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Abstract. Let (R, m) be a Noetherian local ring, I an ideal of R and M, N two finitely
generated R-modules. The first result of this paper is to prove a vanishing theorem for

generalized local cohomology modules which says that H j
I (M, N ) = 0 for all j > dim(R),

provided M is of finite projective dimension. Next, we study and give characterizations for
the least and the last integer r such that Supp(Hr

I (M, N )) is infinite.

1. Introduction

For an integer j ≥ 0, the j th generalized local cohomology module H j
I (M, N ) of

two R-modules M and N with respect to an ideal I was defined by Herzog [6] as
follows:

H j
I (M, N ) = lim−→

n

Ext j
R(M/I n M, N ).

It is clear that H j
I (R, N ) is just the ordinary local cohomology module H j

I (N ) of
N with respect to I . Huneke [8] conjectured that the set of associated primes of
H j

I (N ) is finite for all generated modules N and all ideals I . Although Katzman
[11] constructed a counter example for this conjecture, the conjecture is still true
in many situations (see [9,12–14]). Therefore it is an important problem in the
theory of local cohomology to study the question of when the sets Ass(H j

I (N ))

and Supp(H j
I (N )) are finite. The purpose of this paper is to investigate a similar

question as above for the theory of generalized local cohomology.
It should be mentioned here that some basic properties of local cohomology

modules cannot extend to generalized local cohomology modules. For example,
if N is I -torsion then Hi

I (N ) = 0 for all i > 0, but Hi
I (M, N ) ∼= Exti

R(M, N )

and the later does not vanish in general for i > 0; or while the Grothendieck’s
Vanishing Theorem says that Hi

I (N ) = 0 for all i > dim(N ), the generalized
local cohomology modules Hi

I (M, N ) may not vanish in general for infinitely
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many i ≥ 0. However, we can show in this paper that
⋃

j≤i Supp(H j
I (M, N )) =

⋃
j≤i Supp(Ext j

R(M/I M, N )) for all i ≥ 0 (Lemma 2.8). It follows that although

Hi
I (M, N )may not vanish, we still have Supp(Hi

I (M, N )) ⊆ ⋃
j≤dim(N ) Supp(H j

IM
(N )) for all i ≥ 0, where IM = ann(M/I M) is the annihilator of the R-module
M/I M . Moreover, we also prove that if M has finite projective dimension then
H j

I (M, N ) = 0 for all j > dim(R) (Theorem 3.1). Then we can exploit Lemma
2.8 and Theorem 3.1 in the studying the finiteness of the set of associated primes
as well as of the support of generalized local cohomology modules.

Our paper is divided into five sections. In Sect. 2, we prove two auxiliary lem-
mas (Lemmas 2.7 and 2.8) and its consequence (Corollary 2.9) on the support of
generalized local cohomology modules. In Sect. 3, by using spectral sequences, we
prove that H j

I (M, N ) = 0 for all j > dim(R), provided M is of finite projective
dimension (Theorem 3.1). This generalizes a vanishing result of generalized local
cohomology modules with respect to the maximal ideal of Herzog and Zamani
[7, Theorem 3.2]. In Sect. 4, we use Lemma 2.8 and the notion of generalized reg-
ular sequences introduced by Nhan [14] to characterize the least integer r such that
Supp(Hr

I (M, N )) is an infinite set (Theorem 4.1); from this we can describe con-
cretely the finiteness of Ass(Hr

I (M, N )) (Theorem 4.5). In the last section, we study
the last integer s such that Supp(Hs

I (M, N )) is an infinite set (Theorem 5.1(a));
and we also give lower and upper bounds for this s (Theorem 5.1(b)).

2. Preliminaries

Throughout this paper M, N are finitely generated modules over a Noetherian local
ring (R,m). Let pdR(M) denote the projective dimension of M . For any ideal I
of R we denote by IM = annR(M/I M) the annihilator of the module M/I M and
by �I the I -torsion functor. First, we recall some known facts on generalized local
cohomology modules.

Lemma 2.1. (cf. [4, Lemmas 2.1, 2.3]) The following statements are true.

(i) Let E• be an injective resolution of N . Then, for any j ≥ 0, we have

H j
I (M, N ) ∼= H j (�I (Hom(M, E•)))

∼= H j (Hom(M, �I (E•))) ∼= H j (Hom(M, �IM (E•))).

(ii) If �IM (N ) = N or I ⊆ ann(M), then H j
I (M, N ) ∼= Ext j

R(M, N ) for all
j ≥ 0.

Lemma 2.2. (cf. [4, Theorem 2.4]) Let l = depth(IM , N ). Then

Ass Hl
I (M, N ) = Ass ExtlR(M/I M, N ).

Lemma 2.3. (cf. [18, Theorem 3.7]) If pdR(M) < +∞, then H j
I (M, N ) = 0 for

all j > pdR(M) + dim(M ⊗R N ).
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Lemma 2.4. (cf. [7, Lemma 3.1]) Let d = dim(R). If pdR(M) < +∞, then we

have dim(Ext j
R(M, R)) ≤ d − j for all 0 ≤ j ≤ pdR(M).

Lemma 2.5. Assume that the local ring homomorphism f : R → S is flat. Then
H j

I (M, N ) ⊗R S ∼= H j
I S(M ⊗R S, N ⊗R S) for all j ≥ 0.

Lemma 2.6. Let n = dim(N ). Then Supp(Hn−1
I (N )) is a finite set.

Proof. Let a = annR(N ) and R = R/a, then dim(R) = n and N is an R-module.
Hence, by the independence theorem in [2], we have Hn−1

I (N ) ∼= Hn−1
I R

(N ) as

R-modules. Since SuppR(Hn−1
I R

(N )) is finite by Marley [13, Corollary 2.5] and

Supp(Hn−1
I (N )) ⊆ Supp(R/a), Supp(Hn−1

I (N )) is finite as required. �	
The next two lemmata are important for our further investigations in this paper.

Lemma 2.7. Let N be the set of all positive integers and i ∈ N ∪ {+∞}. Set
Ji = ⋂

j<i ann(Ext j
R(M/I M, N )). Then H j

I (M, N ) ∼= H j
Ji
(M, N ) for all j < i.

Proof. We note first that IM ⊆ Ji . Let E• : 0 → E0 → · · · → E j → · · · be a
minimal injective resolution of N . For any j ≥ 0, we have by Brodmann and Sharp
[2, 10.1.10] that

�IM (E j ) =
⊕

IM ⊆p∈Ass(E j )

E(R/p)µ
j (p,N )

and

�Ji (E j ) =
⊕

Ji ⊆p∈Ass(E j )

E(R/p)µ
j (p,N ),

where µ j (p, N ) = dimk(p)(Ext j
Rp

(k(p), Np)) is the j th Bass number of N with

respect to p. Since the sequence 0 → E0
p → E1

p → · · · → E j
p → · · · is a minimal

injective resolution of Np for any p ∈ Ass(E j ) by Brodmann and Sharp [2, 11.1.6],
Np �= 0. We consider now two cases.

Firstly, let i ∈ N. For any j < i and any p ∈ Ass(E j ) satisfying p ⊇ IM and p �

Ji , we have ExtlR(M/I M, N )p = 0 for all l < i . It implies depth((IM )p, Np) ≥ i,
and so depth(Np) ≥ i. Thus µ j (p, N ) = 0, so that �IM (E j ) = �Ji (E j ). Hence

we get H j
I (M, N ) ∼= H j

Ji
(M, N ) for all j < i by Lemma 2.1.

Secondly, if i = +∞, then Ji = ⋂
j≥0 ann(Ext j

R(M/I M, N )). For any j ≥ 0,

and any p ∈ Ass(E j ) such that p ⊇ IM , we obtain (IM )pNp �= Np. Set ν =
depth((IM )p, Np). Then ν < +∞ and p ∈ Supp(ExtνR(M/I M, N )). It follows
that p ⊇ ann(ExtνR(M/I M, N )) ⊇ Ji , and hence �IM (E j ) = �Ji (E j ). Therefore

we obtain H j
I (M, N ) ∼= H j

Ji
(M, N ) for all j ≥ 0 by Lemma 2.1 again. �	

Lemma 2.8. Let i ∈ N ∪ {+∞}. Then we have
⋃

j<i

Supp(H j
I (M, N )) =

⋃

j<i

Supp(Ext j
R(M/I M, N )).
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Proof. Let i ∈ N ∪ {+∞}, and Ji = ⋂
j<i ann(Ext j

R(M/I M, N )). Then, by

Lemma 2.7, we obtain H j
I (M, N ) ∼= H j

Ji
(M, N ) for all j < i . Therefore

⋃

j<i

Supp(H j
I (M, N )) ⊆ Supp(R/Ji ) =

⋃

j<i

Supp(Ext j
R(M/I M, N )).

Conversely, let p ∈ ⋃
j<i Supp(Ext j

R(M/I M, N )). Set ν = depth((IM )p, Np),

thenν < i . For each n > 0, since IM ⊆ √
ann(I M/I n M), Ext j

R(I M/I n M, N )p = 0
for all j < ν. Thus, from the exact sequence

0 → I M/I n M → M/I n M → M/I M → 0

we get the following exact sequence

0 → ExtνR(M/I M, N )p → ExtνR(M/I n M, N )p

for all n > 0. This induces an exact sequence

0 → ExtνR(M/I M, N )p → H ν
I (M, N )p.

Since ν < i and ExtνR(M/I M, N )p �= 0 it follows thatp ∈ ⋃
j<i Supp(H j

I (M, N ))

as required. �	
Until now one does not know about the last integer i such that Hi

I (M, N ) �= 0,
even for the case I = m. For example, assume that R is not regular local ring
and pdR(M) = +∞, then Hi

m(M, R/m) = Exti
R(M, R/m) �= 0 for all i ≥ 0

(see Suzuki [16, Lemma 3.1]). However, the following result shows that there is a
union of only finitely many supports of generalized local cohomology modules so
that the other supports can be viewed as its subsets.

Corollary 2.9. Let n = dim(N ). Then we have
⋃

j≥0

Supp(H j
I (M, N )) =

⋃

j≤n

Supp(H j
IM

(N )) =
⋃

j≤n

Supp(H j
I (M, N )).

Proof. For any i ∈ N ∪ {+∞} we obtain by Lemma 2.8 that
⋃

j<i

Supp(H j
IM

(N )) =
⋃

j<i

Supp(Ext j
R(R/IM , N )).

On the other hand, for anyp ∈ ⋃
j<i Supp(Ext j

R(R/IM , N ))we set t= depth((IM )p,

Np). Since

i > t = inf{l | ExtlR(R/IM , N )p �= 0} = inf{l | ExtlR(M/I M, N )p �= 0},
there exists a non-negative integer j < i such that p ∈ Supp(Ext j

R(M/I M, N )).
Therefore

⋃

j<i

Supp(Ext j
R(R/IM , N )) ⊆

⋃

j<i

Supp(Ext j
R(M/I M, N )).



Generalized local cohomology modules 63

Similarly, we can prove for the converse inclusion. Hence
⋃

j<i

Supp(Ext j
R(R/IM , N )) =

⋃

j<i

Supp(Ext j
R(M/I M, N )).

So we get by Lemma 2.8 that
⋃

j<i

Supp(H j
IM

(N )) =
⋃

j<i

Supp(H j
I (M, N ))

and the corollary follows from Grothendieck’s Vanishing Theorem for local coho-
mology modules. �	

3. A vanishing theorem

Herzog and Zamani [7, Theorem 3.2] showed that if pdR(M) < +∞, then Ht
m

(M, N )= 0 for all t > dim(R). In this section we extend Herzog–Zamani’s result
for an arbitrary ideal I as follows.

Theorem 3.1. Assume that pdR(M) < +∞ and d = dim(R). Then Ht
I (M, N ) =

0 for all t > d.

Proof. We first claim that Ht
I (M, R) = 0 for all t > d. Let x1, . . . , xm be a set of

generators of I and K n• the Koszul complex of R with respect to xn
1 , . . . , xn

m . We
denote by Cn• the total complex associated to the double complex K n• ⊗R F•, where
F• is a projective resolution of M . Then it is easy to see that Hom(Cn• , R) is just
isomorphic to the total complex of the double complex Hom(K n• , Hom(F•, R)).
Therefore we have by Rotman [15, Theorem 11.18] the following convergent spec-
tral sequence

Hi (Hom(K n• , Ext j
R(M, R))) =⇒

i
H i+ j (Hom(Cn• , R)).

Since Hi
I (M, R) ∼= lim−→n

Hi (Hom(Cn• , R)) for all i ≥ 0 by Bijan-Zadeh
[1, Theorem 4.2], we obtain by passing to direct limits the following convergent
spectral sequence

Ei, j
2 = Hi

I (Ext j
R(M, R)) =⇒

i
H i+ j = Hi+ j

I (M, R).

Thus for each t ≥ 0 there is a finite filtration of the module Ht = Ht
I (M, R)

0 = φt+1 Ht ⊆ φt H t ⊆ · · · ⊆ φ1 Ht ⊆ φ0 Ht = Ht

such that Ei,t−i∞ ∼= φi H t/φi+1 Ht for all 0 ≤ i ≤ t . It is clear that Ei, j
2 = 0 for

all j > pdR(M). If i + j > d then i > d − j . Hence i > dim(Ext j
R(M, R)) for

all 0 ≤ j ≤ pdR(M) by Lemma 2.4. So Ei, j
2 = 0 for all 0 ≤ j ≤ pdR(M) and

i + j > d. Thus, for each t > d we get Ei,t−i
2 = 0 for all 0 ≤ i ≤ t . Moreover,
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since Ei,t−i∞ is subquotient of Ei,t−i
2 for all 0 ≤ i ≤ t , it implies that Ei,t−i∞ = 0

for all 0 ≤ i ≤ t and all t > d. Therefore from the exact sequences

0 → φi+1 Ht → φi H t → Ei,t−i∞ → 0

for all 0 ≤ i ≤ t we get Ht
I (M, R) = φ0 Ht = Ht = 0 for all t > d, and the claim

is proved.
Next, since d + 1 > dim(M ⊗R N ), we get by Lemma 2.3 that Ht

I (M, N ) = 0 for
all t > pdR(M) + d + 1. Thus, it is enough to prove by descending induction on t
that Ht

I (M, N ) = 0, for all d < t ≤ pdR(M) + d + 1. It is clear that the assertion
is true for t = pdR(M) + d + 1. Assume that d < t < pdR(M) + d + 1 and the
assertion is true for t + 1. Since N is finitely generated R-module, there exists a
non-negative integer n such that the following sequence

0 → L → Rn → N → 0

is exact for some finitely generated R-module L . This induces an exact sequence
of generalized local cohomology modules

Ht
I (M, Rn) → Ht

I (M, N ) → Ht+1
I (M, L).

Since t > d and Ht+1
I (M, L) = 0 by the inductive hypothesis, we get by the claim

that Ht
I (M, Rn) ∼= Ht

I (M, R)n = 0. Therefore Ht
I (M, N ) = 0 as required. �	

It should be mentioned that the functor Ht
I (M,−) commutes with the direct

limits in the category of all R-modules. Therefore as an immediate consequence of
Theorem 3.1 we get the following result.

Corollary 3.2. Assume that pdR(M) < +∞and d = dim(R). Then Ht
I (M, K )= 0

for all t > d and all (not necessary to be finitely generated) R-module K .

Remark 3.3. Grothendieck’s Vanishing and non-Vanishing Theorems in the theory
of local cohomology say that Ht

I (N ) = 0 for all t > n = dim(N ) and Hn
m(N ) �= 0.

Therefore, in view of Theorem 3.1, it is natural to ask whether Ht
I (M, N ) = 0 and

Hn
m(M, N ) �= 0 for all t > n = dim(N ) and all finitely generated R-modules of

finite projective dimension. Unfortunately, the following example shows that the
answer of the above question is negative.
Let k be a field and R = k[[x, y, u, v]]. Let m = (x, y, u, v)R, M = R/(y) and
N = R/(x) ∩ (y). It is clear that dim(R) = 4, pdR(M) < +∞ and dim(N ) = 3.

Following [7], from the exact sequence 0 → R
y−→ R → M → 0, we get an exact

sequence

H3
m(N )

y−→ H3
m(N ) → H4

m(M, N ) → 0.

Thus, we get an isomorphism H4
m(M, N ) ∼= H3

m(N )/y H3
m(N ). By Brodmann and

Sharp [2, Theorem 7.3.2], we have Att(H3
m(N )) = {(x)R, (y)R}. Hence, since

H3
m(N ) is Artinian, we get by Brodmann and Sharp [2, Proposition 7.2.11] that

y H3
m(N ) �= H3

m(N ). It follows that H4
m(M, N ) �= 0.
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4. The least integer r such that Supp(H r
I (M, N)) is infinite

Firstly, we recall the notion of generalized regular sequences introduced in [14]:
A sequence x1, . . . , xr ∈ I is called a generalized regular sequence of N in I
if for any j = 1, . . . , r , x j /∈ p for all p ∈ Ass(N/(x1, . . . , x j−1)N ) satisfying
dim(R/p) ≥ 2. If dim(N/I N ) ≥ 2, then any generalized regular sequence of N in
I is of length at most dim(N ) − dim(N/I N ). Moreover, in this case all maximal
generalized regular sequences of N in I have the same length, and this common
length is called generalized depth of N in I and denoted by gdepth(I, N ). Note that
if dim(N/I N ) ≤ 1 then there exists a generalized regular sequence of length r of N
in I for any given integer r > 0. So, in this case we stipulate gdepth(I, N ) = +∞.

Below we show that the generalized depth can be computed by generalized local
cohomology modules.

Theorem 4.1. Set r = gdepth(IM , N ) and Jr = ⋂
j<r ann(Ext j

R(M/I M, N )).

Then dim(R/Jr ) ≤ 1 and

r = inf{i | Supp(Hi
I (M, N )) is not finite}

= inf{i | Hi
I (M, N ) � Hi

Jr
(M, N )},

where we use the convenience that inf(∅) = +∞.

Proof. If dim(N/IM N ) ≤ 1 then r = +∞ and dim(R/Jr ) ≤ 1. Since Supp(N/

IM N ) is finite, Supp(H j
I (M, N )) is finite for all j ≥ 0. On the other hand, by

Lemma 2.7, H j
I (M, N ) ∼= H j

Jr
(M, N ) for all j ≥ 0. Therefore the result is true in

this case.
If dim(N/IM N ) ≥ 2 then r < + ∞. Let x1, . . . , xr be a maximal generalized

regular sequence of N in IM . For any p ∈ Supp(N/IM N ) such that dim(R/p) ≥
2, x1/1, . . . , xr/1 is an Np-regular sequence in (IM )p. It follows that Ext j

R(M/

I M, N )p = 0 for all j < r , hence dim(Ext j
R(M/I M, N )) ≤ 1 for all j < r . Thus

dim(R/Jr ) ≤ 1, so that
⋃

j<r Supp(Ext j
R(M/I M, N )) = Supp(R/Jr ) is a finite

set. It follows by Lemma 2.8 that Supp(H j
I (M, N )) is a finite set for all j < r .

Moreover, by Nhan [14, Proposition 4.4] we have

r = min{depth((IM )p, Np) | p ∈ Supp(N/IM N ), dim(R/p) ≥ 2}.

So r = depth((IM )p, Np) for some p ∈ Supp(N/IM N ) with dim(R/p) ≥ 2.

Hence ExtrR(M/I M, N )p �= 0. Thus, we have p ∈ ⋃r
j=0 Supp(H j

I (M, N )) by

Lemma 2.8. On the other hand, since Supp(H j
I (M, N )) is finite for all j < r , p /∈

⋃
j<r Supp(H j

I (M, N )). Thus p ∈ Supp(Hr
I (M, N )), so that Supp(Hr

I (M, N )) is
an infinite set by Kaplansky [10, Theorem 144]. Therefore

r = inf{i | Supp(Hi
I (M, N )) is not finite}.
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Finally, keep in mind that Supp(Hr
Jr

(M, N )) is finite, while Supp(Hr
I (M, N ))

is infinite by the conclusion above. It implies that Hr
I (M, N ) � Hr

Jr
(M, N ). There-

fore, since H j
I (M, N ) ∼= H j

Jr
(M, N ) for all j < r by Lemma 2.7,

r = inf{i | Hi
I (M, N ) � Hi

Jr
(M, N )},

and the proof of Theorem 4.1 is complete. �	
Corollary 4.2. Let i be a non-negative integer. If Supp(H j

I (N )) is a finite set for

all j ≤ i , so is Supp(H j
I (M, N )) for all finitely generated R-module M.

Proof. As gdepth(I, N ) ≤ gdepth(IM , N ), the result follows by Theorem 4.1. �	
Note that for an arbitrary R-module K , the condition for Supp(K ) to be a

finite set is in general not equivalent to the condition that dim(R/p) ≤ 1 for
all p ∈ Supp(K ). However, we have immediate consequences of Theorem 4.1 as
follows.

Corollary 4.3. Let i be a non-negative integer. Then Supp(H j
I (M, N )) is finite for

all j ≤ i if and only if dim(R/p) ≤ 1 for all p ∈ Supp(H j
I (M, N )) and all j ≤ i .

Corollary 4.4. Set r = gdepth(I, N ) and Jr = ⋂
j<r ann(Ext j

R(R/I, N )). Then
we have dim(R/Jr ) ≤ 1 and

r = inf{i | Supp(Hi
I (N )) is not finite} = inf{i | Hi

I (N ) � Hi
Jr

(N )}.
It should be mentioned that the first equality of Corollary 4.4 was proved by

Nhan [14, Proposition 5.2].

Theorem 4.5. Let i be a non-negative integer and Pi = ⋃
j<i Supp(H j

I (M, N )),
then

Ass(Hi
I (M, N ))

⋃
Pi = Ass(Exti

R(M/I M, N ))
⋃

Pi .

In particular, Ass(Hr
I (M, N )) is a finite set, where r = gdepth(IM , N ).

Proof. Let p ∈ Ass(Hi
I (M, N )). Assume that p /∈ Pi . Then, by Lemma 2.8, we

have Exti
R(M/I M, N )p �= 0 and Ext j

R(M/I M, N )p = 0 for all j < i. It follows
that i = depth((IM )p, Np). So, by Lemma 2.2, we get

Ass(Hi
I (M, N )p) = Ass(Exti

R(M/I M, N )p).

Thus p ∈ Ass(Exti
R(M/I M, N )), since pRp ∈ Ass(Hi

I (M, N )p). Conversely, let
p ∈ Ass(Exti

R(M/I M, N )) and p /∈ Pi . By similar arguments as above, we can
show that i = depth((IM )p, Np). Hence p ∈ Ass(Hi

I (M, N )) by Lemma 2.2.
Therefore

Ass(Hi
I (M, N ))

⋃
Pi = Ass(Exti

R(M/I M, N ))
⋃

Pi .

Finally, let r = gdepth(IM , N ). Then we get by Theorem 4.1 that Pr is a finite
set. Hence Ass(Hr

I (M, N )) is a finite set as required. �	
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It has shown by Khashyarmanesh and Salarian [12, Theorem B] or Nhan [14,
Theorem 5.6] that if i is an integer such that Supp(H j

I (N )) is a finite set for all
j < i then Ass(Hi

I (N )) is a finite set. The next corollary gives us a description
concretely of this set Ass(Hi

I (N )).

Corollary 4.6. Let i be a non-negative integer and Pi = ⋃
j<i Supp(H j

I (N )), then

Ass(Hi
I (N ))

⋃
Pi = Ass(Exti

R(R/I, N ))
⋃

Pi .

In particular, Ass(Hr
I (N )) is finite for r = gdepth(I, N ).

5. The last integer s such that Supp(H s
I (M, N)) is infinite

The following theorem is the main result in this section.

Theorem 5.1. Let s be an integer. Assume that pdR(M) < +∞. Then

(a) The following statements are equivalent:
(i) Supp(H j

I (M, R/p)) is finite for all j > s and all p ∈ Assm(N ), where
Assm(N ) denote the set of minimal elements of Ass(N );

(ii) Supp(H j
I (M, N )) is finite for all j > s;

(iii) Supp(Hs+1
I (M, R/p)) is finite for all p ∈ Supp(N ).

(b) Assume that dim(N/IM N ) ≥ 2. Set d = dim(R), r = gdepth(IM , N ) and

γ = sup{pdRp
(Mp) | p ∈ Supp(N/IM N ), dim(R/p) ≥ 2)}.

Let s be the least integer satisfying one of three equivalent conditions in (a),
then

max{r, γ } ≤ s < d − 1.

To prove Theorem 5.1(a), we need the following lemma.

Lemma 5.2. Assume that pdR(M) < +∞. Let s be a non-negative integer and
L a finitely generated R-module such that Supp(L) ⊆ Supp(N ). Then, if Supp
(H j

I (M, N )) is a finite set for all j > s, so is Supp(H j
I (M, L)).

Proof. Let d = dim(R). Then H j
I (M, L) = 0 for all j > d by Theorem 3.1. Thus

we can assume that s ≤ d. We proceed by descending induction on j . It is clear
that the assertion is true for j ≥ d + 1. Let j < d + 1. Since Supp(L) ⊆ Supp(N ),
we get by Vasconcelos [17, Theorem 4.1] that there exists a finite filtration

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lt = L

such that for any i = 1, . . . , t, Li/Li−1 is a homomorphic image of N ni for some
integer ni > 0. Using short exact sequences 0 → Li−1 → Li → Li/Li−1 → 0
for i = 1, . . . , t, we can reduce the situation to the case t = 1. Therefore, there is
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an exact sequence 0 → U → N n → L → 0 for some n > 0 and some finitely
generated R-module U. So, we get a long exact sequence

· · · → H j
I (M, N n) → H j

I (M, L) → H j+1
I (M, U ) → · · ·

As Supp(U ) ⊆ Supp(N ), we get by induction that Supp(H j+1
I (M, U )) is finite. On

the other hand, by the hypothesis, Supp(H j
I (M, N n)) = Supp(H j

I (M, N )) is finite.

Therefore, by the above exact sequence, Supp(H j
I (M, L)) is finite as required. �	

As an immediate consequence of Lemma 5.2, we get the following result.

Corollary 5.3. Assume that pdR(M) < +∞. Let s be a non-negative integer
and L a finitely generated R-module such that Supp(L) = Supp(N ). Then Supp
(H j

I (M, L)) is finite for all j > s if and only if so is Supp(H j
I (M, N )).

Now, it is ready to prove Theorem 5.1(a).

Proof of Theorem 5.1(a). (i) ⇒ (i i). Assume that Assm(N ) = {p1, . . . , pt } and
that Supp(H j

I (M, R/pi )) is finite for all i = 1, . . . , t . Set L0 = 0 and Li =
⊕i

j=1(R/p j ) for each i ∈ {1, . . . , t}. We have Supp(Lt ) = Supp(N ), since
Ass(Lt ) = {p1, . . . , pt } = Assm(N ). It follows from Corollary 5.3 that Supp
(H j

I (M, N )) is finite for all j > s if we can show that Supp(H j
I (M, Lt )) is finite

for all j > s. Indeed, we proceed by induction on t . It is nothing to prove for t = 1.
Let t > 1. From the exact sequence 0 → Lt−1 → Lt → R/pt → 0 we get a long
exact sequence

H j
I (M, Lt−1) → H j

I (M, Lt ) → H j
I (M, R/pt ).

Therefore Supp(H j
I (M, Lt )) is finite by (i) and the inductive hypothesis.

(i i) ⇒ (i i i) follows by Lemma 5.2.
(i i i) ⇒ (i). By inductive method we need only to show that Supp(Hs+2

I (M, R/p))

is finite for all p ∈ Supp(N ). Let p ∈ Supp(N ). If dim(R/p) ≤ 1 then the finiteness
of Supp(Hs+2

I (M, R/p)) is clear. Assume that dim(R/p) ≥ 2. We consider two
cases IM � p and IM ⊆ p, where IM = annR(M/I M) is the annihilator of the
R-module M/I M .

Case 1. IM � p. Then there exists an x ∈ IM \ p. Set G = R/(p + x R), then
Supp(G) ⊆ Supp(N ). We have a finite filtration

0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gt = G

such that, for each i = 1, . . . , t , Gi/Gi−1 ∼= R/pi for some pi ∈ Supp(N ). Now,
with the same method that used in the proof of (i) ⇒ (i i) we can show that

Supp(Hs+1
I (M, G)) = Supp(Hs+1

I (M, Gt ))

is a finite set. On the other hand, we derive from the exact sequence 0 → R/p
x−→

R/p → G → 0 an exact sequence

Hs+1
I (M, G) → (0 : x)Hs+2

I (M,R/p)
→ 0.
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Thus Supp((0 : x)Hs+2
I (M,R/p)

) is finite, and so is Supp((0 : IM )Hs+2
I (M,R/p)

).
Therefore

Supp(Hs+2
I (M, R/p)) = Supp((0 : IM )Hs+2

I (M,R/p)
)

is finite, since Hs+2
I (M, R/p) is IM -torsion by Lemma 2.1.

Case 2. IM ⊆ p. By Lemma 2.1 we have

H j
I (M, R/p) ∼= Ext j

R(M, R/p)

for all j ≥ 0. For any q ∈ Supp(R/p) with dim(R/q) ≥ 2, we get by the assumption
that

Supp(Exts+1
R (M, R/q)) = Supp(Hs+1

I (M, R/q))

is finite. Therefore

Exts+1
Rq

(Mq, k(q)) = Exts+1
R (M, R/q)q = 0.

Thus Tor
Rq

s+1(Mq, k(q)) = 0 by Bruns and Herzog [3, Proposition 1.3.1]. It follows
by Eisenbud [5, Corollary 19.5] that pdRq

(Mq) < s + 1. Hence

Exts+2
R (M, R/p)q = Exts+2

Rq
(Mq, (R/p)q) = 0

for allq ∈ Supp(R/p) satisfying dim(R/q) ≥ 2. Thus dim((Exts+2
R (M, R/p)))≤ 1,

and so

Supp(Hs+2
I (M, R/p)) = Supp(Exts+2

R (M, R/p))

is finite. The proof of Theorem 5.1(a) is complete. �	
To prove Theorem 5.1(b) we need one lemma more.

Lemma 5.4. Let d = dim(R). Assume that pdR(M) < +∞. Then the following
statements are true.

(i) Hd
I (M, N ) is Artinian.

(ii) Supp(Hd−1
I (M, N )) is a finite set.

Proof. (i) We claim first that Hd
I (M, R) is Artinian. By using the spectral sequence

as in the proof of Theorem 3.1, we obtain a finite filtration

0 = φd+1 Hd ⊆ φd Hd ⊆ · · · ⊆ φ1 Hd ⊆ φ0 Hd = Hd

of the module Hd = Hd
I (M, R) such that Ei,d−i∞ ∼= φi Hd/φi+1 Hd for all 0 ≤

i ≤ d; and for any i = 0, . . . , d there exists exact sequences

0 → φi+1 Ht → φi H t → Ei,t−i∞ → 0.
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Note that Ei,d−i∞ is a subquotient of Ei,d−i
2 for all 0 ≤ i ≤ d, where

Ei,d−i
2 = Hi

I (Extd−i
R (M, R)).

Thus in order to prove the Artinianness of Hd
I (M, R), we need only to show the

Artinianness of Hi
I (Extd−i

R (M, R)) for all 0 ≤ i ≤ d. Note that pdR(M) ≤ d and

Ext j
R(M, R) = 0 for all j > pdR(M). Therefore dim(Extd−i

R (M, R)) ≤ i for all
0 ≤ i ≤ d by Lemma 2.4. It follows by Brodmann and Sharp [2, Theorem 7.1.6]
that Hi

I (Extd−i
R (M, R)) is Artinian for all 0 ≤ i ≤ d and the claim is proved. Next,

there exists an exact sequence 0 → L → Rn → N → 0, where n is an integer
and L is a finitely generated R-module. Hence we get by Theorem 3.1 an exact
sequence

Hd
I (M, Rn) → Hd

I (M, N ) → 0.

Since Hd
I (M, Rn) ∼= Hd

I (M, R)n , we get by the claim that Hd
I (M, Rn) is Artinian.

Therefore Hd
I (M, N ) is Artinian.

(i i) Firstly, we conclude that Supp(Hd−1
I (M, R)) is finite. By similar arguments

as in the proof of (i), we need only to show that Supp(Ei,d−1−i
2 ) is finite for all

0 ≤ i ≤ d − 1, where Ei,d−1−i
2 = Hi

I (Extd−1−i
R (M, R)). We consider two cases.

The first case: 0 ≤ pdR(M) < d − 1. If 0 ≤ i < d − 1 − pdR(M) then pdR(M) <

d −1− i ≤ d −1. It implies Extd−1−i
R (M, R) = 0, so that Ei,d−1−i

2 = 0 for all 0 ≤
i < d −1−pdR(M). If d −1−pdR(M) ≤ i ≤ d −1 then 0 ≤ d −1−i ≤ pdR(M).
Thus, by Lemma 2.4, dim(Extd−1−i

R (M, R)) ≤ i + 1. It implies by Lemma 2.6

that Supp(Ei,d−1−i
2 ) is finite for all d − 1 − pdR(M) ≤ i ≤ d − 1. Therefore

Supp(Ei,d−1−i
2 ) is finite for all 0 ≤ i ≤ d − 1.

The second case: pdR(M) ≥ d − 1. Similar as in the first case, we get by
Lemma 2.4 that dim(Extd−1−i

R (M, R)) ≤ i + 1 for all 0 ≤ i ≤ d − 1. Hence,

by Lemma 2.6 again, Supp(Ei,d−1−i
2 ) is finite for all 0 ≤ i ≤ d − 1 and the

conclusion follows.
Next, with the same method as in the proof of (i) we get an exact sequence

Hd−1
I (M, Rn) → Hd−1

I (M, N ) → Hd
I (M, L).

Since Supp(Hd−1
I (M, Rn)) is a finite set by the conclusion above and Hd

I (M, L)

is Artinian by (i), it follows that Supp(Hd−1
I (M, N )) is finite as required. �	

Proof of Theorem 5.1(b). Let d = dim(R). Let s be the least integer satisfying one
of three equivalent conditions in Theorem 5.1(a). Then, by Lemma 5.4, we have
s < d −1. It follows from Theorem 4.1 that in order to prove max{r, γ } ≤ s, where
r = gdepth(IM , N ) and

γ = sup{pdRp
(Mp) | p ∈ Supp(N/IM N ), dim(R/p) ≥ 2},

we have only to show that γ ≤ s. Indeed, assume that γ > s. Then there exists p ∈
Supp(N/IM N ) such that dim(R/p) ≥ 2 and pdRp

(Mp) > s. Therefore we get by
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Eisenbud [5, Corollary 19.5] that Tor
Rp

s+1(Mp, k(p)) �= 0. So Exts+1
R (M, R/p)p �= 0

by Bruns and Herzog [3, Proposition 1.3.1]. It follows by Kaplansky [10, Theorem
144] that Supp(Exts+1

R (M, R/p)) is an infinite set. On the other hand, since IM ⊆ p,
we get by Lemma 2.1 that Hs+1

I (M, R/p) = Exts+1
R (M, R/p). It follows that

Supp(Hs+1
I (M, R/p)) is infinite. This contradicts with the choice of s. Thus γ ≤ s

as required. �	
Remark 5.5. (i) In general, there does not exist the integer s in Theorem 5.1(a) if
pdR(M) = +∞. For example, let k be a field and R = k[[x, y, u, v]]/a, where
a = (x2, y2). Set p = (x, y)/a. It is clear that Rp is not a regular local ring. Hence
pdRp

(k(p)) = injdRp
(k(p)) = +∞, where injdRp

(k(p)) is the injective dimension
of Rp-module k(p) = Rp/pRp. Now, let M = N = R/p and I = p. Hence

pdR(M) = injdR(N ) = +∞ and Ext j
R(M, N )p = Ext j

Rp
(k(p), k(p)) �= 0 for

all j ≥ 0. Thus Supp(H j
I (M, N )) = Supp(Ext j

R(M, N )) is an infinite set for all
j ≥ 0.
(i i) We cannot replace the condition that p runs through the set Supp(N ) in
statement (i i i) of Theorem 5.1(a) by the condition that p runs through the set
Ass(N ). Indeed, let k be a field and R = k[[x, y, u, v]]. Set I = (x, y)R and
M = R/(y), then IM = I . Since R is a regular local ring, pdR(M) < ∞.
Let N = R/((x) ∩ (x2, u) ∩ (x2, y, u2)). Then dim(N ) = 3 and Ass(N ) =
{x R, (x, u)R, (x, y, u)R}. It is clear that y ∈ IM is a generalized regular element of
N , and ann(N/yN ) ⊇ (x2, y). Thus, for any q ∈ Ass(N/yN ) with dim(R/q) ≥ 2,
we haveq ⊇ IM , so that gdepth(IM , N/yN ) = 0. This implies gdepth(IM , N ) = 1.
Moreover, it is easy to see that H0

I (M, R/(x)) = 0, H0
I (M, R/(x, u)) = 0

and dim(H0
I (M, R/(x, y, u))) = 1. Hence Supp(H0

I (M, R/p)) is finite for all
p ∈ Ass(N ). However, we get by Theorem 4.1 that Supp(H1

I (M, N )) is not finite.
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