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Abstract. In this paper, we investigate an eigenvalue problem for the Dirichlet Laplacian
on a domain in an n-dimensional compact Riemannian manifold. First we give a general
inequality for eigenvalues. As one of its applications, we study eigenvalues of the Laplacian
on a domain in an n-dimensional complex projective space, on a compact complex subman-
ifold in complex projective space and on the unit sphere. By making use of the orthogo-
nalization of Gram—Schmidt (QR-factorization theorem), we construct trial functions. By
means of these trial functions, estimates for lower order eigenvalues are obtained.

1. Introduction

Let M be an n-dimensional compact C* Riemannian manifold with or without
boundary, where the boundary d M of M is assumed to be C°°. It is known that a
large amount of information about the manifold is carried by the spectrum of its
Laplacian. The spectrum of the Laplacian on M is an important analytic invariant
and has important geometric meanings (cf. Chavel [7] and Protter [23]).

For M = Q a bounded domain in R", let {A;} be the set of eigenvalues and
{u;} an orthonormal basis of eigenfunctions of the following Dirichlet eigenvalue
problem:

[Au = —\u 1in £, (1.1

u=20 on 082,
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where A denotes the Laplacian on R”. It is well known that the spectrum of this
eigenvalue problem (1.1) is real and discrete:

O<A<mp<AM<---— 00,

where each eigenvalue is repeated with its multiplicity. When 2 = B” is the n-
dimensional unit ball in R", we write A; (B") for these eigenvalues. It is well known
that 1;(B") are given by squares of the positive zeros of Bessel functions, e.g.
1B = jr%/Z—l,l and A;(B") = -+ = 4,41 (B") = j,%/z’l, where j, i denotes
the kth positive zero of the Bessel function J,(x) of the first kind of order p. The
following conjecture of Payne, P6lya and Weinberger is well known:

Conjecture of Payne, Polya and Weinberger: For a bounded domain 2 in R",
the eigenvalues of (1.1) satisfy
n
1 2 < 28
AT B
Mttt gt B+ B A A A B (B
i = A1 (BY) ~

The conjecture (1) of Payne, P6lya and Weinberger was studied by many math-
ematicians, for examples, Payne, Pélya and Weinberger [21, 22], Brands [6], de
Vries [12], Chiti [11], Hile and Protter [16]. Finally, Ashbaugh and Benguria [3]
(cf. [1, 2] and [4]) proved this conjecture.

With regard to the conjecture (2) of Payne, Pélya and Weinberger, in the case

@)

A2+ A
n = 2, the bound % < 6 of Payne, Pélya and Weinberger [22] was improved
1
A+ A3 . .
to T <3+7 by Brands [6]. Furthermore, Hile and Protter [16] obtained
1

A2+ 23 A2+ 23

< 5.622. In [20], Marcellini proved < (154 4/345)/6.1n 1993,

1 1
for general dimensions n > 2, Ashbaugh and Benguria [5] proved

Mtdistthin l—i—i (1.2)
A - n)’ ’

In this paper, we consider an eigenvalue problem for the Dirichlet Laplacian on
a domain €2 in an n-dimensional compact Riemannian manifold without boundary.
In the sequel, we will always assume that boundary 92 of the domain Q is C*°.
First we will give a general inequality for eigenvalues of the Dirichlet Laplacian.
As an application, we study lower order eigenvalues of the Laplacian on a domain
in an n-dimensional complex projective space CP"(4), on a compact complex
submanifold in complex projective space and on the unit sphere, that is, we will
give an upper bound for Ay + A3 + - -- 4+ A,4+1, where n is the dimension of the
Riemannian manifold. We use the notation CP"(4) in this paper to denote the
n-dimensional complex projective space equipped with the Fubini-Study metric
of the holomorphic sectional curvature 1 (whereas CP" carries the Fubini-Study
metric with holomorphic sectional curvature }t). We emphasize that in the sequence
of eigenvalues A1 < A < A3 < --- each eigenvalue is always repeated with its
multiplicity.
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Theorem 1.1. For a domain Q in CP"(4), we consider the eigenvalue problem:

(1.3)

Au=—\u in 2,
u=20 on 0%2,

where A denotes the Laplacian on CP"(4). Let iy be the k™ eigenvalue of the
eigenvalue problem (1.3). Then we have

& 2
=D hip <4+ 1)+ (1 + —) Al
2n = n

Theorem 1.2. For a domain 2 in an n-dimensional compact complex submanifold
M of CP" ™ (4), we consider the eigenvalue problem:

[Au:—ku in €, (1.4)

u=>0 on 0€2,

where A is the Laplacian on M. Then, the eigenvalues A (k = 1,2,...,2n+ 1)
of the eigenvalue problem (1.4) satisfy

12n

2
=D hip <4+ 1D+ (1 + —) A
2n P n

Theorem 1.3. For a domain 2 in the n-dimensional unit sphere S™(1), let Ay be
the k™ eigenvalue of the eigenvalue problem:

Au = —Au in €2,
[u:O on 082, (1.5)
where A is the Laplacian on S™(1). Then we have
1 <& 4
D IVISIS/R § B PEE (1.6)
n “ n
i=1
Remark 1.1. When Q = S"(1), we know that A\ = O0and Ap = --- = Ay = n.

Hence, inequality (1.3) in the Theorem 1.3 becomes an equality. Thus, the inequality
(1.3) is optimal.

On the other hand, it seems to be an interesting and difficult problem to discuss
the sharpness of the inequalities in Theorems 1.1 and 1.2.

Remark 1.2. Estimates for higher order eigenvalues of the Laplacian have been
obtained by many mathematicians (cf. [8—10, 13-19, 22, 24, 25] and [26]). For
instance, when €2 is a bounded domain in R”, the sharpest estimate for higher order
eigenvalues is due to Yang [25] (cf. Payne, P6lya and Weinberger [22], Hile and
Protter [16]), that is

k
4
Z()»/H_l —Ai) ()\k+l — (l + —)»,‘)) <0, fork=1,2,...
n

i=1
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In particular, we should remark that, in [19], Levitin and Parnovski have used
commutator identities to obtain universal estimates for eigenvalues. They have
given abstract generalizations of the Payne, P6lya and Weinberger formula and of
the Yang’s formula. It seems difficult, however, to make the estimates in [19] explicit
for the situation treated in this paper so that the relation of our present results to the
general results of Levitin and Parnovski would be clarified. We believe that it is not
possible to derive our present results from [19], at least if the ambient Riemannian
manifold has non-constant curvature.

When €2 is a domain in the unit sphere S” (1), Cheng and Yang [8] have proved

k k
4
D Gt = 2i)7 < D i1 = hi) (n + —xi) ,fork=1,2,...
n

i=1 i=1

When €2 is a domain in the n-dimensional complex projective space CP"(4), in
[10], they have derived

k
1\ 1
M1 < (1 +;) %2)% +2(n+1)
1=
1/2

11 & ’ 2\ 1 & 1 &Y
2SN 420+ —=(1+2) = S
+ [nkl; +20n + )} (+n)kj§(f 3 )

i=1

This paper is organized as follows. In Section 2 we consider an eigenvalue
problem for the Laplacian on a domain in an n-dimensional compact Riemannian
manifold. A general inequality for eigenvalues A;41 will be given. As applications,
in Sections 3, 4 and 5, we shall prove our Theorems 1.1, 1.2 and 1.3, respectively.
In order to prove our theorems, we must find good trial functions. In this paper, we
make use of the orthogonalization of Gram—Schmidt (QR-factorization theorem) to
construct trial functions. By means of these trial functions we obtain our estimates
for eigenvalues.

2. An estimate for the eigenvalues of the Laplacian

In this section, we shall consider an eigenvalue problem for the Laplacian on a
domain €2 in an n-dimensional Riemannian manifold M. We shall obtain a gen-
eral inequality for the eigenvalues which plays an important role in proofs of the
Theorems 1.1, 1.2 and 1.3.

Theorem 2.1. For a domain Q2 in an n-dimensional compact Riemannian manifold
M without boundary, we consider the eigenvalue problem:

Au = —Au in 2,
u=>0 on 0%2,
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where A denotes the Laplacian on M. Assume that A; is the ith eigenvalue and {u;}
be an orthonormal system of eigenfunctions corresponding to {A;}. If gi € C*(Q)
satisfies fQ giuiuj =0for j =2,...,1, then, the following holds:

(it — 2DN(VgDur > < 1(Agu1 +2Vg; - Vuy |2,
where V denotes the gradient operator on M and ||f||2 = fQ fz.

Proof. From the assumptions of the Theorem 2.1, we have

/giuluj =0, fori>j>1. 2.1
Q
We define a function ¢; by

@i = giul — U /giu%- (2.2)
Q

/<PiM1 =0.
Q

/goiuj =0, forany j with j <i.
Q

It is easy to see
Combining with (2.1) ¢; satisfies

Thus, @; is a trial function. According to the Rayleigh—Ritz inequality, we have

Jo IVeil?

Ait1 = 3
Jo @i

2.3)

From the definition of ¢;, we have

/‘Pi2=/<ﬂi giul —ul/giM% =/<Pigi141, (2.4)
Q

Q Q Q
and
Ag; = (Aguy +2Vgi - Vuy — Aigiug +)~1M1/8i”%- (2.5)
Q
From (2.2), (2.4) and (2.5), we infer

/IWJ,-I2 = —/%Awi
Q

Q

—/<Pi{(Agi)u1 +2Vgi - Vur — A1giut}
Q

=M/<ﬂ,~2—/<ﬂi{(Agi)u1 +2Vgi - Vuy}.
Q Q
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From (2.3) and the above inequality, we obtain

it —)»1)/%-2 < —/fpi{(Agi)ul +2Vg; - Vuy}.
Q Q

Letting w; = — [, ¢i{(Agi)uy +2Vg; - Vui}, we have
Git1 — 2D l@ill* < .
From the Cauchy—Schwarz inequality, we derive
o} < lil*ll(Agur +2Vgi - Vuyll*.

Multiplying (2.7) by (Aj+1 — A1), we get

(rit1 = AD@F < i1 — ADl@ilIP1(Agi)ur +2Vg; - Vuy||*.

Combining this with (2.6) we obtain
(hig1 — Ao < [(Agdur +2Vg; - Vuy |,

On the other hand, we have

w; = _/<Pi{(A8i)M1 +2Vgi - Vuy}
Q

1
= —/g,mg,-)u% - E/Vg? Vi

Q Q
+/(Agi)“%/giu%+/Vngu%/giu%.
Q Q Q Q

By making use of Stokes’ formula, it is easy to obtain

1
—/81'(Agi)“%=/|u1Vgi|2+§/Vg,-2-W%

Q Q Q

/(Ag»u? = —/Vgi Vi,
Q Q

Substituting (2.11) and (2.12) into (2.10), we have

and

w; = / lu1Vgi|* = |(Vgui >
Q

According to (2.13) and (2.9), we infer

i1 = ADI(VegDurll? < II(Agiur +2Vg; - Vuy |2

It completes the proof of the Theorem 2.1.

2.6)

Q@.7)

(2.8)

(2.9)

(2.10)

@2.11)

2.12)

(2.13)
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3. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. First we state two simple
algebraic lemmas, which will be used in proof of the Theorem.

Let A* denote the adjoint matrix of a matrix A = (g;;), U(n) and O(n) be
the set of all n x n unitary matrices and the set of all n x n orthogonal matrices,
respectively.

Lemma 3.1. For a matrix C = (Cpy) € U(n), we have A = (Agp) = (CPXC_,I,) €
U(nz) and B = (Byg) = (C_pSCq,) € U(n?), where o = (p,q), B=C(s,1).

Lemma 3.2. For a complex matrix A+iB € U(n), where A and B are n x n real

. A —B
matrices, we have D = (B A ) € 0(2n).

LetZ = (Z° Z', ..., Z") be ahomogeneous coordinate system on CP” (4). Defin-
ing functions f),g by
zZrza
Jri=——— G.1y
WAV
r=0
we have
n
Foa = Tap: 2 frifpi =1 (32)
p-q=0

Let € be as in Theorem 1.1. For any fixed point P € 2, we can choose a new
homogeneous coordinate system on CP"(4) such that, at P,

Z°£0, Z'=...=2"=0 (3.3)
and
n
zZP = Z CpZ', (3.4)
r=0

where Lhe (n+ 1) x (n+1)-matrix C = (Cp,) € U(n+1). Therefore, if we denote
P =2ZP/ Z0 then z = (z!, ..., 7" is a local holomorphic coordinate system on

CP"(4) in a neighborhood U of P €  and
L=1d=.=7"=0 (3.5)

at P. Define functions f;ﬁ by

fog = = — : (3.6)

It is easy to check that ﬁq and fpz7 satisfy

n
fra= Y. CpCysfrs. p.g=0.1,....n. (3.7)

r,s=0
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Now we consider the 2(n + 1)? functions Re( fpg) and Im( f,7), denoted by
8a, Where p,g =0, 1, ..., n. Then, we have

2(n+1)2 n n o
) S - =
2 a= 2 frala= 2 foalmg=1, (3:8)
a=1 p.q=0 p.q=0
and
2(n+1)2
D aVea=0. (3.9

In the local coordinate system we have

Af = 24 a7

X dzPaze’
p.q=

where ds* = Z'}, g=18 pgdzPdz? is the Fubini-Study metric of CP"(4), and

o 8p7 - 797P
8pq = 7 2°

r=1 r=1
(gpg) " = (&™),

gl = (1 +Z|Z |2) (879 4 797P).

r=1

Let g, denote the 2(n + )2 functions Re( f;,q) and Im( f;,q), where p,qg =
0,1,...,n. From (3.5) and (3. 6) it is not difficult to check that, at P,

A=4 (3.10)
Z 3779z

prgzO, when pg #0or p =g =0,

ReV, f.5=08pg, ImV,fi5="3p, (3.11)

ReV, fog = 8pg, 1MV, fog = =84,

N 0, when p # g,
Afpg=1—4n, whenp=¢g=0, (3.12)
4, when p =qg =r # 0.

Lemma 3.3. At any point P € , the functions g, satisfy
2 1

Z (Vl+ ) |vga|2

20HD% | A gy 2 = 16n(n + 1),

20D G, Agy =0,

a=1

2 1
| 2040 \vg, - Vi 2 = 2 Vg |2
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Proof. By making use of the same notation as above, because of C = (Cjy) €
U(n + 1), from the Lemma 3.1 we infer A = (Agp) = (CpsCyr) € U((n + 1)?).
Put A = A +iAj;. From (3.7), we know

(A —A2\ -~
(ga)—(A2 Al )(8,5)-

From the Lemma 3.2, we see

A —Ap
Ay A

isa2(n+ 12 x2(n+ 1)?2 orthogonal matrix. We denote it by O = (Ogg). Thus,
we have, for any «,

8a =Y OupZp. (3.13)
5

Without loss of generality, we rearrange the 2(n + 1)? functions g, such that the
first 4n functions are

Refja, ey Ref;lﬁ, Imfiﬁ, ey Imf;lﬁ, Reﬁﬁ, PN Reﬁ)ﬁ, Imﬁﬁ, ey Imﬁ)ﬁ,

denoted by gso and go;, where s,¢ = 1,...,n. And we still denote the other
2(n + 1)% — 4n functions by gg. Therefore, from (3.11), we have

Vg0 =1, p=1,...,2n,
Vp8op =1, p=1....n, (3.14)
vpg;Op:_l, p=n+1,...,2n, '

Vpga =0, a=4n+1,...,2(n+ 1)

Since O is an orthogonal matrix, from (3.13) and (3.14), we have

2(n+1)% 20+1)% 2(n+1)% 2(n+1)2
D IVealP= D D 0usVEs D 0u,VE,
a=1 a=1 p=1 y=1
2(n+1)2 2n
= > IV&l* = D (V800" + (Vp20p)’]
a=l1 p=1

=4n.
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Similarly, we have

2(n+1)>2 n
> VgaAga = D (VRef,gARefyz + VIm frgAlmfyz) =0,
a=1 p,q=0
2(n+1)?2 2(n+1)2 n
D IAglP = D 1Azl = D AfugAfyg
a=1 a=1 p,q=0
=4n-4n+4-4-n=16nn+1),
2(n41)? 2(n+1)% 2(n+1)2 2(n+1)2
D Vea-Vu’= D D OupVEs-Vur D, OuyVgy-Vui
a=1 a=1 p=1 y=1
2(n+1)? 2+1)2 [ 2n 2
= 2 (Vg Vu’= 3 | 2 VeRsVpu
p=1 =1 \p=1
2n 5 5
= Z [(Vpgpovpul) + (Vp&opVpu1) ]
p=1
=2|Vu|*.
This finishes the proof of the Lemma 3.3. O

Lemma 3.4. Let (hy) = Q(gp), where Q = (qup) is a constant orthogonal
2(n 4+ 1)% x 2(n + 1)? matrix. At any point P € S, we then have

Va2 <2, a=1,....2(n+ D%
Proof. From (3.13), we have
(he) = Q(gp) = QO(gp).

Without loss of generality, we still denote the orthogonal 2(n + 1)> x 2(n + 1)?
matrix QO by O = (Ogug). Thus, we have

(ha) = O(gp).

By rearranging the 2(n + 1) functions g, as in the proof of the Lemma 3.3, from
(3.13) and (3.14) we obtain

2n 2(n+1)2 2(n+1)2
Vha? =D D" 0upVp8s D OayVpdy
p=1 p=I y=I

2n

— ~ N2

= E (Oa(p,O)Vpgp0+ Oa(O,p)VngP)
p=1
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n 2n
= Z (Oatp0) + Ow0.p)’ + X (Outp0) — Out. )’
= p=n+1

2
= Z[ «90)’ + (0a0.9)” + 210450 Ou0.p

< 22 [ o (p, 0) (Oa(O,p))z]

2(n+1)2
<2 D (Owp) =2.
B=1
Hence, the Lemma 3.4 is proved. m|
Proof of Theorem 1.1. Let Z = (ZO, VAT Z™) be a homogeneous coordinate

system on CP" (4). We consider the functions f,, definedby (3.1). Let g, denote the
2(n+1)? functions Re fpq andIm f,, as above. We consider the 2(n+ D2 x2(n+1)>2
matrix A defined by

fQ g1uiur fQ g1uus fg S1UIU (n41)241
A fg gaujuz fg gau1u3 fsz 82UTUY (n41)2+1
fg 82(n+1)2U1U2 fg 82(n+1)2U1U3 - fgz 82(n+1)2U 1 U (n+1)2+1

From the orthogonalization of Gram—Schmidt (QR-factorization theorem), we know
that A can be written by

T = 0A,

where O = (Oy;) is an orthogonal 2(n + 12 x 2(n+ 1)% matrix and T is an upper
triangular matrix. Hence, we have, for any k and j with k > j,

2(n+1)2

Z Okl/gluluj+1 =0.

2
Defining functions Ay by (hy) = O(g;), ie. hy = Zi(:"fl) Oyjgj. we infer, for

anyi, j=1,2,...,2(n+ 1)? satisfying i > j,

/h,-uluj+1 =0. (3.15)
Q
Hence, these functions iy, @ = 1,2, ...,2(n + 1)2, satisfy the conditions in the

Theorem 2.1. Applying the theorem we obtain

Ot = AN (Vhg)ur||* < [[(Ahg)uy +2Vhe - Vuy ||
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Summing on « from 1 to 2(n + 1)%, we have

2(n+1)2 2(n+1)2
> hartl(Vh)uil> < D0 (Aho)uy +2Vhe - Vur > (3.16)
a=1 a=1

2(n+1)2

Since hy = D Ogpgp holds, from the Lemma 3.3 we obtain
p=1

200 |G 2 = 4n,

22(”“) |Ahg|? = 16n(n + 1), .,
204D gp Ahg = 0,

a=1

_ 22(”“) |Vhe - Vup|? = 2|Vuy 2.
Hence, we infer, from (3.16) and (3.17),

2(n+1)2
D st Vhau[* < 16n(n + 1) + 4(n + 2)A;.

a=1

On the other hand, from (3.17) and Lemma 3.4, we have

2(n+1)2 2n 2(n+1)2
D hatilVhal? = D ket VhaP + 2oni1 D VAl
a=1 a=1 a=2n+1

2n 2n
= hat1|Vhal* + Aanti (4n -> |Vha|2)

a=1 a=1

2n 2n
=D hat1|Vhal* + Aang1 D (2= [Vhe|?)

a=1 a=1
2n 2n

> D hattlVhal? + D2 = [VhaD et
a=1 a=1

2n
=2 Z Ag+1-
a=1
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Therefore, we have

2n 2(n+1)2 2(n+1)2
/22Aa+1u%s/ D hartlVhelPui = D" daqil|Vhgui |
o o=l Q o=1 a=1
Thus, we finally infer
2n

1 2
=3 ki <44+ D+ (142 ) a,
2n 2 iv1 <4(n+ )+( +n) 1

which is the claim made in Theorem 1.1. m]

4. Proof of Theorem 1.2

In this section, we shall give the proof of the Theorem 1.2. Let Q be a domain
in an n-dimensional compact complex submanifold M of CP"*"(4). Let Z =
(z°, 7', ..., Z"™) be ahomogeneous coordinate system on CP"+" (4). The func-
tions fp; defined by

ZP74

= 4.1
ST @0
satisfy
n—+m
g =Teps D foafog =1 (4.2)
p.q=0

By making use of the same assertion as in the Sect. 3, for any point P € €2, we can
choose a new homogeneous coordinate system on CP"™" (4) such that, at P,

Z0£0,Z'=...=7"" =0 (4.3)

and
n+m

7P =% CpZ, (4.4)
r=0

where C = (Cp;) € U(n + m + 1). Therefore, if we denote z7 = Z”/ZO, then
z = (z',...,Z"") is a local holomorphic coordinate system of CP"*"(4) in a
neighborhood U of P €  and

A=1 7 =...=m =y (4.5)
at P, and 2" = [;(z',...,Z%) (i = 1,...,m) are holomorphic functions of
z!, ..., 2" which satisfy

al;
—(P)=0, p=1,...,n. (4.6)

azP
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Then, we can easily compute

7o Z"Z_ _ 7Pza @7
bq Z;’i(’)” Zr Zr 1+ Zfi;ﬂ 7'7 '
and
n+m
fra= D CpCoskrs. pg=0.1....n+m. (4.8)
r,s=0

Now we consider the 2(n + m + 1)? functions Re( fpg) and Im( f,7), denoted by
8a, Where p,g =0, 1,...,n+ m. Then, we have

2(n+m+1)2 n+m n+m -
5 _ - =
> &= D frafia= 2 fafa=1 4.9)
a=1 P,q=0 P,q=0
and
2(n+m+1)?%
> gaVga=0. (4.10)
a=1

In the local coordinate system on U, we have ds”; = Z'Z,:l dzPdzP 4+ O(z%). For
the Laplacian A on the n-dimensional complex submanifold M in CP"*" (4) we
have Acpnimgy f = Af + D0 futi nti- We denote the 2(n +m + 1)? functions
Re(fpg) and Im(fpg) by 8o, where p,g =0, 1, ..., n+m. From (4.6), (4.7) and
(4.8) we have, at P,

n 32
A 242 4.11)
=1

— 92797
Vﬁ,g:O, when pg #0or p =g =0,
Refoqa = dpqg ]mvpf;ﬁ = pq; (4.12)
ReV, fog = 8pg. ImV fog = —5pq.

0, when p #¢qg, orp=g=n+1,...,n+m,
Afyg =1 —4n, whenp=gq =0, (4.13)
4, whenp=q=1,...,n.

By making use of the same calculations as in the Lemmas 3.3 and 3.4, we now
obtain the following:

Lemma 4.1. For any point P € Q, we have

2
22(n+m+1) Veul? = 4n,

a=1

2
S20mEDT Agy|? = 16n(n + 1),

o=l (4.14)
X .
St e, Agy =0,

a=1

2 1?2
S Vg - Vg [ = 2|V |2

a=1
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Lemma 4.2. Let (hy) = Q(gp), where Q = (qup) is a constant orthogonal 2(n +
m+ 1?2 x 2(n + m + 12 matrix. At any point P € Q, we have

Vo2 <2, a=1,....,2+m+ D2 (4.15)

Proof of Theorem 1.2. From Lemma 4.1 and Lemma 4.2, we can derive Theorem
by employing the same arguments as in the proof of Theorem 1.1. O

5. Proof of Theorem 1.3

In this section, we shall give the proof of the Theorem 1.3.

Let 2 C S"(1) be a domain in the n-dimensional unit sphere S"(1). Let

x!, x%, ..., x"t! be the standard coordinate functions on R**! so that §*(1) =

{(x!, x2, ..., x" ) e R Z?I{(xj)z = 1}. It is well known that x? (for p =
1,...,n+ 1) satisfy

AxP = —nx?.

Lemma 5.1. Let (hy) = Q(xP), where Q = (qap) is a constant orthogonal (n +
1) x (n + 1) matrix. For any point P in Q, we have

IVhy> <1, for p=1,2,...,n,
n+1

D IVhy|* =n,
p=1

n+1
> (Vhy - Vui)? = Vi .
p=1

Proof. For any fixed point P € €2, we can find a coordinate system (x', ..., x"T1)
on R"*! such that, at P,

)El=--~=)fn=0, .72”+1=1

vitt! = 0: ijq — 8pq~ (p,g=1,...,n).

s

(5.1)

In fact, we can choose a constant (n 4 1) x (n + 1) orthonormal matrix A = (a;;)
such that

n+1

xP = Za,,ai"‘,
a=1
and (5.1), (5.2) is satisfied at P. Hence, we have

(he) = QAGP),
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where QA is also a constant orthogonal (n + 1) x (n + 1) matrix. We still denote
itby A = (a;;) without loss of generality. Thus, at P, we have

n+1 n+1
IVhp> =" apa Vi D" ap Vil
a=1 B=1

n  n+l
= Z Z a,,aap,gvji"‘ . Vji/’

j=la.p=1

n
= Z“p./apj =1
Jj=1
n+1

D IVh, P =n,
p=1

and
n+1 n+1
D (VhyVui)r = > alal(VEP - Vup) (Vi - Vuy)
p=1 p.q,a=1
n+1 n
= D (V&P - Vu)? = > (Vyui)
p=1 p=1
= |Vui .
Since P is arbitrary the Lemma is proved. O

Proof of Theorem 1.3. For the functions g; = x!, we consider the (n +1) x (n+1)
matrix A defined by

Joguiuz  [qgiuius oo [o gruiungn
A fQ gauiuz fQ gauus fQ SoUlp42
fg En+1U1U fg En+1uu3 - fQ En+1U1UR42

From the same arguments as in the proof of Theorem 1.1 in the Section 3, we infer
that there exists an orthogonal matrix O = (Oy;) such that iy = Z']H:'% Orjgj
satisfies, forany i, j = 1,2,...,n+ 1 withi > j,

/hiuluj+1 =0. (5.2)
Q
Applying Theorem 2.1 to the functions 4; and summing on i from 1 ton + 1, we

get

n+1 n+1
D i1 = 20NVh)ur > < D7 1Ak uy + 2Vhi - Vuy |,

i=1 i=1
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Since Z';;l] xP)2 =1, AxP = —nxP, we have
n+l1
> V=0,
p=1
n+1 n+1
Z |VxP)? = —prAxp =n.
p:l p:l
Hence, from Lemma 5.1, we infer
n+1
D hintlVhiut > < n* 4 4+ )k
i=1
and
n+1 n
D kil VP = D kit VP + hgt Vg
i=1 i=1
n n
= ZMH IVhil* + Ans1 (n - z IVhi|2)
i=1 i=1
n
> ZMH-
i=1
Thus we have proved the claim
1 - 4
— g1 <n+ {1+ —) A1
O
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