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Abstract. A rational Lagrangian fibration f on an irreducible symplectic variety V is
a rational map which is birationally equivalent to a regular surjective morphism with
Lagrangian fibers. By analogy with K3 surfaces, it is natural to expect that a rational
Lagrangian fibration exists if and only if V has a divisor D with Bogomolov–Beauville
square 0. This conjecture is proved in the case when V is the Hilbert scheme of d points
on a generic K3 surface S of genus g under the hypothesis that its degree 2g − 2 is a
square times 2d−2. The construction of f uses a twisted Fourier–Mukai transform which
induces a birational isomorphism of V with a certain moduli space of twisted sheaves on
another K3 surface M , obtained from S as its Fourier–Mukai partner.

0. Introduction

According to Beauville [Beau-1], [Beau-2], the d-th symmetric power S(d) of a
K3 surface S has a natural resolution of singularities, the punctual Hilbert scheme
S[d] = HilbdS, which is a 2d-dimensional irreducible symplectic variety. Here a
holomorphically symplectic manifold is called an irreducible symplectic variety
if it is projective and simply connected and has a unique symplectic structure up
to proportionality. In dimension 2, the irreducible symplectic varieties are exactly
K3 surfaces. Here and throughout the paper, a K3 surface means a projective K3
surface, and all the varieties are assumed to be projective.

The 2-dimensional cohomology H 2(V ,Z) of an irreducible symplectic vari-
ety V has an integral quadratic form qV with remarkable properties, called the
Bogomolov–Beauville form. This form together with the Hodge structure onH 2(X)

gives rise to many striking analogies between K3 surfaces, where qV is just the
intersection form, and higher-dimensional irreducible symplectic varieties. They
have very similar deformation theories, descriptions of period maps, Torelli theo-
rems, structures of the ample (or Kähler) cone (see [Bou], [Hu-1], [Hu-2], [O’G-1],
[O’G-2], [S-1], [S-2] and references therein). There are also differences. For exam-
ple, there is only one deformation class of K3 surfaces, but at least two deformation
classes of irreducible symplectic varieties of any even dimension> 2; one of them
is the class of the variety S[d]. Another difference is the existence of nontrivial bira-
tional isomorphisms (flops) between irreducible symplectic varieties. Huybrechts
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shows in [Hu-0] that two birationally equivalent irreducible symplectic varieties
not only are deformation equvalent and have the same period, but also represent
nonseparated points of the moduli space.

It is natural to expect that the analogy between the K3 surfaces and irreducible
symplectic varieties has many more manifestations that are still to be proved. For
example, O’Grady conjectures in [O’G-2] that an irreducible symplectic variety V ,
deformation equivalent to S[d], has an antisymplectic birational involution if it has
a divisor class with Bogomolov–Beauville square 2. This is of course true for K3
surfaces. He also raises the problem of finding explicit geometric constructions for
the irreducible symplectic varieties having a divisor class with small square.

A more specific question in this direction is the characterization of varieties V
that have a structure of a fibration, that is a regular surjective map f : V → B

to some other variety B, different from a point, with connected fibers of positive
dimension. If V is K3, then such a map exists if and only if V has a divisorD with
square 0, and then the divisor D′ obtained from ±D by a number of reflections in
(−2)-curves defines the structure of an elliptic pencil ϕ|D′| : V → P

1.
One cannot generalize this straightforwardly by saying that a higher

dimensional irreducible symplectic variety admits a fibration if and only if the
Bogomolov–Beauville form on Pic(V ) represents zero. Indeed, it follows from the
description of Pic(S[d]) in Theorem 1.2 that if S is a generic K3 surface of degree
2d − 2, then Pic(S[d]) has exactly two primitive effective divisor classes h± e of
square zero and none of them defines a fibration structure. Nevertheless, V = S[d]

admits a structure of a rational fibration, that is a rational map f : V ��� B which
can be birationally transformed to a genuine fibration g : W → B on a symplectic
variety W birational to V . This map is introduced by formula (2) and it coincides
with the rational map ϕ|h−e| given by the complete linear system |h− e|.

Thus the expected generalization is the following: an irreducible symplectic
variety V has a structure of a rational fibration if and only if it has a divisor D
with square 0. Matsushita [Mat-1], [Mat-2] has proved important results on the
structure of regular fibrations f : V → B on an irreducible symplectic variety
V : dimB = 1

2 dim V and the generic fiber of f is an abelian variety which is a
Lagrangian subvariety of V with respect to the symplectic structure. If, moreover,
B is nonsingular, thenB has the Hodge numbers of a projective space. Remark that
no examples are known of fibrations on irreducible symplectic varieties with base
different from a projective space. So one might complete the conjecture in saying
that the baseB of any rational fibration f on an irreducible symplectic variety V of
dimension 2n is the projective space P

n and that f is given by the complete linear
system |D| of a divisor D with qV (D) = 0.

In the present article, we prove this conjecture for the varieties S[d] constructed
from generic primitively polarized K3 surfaces S of degree (2d − 2)m2, m ≥ 2
(Corollary 4.4). In the next few lines we describe briefly our construction. We define
another K3 surface M , which is a moduli space of sheaves on S, and a birational
map µ from S[d] to another irreducible symplectic variety V . The latter is a moduli
space of α-twisted sheaves on M for some element α of the Brauer group Br(M),
and µ is induced by the twisted Fourier–Mukai transform defined by a twisted
universal sheaf on S ×M . Further, V is a torsor under the relative Jacobian of a
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linear system |C| on M , and hence has a natural morphism f : V → |C| � P
d

which sends each twisted sheaf to its support. This map is a regular Lagrangian
fibration, and the rational one on S[d] is π = f ◦ µ.

The same result was obtained independently and almost simultaneously in
[S-2]. Later Yoshioka proved the regularity of this rational Lagrangian fibration;
Yoshioka’s proof is included in the version 3 of loc. cit. The paper [Gu] contains
a similar result for the other series of Beauville’s examples, generalized Kummer
varieties; in this case the proof does not necessitate a use of twisted sheaves, and it
seems very likely that the rational Lagrangian fibration constructed by the author
is indeed not regular.

By Proposition 1.2, S[d] has a divisor class with Bogomolov–Beauville square
zero for a generic primitively polarized K3 surface S of degree n if and only if
k2n = (2d − 2)m2 for some integers k ≥ 1, m ≥ 1, d ≥ 2 with relatively prime
k,m. Regular Lagrangian fibrations on S[d] have been known before in some par-
ticular cases when k = 1. Hassett and Tschinkel [HasTsch-1], [HasTsch-2] have
proved the existence of a regular Lagrangian fibration on S[d] for a generic K3
surface S of degree 2m2, which corresponds to d = 2, m ≥ 2. The authors of [IR]
provided an explicit construction of such a fibration in the case d = 3, m = 2. No
examples are known with k > 1.

In Section 1, we gather generalities on irreducible symplectic varieties and fibra-
tions on them. In Section 2, we cite necessary notions and results on Fourier–Mukai
transforms and on twisted sheaves following [Cal-2], [HS], [Y-2]. In Section 3 we
define the moduli K3 surface M = M(m,H, (d − 1)m) and study the properties
of the sheaves on the initial surface S represented by points ofM . In Section 4, the
main result (Theorem 4.3, Corollary 4.4) is proved. In conclusion, we show that the
same construction applied to nongeneric K3 surfaces of degree (2d − 2)m2 yields
nonregular rational fibration maps f (Proposition 4.6).

1. Preliminaries

A symplectic variety is a nonsingular projective variety V over C having a nonde-
generate holomorphic 2-form α ∈ H 0(�2

V ). It is called irreducible symplectic if
it is, moreover, simply connected and h0,2(V ) = 1. By the Bogomolov–Beauville
decomposition theorem [Beau-2], every symplectic variety becomes, after a finite
étale covering, a product of a complex torus and a number of irreducible symplectic
varieties.

Theorem 1.1 (Beauville, [Beau-2]). Let V be an irreducible symplectic variety
of dimension 2d. Then there exists a constant cV and an integral idivisible qua-
dratic form qV of signature (3, b2(V )− 3) on the cohomologyH 2(V ,Z) such that
γ 2d = cV qV (γ )

d for all γ ∈ H 2(V ,Z), where γ 2d ∈ H 4d(V ,Z) denotes the
2d-th power of γ with respect to the cup product in H ∗(V ,Z), and H 4d(V ,Z) is
naturally identified with Z.

The form qV was first introduced by Bogomolov in [Bo], so we will call it
Bogomolov–Beauville form, and cV is called Fujiki’s constant.



134 D. Markushevich

In dimension 2, the irreducible symplectic varieties are just K3 surfaces. Histor-
ically, the first constructions of higher-dimensional irreducible symplectic varieties
belong to Fujiki [F] (one example of dimension 4) and Beauville [Beau-1], [Beau-2]
(two infinite series of examples in all even dimensions ≥ 4). The Beauville’s exam-
ples are: 1) X[d] = Hilbd(X), the Hilbert scheme of 0-dimensional subschemes
of length d in a K3 surface X, and 2) Kn(A), the generalized Kummer variety
associated to an abelian surface A. The latter is defined as the fiber of the summa-
tion map A[n+1] → A. The punctual Hilbert scheme X[d] has a natural Hilbert–
Chow map X[d] → X(d) sending each 0-dimensional subscheme to the associated
0-dimensional cycle of degree d , considered as a point of the d-th symmetric power
X(d) ofX. The Hilbert–Chow map is a resolution of singularities whose exceptional
locus is a single irreducible divisorE, the inverse image of the big diagonal ofX(d).
By a lattice we mean a free Z-module of finite rank endowed with a nondegenerate
integer quadratic form.

Proposition 1.2. Let X be a K3 surface. Then cX[d] = (2d)!
d!2d

and there is a natural

isomorphism of lattices H 2(X[d],Z) � H 2(X,Z)
⊥⊕ Ze, e2 = −2(d − 1), where

e is the class of the exceptional divisor E of the Hilbert–Chow resolution, and e2

stands for the square of e with respect to the Bogomolov–Beauville form qX[d] .

Proof. See [HL], 6.2.14. 
�
Using the isomorphism of Proposition 1.2, we will denote a class in PicX or

H 2(X,Z) and its image in PicX[d] or H 2(X[d],Z) by the same symbol.
Other examples of irreducible symplectic varieties are given by moduli spaces

of sheaves on a K3 or abelian surface Y . Mukai [Mu-1] has endowed the integer
cohomology H ∗(Y ) with the following bilinear form:

〈(v0, v1, v2), (w0, w1, w2)〉 = v1∪w1 − v0∪w2 − v2∪w0, (1)

where vi, wi ∈ H 2i (Y ). We will denote 〈v, v〉 simply by v2. For a sheaf F on Y ,
the Mukai vector is

v(F) = ch(F)
√

Td(Y ) = (rk F, c1(F), χ(F)− ε rk F)

∈ H 0(Y )⊕H 2(Y )⊕H 4(Y ) = H ∗(Y ),

where Td(Y ) is the Todd genus, H 4(Y ) is naturally identified with Z and ε = 0,
resp. 1 if Y is abelian, resp. K3. We refer to [Sim] or to [HL] for the definition
and the basic properties of the Simpson (semi-)stable sheaves. Let MH,s

Y (v) (resp.

M
H,ss
Y (v)) denote the moduli space of Simpson stable (resp. semistable) sheaves

F on Y with respect to an ample class H with Mukai vector v(F) = v. According
to Mukai ([Mu-1], [Mu-2], see also [HL]), MH,s

Y (v), if nonempty, is smooth of
dimension v2 + 2 and carries a holomorphic symplectic structure.

Theorem 1.3. If Y is a K3 surface, then a nonempty moduli space MH,s
Y (v) is an

irreducible symplectic variety whenever it is compact or, equivalently, projective.
Moreover,MH,s

Y (v) is compact if v is primitive andH is a sufficiently generic ample
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class in the Kähler cone of Y . The last condition means that H does not lie on a
certain discrete family of walls in the Kähler cone, and it is automatically verified
if PicY � Z.

Proof. This summarizes the results of several papers: [Mu-1], [Mu-2], [Hu-1],
[Hu-2], [O’G-1] and [Y-1]. See also [HL], 6.2.5 and historical comments to Chap-
ter 6. 
�

In particular, the following statement holds:

Corollary 1.4. Let Y be a K3 surface with PicY � Z and v a primitive Mukai vec-
tor. Assume that M = M

H,s
Y (v) is nonempty. Then M is an irreducible symplectic

variety of dimension v2 + 2. If v is, moreover, isotropic, then M is a K3 surface.

There are similar results for the case when Y is abelian [Y-1], however in this
case notMH,s

Y (v) itself is irreducible symplectic, but the fiber of its Albanese map

M
H,s
Y (v) → Y × Ŷ . The papers cited above prove also that all the irreducible

symplectic varieties obtained in this way are deformation equivalent to Beauville’s
examples.

LetX be a K3 surface containing a nef curveC of degree 2d−2, d ≥ 2. Then the
d-th punctual Hilbert scheme admits a dominant rational map θ : X[d] ����� |C| �
P
d sending ξ ∈ X[d] to the generically unique curve Cξ ∈ |C| containing ξ . If |C|

embeds X into P
d , then θ can be described as follows:

θ : X[d] ����� P
d∨, ξ �→ 〈ξ〉Pd . (2)

Here 〈ξ〉Pd denotes the linear span of a subscheme ξ ⊂ X in the embedding into
P
d , which is generically a hyperplane in P

d , that is a point of the dual projective
space P

d∨.
For a 2d-dimensional symplectic varietyV , we will call a morphismπ : V → B

a Lagrangian fibration if it is surjective and its generic fiber is a connected Lagrang-
ian subvariety of V , that is a d-dimensional subvariety such that the restriction of
the symplectic form to it is zero. By the classical Liouville’s theorem, the generic
fiber is then an abelian variety.

Theorem 1.5 (Matsushita, [Mat-1], [Mat-2]). Let V be an irreducible 2d-
dimensional symplectic variety, and π : V → B a surjective morphisme with
connected fibers. Then dimB = d = 1

2 dim V and f is a Lagrangian fibration. If,
moreover,B is nonsingular, thenRif∗OV � �iB for all i ≥ 0, andB has the Hodge
numbers of a projective space.

We will call a rational map π : V ����� B a rational Lagrangian fibration,
if there exists a birational map µ : W ��� V of 2d-dimensional symplectic vari-
eties such that πµ is a regular Lagrangian fibration. Such a π is dominant and its
generic fiber is a connected Lagrangian subvariety of V , birational to an abelian
variety. The above map θ is a rational Lagrangian fibration. Its fibers are birational
to symmetric powers C(d)ξ , and hence to Jacobians of the genus-d curve Cξ . This
birationality is globalized as follows.
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Let J = J dX be the relative compactified Jacobian of the linear system |C|.
It can be defined as the moduli space MX(0, [C], 1) of Simpson-semistable tor-
sion sheaves on X with Mukai vector (0, [C], 1) [Sim], [LeP-2]. To speak about
semistable sheaves, one has to fix a polarization H on X, so it is better to write
J d,HX to explicitize the dependence on the polarization. If all the curves in |C| are
reduced and irreducible, then every semistable sheaf is stable, hence J is smooth
and its definition does not depend on polarization. In this case J can be equally
understood as the moduli space of simple sheaves [LeP-1], [Mu-1] with given Mu-
kai vector. Let ψ : J−→|C| � P

d be the natural map sending each sheaf to its
support. It is known that J is an irreducible symplectic variety and ψ is a Lagrang-
ian fibration [Beau-3]. The varietiesX[d] and J are related by a generalized Mukai
flop µ : X[d] ����� J introduced by Markman in [Mar]. It sends ξ ∈ X[d] to the
same subscheme ξ considered as a degree-d divisor on the curve Cξ , and we have
θ = ψ ◦ µ.

According to Huybrechts (Lemma (2.6) of [Hu-2]), any birational map between
irreducible symplectic varieties induces a Hodge isometry of their integer sec-
ond cohomology lattices H 2(·,Z) equiped with the Bogomolov–Beauville form.
Thus we have the isomorphisms of the Bogomolov–Beauville latticesH 2(J,Z) �
H 2(X[d],Z) and Pic(J ) � Pic(X[d]).

Lemma 1.6. Let X be aK3 surface with an effective divisor class f2d−2 such that
all the curves in the linear system |f2d−2| are reduced and irreducible. Let D be a
divisor on X[d] with class f2d−2 − e. Then h0(O(D)) = d + 1 and θ is given by
the complete linear system |D|.
Proof. Let L = ψ∗OPd (1). Then the self-intersection (L)2d is 0, hence qJ (L) = 0,
where qJ denotes the Bogomolov–Beauville form on H 2(J,Z). By the Riemann–
Roch Theorem for hyperkähler manifolds [Hu-1], if V is a hyperkähler manifold V
of dimension 2d with Bogomolov–Beauville formqV , thenχ(OV (D)) = χ(OV ) =
d+1 for any divisorD such that qV (D) = 0. Henceχ(L) = d+1. By Matsushita’s
theorem [Mat-2], Riψ∗OJ � �i

Pd
. Applying the Leray spectral sequence and the

Bott formula, we obtain for L = ψ∗(O(1)): h0(L) = d + 1, hi(L) = 0 for i > 0.
The map θ = ψ ◦ µ is given by a subsystem of |µ∗L|. As µ∗ is an isometry

of Bogomolov–Beauville lattices (H 2(J,Z), qJ ) and (H 2(X[d],Z), q), q(µ∗L) =
qJ (L) = 0. For X as in the hypothesis, it is possible that there are many primitive
divisorsD with q(D) = 0 onX[d]. Let us consider a deformation ofX to a surface
with PicX � Z, polarized by a divisor f2d−2 of degree 2d − 2. Then the map θ
deforms with X, rk PicX[d] = 2 and the only two primitive effective classes with
square 0 onX[d] are f2d−2 −e, f2d−2 +e. The latter has negative intersection with
the generic fiber P

1 of the Hilbert–Chow map X[d]−→X(d), hence has the whole
exceptional divisor E in its base locus, which is not the case for θ , so the linear
system defining θ is a subsystem of |f2d−2 − e|.

As µ is an isomorphism in codimension 1, h0(µ∗L) = h0(L) = d + 1, and
this ends the proof. 
�

As follows from Proposition 1.2, if X is a K3 surface with a curve class f2d−2
of degree 2d−2, then the Bogomolov–Beauville form on the Picard lattice ofX[d]
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represents zero. The classes ±f2d−2 ± e ∈ Pic(X[d]) are primitive with square 0,
and one of them, namely f2d−2 − e, defines a rational Lagrangian fibration. Thus
Lemma 1.6 provides an example illustrating the following conjecture:

Conjecture 1.7. Let X be a K3 surface. Then X[d] admits a rational Lagrangian
fibration with base P

d if and only if the Bogomolov–Beauville form of the Picard
lattice ofX[d] represents zero. In this case, there existsm ≥ 1 and an effective curve
class f(2d−2)m2 of degree (2d − 2)m2 onX such that the linear system defining the
rational Lagrangian fibration map on X[d] is of the form f(2d−2)m2 −me.

In Section 4, we will prove the conjecture for K3 surfaces with Picard group Z,
generated by a curve class of degree (2d−2)m2, and we will identify the Lagrang-
ian fibration as a torsor under the relative Jacobian of a linear system of curves
on some other K3 surface. The structure of the torsor is defined by twisting by an
element of the Brauer group of the second K3 surface.

2. Twisted sheaves and twisted Fourier-Mukai transforms

The sheaves twisted by an element of the Brauer group were introduced by
Căldăraru [Cal-1], [Cal-2].

The cohomological Brauer group Br′(Y )of a schemeY is defined asH 2
ét(Y,O

∗
Y ).

The Brauer group Br(Y ) is the union of the images of H 1(Y, PGL(n)) in Br′(Y )
for all n. For a smooth curve, Br(Y ) = Br′(Y ) = 0. For a smooth surface, Br(Y ) =
Br′(Y ). If Y is a K3 surface, then Br(Y ) � HomZ(TY ,Q/Z), where TY is the tran-
scendental lattice of Y , defined as the orthogonal complement of PicY inH 2(Y,Z).

Let α ∈ Br(Y ) be represented by a Čech 2-cocycle (αijk)i,j,k∈I , αijk ∈ �(Ui ∩
Uj ∩Uk,O∗

Y ) on some open covering {Ui}i∈I . An α-twisted sheaf F on Y is a pair
({Fi}i∈I , {ϕij }i,j∈I ), where Fi is a sheaf on Ui (i ∈ I ) and

ϕij : Fj |Ui∩Uj−→Fi |Ui∩Uj (i, j ∈ I )
are isomorphisms of sheaves with the following three properties:

ϕii = id, ϕji = ϕ−1
ij , ϕij ◦ ϕjk ◦ ϕki = αijk · id .

The α-twisted sheaves form an abelian category Mod(Y, α). It has enough
injectives and enough OY -flat sheaves. An α-twisted sheaf is coherent if all the
sheaves Fi are the α-twisted coherent sheaves form an abelian category Coh(Y, α).
If F is an α-twisted sheaf, and G an α′-twisted sheaf, then F ⊗ G is an αα′-twisted
sheaf, and Hom (F,G) is an α−1α′-twisted sheaf. If f : X → Y is a morphism,
then f ∗F ∈ Mod(X, f ∗α), and for any G ∈ Mod(X, f ∗α), f∗G ∈ Mod(Y, α).

We denote by D(Y, α) the derived category Dbcoh(Mod(Y, α)) of bounded com-
plexes of α-twisted sheaves with coherent cohomology. By a standard machinery

one defines the derived functors Rf∗,
L⊗, Lf ∗.

To define the Chern character on Coh(Y, α), Căldăraru fixes some α−1-twisted
locally free sheaf E on Y . Then F ⊗ E is a usual (untwisted) sheaf, so one can
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define the modified Chern character chE(F) := 1
rk E

ch(F ⊗ E) and the associated
Mukai vector vE(F) = chE(F)

√
Td(Y ). Remark that such an E exists only with

rank which is a multiple of the order of α in the Brauer group. These definitions
depending on E are not the ones best suited for application to the Fourier–Mukai
transform. Huybrechts and Stellari [HS] tensor F by an α−1-twisted C∞ line bun-
dle in place of an α−1-twisted holomorphic locally free sheaf E of higher rank.
Their construction depends on a so called B-field B ∈ H 2(Y,Q). The latter can be
defined for any Y for which H 3(Y,Z) = 0 as a lift of α via the surjection in the
exact triple

0 → PicY ⊗ Q/Z → H 2(Y,Q/Z) → H 2(Y,O∗
Y )tor → 0

composed with the natural map H 2(Y,Q) → H 2(Y,Q/Z). We will write
α = e2πiB .

LetLB denote theC∞ line bundle on Y with transition functions e2πiβij , where
(βij ) is a C∞ 1-cochain whose coboundary is some 2-cocycle Bijk ∈ �(Ui ∩Uj ∩
Uk,Q) representingB. Then the twisted Chern character is chB(F) = ch(F⊗L−1

B )

and the twisted Mukai vector is vB(F) = chB(F)
√

Td(Y ).
Let now X and Y be smooth projective varieties, α ∈ Br(Y ), and P• ∈ D(X ×

Y, π∗
Y α

−1), where πX, πY denote the projections of X × Y to the two factors. The
twisted Fourier–Mukai transform

P·
Y→X : D(Y, α)−→D(X)

is defined by

P·
Y→X(K

•) = πX∗(π∗
Y (K

•)
L⊗ P•).

It can be pushed down to the cohomology level in a natural way to give a map
ϕ : H ∗(Y,Q) → H ∗(X,Q) so that the following diagram is commutative:

D(Y, α)
P·
Y→X−−−−→ D(X)

vB(·)
�

�v(·)

H ∗(Y,Q)
ϕ−−−−→ H ∗(X,Q)

The Grothendieck–Riemann–Roch Theorem implies the following expression for

ϕ = ϕ
P·, B
Y→X:

ϕ
P·, B
Y→X(γ ) = πX∗

(
π∗
Y (γ ) · chπ∗

Y B
(P•) ·

√
Td(X × Y )

)
.

If α = 1, B = 0, we get the usual Fourier–Mukai transform introduced by Mukai,

and ϕP·, 0
Y→X is denoted by ϕP·

Y→X. Remark that the cohomological Fourier–Mukai
transform ϕ does not respect the grading of cohomology, neither the ring structure
given by the cup product.
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Let now X be a K3 surface and v = (r, L, s) ∈ H ∗(X,Z) a primitive Mukai
vector with algebraic L ∈ H 2(X,Z) such that v2 := (v, v) = 0. Let H be a suffi-
ciently generic ample class, so that M = M

H,s
X (v) is compact. Then, by Corollary

1.4, M is a K3 surface. Denote m = g. c. d. (r, L · γ, s)γ∈PicX. If m = 1, then,
according to the Appendix to [Mu-2],M is a fine moduli space, that is, there exists
a universal sheaf P on X ×M . It is defined by the condition that for any t ∈ M ,
the isomorphism class of stable sheaves corresponding to t is represented by the
restriction Pt = P|X×t . The same Mukai’s argument shows that if m > 1, then
there exists an element α ∈ Br(M) of order m and π∗

Mα
−1-twisted universal sheaf

P onX×M . We will not consider separately the casem = 1. It is a particular case
of the next theorem corresponding to α = 1, B = 0, though historically, it was
proved by Mukai in [Mu-2], [Mu-3] before Căldăraru’s work on twisted sheaves.
To state the theorem, we need to introduce a new weight-2 integral Hodge structure
on the total cohomology H ∗(M,Z) of M . This Hodge structure is determined by
a B-field lifting α, which we will fix once and forever, and will be denoted by
H̃B(M). The integer structure is defined by

H̃B(M,Z) = (expB ·H ∗(M,Q)) ∩H ∗(M,Z), expB := 1 + B + B2

2
,

and the Hodge decomposition over C by

H̃
1,1
B (M) = expB · (H 0(M)⊕H 1,1(M)⊕H 4(M)),

H̃
2,0
B (M) = expB ·H 2,0(M), H̃

0,2
B (M) = expB ·H 0,2(M).

The lattice H̃B(M,Z) is endowed with Mukai’s form (1). We will also consider the
total cohomology of X with a weight-2 Hodge structure H̃ (X,Z) constructed in
the same way, but with B-field equal to zero.

The following theorem holds.

Theorem 2.1 (Mukai, Căldăraru, Huybrechts–Stellari). Under the hypotheses
and with the notation of the previous paragraph, letPbe aπ∗

Mα
−1-twisted universal

sheaf on X × M and P∨ := RHom (P,OX×M). The following assertions are
verified:

(i) P
M→X : D(M, α)−→D(X) is an equivalence of categories with inverse

Pˇ
X→M : D(X)−→D(M, α).

(ii) ϕ = ϕ
P,̌ B
X→M is defined over Z and is a Hodge isometry

H̃ (X,Z)−→∼ H̃B(M,Z).
(iii) We have ϕ(v) = (0, 0, 1), ϕ(v⊥) ⊂ (0, ∗, ∗), and the induced map

ϕ : v⊥/v → H 2(M,Z), w �→ [ϕ(w)]H 2(M)

is a Hodge isometry. Here [·]H 2(M) denotes the H 2(M)-component of an ele-

ment of H ∗(M), and the orthogonal complement v⊥ is taken in H̃ (X,Z).
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Yoshioka in [Y-2] defined the notion of (semi)-stability of α-twisted sheaves
and constructed the moduli spaces of α-twisted sheaves. Let Y be a K3 surface
polarized by an ample class H , B ∈ H 2(Y,Q) and α = e2πiB ∈ Br(Y ). Let
v ∈ H̃ 1,1

B (M,Z). We will denote byMH,s
Y,B (v) the moduli space of stable α-twisted

sheaves F on Y with vB(F) = v. The next theorem is a generalization of Theorem
1.3 to twisted sheaves.

Theorem 2.2 (Yoshioka). In the hypotheses of the previous paragraph, assume that
H is sufficiently generic, that v is primitive, and that M = M

H,s
Y,B (v) is nonempty.

Then M is an irreducible symplectic manifold of dimension v2 + 2.

3. The K3 moduli space M(m, H, (d − 1)m)

Let X be a K3 surface such that PicX = Z · H , where H is ample and H 2 =
(2d − 2)m2 for some m ≥ 2, d ≥ 2. Denote by ηX the positive generator of
H 4(X,Z). Let M = MX(m,H, (d − 1)m) be the moduli space of semistable
sheaves on X with Mukai vector v = (m,H, (d − 1)m) = m+H + (d − 1)mηX.

Lemma 3.1. The following statements hold:

(i) M is a K3 surface with PicM � Z.
(ii) Every semistable sheaf with Mukai vector v is µ-stable and locally free.

Proof. As v is primitive and v2 = 0, (i) follows from Theorem 2.1, (iii). Further,
PicX = ZH , hence every semistable sheaf E with c1(E) = H is µ-stable.

The local freeness of E follows from [Mu-2], Proposition 3.16. 
�

Now we will describe Serre’s construction, which permits to obtain all the vec-
tor bundles from M as some sheaf extensions. For a 0-dimensional subscheme
Z ⊂ X, the number δ(Z) = h1(IZ(1)) is called the index of speciality (or O(1)-
speciality) of Z; it is equal to the number of independent linear relations between
the points of Z. In a more formal way, δ(Z) = l(Z) − 1 − dim〈Z〉, where l(Z)
stands for the length of Z. Following Tyurin [Tyu-1], [Tyu-2], we will call Z stable
if δ(Z′) < δ(Z) for any Z′ ⊂ Z, Z′ �= Z.

Lemma 3.2. Let Z ⊂ X be a stable 0-dimensional subscheme of degree c =
(d − 1)(m2 − m) + m with δ(Z) = m − 1. Define a sheaf E = EZ as the middle
term of the exact triple

0−→H 1(IZ(1))⊗ OX
α−→ E

β−→ IZ(1)−→0 (3)

whose extension class is the identity map on H 1(IZ(1)) under the canonical iso-
morphism Ext1(IZ(1),H 1(IZ(1)) ⊗ OX) = End(H 1(IZ(1)). Then E is a stable
locally free sheaf with Mukai vector v = (m,H, (d − 1)m) and h0(E) = dm,
h1(E) = h2(E) = 0.
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Proof. The local freeness follows from [Tyu-2], Lemma 1.2. The assertions on
the cohomology and the Mukai vector of E are obvious. As Pic(X) = ZH and
c1(E) = H , it is enough to prove that E is semistable.

Assume that E is unstable and M is the maximal destabilizing subsheaf of E.
Then c1(M) = nH with n ≥ 1. Let i be the inclusion M−→E. If β ◦ i = 0, then
α−1 maps M into the trivial vector bundle H 1(IZ(1)) ⊗ OX � Om−1

X , which is
impossible. Hence β ◦ i(M) is a rank-1 subsheaf of IZ(1), which we can represent
as IW(1) for some subschemeW ⊂ X containing Z. Thus we have the exact triple

0−→M′−→M−→IW(1)−→0.

If we assume that W has one-dimensional components, then c1(IW(1)) ≤ 0 <

µ(M), which contradicts the semistability of M. Hence W is 0-dimensional. We
have M′ ⊂ Om−1

X ⊂ E, so c1(M
′) = n− 1 ≤ 0 and n = 1. As M is maximal, it is

saturated in E, hence so is M′, and then M′ � Ok−1
X is a trivial subbundle of Om−1

X .
We obtain the following commutative diagram with exact rows and columns:

0 0 0
�

�
�

0 −−−−→ Ok−1
X −−−−→ M −−−−→ IW(1) −−−−→ 0
�

�
�

0 −−−−→ Om−1
X −−−−→ E −−−−→ IZ(1) −−−−→ 0
�

�
�

0 −−−−→ Om−k
X −−−−→ N −−−−→ IW,Z −−−−→ 0
�

�
�

0 0 0

(4)

For any Artinian OX-module M , we have Ext1(M,OX) � Ext1(OX,M)
∨ =

H 1(X,M)∨ = 0. Applying this to M = IW,Z , we see that Ext1(IW,Z,O
m−k
X ) = 0

and N has torsion whenever IW,Z �= 0, which contradicts the fact that M is a
saturated subsheaf of E. Hence IW,Z = 0 and Z = W .

We have the following monomorphism of extensions of sheaves:

0 −−−−→ Ok−1
X −−−−→ M −−−−→ IZ(1) −−−−→ 0
�

�
∥∥∥

0 −−−−→ Om−1
X −−−−→ E −−−−→ IZ(1) −−−−→ 0

The next lemma implies that k = m, hence the monomorphism is an isomorphism,
M = E, and E is semistable. 
�
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Lemma 3.3. Let V be a smooth variety, F1, F2,G sheaves on V ,

0−→Fi−→Ei−→G−→0 , i = 1, 2,

two sheaf extensions with classes ei ∈ Ext1(G, Fi). Then a homomorphism of
sheaves ϕ : F1−→F2 extends to a morphism of extensions

0 −−−−→ F1 −−−−→ E1 −−−−→ G −−−−→ 0

ϕ

�
�

∥∥∥

0 −−−−→ F2 −−−−→ E2 −−−−→ G −−−−→ 0

if and only if e2 = ϕ ◦ e1.

Proof. Standard; compare to [Mac], Proposition III.1.8. 
�
The vector bundle E = EZ defined by (3) is the result of Serre’s construction

applied to the 0-dimensional susbscheme Z.

Remark 3.4. To define EZ , one can replace the identity extension class by any lin-
ear automorphism e of H 1(IZ(1)). By the lemma, this will provide an isomorphic
sheaf EZ . If e is not of maximal rank, then EZ is not locally free. By [Tyu-2], § 1,
EZ will also be non-locally-free if Z is not stable.

The description of properties of E in terms of Z is particularly simple if Z is
contained in a smooth hyperplane section C ∈ |H | of X, in which case we can
considerZ as a divisor onC. By the geometric Riemann–Roch Theorem, the index
of speciality of Z according to our definition is the same as the index of speciality
of the divisorZ onC. Thus δ(Z) = m−1 if and only ifZ belongs to a linear series
gm−1
c on C. We denote by Wr

c (C) the Brill–Noether locus of linear series grc on C
and byGrc(C) the union the corresponding linear series as a subvariety of Divc(C).

Lemma 3.5. Let C ∈ |H | be a smooth curve and Z ∈ Divc(C) such that δ(Z) =
m− 1. Let EZ be defined by the extension (3). Then the following assertions hold:

(i) EZ is locally free if and only if the linear system |Z| is base point free.
(ii) EZ is globally generated if and only if the linear system |KC−Z| is base point

free.
(iii) EZ fits into the exact triple

0−→OmX−→EZ−→OC(K − Z)−→0 ,

where K = KC is the canonical class of C, and EZ � EZ′ for any Z′ ∈ |Z|.
Proof. See [Tyu-1], Lemma 3.4 or [Mor], Section 5. 
�

For any t ∈ M we will denote by Et the rank-m sheaf on X represented by t .

Proposition 3.6. Let t ∈ M be generic and E = Et . The following properties are
verified:
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(i) E is obtained from a divisor Z ∈ Gm−1
c (C) for some smooth hyperplane

section C of X by the construction of Lemma 3.5.
(ii) E is globally generated.

Proof. As X is generic, any of its smooth hyperplane sections C is Brill–Noether
generic by [L]. As the Brill–Noether number ρm−1

c = 1, there exists a divisor
Z ∈ gm−1

c on C. Let E = EZ be the corresponding vector bundle. As ρm−1
c−1 < 0

and ρmc+1 < 0, the linear systems |Z| and |K − Z| are base point free, so E = Et
for some t ∈ M and E is globally generated by Lemma 3.5. The conditions (i), (ii)
are open, so the proposition is proved. 
�

For a future use, we will prove the following lemma.

Lemma 3.7. Let t ∈ M be generic and E = Et . The following properties are
verified:

(i) Let s1, . . . , sm bem linearly independent global sections of E. Then s1, . . . , sm
generate E at generic point of X.

(ii) The vanishing at a generic point z ∈ X imposes precisely m = rk E inde-
pendent linear conditions on a section of E. For any k = 1, . . . , d and for k
generic points z1, . . . , zk of X, we have h0(X,E ⊗ Iξ ) = m(d − k), where
ξ = z1 + · · · + zk .

(iii) Let z1, . . . , zd−1 be generic. Then any nonzero section s of E vanishing at
z1, . . . , zd−1 has exactly z1 + · · · + zd−1 as its scheme of zeros.

Proof. (i) Let F be the saturate in E of the subsheaf generated by s1, . . . , sm.
As E is locally free, F is reflexive. Any reflexive sheaf on a smooth surface is
locally free, so F is locally free. By the stability of E, F has no subsheaves F′
with c1(F

′) > 0. If k = rk F < m, then s1, . . . , sm are linearly dependent at
generic point of E. Let us renumber the si in such a way that s1, . . . , sk are lin-
early independent over C(X). Then s1, . . . , sk define an inclusion O⊕k

X ↪→ F.
An inclusion of locally free sheaves of the same rank is either isomorphic, or
has a cokernel supported on a nonempty divisor. The second case is impossi-
ble, as c1(F) ≤ 0. Hence F � O⊕k

X , and si for i = k + 1, . . . , m are linear
combinations of s1, . . . , sk with constant coefficients, which is absurd. Hence
k = m and F = E.

(ii) If z1 is generic, thenH 0(Iz1 ⊗E) has codimensionm inH 0(E) by (i). Choose
s1, . . . , sm ∈ H 0(Iz1 ⊗ E) linearly independent. Then for z2 ∈ X generic,
s1, . . . , sm span Ez2 by (i). Thus z1, z2 impose 2m conditions on sections of
E. Iterating one gets (ii).

(iii) Choose d − 2 generic points z1, . . . , zd−2 of X and a basis of 2m sections
e1, . . . , em, s1, . . . , sm vanishing at z1, . . . , zd−2, as in (ii) with k = d − 2.
Consider these sections on a sufficiently small open set U on which both
e1, . . . , em and s1, . . . , sm are bases of E. Let A = A(x) be am bymmatrix
of rational functions in x ∈ X such that si = Aei , that is, si = ∑

j ajiej ,
whereA = (aji) (i, j = 1, . . . , m). ThenA is regular and nondegenerate for
x ∈ U . For any y ∈ U , them sections σi = si −A(y)ei form a basis of all the
sections of E vanishing at z1, . . . , zd−2 and y. We may expand them in the
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basis (ej ) with coefficients in C(X): σi = σi(x) = (A(x) − A(y))ei . Here
x is a variable point of U , so that σi(x) denotes the value of σi in the fiber
Ex . Thus, any section σ of E vanishing at y can be written over U in the form
σ(x) = (A(x)−A(y))v, where v = v1e1 + . . .+vmem, (v1, . . . , vm) ∈ C

m.
This σ depends on v, y as parameters, and we will denote it by σv,y . By
the stability of E, no nonzero section of E vanishes along a curve, so y is
an isolated zero of σv,y . Let us now fix v �= 0 and let vary both x and y.
The zeros of σv,y are the solutions of the equation A(x)v = A(y)v. The
fact that y is an isolated zero of σv,y for any y ∈ U implies that the fibers
of the map f : U → C

m, y �→ A(y)v are 0-dimensional (here we inter-
prete v as the vector (v1, . . . , vm) ∈ C

m). By Chevalley’s Theorem, f (U)
is a 2-dimensional constructible subset of C

m in the Zariski topology. By
Bertini-Sard Theorem, f (U) contains an open subset of noncritical values
of f . Thus there is a smaller Zariski open subset U0 ⊂ U such that f |U0 is
locally holomorphically invertible (“locally” in the classical topology). Hence
for any y0 ∈ U0, the equation f (x) = f (y0) is locally analytically equivalent
to x = y0, thus y0 is a simple zero of f (x)−f (y0) and a simple zero of σv,y0 .

We have proved that any nonzero section of E vanishing at d − 1 generic
points z1, . . . , zd−2, zd−1 = y0 of X has a simple zero at zd−1. By the sym-
metry of the roles of the points zi , all the zi are simple zeros. 
�

4. Lagrangian fibration via Fourier–Mukai transform

As in Section 3, letX be a generic K3 surface of degree (2d− 2)m2. Denote byH ,
resp. ηX the positive generator of PicX, resp.H 4(X,Z). LetM = MX(m,H, (d−
1)m) be the moduli space of semistable sheaves on X with Mukai vector v =
(m,H, (d − 1)m). Denote by ηM the positive generator of H 4(M,Z).

Lemma 4.1. Let P be a π∗
M(α)

−1-twisted universal sheaf on X ×M for some

α ∈ Br(M) of orderm. LetB ∈ H 2(M,Q) be such thatα = e2πiB andϕ = ϕ
P,̌ B
X→M

the map used in Theorem 2.1. Then PicM � Z, and for the positive generator Ĥ
of PicM we have

Ĥ = ± [ϕ(1 + (1 − d)ηX)]H 2(M) ,

where [·]H 2(M) denotes the H 2-component of a cohomology class.

Proof. The intersection of v⊥ ⊂ H̃ (X,Z)with H̃ 1,1(X) = C·1+C ·H+C·ηX is
the lattice of rank 2 generated by v and 1 + (1 − d)ηX. Hence, by Theorem 2.1, the
class of the hyperplane section Ĥ ofM is equal to ± [ϕ(1 + (1 − d)ηX)]H 2(M). 
�

Let ξ be a subscheme of length d in X and Iξ ⊂ OX its ideal sheaf. Define

Cξ = {t ∈ M | h0(X,Et ⊗ Iξ ) �= 0},
where Et denotes a rank-m vector bundle whose isomorphism class is represented
by t .
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Proposition 4.2. The sign in the formula of Lemma 4.1 for Ĥ is plus, and for generic
ξ ∈ X[d], Cξ is a curve from the linear system |Ĥ |.

Proof. Let  = Pˇ
X→M be the Fourier–Mukai transform associated to P. The

Mukai vector 1 + (1 − d)ηX is realized by either one of the objects Iξ or I∨
ξ =

RHom (Iξ ,OX). Henceϕ(1+(1−d)ηX) = chB((I∨
ξ ))

√
Td(M), where(I∨

ξ ) =
RπM∗(π∗

XI∨
ξ

L⊗ P∨). As P is locally free, we may replace
L⊗ by ⊗. By the relative

duality for πM (see [Har-1], p. 210 and [Cal-2], 2.7), and because the canonical
sheaf ofM is trivial,(I∨

ξ )[2] � (RπM∗(π∗
XIξ ⊗P))∨. The Cohomology and Base

Change Theorem ([Har-2], Theorem III.12.11) reduces the computation of the lat-
ter to that of the cohomology groups Hi(Gt ), where t ∈ M , G = π∗

XIξ ⊗ P, and
Gt := G|X×t � Pt ⊗Iξ . The cohomology of the sheaves Pt ⊗Iξ can be determined
from the exact triples

0−→H 1(IZ(1))⊗ Iξ−→Pt ⊗ Iξ−→IZ∪ξ (1)−→0,

where we can assume that SuppZ ∩ Supp ξ = ∅, and

0−→IZ∪ξ (1)−→OX(1)−→OZ∪ξ (1)−→0.

By Serre duality, H 2(Pt ⊗ Iξ ) = Hom(Iξ ,P
∨
t )

∨ = H 0(P∨
t )

∨ = 0. Hence
R2πM∗G = 0, and h0(Pt ⊗ Iξ ) = h1(Pt ⊗ Iξ ), so both of them are different
from zero if and only if t ∈ Cξ .

Let us verify that Cξ is a proper closed subset of M for generic ξ . It suffices
to show that h0(X,Pt ⊗ Iξ ) = 0 for generic ξ ∈ X[d] and generic t ∈ M . Choose
a generic E = Pt and d generic points z1, . . . , zd of X. By Lemma 3.7, (ii),
h0(X,E ⊗ Iξ ) = 0 for ξ = z1 + . . .+ zd , which implies the result.

Thus, Cξ is a union of finitely many curves and isolated points for generic ξ .
By Proposition 2.26 of [Mu-2], Cξ is of pure dimension 1 and R0πM∗G = 0. As
RiπM∗G = 0 is nonzero only in odd degree i = 1 and Extp(R1πM∗G,OM) is
nonzero only for odd p = 1, we have

[
ϕ(1 + (1 − d)ηX)

]
H 2(M)

= c1(R
1πM∗G) = h0(Pt ⊗ Iξ )[Cξ ]

for generic t ∈ Cξ . But by Lemma 4.1,
[
ϕ(1 + (1 − d)ηX)

]
H 2(M)

= ±Ĥ , hence

Cξ ∈ |Ĥ |, h0(Pt ⊗ Iξ ) is generically 1, and the sign is plus. 
�

Theorem 4.3. Let X be a K3 surface with PicX � Z, and H the ample genera-
tor of PicX. Let M = M

H,s
X (m,H, (d − 1)m) be the moduli space of H -stable

sheaves on X with Mukai vector v = (m,H, (d − 1)m) (d ≥ 2,m ≥ 2) and
Ĥ the ample generator of PicM . Let P be a π∗

M(α)
−1-twisted universal sheaf on

X ×M for some α ∈ Br(M) of order m and B a lifting of α in H 2(M,Q). Let
 = Pˇ

X→M be the associated Fourier–Mukai transform, and ϕ = ϕ
P,̌ B
X→M its

cohomological descent. Denote by w the Mukai vector (1, 0, 1 − d) of the sheaves
Iξ for ξ ∈ X[d], so that X[d] = M

H,s
X (w). Then the following assertions hold:
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(i) For generic ξ ∈ X[d], the only nonzero cohomology of the complex(I∨
ξ ) ish2,

and h2(I∨
ξ ) is a rank-1 torsion-free α|Cξ -twisted sheaf on a curve Cξ ∈ |Ĥ |.

(ii) ϕ(w) = (0, Ĥ , k) for some k ∈ Z, and the moduli space V = M
Ĥ,s
M,B(0, Ĥ , k)

is an irreducible symplectic manifold of dimension 2d. There is a birational
isomorphismµ : X[d] ����� V defined by ξ �→ [h2(I∨

ξ )], where the brackets
denote the isomorphism class of a sheaf.

(iii) The support of any sheaf Lt on M represented by a point t ∈ V is a curve
from the linear system |Ĥ |, and the map f : V → |Ĥ | � P

d , t �→ Supp Lt , is
a Lagrangian fibration. If we denote by {C} the point of the projective space
P
d � |Ĥ | representing a curve C from the linear system |Ĥ |, then the fiber
f−1({C}) for generic {C} ∈ |Ĥ | is isomorphic to the Jacobian of C.

Proof. (i) was verified in the proof of Proposition 4.2.
(ii) The equality ϕ(w) = (0, Ĥ , k) follows from Proposition 4.2 and Theorem

2.1 (iii). The fact that V is irreducble symplectic will follow from Yoshioka’s
Theorem 2.2 as soon as we see that V is nonempty. But we have constructed
stable sheaves represented by points of V in part (i). Indeed, as PicM = ZĤ ,
any curve Cξ is irreducible, and a rank-1 torsion free (twisted or usual) sheaf
on an irreducible curve is stable with respect to any polarization.
To prove the birationality of µ, remark that  and the duality functor D are
equivalences of categories, so the composite functor  ◦D transforms non-
isomorphic sheaves Iξ into the complexes (I∨

ξ ) that are non-isomorphic in
D(M, α). For generic ξ , the cohomology of the complex (I∨

ξ ) is concen-

trated in degree 2, hence the complex is quasi-isomorphic to h2(I∨
ξ )[2].

Thus for generic ξ �= ξ ′, the sheaves h2(I∨
ξ ), h

2(I∨
ξ ′) are non-isomorphic.

This implies thatµ is a generically injective rational map between irreducible
varieties of the same dimension, hence it is birational.

(iii) The fact that f is a Lagrangian fibration is an obvious consequence of the
above and of Matsushita’s Theorem 1.5.
As Br(C) = 0 for a smooth curveC, α|C = 0 for any smoothC ∈ |Ĥ |. Hence
the fiber of the support map over C is isomorphic to the Jacobian J (C). This
isomorphism is not canonical, for two different Čech 1-cochains β such that
ď(β) = α|C may differ by a Čech 1-cocycle defining an invertible sheaf L on
C, and the corresponding isomorphisms of f−1({C}) with J (C) will differ
by a translation by the class of L in J (C). Hence V represents a birational
torsor (biregular over the smooth curvesC ∈ |Ĥ |) under the relative Jacobian
J of the linear system |Ĥ |, and the generic fiber of f is isomorphic to J (C)
with C ∈ |Ĥ |. 
�

Corollary 4.4. LetX be a genericK3 surface of degree (2d−2)m2,H the positive
generator of PicX, and h the divisor class in Pic(X[d]) corresponding toH under
the isomorphism of Proposition 1.2. Consider the rational map

π : X[d] ����� |Ĥ | � P
d , ξ �→ Cξ .
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Then π is defined by the complete linear system |h−me| and is a rational Lagrang-
ian fibration. The fiber π−1({C}) for generic C ∈ |Ĥ | is birational to the Jacobian
of C.

Proof. In the notation of Theorem 4.3, π = f ◦ µ, where f is a Lagrangian fibra-
tion and µ is birational. Hence π is a rational Lagrangian fibration. By Proposition
1.2, Pic(X[d]) is of rank 2 and the only primitive effective classes with square zero
are h±me, so π∗[OPd (1)] = h±me. By construction, π∗[OPd (1)] is represented
by a divisor of the form

Dt = {ξ ∈ X[d] | h0(Iξ ⊗ Et ) �= 0} ⊂ X[d]

for generic t ∈ M , where Et denotes a stable vector bundle on X representing
t . The class h + me has negative intersection with the generic fiber P

1 of the
Hilbert–Chow map X[d]−→X(d), hence has the whole exceptional divisor E in
its base locus. Hence, to see that Dt ∼ h − me, it suffices to verify that Dt does
not contain E as a fixed component. The support Supp ξ of a generic ξ ∈ E is a
set of d − 1 generic points of X. By Lemma 3.7, (iii), the scheme of zeros of any
nonzero section σ of E vanishing on Supp ξ is exactly Supp ξ . But Supp ξ � ξ , so
h0(Iξ ⊗ Et ) = 0, and Dt ∼ h−me. By the same argument as in Lemma 1.6, π is
given by the complete linear system |h−me|. 
�
Remark 4.5. Though, as we mentioned in the introduction, π is regular for generic
X, it may be nonregular for some special K3 surfaces with PicX � Z

2 which have
a divisor class of degree (2d − 2)m2. The following Proposition provides such a
special K3 surface. The map ϕ|h−me| for this K3 surface is not regular, but a small
deformation of X kills its indeterminacy.

Proposition 4.6. LetX be a generic lattice-polarized K3 surface with Picard lattice

Q =
(

2d 2d − 1 +m

2d − 1 +m 2d − 2

)
.

Let f2d , f2d−2 be effective classes forming a basis of the Picard lattice in which
the intersection form is given by the above matrix. Then the following properties
are verified:

(i) If d ≥ 3, then the linear system |f2d |, resp. |f2d−2| embedsX into P
d+1, resp.

P
d . If d = 2, then |f2d | embeds X as a smooth quartic in P

3, and |f2d−2|
defines a double covering of P

2.
(ii) Every curve in the linear systems |f2d−2|, |f2d | is reduced and irreducible.

(iii) In addition to the rational map θ introduced in (2), define the birational invo-
lution

ι : X[d] ����� X[d] , ξ �→ (〈ξ〉Pd+1 ∩X)− ξ ,

where 〈ξ〉Pd+1 denotes the linear span of ξ in its embedding into P
d+1 by the

linear system |f2d |. The corresponding isometry of the Bogomolov–Beauville
lattice is the reflection with respect to the vector f2d − e with square 2:

ι∗ : H 2(X[d])−→H 2(X[d]) , c �→ −c + (c, f2d − e)(f2d − e) . (5)
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Then the composite map π = θ ◦ ι is given by the complete linear system
|f(2d−2)m2 − me|, where f(2d−2)m2 = (m + 1)f2d − f2d−2 is an effective divisor
class of degree (2d − 2)m2.

Proof. This is similar to the work of Hassett–Tschinkel [HasTsch-1] who produce
on a K3 surface X with two polarizations of degrees 4 and 8 an infinite series of
polarizations f2m2 of degree 2m2 (m ≥ 2) and the abelian fibration maps on X[2]

given by the linear system f2m2 − me. The assertions (i), (ii) follow easily from
the surjectivity of the period mapping for K3 surfaces [LP] and from the results of
[SD], [Kov]. For formula (5) of part (iii), see [O’G-2], 4.1.2. A direct calculation
using (5) shows that f(2d−2)m2 − me = ι∗(f2d−2 − e). The class f(2d−2)m2 has
positive square and positive scalar product with f2d , hence is effective. As ι is an
isomorphism in codimension 1, the dimensions of the linear systems |f2d−2 − e|
and |ι∗(f2d−2 − e)| are the same, so π is defined by a complete linear system. 
�
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surfacesK3. Problems in the theory of surfaces and their classification (Cor-
tona, 1988), 25–31, Sympos. Math., XXXII, Academic Press, London, 1991

[Bo] Bogomolov, F.A.: Hamiltonian Kähler manifolds. Sov. Math., Dokl. 19,
1462–1465 (1978)
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