )may be reducible at either s = 0 or s = 1,
but not both. By Corollary 7.6 of [41], I(s, τ ) reduces at s = 1 if and only if the
local exterior square gamma factor

γ (s, τ,�2, ψ)

has a pole at s = 1. Then by Theorem 5.1, τ is a local Langlands functorial transfer
from SO2n+1(F).

Corollary 5.2. An irreducible unitary supercuspidal representation τ of GL2n(F)
is a local Langlands functorial transfer from SO2n+1(F) if τ has a nonzero Shalika
model.

Remark 5.3. Corollary 5.2 can be proved by a global argument. We sketch it here
briefly. By [38], for an irreducible supercuspidal representation τ of GL2n(F)with
a nonzero Shalika model, there is a number field k and a local finite place v0 of
k such that kv0 = F , and there exists an irreducible unitary cuspidal automorphic
representation � of GL2n(A) such that �v0 = τ and � has a nonzero Shalika
period. By [22], and also [23], � is a global Langlands functorial transfer from
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SO2n+1 to GL2n . Finally, by [27], the v0-local component �v0 = τ is a local
Langlands functorial transfer from SO2n+1(F) to GL2n(F).

It seems to be a very hard problem to extend the result of [38] to the case when
τ is not supercuspidal. However, our local argument seems more accessible when
τ is not supercuspidal.

The converse of Corollary 5.2 is also true. We use a global argument, although
a purely local argument is also expected.

We assume that an irreducible unitary supercuspidal representation τ of
GL2n(F) is a local Langlands functorial transfer from SO2n+1(F). Then by [26],
there exists an irreducible generic supercuspidal representation π of SO2n+1(F)
such that τ is a local Langlands functorial transfer fromπ . Again, by [26], there exist
a number field k and a local finite place v0 of k such that kv0 = F , and there exists an
irreducible generic cuspidal automorphic representation� of SO2n+1(A), where A

is the ring of adeles of k, such that�v0 = π . By [6],� has a lift� to GL2n(A) under
the global Langlands functorial transfer from SO2n+1(A) to GL2n(A). Because of
the assumption of � at the local place v0, � must be an irreducible self-dual cus-
pidal automorphic representation of GL2n(A) with the property that the partial
exterior square L-function L S(s, �,�2) has a pole at s = 1. By [27], we must
have that �v0 = τ . It follows from [22] (see also [23]), � has a nonzero global
Shalika model. Hence the v0-local component �v0 = τ must have a nonzero local
Shalika model.

Proposition 5.4. If an irreducible unitary supercuspidal representation τ of
GL2n(F) is a local Langlands functorial transfer from SO2n+1(F), then τ has
a nonzero Shalika model.

From the discussions in previous sections, we state the following theorem which
characterizes the local Langlands transfer property from various aspects.

Theorem 5.5. Let τ be an irreducible supercuspidal representation of GL2n(F).
Then the following are equivalent.

(1) τ has a nonzero Shalika model.
(2) The local exterior square L-factor L(s, τ,�2) has a pole at s = 0.
(3) The local exterior square γ -factor γ (s, τ,�2, ψ) has a pole at s = 1.
(4) The unitarily induced representation I(1, τ ) of SO4n(F) is reducible.
(5) τ is a local Langlands functorial transfer from SO2n+1(F).

If one of the above holds for τ , then τ is self-dual.

5.2. Linear models

Following the work of D. Bump and S. Friedberg [4], S. Friedberg and H. Jacquet
found [7] the connection between the linear period and the Shalika period for cus-
pidal automorphic representations of GL2n(A). More precisely, for an irreducible
cuspidal automorphic representation � of GL2n(A), � has a nonzero Shalika per-
iod if and only if� has a nonzero linear period and the central value of the standard
L-function attached to � is nonzero.
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In [20], H. Jacquet and S. Rallis proved the local uniqueness of linear models,
and proved that for an irreducible admissible representation τ of GL2n(F), if τ has
a nonzero Shalika model, then τ has a nonzero linear model. In particular, the local
Shalika model is unique. The linear model is defined below.

Let Ln be the Levi subgroup of standard parabolic subgroup Pn,n , which is
isomorphic to GLn × GLn . For an irreducible admissible representation (τ, Vτ ) of
GL2n(F), we say τ has a nonzero Ln-functional if the following space

HomLn(F)(Vτ , 1) �= 0, (5.1)

where 1 is the trivial representation of Ln(F). By reciprocity, a nonzero
Ln-functional is equivalent to a nontrivial embedding of Vτ in IndGL2n(F)

Ln(F)
1, which

is called a linear model for Vτ .

Theorem 5.6. Let τ be an irreducible supercuspidal representation of GL2n(F), τ
has a nonzero linear model if and only if τ has a nonzero Shalika model.

It is enough to show that if τ has a nonzero linear model, then it has a nonzero
Shalika model. To this end, we consider the unitarily induced representation of
Sp4n(F), which is induced from the Siegel parabolic subgroup Q = GL2n · V :

ISp4n (s, τ ) := Ind
Sp4n(F)
Q(F) (τ ⊗ | det |s). (5.2)

The point is to show

Proposition 5.7. If an irreducible supercuspidal representation τ of GL2n(F) has a
nonzero linear model, then the unitarily induced representation ISp4n (s, τ ) reduces
at s = 1

2 .

The global version of Proposition 5.7 is given in [12] as for the case of Shalika
periods given in [25]. The global argument in [12] provides a local argument for
the proof of Proposition 5.7, just as the global argument in [25] relates to the proof
of Theorem 2.1. We omit the detail here.

Now we prove Theorem 5.6. Assume that an irreducible supercuspidal repre-
sentation τ of GL2n(F) has a nonzero linear model, then by Proposition 5.7, the
induced representation ISp4n (s, τ ) reduces at s = 1

2 . By Theorem 5.3 in [42], the
reducibility of ISp4n (s, τ ) at s = 1

2 is equivalent to the reducibility of ISO4n (s, τ ) at
s = 1. Note here that ISO4n (s, τ ) is the same as I(s, τ ) in Theorem 5.5 for SO4n(F).
Hence by Theorem 5.5, τ has a nonzero Shalika model. The converse was proved
by Jacquet and Rallis in Sect. 6 of [20].

We remark that the local Shalika model is expected to control the construction of
the local Ginzburg–Rallis–Soudry descent from GL2n(F) to SO2n+1(F), while the
local linear model is expected to control the local Ginzburg–Rallis–Soudry descent
from GL2n(F) to the metaplectic double cover of Sp2n(F) (see [12] for the global
case by using linear period). The relation between these two descents are given by
the local Howe duality and the local converse theorem for SO2n+1(F) [26]. This is
our on-going working project. The results will be given in our forthcoming work.
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6. Three applications

We discuss applications of the local theory developed in previous sections to the
theory of automorphic forms.

6.1. The Jacquet–Langlands correspondence: Shalika periods

Let k be a number field and A the ring of adeles of k. We discuss the first global
application of Theorem 5.5.

Let D be a division k-algebra of degree n. Then G ′ = GL2(D) and G =
GL2n(k) are inner k-forms as algebraic k-groups. The Shalika subgroup Sn and the
nonsplit Shalika subgroup SD were defined in (2.1) and (2.3), respectively. For a
nontrivial character ψ of k\A, we define a one-dimensional representation

θn

((
g

g

)(
In X

0 In

))

= ψ(trMn×n/k(X)), g ∈ GLn, X ∈ Mn×n (6.1)

of Sn(A), which is trivial on Sn(k). Also we define a one-dimensional representation

θD

((
a

a

)(
1 x

1

))

= ψ(trD/k(x)), a ∈ D∗, x ∈ D (6.2)

of SD(A), which is trivial on SD(k). If π is an irreducible cuspidal automorphic
representation of GL2n(A), we say thatπ is (Sn, θn)-distinguished, or has a nonzero
Shalika model if the following integral

∫

Sn(k)\Sn(A)

φπ (s)θ
−1
n (s)ds (6.3)

is nonzero for some φπ ∈ Vπ . Let πD be an irreducible cuspidal automorphic
representation of GL2(D)(A). We say that πD is (SD, θD)-distinguished, or has a
nonzero (non-split) Shalika model if the following integral

∫

SD(k)\SD(A)

φπD (s)θ−1
D (s)ds (6.4)

is nonzero for some φπD ∈ VπD .
By the work of Arthur and Clozel ([1] and more recent work of Badulescu ([2]),

the global Jacquet–Langlands correspondence holds for GL2n(A) and GL2(D)(A).
As an application, we prove the following global result.

Theorem 6.1. Let D be a division k-algebra of degree n. Let π be an irredu-
cible cuspidal automorphic representation of GL2n(A) and πD be an irreducible
cuspidal automorphic representation of GL2(D)(A). Assume that π and πD are
paired up by the global Jacquet–Langlands correspondence between GL2n(A) and
GL2(D)(A). Assume that there exists a finite local place v0 of k such that D splits
at v0 and πD

v0
= πv0 is supercuspidal. If πD is (SD, θD)-distinguished, then π is

(Sn, θn)-distinguished.
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Proof. Let πD be a (SD, θD)-distinguished irreducible unitary cuspidal automor-
phic representation of GL2(D)(A). By the assumption, there is a finite local place
v0 such that πv0 is supercuspidal and Dv0 is split; and also there is an irreducible
unitary cuspidal automorphic representation π of GL2n(A) such that πD

v0
= πv0 .

By the global Jacquet–Langlands correspondence, we know that

πv ∼= πD
v

for almost all local places v of k, where GL2(D)(kv) ∼= GL2n(kv).
Since πD is (SD, θD)-distinguished, one knows that at each local place v, the

local component πD
v has a nonzero Shalika model of type (SD,v, θD,v). This means

that the following space

HomGL2(D)(kv)

(
VπD

v
, IndGL2(D)(kv)

SD(kv)
(θD,v)

)
= HomSD(kv)(VπD

v
, θD,v) (6.5)

is nonzero. By the local uniqueness of Shalika models of type (SD,v, θD,v), the
dimension of the space in Eq. (4.7) is one ([20] and [37], and also [36]).

At the finite local places v where GL2(D)(kv) ∼= GL2n(kv) and πD
v is spherical

(or unramified), that πD
v = πv has a nonzero local Shalika model of type

(SD,v, θD,v) = (Sn,v, θn,v)

implies thatπD
v = πv is self-dual. Hence the image ofπD under the global Jacquet–

Langlands correspondence, π is locally self-dual at almost all local places. This
implies π is self-dual as an irreducible cuspidal automorphic representation of
GL2n(A) by the strong multiplicity one theorem for irreducible cuspidal automor-
phic representations of GL2n(A) ([40] and [21]). Hence π is either of symplectic
type, i.e. the partial exterior square L-function L S(s, π,�2) has a simple pole at
s = 1, or of orthogonal type, i.e. the partial symmetric square L S(s, π, S2) has a
simple pole at s = 1.

We claim that π can not be of orthogonal type. Assume that π is of orthogo-
nal type. By [44], there exists an irreducible unitary generic cuspidal automorphic
representationσ of SO2n(A) such thatπ is the image ofσ under the weak Langlands
functorial transfer from SO2n to GL2n . Then by [6], the Langlands functorial trans-
fer from σ to π is compatible with the local Langlands functorial transfer at every
local place. In particular, at the finite local place v0, the irreducible supercuspidal
representation πD

v0
= πv0 is the image of σv0 under the local Langlands functorial

transfer from SO2n to GL2n . By Theorem 7.3 of [6], the symmetric square local
L-function L(s, πv0 , S2) has a simple pole at s = 0.

On the other hand, the irreducible supercuspidal representation πD
v0

= πv0 of
GL2n(kv0) has a nonzero Shalika model of type (Sn,v0 , θn,v0). By Theorem 3.3, the
local exterior square L-function L(s, πv0 ,�

2) has a simple pole at s = 0. Consider
the following identity

L(s, πv0 × πv0) = L(s, πv0 ,�
2) · L(s, πv0 , S2), (6.6)

which implies the local Rankin–Selberg convolution L-function L(s, πv0 × πv0)

has a pole at s = 0 of order two. This is impossible, since L(s, πv0 × πv0) has at
most a simple pole at s = 0 [17]. This proves our claim above.
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Therefore, π must be of symplectic type, i.e. the partial exterior square
L-function L S(s, π,�2) has a simple pole at s = 1. By [22] (see also [23]), the
irreducible cuspidal automorphic representation π is (Sn, θn)-distinguished. This
proves the theorem. ��

More generally, Jacquet and Martin made the following conjecture.

Conjecture 6.2. (Jacquet–Martin [32]) Let π be an irreducible cuspidal automor-
phic representation of GL2n(A) and πD be an irreducible cuspidal automorphic
representation of GL2(D)(A). Assume that π and πD are paired up by the glo-
bal Jacquet–Langlands correspondence between GL2n(A) and GL2(D)(A). Then
π has a nonzero Shalika model if and only if πD has a nonzero nonsplit Shalika
model.

It is clear that the assumption that there exists a finite local place v0 of k such
that D splits at v0 and πD

v0
= πv0 is supercuspidal can be relaxed after a version

of Theorem 5.5 is extended to general irreducible admissible representations of
GL2n(F).

6.2. Poles of certain Eisenstein series

As another global application of Theorem 5.5, we show that the local reducibility
implies the existence of the pole of certain Eisenstein series, and hence confirm in
this case Conjecture 8.3 of [29], which is an important ingredient to understand the
residual spectrum of the space of automorphic forms.

We first recall from [29] a general conjecture which relates the local reducibility
at one local place to the existence of the pole of the relevant Eisenstein series.

Let G be a quasi-split reductive algebraic group defined over a number field k,
and M is the Levi subgroup of a standard maximal parabolic k-subgroup P = M N
of G. Letπ be an irreducible unitary cuspidal automorphic representation of M(A).
Denote by E(g;φπ, s) the Eisenstein series attached to the cuspidal datum (P, π)
[34]. By the Langlands theory of Eisenstein series, E(g;φπ, s) has meromorphic
continuation to the whole complex plane C. In order to understand the noncuspidal
discrete spectrum of the space of automorphic forms on G(A), it is important to
determine when an Eisenstein series has a square integrable residue at s > 0 in
terms of the cuspidal datum (P, π).

Let v0 be a finite local place of k, and τ be an irreducible supercuspidal repre-
sentation of M(kv0). Denote by I(s, τ ) the normalized induced representation of
G(kv0) from the supercuspidal datum (P, τ ).

Conjecture 6.3. (Conjecture 8.3 [29]) With notation as above, if the unitarily indu-
ced representation I(s, τ ) of G(kv0) is reducible at s = s0 > 0, then there exists
an irreducible unitary cuspidal automorphic representation π of M(A) such that
πv0 = τ and the Eisenstein series E(g;φπ, s) has a pole at s = s0.

We prove this conjecture for the case that G = SO4n and P = M N is the
Siegel parabolic subgroup of G. In this case, τ is an irreducible unitary super-
cuspidal representation of M(kv0) = GL2n(kv0). Hence the only possible positive
reducibility point of ISO4n (s, τ ) is at s = 1.
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Theorem 6.4. Let τ be an irreducible unitary supercuspidal representation of
GL2n(kv0) such that the unitarily induced representation ISO4n (s, τ ) reduces at
s = 1. Then there exists an irreducible unitary cuspidal automorphic representa-
tion π of GL2n(A) such that πv0 = τ and the Eisenstein series E(g, φπ , s) has a
pole at s = 1.

The proof goes as follows.
First, by Theorem 5.5, τ admits a nonzero Shalika model if ISO4n (s, τ ) reduces

at s = 1 by the assumption. Then by a theorem of [38], there exists an irreducible
unitary cuspidal automorphic representation π of GL2n(A) such that πv0 = τ

and π has a nonzero Shalika period, which produces the local Shalika model for
πv0 = τ . By the global result of [25], the residue at s = 1 of the Eisenstein series
E(g, φπ , s) has a nonzero generalized Shalika model over SO4n(A). In particular,
the Eisenstein series E(g, φπ , s) has a pole at s = 1. This completes the proof.

The same result holds for Sp4n in terms of the linear periods. We state the result
here, without giving any further details.

Theorem 6.5. Let τ be an irreducible unitary supercuspidal representation of
GL2n(kv0) such that the unitarily induced representation ISp4n (s, τ ) reduces at
s = 1

2 . Then there exists an irreducible unitary cuspidal automorphic represen-
tation π of GL2n(A) such that πv0 = τ and the Eisenstein series E(g, φπ , s) on
Sp4n(A) has a pole at s = 1

2 .

6.3. Uniform local reducibility

We first state a general conjecture of B. Speh about uniform local reducibility of
unitarily induced representations.

Let G be a quasi-split reductive algebraic group defined over a number field k,
and let P = M N be a maximal parabolic k-subgroup of G. Let π be an irreducible
unitary cuspidal automorphic representation of M(A). Assume that the central
character of π is trivial on AM(A) (see [34] for the definition of this notation).
Following [34], we define an Eisenstein series E(g, φπ , s) attached to the cuspidal
datum (P, π). It can also be built from a smooth section in the unitarily induced
representation I(s, π) (see Sect. 6.2 for a special case).

Conjecture 6.6. (Speh) For 0 < s0 ∈ R, if the pole at s = s0 of E(g, φπ , s) exists,
then for all local place v of k, the unitarily induced representation I(s, πv) of G(kv)
reduces at s = s0.

We show that special cases of Conjecture 6.6 holds.

Theorem 6.7. Letπ be an irreducible unitary cuspidal automorphic representation
of GL2n(A). Assume that the pole at s = 1 of the Eisenstein series E(g, φπ , s), as
in Theorem 6.4, exists. Then for all finite local places v of k, the unitarily induced
representation ISO4n (s, πv) reduces at s = 1.

Proof. If the pole at s = 1 of E(g, φπ , s) exists, then by computing the constant
term of E(g, φπ , s) along P , we deduce that the exterior square L-function
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L(s, π,�2) has a pole at s = 1. By [22] and [23], π has a nonzero Shalika model.
By [25], the residue

Ress=1 E(g, φπ , s)

has a nonzero generalized Shalika model. Hence for every local place v of k, the
unitarily induced representation I(s, πv) has a nonzero local generalized Shalika
model.

On the other hand, for v finite, if ISO4n (s, πv) is irreducible, then ISO4n (s, πv)
has a nonzero Whittaker model. This is impossible by Proposition 2.3.

Hence ISO4n (s, πv) must be reducible at s = 1 at all finite local places. ��
Remark 6.8. Under the assumption of Theorem 6.7, we expect that ISO4n (s, πv)
is also reducible at s = 1 at any infinite local place of k. But we omit further
discussions here.

Similarly, by using linear period, we can prove

Theorem 6.9. Letπ be an irreducible unitary cuspidal automorphic representation
of GL2n(A). Assume that the pole at s = 1

2 of the Eisenstein series E(g, φπ , s)
on Sp4n(A), as in Theorem 6.5, exists. Then for all finite local places v of k, the
unitarily induced representation ISp4n (s, πv) reduces at s = 1

2 .

We omit the details of the proof here.
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