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Abstract. We present the description of the spectrum of a linear perturbed Stokes-type
operator which arises from equations of motion of a viscous incompressible fluid in the
exterior of a rotating compact body. Considering the operator in the function space L2

σ (�)

we prove that the essential spectrum consists of a set of equally spaced half lines parallel
to the negative real half line in the complex plane. Our approach is based on a reduction to
invariant closed subspaces of L2

σ (�) and on a Fourier series expansion with respect to an
angular variable in a cylindrical coordinate system attached to the axis of rotation. Moreover,
we show that the leading part of the operator is normal if and only if the body is axially
symmetric about this axis.

1. Introduction

Suppose that K is a compact body in R
3, i.e., the closure of a bounded domain in

R
3, rotating about the x1-axis with the angular velocity ω. Put ω = ωe1 where e1

is unit vector oriented in the direction of the x1-axis. Denote further by �(t) the
exterior of K at time t . Assume that�(t) is a domain with boundary of class C1,1.
Put

O(t) =
( 1 0 0

0 cosωt sinωt
0 − sinωt cosωt

)
.

Then x ≡ (x1, x2, x3) ∈ �(t) ⇐⇒ x′ ≡ O(t)x ∈ �(0). Thus, x′ denotes the
Cartesian coordinates connected with the rotating body. Our assumptions do not
exclude the case when K = ∅ and consequently �(t) = R

3 for all t ≥ 0.
Let u denote the velocity and p denote the pressure of a flow of a viscous incom-

pressible fluid in the exterior of the body K . Then u and p satisfy the Navier–Stokes
equation

∂t u − ν�u + u · ∇u + ∇ p = f (1)
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and the equation of continuity
∇ · u = 0 (2)

in the space–time region {(x, t) ∈ R
3 × I ; t ∈ I, x ∈ �(t)} where I is an interval

on the time-axis. The assumption on adherence of the fluid to the body K on the
surface of K leads to the boundary condition

u(x, t) = ω × x, x ∈ ∂�(t). (3)

The disadvantage of this description is the variability of the spatial domain �(t)
which is filled, at time t , by the moving fluid. This is why many authors use the
transformation

u(x, t) = OT (t) u′(x′, t) = OT (t) u′(O(t)x, t
)
, (4)

p(x, t) = p′(x′, t) = p′(O(t)x, t
)
. (5)

The functions u′, p′ satisfy the system of equations

∂t u′ − ν�′u′ − (ω × x′) · ∇′u′ + ω × u′ + (u′ · ∇′)u′ + ∇′ p′ = f ′ (6)

∇′ · u′ = 0 (7)

in�(0)× I , where ∇′, respectively�′, denote the operator nabla, respectively the
Laplace operator, with respect to x′. The boundary condition (3) is transformed to

u′(x′, t) = ω × x′, x′ ∈ ∂�(0). (8)

In order to have a simple notation, we shall further omit the primes in (6–8) and we
shall write only � instead of �(0).

Among a series of basic results on properties of the system (6–8) or related
linear problems, let us mention Cumsille and Tucsnak [2]; Hishida [15], [16], [17];
Galdi [7], [8]; Galdi and Silvestre [10]; Farwig et al. [5]; Farwig [3], [4]; Nečasová
[23], [24]; Geissert et al. [11] and Kračmar et al. [20].

We shall use the basic notation: let R0 = max {|x|; x ∈ K } and �R =
� ∩ BR(0) with outer normal vector n on ∂�. Moreover, we use the following
spaces and operators:

• (. , .)0,2 and ‖ . ‖0,2 are the scalar product and norm in L2(�)3, respectively.
• W 1,2

0 (�) is the subspace of the Sobolev space W 1,2(�) consisting of functions

vanishing on ∂� in the sense of traces. As is well-known, W 1,2
0 (�) equals the

closure of C∞
0 (�) in the norm of W 1,2(�).

• ‖ . ‖k,2 denotes the norm in W k,2(�)3, k ∈ N.
• C∞

0,σ (�) denotes the space of all divergence-free functions from C∞
0 (�)

3.
• L2

σ (�) is the closure of C∞
0,σ (�) in L2(�)3. The space L2

σ (�) can be charac-
terized as the space of all divergence-free (in the sense of distributions) vector
functions u from L2(�)3 such that u · n = 0 on ∂� in the sense of traces ([6],
pp. 111–115).

• �σ denotes the orthogonal projection of L2(�)3 onto L2
σ (�).
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By analogy with the classical or perturbed Stokes operators, which play a
fundamental role in the analysis of the Navier–Stokes equation, we introduce the
following Stokes-type operators (note the sign ‘+’ in front of �σν�)

Aωu = �σν�u +�σ [(ω × x) · ∇u − ω × u], (9)

Lωu = Aωu + Bu (10)

in L2
σ (�) with the dense domains

D(Aω) = D(Lω)

=
{

u ∈ W 2,2(�)3 ∩ W 1,2
0 (�)3 ∩ L2

σ (�); (ω × x) · ∇u ∈ L2(�)3
}
.

Here

Bu = �σB(x)u +�σ b(x) · ∇u

where B is supposed to be a 3 × 3 matrix with entries in L2
loc(�) and b vector

function in Lq
loc(�)

3 for some q > 3. Moreover, we assume that

lim
R→+∞

(
ess sup
|x |>R

(|B(x)| + |b(x)|)
)

= 0. (11)

Now our main theorems read as follows (for definitions of several kinds of
spectra see Sect. 2 below):

Theorem 1.1. (i) The essential spectrum σess(Aω) of the operator Aω has the
form

σess(A
ω) = {λ = α + i kω; k ∈ Z, α ≤ 0}. (12)

(ii) If � is axially symmetric about the x1-axis, then the operator Aω is nor-
mal, the point spectrum and the residual spectrum of Aω are empty and the
continuous spectrum coincides with σess(Aω).

(iii) If ω �= 0 and the domain � is not axially symmetric about the x1-axis, then
the operator Aω is not normal.

Theorem 1.2. (i) The essential spectrum σess(Lω) has the same form (12) as
σess(Aω).

(ii) The spectrum σ(Lω) equals σess(Lω) ∪ 
 where 
 consists of an at most
countable set of isolated eigenvalues of Lω which can possibly cluster only
at points of σess(Lω) and each of them has a finite algebraic multiplicity.

2. Preliminaries

Since the main aim of this paper is to study the spectrum of the operators Aω and
Lω, we shall consider all function spaces needed in the following to be spaces of
complex-valued functions.
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Lemma 2.1. There exists c1 > 0 such that if u ∈ D(Aω) and f = Aωu, then

‖u‖2,2 + ‖(ω × x) · ∇u − ω × u‖0,2 ≤ c1
(‖ f ‖0,2 + ‖u‖0,2

)
. (13)

If� = R
3 then estimate (13) is a direct consequence of [5]. Otherwise (13) follows

from [16].

Lemma 2.2. Aω is a closed operator in L2
σ (�) and its adjoint has the form

(Aω)∗u = �σν�u −�σ [(ω × x) · ∇u − ω × u] (14)

with D
(
(Aω)∗

)= D(Aω).

Proof. Suppose that un ∈ D(Aω), un → u in L2
σ (�) and Aωun ≡ f n → f in

L2
σ (�). Then Aω(un − um) ≡ f n − f m and due to the estimate (13), we have

‖un − um‖2,2+‖(ω × x) · ∇(un − um)‖0,2 ≤c1
(‖ f n − f m‖0,2+‖un −um‖0,2

)
.

Thus we get that un → u in W 2,2(�)3∩W 1,2
0 (�)3, and the sequence {(ω×x)·∇un}

converges to some function h in L2(�)3. Since (ω × x) · ∇un → (ω × x) · ∇u in
L2(�R)

3 for each R ≥ R0, we deduce that h = (ω × x) · ∇u. This implies that
u ∈ D(Aω) and Aωu = f which confirms that the operator Aω is closed.

It follows from [11], Proposition 4.3, that for ζ > 0 sufficiently large the range
of the operator ζ I − Aω covers the whole space L2

σ (�).
Let us denote by T ω the operator on the right hand side of (14) with D(T ω) =

D(Aω). By analogy with Aω, the operator T ω is closed and R(ζ I − T ω) = L2
σ (�)

if ζ > 0 is sufficiently large. It is easy to verify that the operators Aω and T ω

are adjoint to each other in the sense of Kato [19], p. 167; hence T ω ⊂ (Aω)∗.
In order to show that T ω = (Aω)∗, we need to verify that T ω is the maximal
operator adjoint to Aω. Suppose that v ∈ D((Aω)∗) and put f = (ζ I − (Aω)∗)v.
Since f ∈ R(ζ I − T ω), there exists w ∈ D(T ω) such that f = (ζ I − T ω)w.
Hence (ζ I − (Aω)∗)v = (ζ I − T ω)w. Multiplying both sides of this identity by
u ∈ D(Aω), we arrive at(

v, (ζ I − Aω)u
)

0,2 = (
w, (ζ I − Aω)u

)
0,2.

As this holds for all u ∈ D(Aω), we get v = w ∈ D(Bω); thus (Aω)∗ = T ω. ��
For the proof of the following statement see also [10], Lemma 3.

Lemma 2.3. If u ∈ D(Aω), then (ω × x) · ∇u − ω × u belongs to L2
σ (�).

Proof. Since the space C∞
0,σ (�) is dense in D(Aω) in the topology of W 1,2(�)3,

there exists a sequence of functions un ∈ C∞
0,σ (�) such that un → u in W 1,2(�)3.

Let ψ be a function from W 1,2
loc (�) such that ∇ψ ∈ L2(�)3. Then we have∫

�

[
(ω × x) · ∇u − ω × u

] · ∇ψ dx

= lim
n→+∞

∫
�

[
(ω × x) · ∇un − ω × un

] · ∇ψ dx

= − lim
n→+∞

∫
�

div
[
(ω × x) · ∇un − ω × un

]
ψ dx.



On the spectrum of a Stokes-type operator 423

We simply verify that div
[
(ω × x) · ∇un − ω × un

] = 0 in �. Thus the function
(ω × x) · ∇u − ω × u is orthogonal to the subspace of all gradients in L2(�)3,
which further implies that it belongs to L2

σ (�), see e.g., Galdi [6], p. 103. ��
Lemma 2.3 enables us to omit the projection �σ in front of the second and the

third term on the right hand side of (9). Therefore, the operator Aω can be simplified
to

Aωu = A0u + (ω × x) · ∇u − ω × u (15)

where A0 ≡ ν�σ� is the usual Stokes operator in L2
σ (�) with domain D(A0) =

W 2,2(�)3 ∩ W 1,2
0 (�)3 ∩ L2

σ (�). The adjoint operator (Aω)∗ can similarly be sim-
plified. It is well known that the operator A0 is selfadjoint and generates an analytic
semigroup eA0t , t ≥ 0, in L2

σ (�) (Giga [12]; Giga and Sohr [13]).

Lemma 2.4. The operator B is Aω-compact.

Proof. Let {un} be a bounded sequence in L2
σ (�) such that the sequence {Aωun} is

also bounded in L2
σ (�). Then, due to Lemma 2.1, the sequence {un} is bounded in

W 2,2(�)3. Hence there exists a subsequence of {un} (we preserve the same notation
{un} for the subsequence) which converges weakly in W 2,2(�)3 to a limit function
v. Recall that b ∈ Lq

loc

(
�

)3 for some q > 3. Put q ′ = 2q/(q −2). Since q ′ < 6 and

consequently, W 2,2(�R0)
3 ↪→↪→ W 1,q ′

(�R0)
3, there exists a subsequence

{
uR0

n
}

of {un} which converges in W 1,q ′
(�R0)

3. By analogy, there exists a subsequence{
uR0+1

n
}

of
{
uR0

n
}

which converges in W 1,q ′
(�R0+1)

3. Proceeding in this way, we

get a subsequence
{
uR0+2

n
}

of
{
uR0+1

n
}
, etc. If we put vn = uR0+n

n , we obtain

a subsequence of {un} which converges in W 1,q ′
(�R)

3 for every R ≥ R0 to the
function v.

We claim that the sequence {Bvn} converges to Bv in L2
σ (�). For every m ∈ N

and R ≥ R0, we have

‖Bvm − Bv‖2
0 ≤ 2

∫
�

(∣∣B(vm − v)
∣∣2 + ∣∣b · ∇(vm − v)

∣∣2
)

dx

= 2
∫
�R

· · · + 2
∫

�−�R

· · · ≤ 2(γ1 + γ2 + γ3 + γ4)

where

γ1 =
∫
�R

|B|2 dx
(

ess sup
�R

|vm − v|2
)
,

γ2 =
(

ess sup
�−�R

|B|2
) ∫
�−�R

|vm − v|2 dx,

γ3 =
(∫
�R

|b|q dx
)2/q (∫

�R

|∇(vm − v)|q ′
dx

)2/q ′

,
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γ4 =
(

ess sup
�−�R

|b|2
) ∫
�−�R

|∇(vm − v)|2 dx.

Here γ2, γ4 can be made arbitrarily small by choosing R sufficiently large. Then
γ1, γ3 can be made arbitrarily small by choosing m sufficiently large. ��

Lemma 2.2 and Lemma 2.4 imply that the operator Lω is closed in L2
σ (�).

Note that under slightly different conditions on B and b, it is proved in [11] that
the operator Lω generates a C0-semigroup in L2

σ (�), which also directly implies
the closedness of Lω.

It will be further advantageous to work in cylindrical coordinates. We shall
denote by x1, r and ϕ the cylindrical coordinate system whose axis is the x1-axis
and angle ϕ is measured from the positive part of the x2-axis towards the positive
part of the x3-axis. The corresponding cylindrical components of vector functions
will be denoted by the indices 1, r and ϕ, e.g., u1, ur and uϕ . In order to distinguish
between the Cartesian and the cylindrical components of vectors, we shall write the
Cartesian components in parentheses and the cylindrical components in brackets.
Thus, we have (u1, u2, u3) � [u1, ur , uϕ]. Using the transformations

ur = u2 cosϕ + u3 sin ϕ, uϕ = −u2 sin ϕ + u3 cosϕ,
u2 = ur cosϕ − uϕ sin ϕ, u3 = ur sin ϕ + uϕ cosϕ,

we calculate that

(ω × x) · ∇u−ω × u=ω ∂ϕu − (ω × u)=ω ∂ϕ(u1, u2, u3)− ω (0,−u3, u2)

= ω ∂ϕ

( u1
ur cosϕ − uϕ sin ϕ
ur sin ϕ + uϕ cosϕ

)T

− ω

( 0
−ur sin ϕ − uϕ cosϕ
ur cosϕ − uϕ sin ϕ

)T

= ω

(
∂ϕu1

(∂ϕur ) cosϕ − (∂ϕuϕ) sin ϕ
(∂ϕur ) sin ϕ + (∂ϕuϕ) cosϕ

)T

� ω

[
∂ϕu1
∂ϕur

∂ϕuϕ

]T

= ω ∂ϕ
[
u1, ur , uϕ

]
.

We shall further consistently identify u with [u1, ur , uϕ]; the same holds for other
vectors. Thus, we can write the relation (15) between the operator Aω and the Stokes
operator A0 in the form

Aωu = A0u + ω ∂ϕu (16)

where A0 naturally denotes the Stokes operator acting in cylindrical coordinates.
As there is no conformity in the names of various types of spectra in the lit-

erature, we recall some general notions. Suppose that H is a Hilbert space with
norm ‖ . ‖ and T is a closed linear operator in H with a dense domain D(T ). Then
N (T ) denotes the null space of T , R(T ) its range, and T ∗ the adjoint operator to
T . Moreover, we shall use the following notation:

• nul(T ) (the nullity of T ) = dim N (T )
• def(T ) (the deficiency of T ) = dim H/R(T )
• ind(T ) (the index of T ) = nul(T )− def(T )
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• nul′(T ) (the approximate nullity of T ) – the greatest number m ∈ N ∪ {+∞}
such that to any ε > 0 there exists an m-dimensional closed linear manifold
Mε ⊂ D(T ) with the property that ‖T u‖ ≤ ε ‖u‖ for all u ∈ Mε

• def ′(T ) (the approximate deficiency of T ) = nul′(T ∗).

These numbers satisfy the inequalities, see Kato [19], pp. 230–233:

nul′(T ) ≥ nul(T ), def ′(T ) ≥ def(T ),

and, if R(T ) is closed, which is automatic if def(T ) < +∞, then nul′(T ) = nul(T ),
def ′(T ) = def(T ). On the other hand, if R(T ) is not closed, then nul′(T ) =
def ′(T ) = +∞.

• ρ(T ) (the resolvent set of T ) is the open set of all λ ∈ C such that T − λI has
a bounded inverse operator defined in the whole space H . It is the set of λ ∈ C

such that

nul(T − λI ) = def(T − λI ) = nul′(T − λI ) = def ′(T − λI ) = 0.

• σp(T ) (the point spectrum of T ) consists of eigenvalues of T . It is the set of
λ ∈ C such that nul(T − λI ) > 0. It can also be defined as the set of all λ ∈ C

such that the operator T − λI is not injective.
• σc(T ) (the continuous spectrum of T ) is the set of suchλ ∈ C that nul(T −λI ) =

0, R(T − λI ) is dense in H , but R(T − λI ) �= H . In this case,

nul′(T − λI ) = def(T − λI ) = def ′(T − λI ) = +∞.

• σr (T ) (the residual spectrum of T ) is the set of such λ ∈ C that nul(T −λI ) = 0
and R(T − λI ) is not dense in H . In this case, def(T − λI ) > 0.

• σ(T ) (the spectrum of T ) = σp(T )∪σc(T )∪σr (T ). It follows from the previous
definitions that σ(T ) is the complement of ρ(T ) in C.

• σess(T ) (the essential spectrum of T ) is the set of all λ ∈ C such that nul′(T −
λI ) = def ′(T − λI ) = +∞.

• σ̃c(T ) denotes the set of those λ ∈ C for which there exists a non-compact
sequence {un} in the unit sphere in H such that (T −λI )un → 0 for n → +∞.
It is equivalent with the equality nul′(T −λI ) = +∞ ([19], Theorem IV.5.11).

The three parts σp(T ), σc(T ) and σr (T ) of σ(T ) are mutually disjoint. The resid-
ual spectrum σr (T ) can be characterized as the set of λ ∈ C such that λ̄ ∈ σp(T ∗)
and λ �∈ σp(T ).

The essential spectrum σess(T ) is defined e.g. in Kato [19]. Calling the operator
T semi-Fredholm if at least one of the numbers nul′(T ), def ′(T ) is finite, σess(T )
is the set of those λ ∈ C for which T − λI is not semi-Fredholm. It is shown that
σess(T ) is a closed subset of C and ind(T − λI ) is constant in each component G
of C − σess(T ). Moreover, nul(T − λI ) and def(T − λI ) are constant in G with
the possible exception of an at most countable set of isolated eigenvalues of finite
algebraic multiplicities which can cluster only at points of σess(T ) ([19], p. 243).

The definition of σ̃c(T ) is due to Glazman [14] calling σ̃c(T ) the continuous
spectrum; however, we shall not use this name for σ̃c(T ) because it would contradict
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the previous definition. It is known ([14], p. 20) that the set σ̃c(T ) is closed in C.
Obviously σc(T ) ⊂ σess(T ) ⊂ σ̃c(T ) ⊂ σ(T ).

The equality nul′(T − λI ) = +∞ for the points λ ∈ σ̃c(T ) enables us to con-
struct, by mathematical induction, an orthonormal sequence {vn} in the unit sphere
in H such that (T − λI )vn → 0 for n → +∞. Suppose that we have already
constructed v1, . . . , vn so that ‖(T − λI )v j‖ ≤ 1/j for j = 1, . . . , n. Denote by
Nn the linear hull of v1, . . . , vn . To εn+1 = 1/(n+1) there exists an infinite dimen-
sional linear manifold Mn+1 such that ‖(T −λI )u‖ ≤ 1/(n +1) for all u ∈ Mn+1.
Due to Lemma IV.2.3 in [19], there exists vn+1 ∈ Mn+1 such that ‖vn+1‖ = 1 and
the distance between vn+1 and Nn also equals 1. It can be simply shown that vn+1
is orthogonal to Nn .

An operator T is said to be normal if T ∗T = T T ∗. If T is normal then T
and T ∗ have the same null space ([19], p. 277). It is well known that the residual
spectrum of a normal operator is empty, see e.g. [25], Problem XII.9.13. [It is an
easy consequence of the identities R(T − λI )⊥ = N (T ∗ − λ̄I ) = N (T − λI )].

Lemma 2.5. If the operator T is normal, then σess(T ) = σ̃c(T ).

Proof. If λ ∈ σ̃c(T ) − σess(T ) then R(T − λI ) is closed and consequently, also
R(T ∗ − λ̄I ) is closed. So we get

+∞ = nul′(T − λI ) = nul(T − λI ) = nul(T ∗ − λ̄I ) = nul′(T ∗ − λ̄I ).

Since N (T ∗ − λ̄I ) = R(T − λI )⊥ and N (T − λI ) = R(T ∗ − λ̄I )⊥, we have
R(T − λI ) = R(T ∗ − λ̄I ) and consequently,

+∞ > def ′(T − λI ) = def(T − λI ) = def(T ∗ − λ̄I ) = def ′(T ∗ − λ̄I ).

This implies that ind(T − λI ) = ind(T ∗ − λ̄I ) = +∞. However, this is a contra-
diction to the equality ind(T − λI ) = −ind(T ∗ − λ̄I ) which holds if T − λI is a
semi-Fredholm operator, see [19], p. 234. We have proved that σ̃c(T ) ⊂ σess(T ).
The opposite inclusion is obvious. ��

Let us conclude this section by recalling known results on the spectrum of the
Stokes operator A0.

Lemma 2.6. σp(A0) = σr (A0) = ∅ and σ(A0) = σc(A0) = (−∞, 0].
The residual spectrum of A0 is empty because A0 is normal. The identity

σ(A0) = (−∞, 0] is well known and can be deduced from Glazman [14] and
Ladyzhenskaya [21]. The non-existence of an eigenvalue is only rarely mentioned
in the literature. However, it can be shown by means of results on the growth of
a strong solution of the equation �w + q(x) w = 0 for |x| → +∞ proved by
Kato [18]. If λ is an eigenvalue of A0 and u �≡ 0 is an associated eigenfunction
then λ ∈ R. Multiplying the equation A0u = λu by ū, we can show that λ < 0.
The vector field w = curl u satisfies �w − λw = 0 in �. Then Theorem 1 from
[18] implies that w = 0 for all x such that |x| > R0 (here x denotes the Cartesian
variables). Due to the unique continuation principle, see Leis [22], we have w = 0
in �. This implies, together with the boundary condition u = 0 on ∂�, that the
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circulation of u on each closed piecewise smooth curve in � equals zero. Thus, u
has the form ∇φ where φ is an appropriate scalar function in �. Using now the
equation of continuity ∇ · u = 0 in � and the boundary condition, we derive that
u = 0 in �. This is a contradiction with the assumption that u �≡ 0.

3. Axially symmetric domains: decomposition of L2
σ (�) and of A0

We shall assume that the domain � ⊂ R
3 is axially symmetric with respect to the

x1-axis in Sect. 3 and 4. Clearly, this assumption is satisfied if the considered body
K is rotationally symmetric about the axis of rotation x1.

Let k be an integer. Then we introduce the following spaces:

• L2(�)3k = {v ∈ L2(�)3; v = V (x1, r) eikϕ}
• C∞

0 (�)
3
k = C∞

0 (�)
3 ∩ L2(�)3k

• C∞
0,σ (�)k = C∞

0 (�)
3
k ∩ C∞

0,σ (�)

• L2
σ (�)k = the closure of C∞

0,σ (�)k in L2(�)3k .

Obviously, L2(�)3k, k ∈ Z, is a closed subspace of L2(�)3, and L2
σ (�)k is a closed

subspace of L2
σ (�). The spaces L2(�)3k and L2

σ (�)k are infinite dimensional. We
further define the operators

• Pk—the orthogonal projection of L2(�)3 onto L2(�)3k
• A0

k—the restriction of the operator A0 to the space L2
σ (�)k .

Hence the domain of A0
k equals D(A0) ∩ L2

σ (�)k .
Each function from L2(�)3 can uniquely be written in the form of a convergent

Fourier series—with respect to the variable ϕ—of terms from L2(�)3k , k ∈ Z. To
be more precise, if v ∈ L2(�)3, then

v(x1, r, ϕ) =
+∞∑

k=−∞
V k(x1, r) eikϕ; V k(x1, r) = 1

2π

2π∫
0

v(x1, r, ϕ) e−ikϕ dϕ.

(17)

Thus, we have L2(�)3 = · · · ⊕ L2(�)3−2 ⊕ L2(�)3−1 ⊕ L2(�)30 ⊕ L2(�)31 ⊕
L2(�)32 ⊕ · · · .
Lemma 3.1. Let k ∈ Z. Then �σ L2(�)3k = L2

σ (�) ∩ L2(�)3k = L2
σ (�)k =

Pk L2
σ (�).

Proof. Suppose that v ∈ W 1,2(�)3 ∩ L2(�)3k . The analysis of the Neumann prob-
lem

�φ = div v in �,
∂φ

∂n
= v · n on ∂�,

shows that the solution φ can be found in the form φ = �(x1, r) eikϕ . Then�σ v =
v − ∇φ ∈ L2(�)k . Using the density of W 1,2(�)3 ∩ L2(�)3k in L2(�)3k , we can
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show that this is true for all v ∈ L2(�)3k , i.e.,�σ L2(�)3k ⊂ L2
σ (�)∩ L2(�)3k . The

opposite inclusion is obvious.
Since C∞

0,σ (�)k is dense in L2
σ (�)∩L2(�)3k , its closure L2

σ (�)k equals L2
σ (�)∩

L2(�)3k .
Let us finally verify the last equality. Consider v ∈ C∞

0,σ (�)
3, let (17) be its

Fourier expansion in the variable ϕ and V k = [
V k

1 , V k
r , V k

ϕ

]
. Since

0 =
+∞∑

k=−∞
div

[
V k(x1, r) eikϕ

]
=

+∞∑
k=−∞

[(
∂1V k

1

) + 1

r
∂r

(
r V k

r

) + 1

r
i k V k

ϕ

]
eikϕ,

we get div
[
V k(x1, r) eikϕ

] = 0 for each k ∈ Z. Hence Pkv = V k(x1, r) eikϕ ∈
C∞

0,σ (�)k which is a subset of L2
σ (�)∩ L2(�)3k . Since C∞

0,σ (�) is dense in L2
σ (�),

we obtain the inclusion Pk L2
σ (�) ⊂ L2

σ (�) ∩ L2(�)3k . On the other hand, if
v ∈ L2

σ (�) ∩ L2(�)3k , then Pkv = v, hence it also belongs to Pk L2
σ (�). Thus, the

opposite inclusion L2
σ (�) ∩ L2(�)3k ⊂ Pk L2

σ (�) is also true. ��
Lemma 3.2. (i) D(A0

k) = Pk
[
D(A0)

]
.

(ii) R(A0
k) ⊂ L2

σ (�)k .

(iii) The operator A0
k is selfadjoint in L2

σ (�)k .

Proof. Let v ∈ D(A0) ≡ W 2,2(�)3 ∩ W 1,2
0 (�)3 ∩ L2

σ (�) and let (17) be its
Fourier expansion in the variable ϕ. Then V k(x1, r) eikϕ ≡ Pkv ∈ W 2,2(�)3, and,
due to the axial symmetry of � and the boundary condition satisfied by v on ∂�,
V k(x1, r) eikϕ also belongs to W 1,2

0 (�)3. We have already seen in the proof of
Lemma 3.1 that V k(x1, r) eikϕ ∈ L2

σ (�)k . Hence Pk[D(A0)] ⊂ D(A0
k).

On the other hand, if v ∈ D(A0
k), then it belongs to D(A0), and since Pkv = v,

it also belongs to L2(�)3k . Hence v ∈ D(A0) ∩ L2(�)3k = D(A0) ∩ L2
σ (�)k =

Pk[D(A0)].
If v ∈ D(A0

k), then �v ∈ L2(�)3k , and due to Lemma 3.1, A0v = ν�σ�v ∈
L2
σ (�)k . Hence A0 is reduced onto L2

σ (�)k .
The domain D(A0

k) is dense in L2
σ (�)k because it contains C∞

0,σ (�)k . Moreover,

the operator A0
k is symmetric because it is the part of the symmetric operator A0 in

L2
σ (�)k , and A0

k is closed because it is the restriction of the closed operator A0 to a
closed subspace of L2

σ (�). Thus, in order to show that A0
k is selfadjoint, it is suffi-

cient to show that ρ(A0
k) contains at least one real number ([19], p. 271). Indeed,

if ζ ∈ R, ζ > 0, and f ∈ L2
σ (�)k , then it can be verified that u = (A0 − ζ I )−1 f

represents the unique solution of the equation (A0
k − ζ I )u = f in L2

σ (�)k . Thus,
ζ ∈ ρ(A0

k). ��
Lemma 3.3. σ(A0

k) = σc(A0
k) = (−∞, 0].

Proof—part 1. Since the operator A0
k is a part of A0, Lemma 2.6 yields σ̃c(A0

k) ⊂
σ̃c(A0) = (−∞, 0].



On the spectrum of a Stokes-type operator 429

Let us prove that σ̃c(A0
k) covers the whole interval (−∞, 0]. Since σ̃c(A0

k) is a
closed set, it is sufficient to show that it is also open in (−∞, 0] and non-empty. The
last property is clear because A0

k is selfadjoint: if σ̃c(A0
k) = ∅ then σ(A0

k) = σp(A0
k),

which is impossible because each eigenvalue of A0
k is also an eigenvalue of A0 (with

the same eigenfunction) and σp(A0) = ∅.
Let us show that σ̃c(A0

k) is open in (−∞, 0]. Suppose that λ ∈ σ̃c(A0
k). Then

nul′(A0
k − λI ) = +∞. This enables us, cf. Sect. 2, to choose an orthonormal

sequence {vn} ⊂ D(A0
k) in L2

σ (�)k such that

(A0
k − λI ) vn = εn −→ 0 in L2

σ (�)k for n → +∞. (18)

We shall further use the next lemma.

Lemma 3.4. Let {vn} ⊂ D(A0
k) be an orthonormal sequence satisfying (18).

Then there exists R > R0 and a non-compact sequence {un} in D(A0
k) such that

‖un‖0,2 = 1, un = 0 in �R and

(A0
k − λI ) un −→ 0 in L2

σ (�)k for n → +∞. (19)

Proof. Obviously {vn} converges to the zero function weakly in L2
σ (�)k . The esti-

mate
‖∇v‖0,2 + ‖∇2v‖0,2 ≤ c2

(
‖A0v‖0,2 + ‖v‖0,2

)
(20)

(Galdi and Padula [9], pp. 205, 279) shows that the sequence {vn} is bounded in
W 1,2

0 (�)3 ∩ W 2,2(�)3. Then there exists a subsequence, again denoted by {vn},
which is weakly convergent to 0 in W 1,2

0 (�)3∩W 2,2(�)3. Suppose that R ≥ R0+3
is a fixed number. The compact imbedding W 2,2(�R)

3 ↪→ ↪→ W 1,2(�R)
3 yields

vn −→ 0 strongly in W 1,2(�R)
3. (21)

The first part of (18) can be written in the form

ν�vn − λvn + ∇qn = εn (22)

where qn is an appropriate scalar function. It follows from (22) that ∇qn → 0
weakly in L2(�)3. Thus, the functions qn [which are given uniquely up to an addi-
tive constant by (22)] can be chosen so that qn → q ≡ const. strongly in L2(�R).
The constant can be chosen so that q = 0.

Denote by η an infinitely differentiable cut-off function in � such that

η(x) =
{

0 if |x| < R − 2,

1 if |x| > R − 1,

0 ≤ η(x) ≤ 1 if R − 2 ≤ |x| ≤ R − 1, and that η is independent of ϕ. Put
un = ηvn − Vn where div Vn = ∇η · vn . Although Vn is not given uniquely, the
results on solutions of the equation div V = f (see e.g., [1]) show that the function
Vn can be chosen such that supp Vn ⊂ {x ∈ �; R − 3 < |x| < R} and there exist
c3, c4 > 0 such that

‖Vn‖2,2 ≤ c3 ‖∇η · vn‖1,2 ≤ c4 (23)
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for all n ∈ N. Moreover, since ∇η is independent of ϕ and vn ∈ L2
σ (�)k , the

function Vn can be constructed so that it belongs to L2(�)3k .
The function un is divergence-free, equals 0 in �R−3, equals vn in � − �R

and belongs to L2(�)3k . Due to the properties of the functions η and Vn we get
un ∈ D(A0

k). Obviously un satisfies

ν�un − λun + ∇(ηqn)

= η[ν�vn − λvn] + 2ν∇η · ∇vn + ν(�η)vn − ν�Vn + λVn + ∇(ηqn)

= ηεn + 2ν∇η · ∇vn + ν(�η)vn − ν�Vn + λVn + (∇η)qn (24)

where ηεn → 0 in L2(�)3 due to (18), and ν[2∇η · ∇vn + (�η)vn] → 0 in
L2(�)3 because ∇η and �η are supported in �R and due to (21). Furthermore,
(ν�Vn − λVn) → 0 in L2(�)3 due to (23), (21). Finally, (∇η)qn → 0 in L2(�)3

because qn → 0 in L2(�R) and ∇η is supported in �R . Thus,

ν�un − λun + ∇(ηqn) −→ 0 in L2(�)3 for n → +∞,

and therefore {un} satisfies (19). We have

‖un‖2
0,2 ≥

∫
|x |>R

|un(x)|2 dx =
∫

|x |>R

|vn(x)|2 dx −→ 1 for n → +∞

because ‖vn‖0,2 = 1 and due to (21). If we divide each of the functions un by its
norm ‖un‖0,2 and denote the new function again by un , we obtain the sequence
{un} with all the properties stated in Lemma 3.4. Finally, the orthonormality of {vn}
and (21) imply the non-compactness of the sequence {un}. ��
Proof of Lemma 3.3—part 2.. Consider the sequence {un} constructed in Lemma 3.4.
There exists 0 < ζ0 < 1 such that for any ζ > ζ0 the functions

uζn(x) =
⎧⎨
⎩

1

ζ 3/2 un

( x
ζ

)
for x/ζ ∈ �,

0 for x/ζ �∈ �
have their supports outside�R0 . Thus uζn ∈ D(A0

k), {uζn} is a non-compact sequence
in L2

σ (�)k and

‖uζn‖2
0,2 =

∫
�

|uζn(x)|2 dx = 1

ζ 3

∫
x/ζ∈�

∣∣∣un

( x
ζ

)∣∣∣2
dx =

∫
�

|un( y)|2 d y = 1.

Since ν�x uζn(x)− λ
ζ 2 uζn(x) = 1

ζ 7/2

(
�y un( y)− λ un( y)

)
for all x and y from �

such that y = x/ζ ,(
A0

k uζn − λ

ζ 2 I
)

uζn −→ 0 for n → +∞. (25)

This shows that λ/ζ 2 ∈ σ̃c(A0
k). Since ζ can be chosen arbitrarily in the interval

(ζ0,+∞), some neighborhood of λ in (−∞, 0] is contained in σ̃c(A0
k).
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We have proved that σ̃c(A0
k) = (−∞, 0]. Lemma 2.5 shows that σ̃c(A0

k) =
σess(A0

k), and both sets are also equal to σc(A0
k) because σp(A0

k) = σr (A0
k) = ∅.

��
The restriction of eA0t , t ≥ 0, to L2

σ (�)k defines an analytic semigroup in
L2
σ (�)k . It can be verified that its generator is the operator A0

k .

4. Axially symmetric domains �: operator Aω and its decomposition

Let k ∈ Z. We shall denote by Aωk the restriction of Aω to L2
σ (�)k . The domain of

Aωk is the same as the domain of A0
k , i.e.,

D(Aωk ) = D(A0
k) ≡ W 2,2(�)3 ∩ W 1,2

0 (�)3 ∩ L2
σ (�)k .

If u ∈ L2
σ (�)k , then it has the form U(x1, r) eikϕ and ∂ϕu = i k U eikϕ = i k u.

Therefore, Aωk can be rewritten as

Aωk u = A0
k u + ω ∂ϕu = A0

k u + i kω u. (26)

Lemma 4.1. Aωk is a normal operator in L2
σ (�)k and

σ(Aωk ) = σc(A
ω
k ) = {λ = α + i kω; α ≤ 0}.

Proof. Since A0
k is reduced by L2

σ (�)k , the operator Aωk is an operator in L2
σ (�)k

due to (26). Moreover, as A0
k is selfadjoint, the operator Aωk is densely defined and

closed. The adjoint operator to Aωk has the form

(Aωk )
∗u = A0

k u − ω ∂ϕu = A0
k u − i kω u. (27)

This operator commutes with Aωk , hence Aωk is normal. The characterization of
σ(Aωk ) follows from the representation (26) of Aωk and from Lemma 3.3. ��

Since A0
k generates an analytic semigroup in L2

σ (�)k and Aωk equals A0
k plus a

bounded operator in L2
σ (�)k , Aωk also generates an analytic semigroup in L2

σ (�)k .

Lemma 4.2. Aω is a normal operator in the space L2
σ (�).

Proof. Equality (16) implies that (Aω)∗u = A0u − ω ∂ϕu = �σ�u − ω ∂ϕu.
Suppose that u ∈ D(Aω(Aω)∗), i.e., u ∈ D((Aω)∗) and (Aω)∗u ∈ D(Aω) =

D((Aω)∗). The latter means that A0u − ω∂ϕu ∈ D(A0) and ∂ϕ(A0u − ω∂ϕu) ∈
L2(�)3, implying that u ∈ D((Aω)∗2). Put w = Aω(Aω)∗u.

In order to show that u ∈ D((Aω)∗ Aω), we treat the scalar product
(Aωu, Aωv)0,2 for v ∈ D(Aω) as follows:

(Aωu, Aωv)0,2 = (
(Aω)∗u, Aωv

)
0,2 + 2 (ω∂ϕu, Aωv)0,2

= (
(Aω)∗u, Aωv

)
0,2 + 2 (ω∂ϕu, A0v)0,2 + 2 (ω∂ϕu, ω∂ϕv)0,2.

(28)



432 R. Farwig, J. Neustupa

Let us first assume that v has a compact support in �. Then

(∂ϕu, A0v)0,2 = ν

∫
�

∂ϕu ·�v dx = −ν
∫
�

∇∂ϕu · ∇v dx

= ν

∫
�

∇u · ∂ϕ∇v dx = −ν
∫
�

�u · ∂ϕv dx = −(A0u, ∂ϕv)0,2.

Substituting this identity into (28), we obtain

(Aωu, Aωv)0,2 = (
(Aω)∗u, Aωv

)
0,2 − 2 (A0u, ω∂ϕv)0,2 + 2 (ω∂ϕu, ω∂ϕv)0,2

= (
(Aω)∗u, Aωv

)
0,2 − 2

(
(Aω)∗u, ω∂ϕv

)
0,2 =(

(Aω)∗u, (Aω)∗v
)
0,2

= (
Aω(Aω)∗u, v

)
0,2 = (w, v)0,2. (29)

In fact, (29) holds for all v ∈ D(Aω) because the set {v ∈ D(Aω); v has a com-
pact support in �} is a core of Aω. In order to verify it, we use a cut-off function
procedure analogous to that one used in the proof of Lemma 3.4, with a sequence
of cut-off functions ηn(x) = η(x/n)where η is independent of ϕ. Moreover, using
the technique from [1], we can show that the sequence of correction terms V n (sat-
isfying div V n = ∇ηn · v) can be constructed so that n‖∇V n‖0,2 and ‖∂ϕV n‖0,2
tend to zero as n → +∞. Now, (29) shows that for fixed u, (Aωu, Aωv)0,2 can be
extended to a continuous linear functional of v ∈ L2

σ (�). Thus, u ∈ D((Aω)∗ Aω).
We have proved the inclusion D(Aω(Aω)∗) ⊂ D((Aω)∗ Aω). The opposite

inclusion can be proved in the same way. Moreover, (29) implies that(
(Aω)∗ Aωu, v

)
0,2 = (Aω(Aω)∗u, v)0,2

for all v ∈ D(Aω) and even for all v ∈ L2
σ (�), which confirms that the operators

Aω and (Aω)∗ commute. ��
Lemma 4.3. σp(Aω) = σr (Aω) = ∅.

Proof. Note that σr (Aω) = ∅ because Aω is normal. Suppose thatλ is an eigenvalue
of Aω and u is a corresponding eigenfunction. The equation Aωu −λu = 0 means
that there exists a scalar function p such that ν�u + ω∂ϕu + ∇ p − λu = 0 in �.
Multiplying this equation by ū and integrating on �, we can verify that Re λ < 0.
Furthermore, expanding u and p to the Fourier series in the variable ϕ and denoting
the coefficients by Uk(x1, r) and Pk(x1, r) (for k ∈ Z), we can deduce that

ν�
(
Uk eikϕ) + ω i k Uk eikϕ + ∇(

Pk eikϕ) − λUk eikϕ = 0 (30)

in �. Moreover, div
(
Ukeikϕ

) = 0 and Uk = 0 on ∂�. This implies that
[
A0 +

(ω i k − λ)
](

Ukeikϕ
) = 0. Since the Stokes operator A0 has no eigenvalues, we

obtain Uk = 0. This identity holds for all k ∈ Z, hence u = 0. This is a contradic-
tion with the assumption that u is an eigenfunction. ��
Lemma 4.4. σc(Aω) = {z = α + i kω; k ∈ Z, α ≤ 0}.
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Proof. Lemma 4.3 and the inclusion σc(Aω) ⊂ σ̃c(Aω) imply that σc(Aω) =
σ̃c(Aω).

Suppose that λ = α+ iβ ∈ σ̃c(Aω). Then there exists a non-compact sequence
{un} in the unit sphere in L2

σ (�) such that

(Aω − λI )un = εn −→ 0 in L2
σ (�) as n → +∞. (31)

Let us write un in the form u−∞,K1
n + uK1,K2

n + uK2,+∞
n where K1, K2 ∈ Z,

K1 ≤ K2,

u−∞,K1
n (x1, r, ϕ) =

K1−1∑
m=−∞

Um
n (x1, r) eimϕ

and uK1,K2
n , uK2,+∞

n are defined by similar sums where m runs from K1 to K2 or
from K2 + 1 to +∞. Obviously, Um

n eimϕ = Pm un . Since un ∈ D(Aω) ⊂ D(A0),
part (a) of Lemma 3.2 implies that Um

n eimϕ ∈ D
(

A0
m

) ≡ D
(

Aωm
)
. The identity

1 = ‖un‖2
0,2 = ‖u−∞,K1

n ‖2
0,2 + ‖u−K1,K2

n ‖2
0,2 + ‖uK2,+∞

n ‖2
0,2 (32)

implies that there exists a subsequence of {un} (we shall preserve the same notation
for the subsequence) such that at least one of the following three statements is true:

(A) There exists an increasing sequence {K n
2 } of integer numbers which tends to

+∞ as n → +∞ and ‖u
K n

2 ,+∞
n ‖0,2 > 1/

√
3 for all n ∈ N.

(B) There exists a decreasing sequence {K n
1 } of integer numbers which tends to

−∞ as n → +∞ and ‖u
−∞,K n

1
n ‖0,2 > 1/

√
3 for all n ∈ N.

(C) There exist fixed K1, K2 ∈ Z, K1 < K2, such that ‖uK1,K2
n ‖0,2 > 1/

√
3 for

all n ∈ N.

Suppose that statement (A) is true. Let us multiply (31) by Um
n e−imϕ , integrate

on � and sum over m from K n
2 to +∞. We obtain

−‖∇u
K n

2 ,+∞
n ‖2

0,2−λ ‖u
K n

2 ,+∞
n ‖2

0,2+iω
+∞∑

m=K n
2

m‖Um
n eimϕ‖2

0,2 = (εn, u
K n

2 ,+∞
n )0,2.

(33)
Note that the right hand side tends to zero as n → +∞. However, the imaginary
part of the left hand side is

−β ‖u
K n

2 ,+∞
n ‖2

0,2 + ω

+∞∑
m=K n

2

m ‖Um
n eimϕ‖2

0,2

> −β ‖u
K n

2 ,+∞
n ‖2

0,2 + ωK n
2

+∞∑
m=K n

2

‖Um
n eimϕ‖2

0,2

= (−β + ωK n
2 ) ‖u

K n
2 ,+∞

n ‖2
0,2 ≥ 1

3
(−β + ωK n

2 )
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and tends to +∞. This is a contradiction. If statement (B) is true, then we arrive at
a similar contradiction.

Let us finally assume that (C) is true. Then there exists an integer k in the inter-
val [K1, K2], a δ > 0 and a subsequence of {un} (again denoted by {un}) such that
‖uk,k

n ‖0,2 ≡ ‖Uk
n eikϕ‖0,2 > δ. The first part of (31) can be written in the form

+∞∑
m=−∞

(Aω − λI )
[
Um

n eimϕ] =
+∞∑

m=−∞

(
A0 − λI + i mωI

) [
Um

n eimϕ]

=
+∞∑

m=−∞
Em

n eimϕ

where Em
n are the coefficients in the Fourier expansion of εn in the variable ϕ. Hence(

A0 − λI + i kωI
) [

Uk
n eikϕ] = Ek

n eikϕ (34)

for all n ∈ N. Multiplying (34) by Uk
n e−ikϕ and integrating on �, we obtain

−‖∇(
Uk

n eikϕ)‖2
0,2 − (λ− i kω) ‖Uk

n eikϕ‖2
0,2 =

(
Ek

n eikϕ,Uk
n eikϕ

)
0,2
. (35)

The imaginary part of the left hand side is −(β − kω) ‖Uk
n eikϕ‖2

0,2, whereas the
right hand side tends to zero for n → +∞, due to (31). Hence β = kω. Finally,
(34) shows that λ − i kω = α ∈ σ(A0). However, since σ(A0) = (−∞, 0], α is
non-positive.

We have proved the inclusion σ̃c(Aω) ⊂ {z = α + i kω; k ∈ Z, α ≤ 0}. The
opposite inclusion follows from the fact that each of the operators Aωk is a part of
Aω and so σ̃c(Aωk ) ≡ {z = α + i kω; α ≤ 0} ⊂ σ̃c(Aω) for all k ∈ Z. ��

Using Lemmas 4.2, 4.3 and 4.4, we proved Theorem 1.1, part (ii).

5. General exterior domains—operators Aω and Lω

We denote by Âω the operator which is defined in the same way as Aω, however
on the whole space R

3 instead of the exterior� ⊂ R
3. Obviously, the operator Âω

has all properties derived in Sects. 3 and 4.

Lemma 5.1. σ̃c(Aω) = σ̃c( Âω).

Proof. Suppose thatλ ∈ σ̃c(Aω). Then there exists an orthonormal sequence {vn} ⊂
D(Aω) in L2

σ (�) such that ‖vn‖0,2 = 1 and {vn} satisfies

(Aω − λI ) vn −→ 0 in L2
σ (�) for n → +∞. (36)

Using exactly the same procedure as in the proof of Lemma 3.4, we can prove that
there exists a non-compact sequence {un} in D(Aω) such that ‖un‖0,2 = 1, un = 0
in �R and

(Aω − λI ) un −→ 0 in L2
σ (�) for n → +∞. (37)
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All functions un , extended by zero from � to the whole R
3, belong to the domain

of operator Âω. Thus, (37) shows that λ ∈ σ̃c( Âω).
On the other hand, if λ ∈ σ̃c( Âω) then we can use analogous arguments and

prove that λ also belongs to σ̃c(Aω). ��

Note that σ̃c( Âω) equals σc( Âω) and is described by Lemma 4.4. Since σess(Aω)
is closed and a subset of σ̃c(Aω), the open set G = C−σess(Aω) has just one compo-
nent and ind(Aω−λI ) is constant in G. Usingρ(Aω) ⊂ G, we get ind(Aω−λI ) = 0
in G. This shows that G ∩ σ̃c(Aω) = ∅ and consequently,

σess(A
ω) = σ̃c(A

ω) = {z = α + ikω; k ∈ Z, α ≤ 0} (38)

proving Theorem 1.1 (i).

Lemma 5.2. If ω �= 0 and if the domain � is not axially symmetric about the
x1-axis, then the operator Aω is not normal.

Proof. By proving the existence of a function z ∈ D((Aω)∗ Aω) which is not in
D(Aω(Aω)∗), we show that the domains D((Aω)∗ Aω) and D(Aω(Aω)∗) do not
coincide.

Let R > R0 and let us denote by A0
R the Stokes operator in the space L2

σ (�R)

with the dense domain D(A0
R) = W 2,2(�R)

3 ∩ W 1,2
0 (�R)

3 ∩ L2
σ (�R). The spec-

trum of A0
R (as well as the spectrum of A0

R +ω∂ϕ) consists of a countable number
of isolated eigenvalues with finite multiplicities and negative real parts. Choose an
eigenvalue ζ of A0

R and denote by v an associated eigenfunction. The equation

A0
R u + ω∂ϕu = v (39)

has a unique solution u ∈ D(A0
R), u �≡ 0. Let us show, by contradiction, that

∂ϕu �≡ 0 on ∂�. Assume the opposite, i.e., ∂ϕu ≡ 0 on ∂�. Then ∂ϕu ∈ VR where
VR := W 1,2

0 (�R)
3 ∩ L2

σ (�R). The operator A0
R can be extended to the one-to-one

continuous linear operator mapping VR onto the dual space V ′
R . Moreover, ∂ϕ maps

VR into L2
σ (�) and A0

R +ω∂ϕ is an injection from VR into V ′
R , because 0 is not an

eigenvalue of A0
R + ω∂ϕ . The equation (39) shows that A0

R u also belongs to VR .
Now, A0

R∂ϕu ∈ V ′
R and it can simply be shown that it equals ∂ϕ A0

R u (∈ L2
σ (�)).

Indeed, if φ ∈ C∞
0,σ (�R), the duality between the spaces V ′

R and VR yields

〈A0
R∂ϕu, φ〉 = −

∫
�R

∇∂ϕu · ∇φ dx =
∫
�R

∂ϕu ·�φ dx = −
∫
�R

u · ∂ϕ�φ dx

= −
∫
�R

u ·�∂ϕφ dx = −
∫
�R

u · A0
R∂ϕφ dx = −

∫
�R

A0
R u · ∂ϕφ dx

=
∫
�R

∂ϕ A0
R u · φ dx.
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Hence, as identities in V ′
R , we have

0 = (
A0

R − ζ I
)
v = (

A0
R − ζ I

)(
A0

R + ω∂ϕ
)
u

= (
A0

R

)2u + ωA0
R∂ϕu − ζ A0

R u − ζω∂ϕu

= (
A0

R

)2u + ω∂ϕ A0
R u − A0

Rζu − ω∂ϕζu = (
A0

R + ω∂ϕ
)(

A0
R − ζ I

)
u.

This implies that
(

A0
R − ζ I

)
u = 0 which means that u is an eigenfunction of A0

R
associated with the eigenvalue ζ , too. Since the space generated by such eigenfunc-
tions is finite-dimensional, v can be chosen so that µu = v for some µ ∈ C. Then
equation (39) implies

ω∂ϕu = (µ− ζ )u (40)

in �R . Since �R is not axially symmetric, we find a point x0 ∈ ∂� such that in a
neighborhood U ⊂ ∂� of this point ∂ϕ is not the tangential derivative at x ∈ U.
Consider (40) as a first order linear differential equation in ϕ with initial values
related to points in U . The boundary condition u = 0 on ∂� enables us to conclude
that u vanishes identically in an open subset of �R . Now the unique continuation
principle applied to ω = curl u, cf. the proof of Lemma 2.6, shows that ω ≡ 0 and
consequently that also u ≡ 0 in�R which is impossible because u �= 0 in�R . The
assumption ∂ϕu ≡ 0 on ∂� thus leads to the contradiction, hence ∂ϕu �≡ 0 on ∂�.

Using an appropriate cut-off function procedure, cf. the proof of Lemma 3.4,
we can construct a function z in D((Aω)∗ Aω) which coincides with the function u
constructed just before in the neighborhood of ∂� and equals 0 outside�R . Hence
∂ϕ z �≡ 0 on ∂�. However, then z cannot belong to D(Aω(Aω)∗) because all func-
tions z ∈ D((Aω)∗ Aω)∩D(Aω(Aω)∗) satisfy z = A0 z+ω ∂ϕ z = A0 z−ω ∂ϕ z = 0
on ∂�, which implies that ∂ϕ z ≡ 0 on ∂�. ��

Now Lemma 5.2 yields item (iii) of Theorem 1.1. Theorem IV.5.35 in [19] and
Lemma 2.4 imply that the essential spectrum of the operator Lω is also given by (38).
Moreover, since ind(Lω−λI ) = 0 in G = C−σess(Lω) and due to Theorem IV.5.31
in [19], G can contain at most countably many eigenvalues λ of Lω, which can clus-
ter only on the boundary of G and 0 < nul(Lω − λI ) = def(Lω − λI ) < +∞ at
each of them. This implies Theorem 1.2.
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