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Abstract. Let Y be a smooth, connected, projective complex curve. In this paper, we study
the Hurwitz spaces which parameterize branched coverings of Y whose monodromy group
is a Weyl group of type Dd and whose local monodromies are all reflections except one. We
prove the irreducibility of these spaces when Y � P

1 and successively we extend the result
to curves of genus g ≥ 1.

0. Introduction

Let X , X ′ and Y be smooth, connected, projective complex curves of genus ≥ 0 and
let Hd,n(Y ) be the Hurwitz spaces which parameterize degree d simple coverings
of Y with n branch points. The irreducibility of the Hurwitz spaces Hd,n(P1) was
proved by Hurwitz in [9] using a result of Clebsch and Lüroth. Severi’s proof of
the irreducibility of the moduli of curves of genus g was obtained by combining
the Hurwitz’s result with the fact that if d ≥ g + 1 each curve of genus g may be
represented as a degree d simple covering of P

1 (see [18]). Coverings of P
1 simply

branched in all but one point of the discriminant were studied by Natanzon and
Kluitmann, who proved the irreducibility of the corresponding Hurwitz spaces (see
[16,14]). Natanzon’s work was inspired by applications to the theory of comple-
tely integrable Hamiltonian systems. The Hurwitz spaces Ho

d,n(Y ) parameterizing
coverings with full monodromy group Sd of curves of genus ≥ 1 were studied by
Graber et al. [8]. They proved in [8] the irreducibility of these spaces for n ≥ 2d.
Kanev in [12] sharpened this result and moreover he extended it to coverings which
are simply branched in all but one point of the discriminant. Fixing the branching
data of special point, i.e, a partition e = (e1, . . . , er ) of d where e1 ≥ · · · ≥ er , he
obtained the Hurwitz spaces Ho

d,n,e(Y ) parametrizing coverings with monodromy
group Sd , simply branched in n points and ramified with multiplicities e1, . . . , er

over one addition point. Kanev proved that they are irreducible if n ≥ 2d − 2. The
author sharpened the latter result proving in [19] the irreducibility of Ho

d,n,e(Y ) for

n + |e| ≥ 2d where |e| = ∑r
i=1(ei − 1).

We notice that the results above concern Hurwitz spaces of coverings whose
monodromy group is the symmetric group Sd . It is natural to ask what happens
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if one replaces Sd with another Weyl group. Coverings with monodromy group a
Weyl group are interesting because they appear in the study of spectral curves and
of Prym–Tyurin varieties (see [5,10,11]). Branched coverings with monodromy
group a Weyl group were studied by Biggers and Fried in [1], by Kanev in [13] and
by the author in [20,21]. Biggers and Fried proved the irreducibility of Hurwitz
spaces that parameterize coverings of P

1, with monodromy group a Weyl group
of type Dd , whose local monodromies are all reflections. Kanev generalized the
result to Hurwitz spaces parameterizing Galois coverings of P

1 whose Galois group
is an arbitrary Weyl group. We in [20] were interesting in coverings of Y whose
monodromy group is a Weyl group of type Bd and whose local monodromies
are all reflections except one. We verified the irreducibility of the corresponding
Hurwitz spaces when Y � P

1. We proved that, in the case in which among the local
monodromies there are both reflections with respect to long roots and reflections
with respect to short roots, the result can be generalized to curves of genus ≥ 1
under the hypothesis ñ +|e| ≥ 2d, where ñ is the number of the local monodromies
that are reflections with respect to long roots. We completed the study of coverings
with monodromy group W (Bd) in [21] showing that, in the case of one special fiber
and all other local monodromies being reflections with respect to long roots, the
Hurwitz spaces are not irreducible and furthermore we showed that if ñ +|e| ≥ 2d
they have 22g − 1 connected components where g = g(Y ).

In this paper, we study branched coverings X →π X ′ →f
Y , whose monodromy

group is a Weyl group of type Dd , satisfying the following: π is a degree 2 étale
covering and f is a degree d ≥ 3 covering, with monodromy group Sd , branched in
n + 1 points, n > 0 of which are points of simple branching while one is a special
point whose local monodromy has cycle type e. We first prove the irreducibility of
corresponding Hurwitz spaces when Y � P

1 (cf. Theorem 1) and then we extended
the result to curves of genus ≥ 1 (cf. Theorem 2). In order to generalize the result
obtained for P

1 to curves of genus ≥ 1, we make use of the Theorem 1 of [19]
that states the irreducibility of the Hurwitz spaces Ho

d,n,e(Y ) under the hypothesis
n + |e| ≥ 2d. Because of this the Theorem 2 is verified under the same hypothesis.
Our result generalizes the one of Biggers and Fried, namely we allow one special
fiber.
Conventions. Here the natural action of Sd on {1, . . . , d} is on the right and we
write iσ for i ∈ {1, . . . , d} and σ ∈ Sd .

1. Preliminaries

In this section, we recall some notions on the Weyl groups of type Bd and Dd and
on the braid moves. Moreover, we introduce the Hurwitz spaces that will be object
of our study. The references for the material on the Weyl groups are [3,4]. One can
look [2,6,9,17] and [12] for the material on the braid moves.

1.1. Weyl groups of type Bd and Dd

Let {ε1, . . . , εd}be the standard base of R
d and let R be the root system {± εi , ± εi ±

ε j : 1 ≤ i, j ≤ d}. The generators of the Weyl group of type Bd , that we denote
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by W (Bd), are the reflections with respect to the short roots εi , i = 1, . . . , d, and
to long roots εi − ε j , 1 ≤ i < j ≤ d. The Weyl group of type Dd is the subgroup
of W (Bd) generated by the reflections with respect to the long roots ε1 − εi and
ε1 + εi , 2 ≤ i ≤ d. We denote it by W (Dd). The reflection sεi interchanges εi

and −εi while unchanging each εh with h �= i . The reflection sεi −ε j interchanges
εi and ε j , −εi and −ε j , leaving unchanged εh for each h �= i, j . Consequently,
the elements of the Weyl group W (Bd) operate on {± ε1, . . . ,± εd} permuting the
elements. If we identify {± ε1, . . . ,± εd} with {± 1, . . . ,± d} by the map that
transforms ± εi into ± i and if we ignore the sign-changes, we see that each element
w ∈ W (Bd) determines a permutation of the indexes 1, . . . , d. This permutation
can be expressed in the usual way as a product of disjoint cycles. Let (i1i2 . . . ie) be a
such cycle. Then w sends {+εi j ,−εi j } to {+εi j+1 ,−εi j+1}, j = 1, . . . , e−1, and
{+εie ,−εie } to {+εi1 ,−εi1}. The cycle (i1 . . . ie) is called positive if we(εi1) = εi1

and negative if we(εi1) = −εi1 . The lengths of these disjoint cycles together with
their signs give a set of positive or negative integers called the signed cycle-type of
w. It is well known that two elements of W (Bd) are conjugate if and only if they
have the same signed cycle-type.

Definition 1. We call positive cycle of the form (i1 . . . ie) each element w ∈ W (Bd)

satisfying the following: w sends {+ εi j ,−εi j } to {+ εi j+1 ,−εi j+1}, j = 1, . . . , e
where ie+1 := i1, leaving unchanged εh for each h /∈ {i1, . . . , ie}, 1 ≤ h ≤ d,
and moreover we(εi1) = εi1 . The integer e is called the length of the cycle w.
Two positive cycles in W (Bd) of the form (i1 . . . ie) and (h1 . . . hl) are disjoint if
(i1 . . . ie) and (h1 . . . hl) are disjoint cycles of Sd .

The action of W (Bd) on {± εi : i = 1, . . . , d} allows us also to define an injec-
tive homomorphism τ from W (Bd) into S2d that sends sεi −ε j to (i j)(−i − j),
sεi to (i − i) and sεi +ε j = sεi sε j sεi −ε j to (i − j)(−i j). A positive cycle
of the form (i1 . . . ie) corresponds in S2d to a product of two disjoint e-cycles, ss′,
which move the indexes {±i1, . . . ,±ie} and are such that if s sends i j to i j+1 (i j

to −i j+1) then s′ sends −i j to −i j+1 (resp. −i j to i j+1), where ±ie+1 := ±i1.
Let (Z2)

d be the set of the functions from {1, . . . , d} to Z2 equipped with the
sum operation. We write zi j for the function of (Z2)

d defined as

zi j (i) = zi j ( j) = z and zi j (h) = 0̄ for each h �= i, j and z ∈ Z2

and write 1̄i ...k for the function of (Z2)
d which sends to 1̄ only the indexes i . . . k.

Let � be the homomorphism from Sd in Aut ((Z2)
d) which assigns to t ∈ Sd

�(t) ∈ Aut ((Z2)
d) where

[�(t) z′] ( j) := z′( j t ) for each z′ ∈ (Z2)
d .

Let (Z2)
d ×s Sd be the semidirect product of (Z2)

d and Sd through the homomor-
phism �. Given (z′; t1), (z′′; t2) ∈ (Z2)

d ×s Sd we let

(z′; t1) (z′′; t2) := (z′ + �(t1)z
′′; t1t2).

It is easy to check that it is possible to define an isomorphism � from W (Bd)

to (Z2)
d ×s Sd which sends sεi −ε j to (0; (i j)), sεi to (1̄i ; id) and sεi +ε j to
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(1̄i j ; (i j)). In particular, the isomorphism � sends a positive cycle of the form
(i1i2 . . . ie) to an element of type (1̄ih ...ik ; (i1i2 . . . ie)) where {ih, . . . , ik} ⊆
{i1, i2, . . . , ie} and �{ih, . . . , ik} is either even or equal to 0.

It follows from what we have said that W (Dd) is isomorphic to the subgroup
of (Z2)

d ×s Sd generated by the elements (0; (1 i)) and (1̄1i ; (1 i)), 2 ≤ i ≤ d.
Therefore elements of type (1̄i ...h; id), where �{i, . . . , h} is odd, do not belong to
W (Dd), while positive cycles and products of positive cycles belong to W (Dd).

Definition 2. Let e = (e1, . . . , er ) be a partition of d where e1 ≥ · · · ≥ er ≥ 1.
We denote by C the conjugate class of (Z2)

d ×s Sd containing elements of type
(zi j ; (i j)) and by Ce the conjugate class of (Z2)

d ×s Sd ∼= W (Bd) containing
elements that are product of r disjoint positive cycles whose lengths are given by
the elements of the partition e.

From now on we will use (a; ξ) to denote an element in Ce. Note that ξ is the
permutation that (a; ξ) determines on the indexes 1, . . . , d and ξ has cycle type e.

Observation 1. Let (a; ξ) ∈ Ce and let ξ = ξ1 · · · ξr where the ξi are disjoint
cycles and ξi is a ei -cycle. Let i k1 , i k2 , . . . , i ksi be the indexes moved by ξi that a
sends to 1̄ and let

ξi =
(
. . . i k1 i k1+1 . . . i k2−1 i k2 . . . i k(si −1) i k(si −1)+1 . . . i ksi −1 i ksi . . .

)
.

If we conjugate (a; ξ) with (1̄
i
k(si −1)+1

... i ksi −1 i ksi
; id) we obtain

(
1̄

i
k(si −1)+1

... i ksi −1 i ksi
+ a + 1̄

i
k(si −1) ... i ksi −1; ξ

)

where a′ = 1̄
i
k(si −1)+1

... i ksi −1 i ksi
+ a + 1̄

i
k(si −1) ... i ksi −1 is a function which sends

to 1̄ the same indexes sent to 1̄ by a except i ksi and i k(si −1) . Hence, if we conjugate
(a′; ξ) with

(
1̄

i
k(si −3)+1 ··· i

k(si −2)−1
i
k(si −2) ; id

) (
1̄

i
k(si −5)+1 ··· i

k(si −4)−1
i
k(si −4) ; id

)

· · · (
1̄i k1+1 ... i k2−1 i k2 ; id

)

we obtain a new element (b; ξ) belonging to Ce such that b is a function which
sends to 0̄ all indexes of ξi . If we proceed in this way for each i = 1, . . . , r we
obtain the element (0; ξ).

Note that the preceding argument is a check of the fact that (a; ξ) and (0; ξ)

belong to the same conjugate class and moreover it shows that if s is a permutation
of Sd with cycle type e then (0; s) belong to Ce.

1.2. The Hurwitz spaces HW (Dd ), n, e (Y )

We assume throughout what follows that d is an integer greater or equal to 3 and n
is a positive integer.
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Definition 3. An ordered sequence (t1, . . . , tn; λ1, µ1, . . . , λg, µg) of elements
of (Z2)

d ×s Sd � W (Bd) such that ti �= (0; id) for each i = 1, . . . , n
and t1 · · · tn = [λ1, µ1] · · · [λg, µg] is called a Hurwitz system with values in
(Z2)

d ×s Sd . The subgroup of (Z2)
d ×s Sd generated by ti , λk, µk with

i = 1, . . . , n and k = 1, . . . , g is called the monodromy group of the Hurwitz
system. Note that if g = 0 the Hurwitz systems (t1, . . . , tn; λ1, µ1, . . . , λg, µg)

are of the form (t1, . . . , tn) and t1 · · · tn = (0; id).

Definition 4. Two Hurwitz systems with values in (Z2)
d ×s Sd � W (Bd),

(t1, . . . , tn; λ1, µ1, . . . , λg, µg) and (t̃1, . . . , t̃n; λ̃1, µ̃1, . . . , λ̃g, µ̃g), are called
equivalent if there exists s ∈ (Z2)

d ×s Sd such that t̃i = s−1 ti s, λ̃k = s−1 λk s
and µ̃k = s−1 µk s for each i = 1, . . . , n, k = 1, . . . , g. The equivalence class
containing (t1, . . . , µg) is denoted by [t1, . . . , µg].

Let X, X ′ and Y be smooth, connected, projective complex curves of genus ≥0.
In this paper, we work with branched coverings f̃ of Y such that f̃ = f ◦ π where
π : X → X ′ is a degree 2 unramified covering and f : X ′ → Y is a degree d
branched covering.

Definition 5. Two coverings X1 →π1 X ′
1 →f1 Y and X2 →π2 X ′

2 →f2 Y are called equiva-
lent if there exist two biholomorphic maps p : X1 → X2 and
p′ : X ′

1 → X ′
2 such that p′ ◦ π1 = π2 ◦ p and f2 ◦ p′ = f1. The equiva-

lence class containing the covering X →π X ′ →f Y is denoted by [X →π X ′ →f Y ].
Let e = (e1, . . . , er ) be a partition of d where e1 ≥ · · · ≥ er ≥ 1. We write

HW (Dd ), n, e (Y ) for the Hurwitz space that parameterizes equivalence classes of

coverings X →π
X ′ →f

Y , whose monodromy group is W (Dd), satisfying the
following:
π is a degree 2 unramified covering and f is a degree d covering, with monodromy
group Sd , branched in n +1 points, n of which are points of simple branching while
one is a special point whose local monodromy has cycle type e.

Let b0 ∈ Y and let g be the genus of Y . From now on we will denote by D and
by m : π1(Y − D, b0) → S2d respectively the branch locus and the monodromy
homomorphism associated to the covering f ◦ π . The image via the monodromy
homomorphism m of a standard generating system for π1(Y − D, b0) determines
an equivalence class [t1, . . . , tn+1; λ1, µ1, . . . , λg, µg] of Hurwitz systems with
values in (Z2)

d ×s Sd and monodromy group W (Dd) such that n among the t j

belong to C and one belongs to Ce. We denote by AW (Dd ), n, e, g the set of all
the equivalence classes, [t1, . . . , tn+1; λ1, µ1, . . . , λg, µg], of Hurwitz systems
as above. Note that when g = 0 we write AW (Dd ),n, e for AW (Dd ),n, e, 0.

Let Y (n+1) be the (n + 1)-fold symmetric product of Y and let 
 be the codi-
mension 1 locus of Y (n+1) consisting of non simple divisors. We write δ to denote
the map HW (Dd ), n, e (Y ) → Y (n+1) − 
 which assigns to each equivalence

class [X →π X ′ →f
Y ] the branch locus D of X →π X ′ →f

Y . It is well known,
there is a unique topology on HW (Dd ), n, e (Y ) such that δ is a topological cove-
ring map (see [7]). By Riemann’s existence theorem we can identify the fiber of
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δ over D with AW (Dd ), n, e, g . Therefore the braid group π1(Y (n+1) − 
, D) acts
on AW (Dd ), n, e, g . If this action is transitive the Hurwitz space HW (Dd ), n, e (Y ) is
connected.

1.3. Braid moves

Let Y be a smooth, projective complex curve of genus ≥ 1. The generators of the
braid group π1(Y (n+1) − 
, D) are the elementary braids σ j with j = 1, . . . , n
and the braids ρik, τik with 1 ≤ i ≤ n + 1 and 1 ≤ k ≤ g (see [2,6,17]). To each
generator σ j , ρik , τik is associated a pair of braid moves: σ ′

j and σ ′′
j = (σ ′

j )
−1,

ρ′
ik and ρ′′

ik = (ρ′
ik)

−1, τ ′
ik and τ ′′

ik = (τ ′
ik)

−1, respectively (see [9,12]). The
moves σ ′

j and σ ′′
j are called elementary moves while ρ′

ik, ρ′′
ik, τ ′

ik, τ ′′
ik are simply

called braid moves.
The elementary moveσ ′

j transforms (see [9]) [t1, . . . , t j−1, t j , t j+1, . . . , tn; λ1,

µ1, . . . , λg, µg] to

[
t1, . . . , t j−1, t j t j+1t−1

j , t j , . . . , tn; λ1, µ1, . . . , λg, µg

]

and then σ ′′
j transforms [t1, . . . , t j−1, t j , t j+1, . . . , tn; λ1, µ1, . . . , λg, µg] to

[t1, . . . , t j−1, t j+1, t−1
j+1t j t j+1, . . . , tn; λ1, µ1, . . . , λg, µg].

The action of braid moves ρ′
1k and τ ′′

1k is described by the following proposition.

Proposition 1. ([12], Corollary 1.9) Let (t1, . . . , tn; λ1, µ1, . . . , λg, µg) be a Hur-
witz system. Let uk = [λ1, µ1] · · · [λk, µk] for k = 1, . . . , g and let u0 = id. The
following formulae hold:

(i) For ρ′
1k :

ρ′
1k : µk → µ′

k = (b−1
1 t−1

1 b1)µk,

where b1 = uk−1λk

(ii) For τ ′′
1k :

τ ′′
1k : λk → λ′′

k = (u−1
k−1t−1

1 uk−1)λk .

In particular,

τ ′′
11 : λ1 → t−1

1 λ1.

2. Irreducibility of HW(Dd), n,e (Y )

In this section, we prove the irreducibility of HW (Dd ), n, e (Y ) when Y � P
1

and successively we extend the result to curves of genus ≥ 1 under the hypothesis
n + |e| ≥ 2d where |e| = ∑r

i=1(ei − 1).
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Definition 6. We call two Hurwitz systems with values in (Z2)
d ×s Sd � W (Bd)

braid-equivalent if one is obtained from the other by a finite sequence of braid moves
σ ′

j , ρ′
ik, τ ′

ik, σ ′′
j , ρ′′

ik, τ ′′
ik where 1 ≤ j ≤ n −1, 1 ≤ i ≤ n and 1 ≤ k ≤ g. We say

braid-equivalent two ordered n-tuples (or sequences) of elements in (Z2)
d ×s Sd ,

(t1, . . . , tn) and (t̃1, . . . , t̃n), if (t̃1, . . . , t̃n) is obtained from (t1, . . . , tn) by a finite
sequence of braid moves of type σ ′

j , σ ′′
j . We denote the braid equivalence by ∼.

Lemma 1. Let (t1, . . . , ti , ti+1, . . . , tn) be a sequence of elements in (Z2)
d ×s Sd

such that ti+1 = t−1
i . Then, acting with elementary moves σ ′

j and their inverses,
we can move to the left and to the right the pair (ti , ti+1) leaving unchanged the
other elements of the sequence.

Proof. The lemma follows from the braid equivalences (t, ti , ti+1) ∼ (ti , t−1
i t ti ,

ti+1) ∼ (ti , ti+1, t) and (ti , ti+1, t) ∼ (ti , ti+1t t−1
i+1, ti+1) ∼ (t, ti , ti+1). ��

We now enunciate two results that we will use late on.

Lemma 2. ([12], Main Lemma 2.1) Let (t1, ..., tn; λ1, µ1, ..., λg, µg) be a Hurwitz
system with values in (Z2)

d ×s Sd � W (Bd). Suppose that ti ti+1 = (0; id). Let H
be the subgroup of (Z2)

d ×s Sd generated by {t1, ..., ti−1, ti+2, ..., tn, λ1, µ1, ...,

λg, µg}. Then for every h ∈ H the given Hurwitz system is braid equivalent to
(

t1, ..., ti−1, h−1 ti h, h−1 ti+1 h, ti+2, ..., tn; λ1, µ1, ..., λg, µg

)
.

From now on we associate to the partition e = (e1, . . . , er ), where e1 ≥ · · · ≥
er ≥ 1, the following element in Sd

(12 . . . e1)(e1 + 1 . . . e1 + e2) · · · ((e1 + · · · + er−1) + 1 . . . d) . (1)

Following [15] we also denote the permutation (1) by

ε = (11 21 . . . (e1)1)(12 22 . . . (e2)2) · · · (1r 2r . . . (er )r ).

We write qi for the cycle (1i 2i . . . (ei )i ), Zi for the sequence ((1i 2i ), (1i 3i ), . . . ,

(1i (ei )i )) and Z for the concatenation Z1 Z2 . . . Zr . Moreover, we use |e| to denote∑r
i=1(ei − 1).

Proposition 2. ([14] or [15] pp. 369–370) Let (t ′1, . . . , t ′n) be a sequence of trans-
positions such that t ′1 · · · t ′n = ε and < t ′1, . . . , t ′n > is transitive. Then (t ′1, . . . , t ′n)

is braid equivalent to

(Z , t ′′N+1, . . . , t ′′n )

where n − N ≡ 0 (mod 2) and

(i) If r = 1 t ′′i = (11 21) for each i ≥ N + 1,
(ii) If r > 1 then

(t ′′N+1, . . . , t ′′n )=((1112), (1112), (11 13), (11 13), . . . , (111r ), . . . , (11 1r ))
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where each (11 1i ) appears twice if 2 ≤ i ≤ r − 1 and (11 1r ) appears an even
number of times.

In what follows, we use Z̃i , i = 1, . . . , r , to denote the sequence ((0; (1i 2i )),

(0; (1i 3i )), . . . , (0; (1i (ei )i ))) and Z̃ to denote the concatenation Z̃1 Z̃2 . . . Z̃r .

Proposition 3. Let [ t ] = [t1, . . . , tn+1] be an equivalence class of Hurwitz systems
with values in (Z2)

d ×s Sd � W (Bd) such that n among the t j belong to C, one
belongs to Ce and moreover if t j = (z′; t ′j ), j = 1, . . . , n +1, the group generated
by the permutations t ′j is all Sd . Then [ t ] is braid-equivalent to a class of the form:

(i) if r > 1

[t1] =
[

Z̃ , (0; (1112)), (0; (1112)), . . . , (0; (111r−1)), (0; (111r−1)) ,

(z1
111r

; (111r )), . . . , (z
s
111r

; (111r )), (0; ε−1)
]

where each (0; (11 1i )), 2 ≤ i ≤ r − 1, appears twice, the zh are elements of
Z2 and s is an even positive integer,

(ii) if r = 1

[ t2 ] =
[

Z̃1, (z1
1121

; (1121)), . . . , (z
s
1121

; (1121)), (0; ε−1)
]

where the zh are elements of Z2 and s is an even positive integer.

Proof. Let (a; ξ) be the element of t that belongs to Ce. With elementary moves
σ ′

i we move (a; ξ) to the place n + 1. Because (0; ε−1) and (a; ξ) belong to the
same conjugate class of (Z2)

d ×s Sd (see Observation 1), there exists one element
(z̃; s) ∈ (Z2)

d ×s Sd so that (z̃; s)−1(a, ξ)(z̃; s) = (0; ε−1). Hence conjugating
each element of our Hurwitz system by (z̃; s) we obtain a class braid-equivalent to
[ t ] of the form [t̂1, . . . , t̂n, (0; ε−1)]. Let t̂ j = (∗; t ′′j ). From the equality t̂1 · · · t̂n =
(0; ε) it follows that t ′′1 · · · t ′′n = ε and so 〈t ′′1 , . . . , t ′′n 〉 = Sd .

At this point we discuss one at a time the cases: r > 1 and r = 1.
Case r > 1. By Proposition 2 [t̂1, . . . , t̂n, (0; ε−1)] is braid-equivalent to a class
of the form

[ t̃1 ] =
[ (

a1
1121

; (1121)
)
,

(
b1

1131
; (1131)

)
, . . . ,

(
e1

11(e1)1
; (11(e1)1)

)
, . . . ,

(
ar

1r 2r
; (1r 2r )

)
,

(
br

1r 3r
; (1r 3r )

)
, . . . ,

(
er

1r (er )r
; (1r (er )r )

)
,
(
z2

1112
; (1112)

)
,

(
(z2)′1112

; (1112)
)
, . . . ,

(
zr−1

111r−1
; (111r−1)

)
,
(
(zr−1)′111r−1

; (111r−1)
)

,

(
(zr )1

111r
; (111r )

)
,. . .,

(
(zr )s

111r
; (111r )

)
, (0; ε−1)

]

where ai , bi , . . . , ei , z j , (z j )′, (zr )h belong to Z2 and s is an even positive
integer.

From the equality

(a1
1121

;(1121)) · · ·
(

er
1r (er )r

; (1r (er )r )
)
(z2

1112
; (1112))· · ·

(
(zr )s

111r
; (111r )

)=(0;ε)
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one deduces that: ai = bi = · · · = ei = 0̄, for each i = 1, . . . , r , while
z j + (z j )′ ≡ 0̄ (mod 2), for each j = 2, . . . , r − 1 and thus z j = (z j )′.

Now we show that [ t̃1 ] is the required class. This is obvious if z j = 0̄ for each
j = 2, . . . , r − 1. If instead z j = 1̄ for some j ∈ {2, . . . , r − 1}, we observe that
in t̃1 in addition to the pair ((1̄111 j ; (111 j )), (1̄111 j ; (111 j ))) and to (0; ε−1) there
are elements of type (zα β; (α β)) where the indexes α, β are moved both either
by q j or by a cycle different from q j . So it is sufficient to conjugate any element
of t̃1 with (1̄1 j ...(e j ) j ; id), where 1̄1 j ...(e j ) j is the function which sends to 1̄ only
the indexes moved by q j , to replace the pair ((1̄111 j ; (111 j )), (1̄111 j ; (111 j ))) by
((0; (111 j )), (0; (111 j ))) leaving unchanged each other element of t̃1. In fact

(1̄1 j ...(e j ) j ; id) (1̄111 j ; (111 j )) (1̄1 j ...(e j ) j ; id)

= (1̄1 j ...(e j ) j + 1̄111 j + 1̄112 j ...(e j ) j ; (111 j ))

= (0; (111 j )),

while

(1̄1 j ...(e j ) j ; id) (0; ε−1) (1̄1 j ...(e j ) j ; id)

= (1̄1 j ...(e j ) j + �(ε−1)(1̄1 j ...(e j ) j ); ε−1)

= (1̄1 j ...(e j ) j +1̄(e j ) j ...2 j 1 j ; ε−1)=(0; ε−1).

Analogously one checks that

(1̄1 j ...(e j ) j ; id) (zα β; (α β)) (1̄1 j ...(e j ) j ; id) = (zα β; (α β)).

So reasoning for each j ∈ {2, . . . , r − 1} such that z j = 1̄ we obtain a Hurwitz
system belonging to [ t̃1 ] that is of same type of t1.
Case r = 1. By Proposition 2 [t̂1, . . . , t̂n, (0; ε−1)] is braid-equivalent to

[ t̃2 ] = [(a1
1121

; (1121)), (b1
1131

; (1131)), . . . , (e1
11(e1)1

; (11(e1)1)),

(z1
1121

; (1121)), . . . , (zs
1121

; (1121)), (0; ε−1)]
where a1, b1, . . . , e1, zh belong to Z2 and s is an even positive integer.

From the equality

(a1
1121

; (1121)) · · · (e1
11(e1)1

; (11(e1)1)) (z1
1121

; (1121)) · · · (zs
1121

; (1121)) = (0; ε)

one deduces that: a1 = b1 = · · · = e1 and a1 + z1 + · · · + zs ≡ 0̄ (mod 2).
If a1 = b1 = · · · = e1 = 0̄ the equivalence class of Hurwitz systems so obtai-

ned is one required. Then we suppose that a1 = b1 = · · · = e1 = 1̄. The relation
a1 + z1 + · · · + zs ≡ 0̄ (mod 2) assures that the zh equal to 1̄ are odd in number.
Because of this and since s is even, we know that in t̃2 among the elements of type
(zh

1121
; (1121)) there is at least one pair of the form ((1̄1121; (1121)), (0, (1121))).

Because it is not restrictive suppose that the elements of this pair occupy the places
e1 and e1 + 1, to obtain a class as required it is sufficient to use the elementary
moves σ ′′

(e1)1−1, σ ′′
(e1)1

, σ ′′
(e1)1−2, σ ′′

(e1)1−1, . . . , σ
′′
2 , σ ′′

3 and then Lemma 1. ��

Theorem 1. The Hurwitz space HW (Dd ), n, e (P1) is irreducible.
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Proof. Since the Hurwitz space HW (Dd ), n, e (P1) is smooth in order to prove its
irreducibility it suffices to show that it is connected and then that the braid group
π1(Y (n+1) −
, D) acts transitively on AW (Dd ),n, e. To do this it is enough to show
that, acting by elementary moves σ ′

j and their inverses, it is possible to replace any
equivalence class in AW (Dd ),n, e with the normal form:

(i) if r > 1

[T1] = [Z̃ , (0; (1112)), (0; (1112)),. . ., (0; (111r−1)), (0; (111r−1)), (1̄111r ; (111r )),

(0; (111r )), (1̄111r ; (111r )), (0; (111r )), (0; (111r )), . . . , (0; (111r )), (0; ε−1)]
where each (0; (11 1i )), 2 ≤ i ≤ r − 1, and (1̄111r ; (111r )) appear twice while
(0; (111r )) appears an even number of times,

(ii) if r = 1

[T2]=[Z̃1, (1̄1121; (1121)), (1̄1121; (1121)), (0; (1121)),. . ., (0; (1121)), (0; ε−1)]
where (1̄1121; (1121)) appears twice while (0; (1121)) appears an even number of
times.

The equivalence classes belonging to AW (Dd ),n, e satisfy all the hypothesis of
Proposition 3 and therefore each class in AW (Dd ),n, e is braid-equivalent to a class
of the form either [ t1 ] or [ t2 ] depending on whether r > 1 or r = 1. Recall that in
AW (Dd ),n, e there are equivalence classes of Hurwitz systems whose monodromy
group is W (Dd) and moreover the conjugation with elements of W (Bd) and the
action of elementary moves leave unchanged the monodromy group. Then we can
affirm that each class in AW (Dd ),n, e is braid-equivalent, depending on whether
r > 1 or r = 1, to a class of the form either [ t1 ] where among the elements of
t1 there is a pair of type ((1̄111r ; (111r )), (0; (111r ))) or [ t2 ] where certainly one
zh is equal to 1̄.

In fact if z1 = · · · = zs = 0̄ the monodromy group of t1 and t2 is contained
properly in W (Dd). The same thing one can say on the monodromy group of
t1 if z1 = · · · = zs = 1̄. In fact it is enough conjugate each element of t1 by
(1̄1r ...(er )r ; id) (see proof of Proposition 3) to reduce us to the case z1 = · · · =
zs = 0̄.

At this point we analyze separately the cases: r > 1 and r = 1.
Case r > 1. By the preceding argument we know that each class of AW (Dd ),n, e is
braid-equivalent to a class of type [Z̃ , (0; (1112)), (0; (1112)), . . . , (0; (111r−1)),

(0; (111r−1)), (z1
111r

; (111r )), . . . , (zs
111r

; (111r )), (0; ε−1)] where there are both

(1̄111r ; (11 1r )) and (0; (11 1r )). From the equality

Z̃ (0; (1112)) · · · (0; (111r−1)) (z1
111r

; (111r )) · · · (zs
111r

; (111r )) = (0; ε)

we deduce that z1 + · · · + zs ≡ 0̄ (mod 2) and so the number of zh = 1̄ is
even and greater or equal to 2. Let 2m + 2 be the number of the elements of type
(1̄111r ; (11 1r )) in t1. With elementary moves we can replace these elements as
following

[. . . , (0; (11 1r−1)), (1̄111r ; (11 1r )), . . . , (1̄111r ; (111r )), (1̄111r ; (11 1r )),

(0; (111r )), (1̄111r ; (111r )), (0; (11 1r )), (0; (111r )),. . ., (0; (111r )), (0; ε−1)].
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Hence using the moves σ ′∑
i ei +r−4, σ ′

(
∑

i ei +r−4)+1, . . . , σ ′
(
∑

i ei +r−4)+2m−1

and Lemma 1 we can replace the sequence ((0; (11 1r−1)), (1̄111r ; (11 1r )), . . . ,

(1̄111r ; (11 1r )), (1̄111r ; (11 1r )), (0; (11 1r ))) by

((0; (11 1r−1)), (1̄1r−11r ; (1r−1 1r )), . . . , (1̄1r−11r ; (1r−1 1r )),

(1̄111r ; (11 1r )), (0; (11 1r ))).

Now applying σ ′′
(
∑

i ei +r−4)+2m, σ ′′
(
∑

i ei +r−4)+2m−1, . . . , σ
′′
(
∑

i ei +r−4)+1 we
obtain that the sequence above is braid-equivalent to

((0; (111r−1)), (1̄111r ; (111r )), (0; (111r−1)), . . . , (0; (111r−1)), (0; (111r ))).

Using the braid moves σ ′′
(
∑

i ei +r−4)+2m+1, . . . , σ
′′
(
∑

i ei +r−4)+2 and Lemma 1 we
replace the our sequence by

((0; (111r−1)), (0; (1r−11r )), . . . , (0; (1r−11r )), (1̄111r ; (111r )), (0; (111r ))).

At this point, to complete the proof in the case r > 1, we make use of the braid
moves σ ′∑

i ei +r−4, . . . , σ ′
(
∑

i ei +r−4)+2m−1 and of Lemma 1.

Case r = 1. We have already observed that each equivalence class in AW (Dd ),n, e

is braid-equivalent to a class of the form [Z̃1, (z1
11 21

; (11 21)), . . . , (zs
1121

; (1121)),

(0; ε−1)] where there is certainly one (1̄1121; (1121)). It follows from the relation

Z̃1 (z1
1121

; (1121)) · · · (zs
1121

; (1121)) = (0; ε)

that the number of elements of type (1̄1121; (1121)) is even and greater or equal to 2.
We write 2m+2 for the number of these elements. With suitable elementary moves
we can replace to the right of (0; (11(e1)1)) the elements of type (1̄1121; (1121))

and then we use σ ′
e1−1, σ ′

e1
, . . . , σ ′

e1+2m−2 and Lemma 1 so that results

((0; (11(e1)1)), (1̄1121; (1121)), . . . , (1̄1121; (1121)))

∼ ((0; (11(e1)1)), (1̄(e1)121; ((e1)121)), . . . , (1̄(e1)121; ((e1)121)),

(1̄1121; (1121)), (1̄1121; (1121))).

Applying the elementary moves σ ′′
e1+2m−1, σ ′′

e1+2m−2, . . . , σ
′′
e1

and using
Lemma 1 we obtain that the sequence above is braid-equivalence to

((0; (11(e1)1)), (0; (11(e1)1)),. . ., (0; (11(e1)1)), (1̄1121; (1121)), (1̄1121; (1121))).

By Lemma 1 we can move 2m elements of type (0; (11(e1)1)) to the places
2, . . . , 2m + 1 leaving unchanged the other elements of the Hurwitz system. Now
using the elementary moves σ ′

1, . . . , σ
′
2m and Lemma 1 we obtain a class braid-

equivalent to ours of type
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[Z̃1, (0; (21(e1)1)), . . . , (0; (21(e1)1)), (1̄1121; (1121)), (1̄1121; (1121)), (0; ε−1)].
Hence to complete the proof it is sufficient to apply the moves σ ′

e1−1, σ ′
e1

, . . . ,

σ ′
e1+2m−2 and Lemma 1. ��

Theorem 2. If n + |e| ≥ 2d the Hurwitz space HW (Dd ), n, e (Y ) is irreducible.

Proof. Since HW (Dd ), n, e (Y ) is smooth to prove the theorem it is enough to
show that it is connected. To do this it is sufficient to check that π1(Y (n+1) −

, D) acts transitively on AW (Dd ),n, e, g and then it suffices to prove that each
equivalence class [t1, . . . , tn+1; λ1, µ1, . . . , λg, µg] belonging to AW (Dd ),n, e,g is
braid-equivalent to the normal form:

(i) If r > 1

[T1; (0; id), . . . , (0; id)],
(ii) If r = 1

[T2; (0; id), . . . , (0; id)],
where T1 and T2 are the Hurwitz systems which give the normal forms in Theorem 1.
Step 1. Let t j = (∗; t ′j ), λk = (∗; λ′

k) and µk = (∗;µ′
k), j = 1, . . . , n + 1,

k = 1, . . . , g. By Riemann’s existence theorem the equivalence class of Hur-
witz systems [t ′1, . . . , t ′n+1; λ′

1, . . . , µ
′
g] corresponds to an equivalence class of

coverings belonging to Ho
d,n, e(Y ). Since n + |e| ≥ 2d the Hurwitz space

Ho
d,n, e(Y ) is irreducible (see [19], Theorem 1). Therefore it is possible, acting

by braid moves σ ′
j , ρ′

ik, τ ′
ik and their inverses, to replace [t ′1, . . . , µ′

g] with

[t ′′1 , . . . , t ′′n , ε−1; id, . . . , id]. In this way [t1, . . . , tn+1; λ1, µ1, . . . , λg, µg] re-
sults braid-equivalent to a class of the form [t̃1, . . . , t̃n, (b′; ε−1); (a1; id),

(b1; id), . . . , (ag; id), (bg; id)]. Because (b′; ε−1) and (0; ε−1) belong to the same
conjugate class of (Z2)

d ×s Sd , there exists one element (z′; id) ∈ (Z2)
d ×s Sd such

that (z′; id)(b′; ε−1)(z′; id) = (0; ε−1) (see Observation 1). Conjugating each ele-
ment of our Hurwitz system with (z′; id) we obtain a new system belonging to our
class of type (̂t1, . . . , t̂n, (0; ε−1); (a1; id), (b1; id), . . . , (ag; id), (bg; id)).
Step 2. In step 1 we showed that [t1, . . . , µg] is braid-equivalent to [̂t1, . . . , t̂n,

(0; ε−1); (a1; id), (b1; id), . . . , (ag; id), (bg; id)]. At this point we claim that
it is braid-equivalent to a class of type [t̃1, . . . , t̃n, (0; ε−1); (0; id), . . . , (0; id)].
Once proved this one observes that [t̃1, . . . , t̃n, (0; ε−1)] is the equivalence class of
Hurwitz systems associated to a class of coverings in HW (Dd ), n, e (P1) and so the
proof follows by Theorem 1.

Recall that (ak; id) and (bk; id) are elements of W (Dd). Therefore if ak and
bk are functions different from 0, they send to 1̄ an even number of indexes.
Suppose that a1 is a function different from 0. Let i and j be two indexes sent
to 1̄ by a1. Observe that if, acting by braid moves of type σ ′

l , σ
′′
l , 1 ≤ l ≤

n − 1, we can obtain a class braid-equivalent to ours in which there are both
(1̄i j ; (i j)) and (0; (i j)) then our class is braid-equivalent to a class of the form
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[t̂1, . . . , t̂n, (0; ε−1); (â1; id), (b1; id), . . . , (ag; id), (bg; id)] where â1 is a func-
tion which sends to 1̄ the same indexes sent to 1̄ by a1 except i and j . In
fact, using elementary moves σ ′′

l we can bring to the first place one of two ele-
ments of type (zi j ; (i j)) and then we apply the move τ ′′

11 that transforms (a1; id)

in (zi j ; (i j))(a1; id). Now we move to the first place the other element of type
(z′

i j ; (i j)), where z′ = 1̄ if z = 0̄ and z′ = 0̄ if z = 1̄ and we again act by τ ′′
11.

In this way we replace (zi j ; (i j))(a1; id) with (z′
i j ; (i j)) (zi j ; (i j)) (a1; id) =

(1̄i j ; id) (a1; id) = (1̄i j + a1; id) where â1 = 1̄i j + a1 is a function which sends
i and j to 0̄.

We start showing that [̂t1, . . . , t̂n, (0; ε−1); (a1; id), (b1; id), . . . , (ag; id),

(bg; id)] is braid-equivalent to a class of the form [t̂1, . . . , t̂n, (0; ε−1); (â1; id),

(b1; id), . . . , (ag; id), (bg; id)].
The relation

[(a1; id), (b1; id)] · · · [(ag; id), (bg; id)] = (0; id),

implies that t̂1 · · · t̂n = (0; ε) and then the group generated by the transpositions
corresponding to the t̂ j is all Sd . Hence [̂t1, . . . , t̂n, (0; ε−1)] satisfies all the
hypothesis of Proposition 3 and thus it is braid-equivalent to a class of the form
[ t1 ] or [ t2 ] depending wether r > 1 or r = 1. Note that by transforming
(̂t1, . . . , t̂n, (0; ε−1)) to t1 or t2 we leave unchanged the elements (ak; id) and
(bk; id) (see proof of Proposition 3). Because of this we can affirm that our class is
braid-equivalent to a class of the form [t1; (a1; id), (b1; id), . . . , (ag; id), (bg; id)]
or [t2; (a1; id), (b1; id), . . . , (ag; id), (bg; id)] depending wether r > 1 or r = 1.
We discuss separately the cases: r > 1 and r = 1.
Case r > 1. Note that is not restrictive to suppose that in t1 there are at least
two (1̄111r ; (111r )) and two (0; (111r )). In fact the hypothesis n + |e| ≥ 2d
assures that in t1 there are at least four elements of type (∗; (111r )). Hence if
z1 = · · · = zs and we cancel two among the (∗; (111r )) the group generated
by the remaining elements in (t1; (a1; id), (b1; id), . . . , (ag; id), (bg; id)) is still
W (Dd). Because of this we can by Lemma 2 to replace the pair ((z1

111r
; (111r )),

(z1
111r

; (111r ))) with ((z111r ; (111r )), (z111r ; (111r ))) where z + z1 ≡ 1̄ (mod 2),

it is sufficient to choose h = (1̄1121; id). We discuss at first the case i = 11 and
j �= 1r (in a similar manner one affronts the case i = 1r and j �= 11). If j is
an index moved by the cycle qr in t1 there is the element (0; (1r j)). We move
(0; (1r j)) to the left of one pair of type ((1̄111r ; (111r )), (0; (111r ))). If the ele-
ments of this pair occupy the places h, h + 1, we use σ ′

h−1, σ ′
h to obtain a new

class in which there is the pair ((1̄11 j ; (11 j)), (0; (11 j))). If j is an index moved
by q1 in t1 there is already (0; (11 j)). We move it to the left of one sequence of
type ((0; (111r )), (0; (111r )), (1̄111r ; (111r ))). If the elements of these sequence
occupy the places h, h + 1, h + 2 we use σ ′

h−1, σ ′
h and Lemma 1 to have

((0; (11 j)), (0; (111r )), (0; (111r )), (1̄111r ; (111r )))

∼ ((0; (11 j)), (0; (1r j)), (0; (1r j)), (1̄111r ; (111r )))

and then it is sufficient to apply σ ′
h+1 to obtain a sequence in which there is the

pair ((0; (11 j)), (1̄11 j ; (11 j))). In the end if j is an index moved by a cycle qa ,
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with a �= 1, r , in t1 there is the element (0; (1a j)) and there are both the pair
((0; (1a11)), (0; (1a11))) and the pair ((1̄111r ; (111r )), (0; (111r ))). By Lemma
1, we can move the pair ((0; (1a11)), (0; (1a11))) to the left of the pair ((1̄111r ;
(111r )), (0; (111r ))) and then with suitable elementary moves we bring (0; (1a j))
to the left of ((0; (1a11)), (0; (1a11))). If now (0; (1a j)) is at the place h, we
apply σ ′

h, σ ′
h+2, σ ′′

h+3, σ ′′
h+2 to replace ((0; (1a j)), (0; (1a11)), (0; (1a11)),

(1̄111r ; (111r )), (0; (111r ))) by

((0; (11 j)), (0; (1a j)), (0; (111r )), (1̄111a ; (111a)), (0; (1r 1a))).

At this point to do in way that among the elements of our Hurwitz system there is
the required pair we use σ ′′

h+2, σ ′
h+1. In the end we analyze the case in which i and

j are indexes different from 11 and 1r . We distinguish the case in which i and j are
indexes moved by a same cycle qa from one in which i and j are indexes moved by
two different cycles qa and qb. If i and j are indexes moved by a same cycle qa in t1
there are the elements (0; (1ai)), (0; (1a j)) and the pairs ((0; (1a11)), (0; (1a11))),
((0; (111r )), (0; (111r ))), ((1̄111r ; (111r )), (1̄111r ; (111r ))). Suppose i < j . Using
suitable elementary moves and Lemma 1 we can replace them as following
[. . . , (0; (1ai)), (0; (1a j)), (0; (1a11)), (1̄111r ; (111r )), (1̄111r ; (111r )), (0; (1a

11)), ((0; (111r )), (0; (111r )), . . .]. If now (0; (1ai)) is at the place h we act by
σ ′′

h+1, σ ′′
h , σ ′′

h+5 to replace the sequence above with

((0; (111a)), (0; (11i)), (0; (11 j)), (1̄111r ; (111r )), (1̄111r ; (111r )), (0; (111r )),

(0; (1a1r )), (0; (111r ))). (�)

Note that when a = r the pair ((0; (1a11)), (0; (1a11))) coincides with the pair
((0; (111r )), (0; (111r ))) and so to obtain the sequence (�) one only uses σ ′′

h+1 and
σ ′′

h . When a = 1 in t1 there are already both (0; (11i)) and (0; (11 j)) and thus to
obtain the sequence (�) it is sufficient to move (0; (11i)) to the left of (0; (11 j))
and then to use Lemma 1.

By Lemma 1 we move the pair ((1̄111r ; (111r )), (1̄111r ; (111r ))) to the right of
(0; (11i)), after we act by σ ′

h+1, σ ′
h+2, σ ′

h+4 and again we use Lemma 1 to obtain
that (�) is braid-equivalent to ((0; (1a11)), (0; (11i)), (1̄i1r ; (i1r )), (1̄i1r ; (i1r )),

(0; ( j1r )), (0; (11 j)), (0; (1a1r )), (0; (111r ))). Acting by σ ′′
h+3, σ ′′

h+2, σ ′
h+1 and

using Lemma 1 we can replace the sequence above with

((0; (1a11)), (0; (1r j)), (1̄i j ; (i j)), (1̄i j ; (i j)), (0; (i11)), (0; (11 j)),

(0; (1a1r )), (0; (111r ))).

Now one obtains a sequence braid-equivalent contained the pair ((0; (i j)),
(1̄i j ; (i j))) acting with σ ′

h+4. Observe that the case in which i and j are indexes
moved by two different cycles qa and qb can be reduced at the case just analy-
zed. In fact if i is an index moved by qa and j by qb in t1 there are the ele-
ments (0; (1ai)), (0; (1b j)) and the pairs ((0; (111a)), (0; (111a))), ((0; (111b)),

(0; (111b))). By Lemma 1 we can move to the right of (0; (1ai)) the pair ((0; (111a)),
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(0; (111a))) and to the right of (0; (1b j)) the pair ((0; (111b)), (0; (111b))). If
(0; (1ai)) and (0; (1b j)) occupy respectively the places h and k, we use σ ′

h and σ ′
k

and so we return to the case in which i and j are indexes moved by a same cycle
qa with a = 1.
Case r = 1. We already observed that our class is braid-equivalent to a class
of type [t2; (a1; id), (b1; id), . . . , (ag; id), (bg; id)]. Note that is not restrictive
to suppose that in t2 there is the pair ((1̄1121; (1121)), (1̄1121; (1121))). In fact the
hypothesis n + |e| ≥ 2d assures that in t2 there are at least two elements of type
(zk; (1121)). If z1 = · · · = zs = 0̄ in t2 there are three elements of type (0; (1121)),
so if we cancel two of these the group generated by the remaining elements of
(t2; (a1; id), (b1; id), . . . , (ag; id), (bg; id)) is still W (Dd). Then by Lemma 2
we can replace ((0; (1121)), (0; (1121))) with ((1̄1121; (1121)), (1̄1121; (1121))), it
is sufficient to choose h = (1̄1131; id) (recall that d ≥ 3). Now we check that acting
by elementary moves it is possible to obtain a sequence braid-equivalent to t2 in
which there is the pair ((1̄i j ; (i j)), (0; (i j))). If i is equal either to 11 or to 21 while
j /∈ {11, 21} in t2 there is (0; (11 j)) and there is ((1̄1121; (1121)), (1̄1121; (1121))).
We move (0; (11 j)) to the second place and then use Lemma 1 to move the pair
((1̄1121; (1121)), (1̄1121; (1121))) to its right. Now to obtain the required pair it
is sufficient to act either with σ ′

2, σ ′
1 or with σ ′

2, σ ′
1, σ ′′

3 , σ ′′
2 , σ ′

1 depending
if i is equal to 11 or to 21. If instead the indexes i, j /∈ {11, 21}, in t2 there
are (0; (11i)), (0; (11 j)) and the pair ((1̄1121; (1121)), (1̄1121; (1121))). Suppose
i < j . We move (0; (11i)) and (0; (11 j)) respectively to the second and to the third
place and after we use Lemma 1 to bring the pair ((1̄1121; (1121)), (1̄1121; (1121)))

to the right of (0; (11 j)). Applying σ ′′
1 , σ ′

3, σ ′
4 and using Lemma 1 we have that

the sequence ((0; (1121)), (0; (11i)), (0; (11 j)), (1̄1121; (1121)), (1̄1121; (1121)))

is braid-equivalent to

((0; (11i)), (0; (21i)), (0; (11 j)), (1̄ j21; ( j21)), (1̄ j21; ( j21))).

Now we obtain the required pair using the elementary moves σ ′
2, σ ′

3, σ ′
1.

Till now we proved that both r > 1 and r = 1 the class [̂t1, . . . , t̂n, (0; ε−1);
(a1; id), (b1; id), . . . , (ag; id), (bg; id)] is braid-equivalent to a class of the form
[t̂1, . . . , t̂n, (0; ε−1); (â1; id), (b1; id), . . . , (ag; id), (bg; id)] where â1 is a func-
tion which sends to 1̄ the same indexes sent to 1̄ by a1 except i and j .

We note that [t̂1, . . . , t̂n, (0; ε−1)] is still a class that satisfies the hypothesis
of Proposition 3, so one can proceed for each pair of indexes which â1 sends to
1̄ as one made by the pair (i, j). In this way, after a finite number of steps, we
are able to replace [t̂1, . . . , t̂n, (0; ε−1); (â1; id), (b1; id), . . . , (ag; id), (bg; id)]
with a class of the form [ť1, . . . , ťn2 , (0; ε−1); (0; id), (b1; id), . . . , (ag; id),

(bg; id)].
Now if b1 is a function different from 0 to replace (b1; id) with (0; id) one

proceeds in the same way but using the braid move ρ′
11. Analogously one reasons

when ak is different from 0 and al , bl are equal to 0 for each l ≤ k − 1, but
one uses the braid move τ ′′

1k . In the end if bk is different from 0 and al , bl , ak ,
l ≤ k − 1, are equal to 0, to replace (bk; id) with (0; id) one applies the braid
moves ρ′

1k .
This completes the proof of the theorem. ��
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