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Abstract. It is well known that a microperiodic function that maps the set of reals into
itself and is continuous at a point (Lebesgue measurable, respectively) must be constant
(constant almost everywhere, resp.). We generalize those results in several directions. As a
consequence we obtain conclusions concerning some systems of functional inequalities.

1. Introduction

In what follows N, Z, Q, and R denote, as usual, the sets of positive integers,
integers, rationals and reals, respectively. Moreover N0 := N ∪ {0}.

We say a function f : R → R is microperiodic provided it has an arbitrarily
small positive period, i.e. the set {a ∈ R : f (x + a) = f (x) for x ∈ R} is dense
in R. (For instance, if f : R → R is biperiodic with periods a, b ∈ R \ {0} (i.e.
f (x + a) = f (x) = f (x + b) for x ∈ R) and ab−1 �∈ Q, then f is microperiodic).
It is very easy to prove that a microperiodic function f : R → R that is continuous
at a point must be constant. The case where the function is Lebesgue measurable
is more involved; it seems that it was Łomnicki [10] who first proved that such
a function must be constant almost everywhere. A short proof of it was given by
Semadeni [21] (see also [4]). An analogous result for functions with the Baire prop-
erty has been obtained by Xenikakis [22]. Generalizations of all these are given in
Kuczma [6], where a very abstract approach is assumed, and in Brzdȩk [3].

Similar results were obtained by Montel [13] (cf. [17] and [7, p. 228]; see also
[11] and [12]), who considered functions f : R → R, continuous at a point and
satisfying the following system of simultaneous inequalities

f (x + a) ≤ f (x), f (x + b) ≤ f (x) for x ∈ R (1)

with some a, b ∈ R \ {0}, ab−1 �∈ Q, ab < 0. It is easily seen that the set
P := {na + mb : n, m ∈ N} is dense in R and (1) implies

f (x + p) ≤ f (x) for x ∈ R, p ∈ P. (2)
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Therefore the study of system (1) leads us to the problem of description of solutions
of (2). For measurable functions and in more general settings inequalities (1) and
(2) have been studied in Brzdȩk [3].

We present generalizations of all the mentioned results. In particular, we show
how to unify most of these outcomes into a more general one, from which the
particular cases can be easily derived by specifications of some terms. Thus we
supply an answer to a question of Volkmann, who asked (private communication)
about a unification of the both mentioned above results, concerning microperiodic
measurable functions and microperiodic functions that are continuous at a point.
(The question was motivated by well known such a unification for the Cauchy
equations (see e.g. [1])). We also obtain a unification of the results in Brzdȩk [3]
(see Remark 3.1 and Theorem 3.1). We achieve that using an abstract property of
measurability with respect to some families of sets satisfying a hypothesis being
an abstract analogue of the Steinhaus Theorem (cf. [6]).

As a consequence we get generalizations of some results of Krassowska [8] and
Matkowski [9], concerning some systems of simultaneous functional inequalities
(see Corollaries 3.6 and 3.7), arising from a characterization of the L p norm (see
[9]).

2. Preliminaries

Let us start with some definitions (some of them are quite well known).

Definition 2.1. A group (G, ·), endowed with a topology, is a semitopological group
provided the mappings G � x → x · y ∈ G and G � x → y ·x ∈ G are continuous
for every y ∈ G (cf. e.g. [5], [6] or [18]).

Definition 2.2. Let X be a nonempty set. Then I ⊂ 2X is an ideal (in X) provided
A ∪ B ∈ I and 2A ⊂ I for every A, B ∈ I. If, moreover, I �= 2X , then we say I
is proper. Next, we say I is nontrivial provided I �= {∅}.
Definition 2.3. Let I be an ideal in a set X �= ∅. Then I is a σ -ideal provided⋃

n∈N
An ∈ I for every {An}n∈N ⊂ I.

Definition 2.4. Let (X, ·) be a group and I ⊂ 2X . Then I is left-translation invari-
ant provided x · A := {x · a : a ∈ A} ∈ I for every A ∈ I, x ∈ X.

Definition 2.5. Let X be a topological space, I ⊂ 2X be an ideal and A ⊂ X. If
for every x ∈ A there exists a neighbourhood Wx ⊂ X of x such that Wx ∩ A ∈ I,
then we say A is locally in I. We write l(I) := {A ⊂ X : A is locally in I}.

We say I is local provided l(I) ⊂ I.

Remark 2.1. Clearly, for every ideal I ⊂ 2X , I ⊂ l(I), whence I = l(I) if and
only if I is local. There exist left-translation invariant ideals that are not local.
For instance let I be the σ -ideal of the left-Haar measure zero subsets of a locally
compact topological group. Then l(I) is the σ -ideal of subsets of the group that
are locally of the left-Haar measure zero and, in some locally compact topological
groups, I �= l(I).
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It is also easily seen that in a topological group (G, ·), with the discrete topol-
ogy, for every nontrivial left-translation invariant ideal I ⊂ 2G we have G ∈ l(I);
but on the other hand G ∈ I if and only if I = 2G .

Proposition 2.1. Let (G, d) be a separable metric space. Then every σ -ideal I ⊂
2G is local.

Proof. Let P be a dense countable subset of G and I ⊂ 2G be a σ -ideal. Write
B(x, r) := {y ∈ G : d(x, y) < r} for x ∈ G, r > 0. Take A ∈ l(I). Then, for
every x ∈ A, there is rx ∈ Q

+ (positive rationals) with B(x, 2rx ) ∩ A ∈ I. Let
Px := B(x, rx )∩ P for x ∈ A. It is easily seen that B(x, rx ) ⊂ ⋃

y∈Px
B(y, rx ) and

B(y, rx )∩ A ⊂ B(x, 2rx )∩ A ∈ I for every x ∈ A, y ∈ Px . Next L := {B(y, rx ) :
x ∈ A, y ∈ Px } ⊂ {B(y, r) : y ∈ P, r ∈ Q

+}, whence L is countable. Since
A ⊂ ⋃

x∈A B(x, rx ) ⊂ ⋃
B∈L B and D ∩ A ∈ I for D ∈ L , we obtain A ∈ I. ��

Remark 2.2. It seems to be an open question whether the converse is true, i.e.
whether in a metric space that is not separable there exist σ -ideals that are not
local.

Let (G, ·) be a group endowed with a topology. For D, E ⊂ G and a ∈ G we
write a · E := {a · y : y ∈ E}, D−1 := {x−1 : x ∈ D} and D · E := {x · y : x ∈
D, y ∈ E}. In the sequel we need the following hypothesis.

(M) M ⊂ 2G and there exist σ -ideals I,S ⊂ 2G such that

int (D · C−1) �= ∅ and int (C · D−1) �= ∅ for D ∈ M \ I, C ∈ 2G \ S.

We have the following two well known examples of families M satisfying
hypothesis (M).

Example 2.1. M is the family of Haar measurable subsets of a locally compact
topological group and S = I is the σ -ideal of all locally of Haar measure zero
subsets of the group (see [2]).

Example 2.2. (G, ·) is a semitopological group such that the mapping G � x →
x−1 ∈ G is continuous, M is the family of all subsets of G with the Baire property
and S = I is the σ -ideal of all subsets of G of the first category (see e.g. [5, 18,
19]).

Next two examples of families M satisfying hypothesis (M) are supplied in
Remark 3.2 and in the subsequent Proposition 2.2. (Proposition 2.2 and Lemma 2.1
correspond to the abstract generalization of the Baire property introduced in [14]
and [15] and to the results generalizing the Piccard Theorem in Sander [18–20] and
Kominek and Kuczma [5]). For the proof of Proposition 2.2 we need the following
lemma.

Lemma 2.1. Let (G, ·) be a group endowed with a topology such that the mapping
G ∈ y → z · y is continuous for every z ∈ G. Let I0 ⊂ 2G be a left-translation
invariant local ideal, B ∈ 2G \ I0, T ∈ I0, and U ⊂ G be open and nonempty.
Then there is y ∈ B with

U · y−1 ⊂ (U \ T ) · B−1 and y · U−1 ⊂ B · (U \ T )−1. (3)
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Proof. B �∈ I0 and I0 is local, whence there is y ∈ B with (y·W )∩B �∈ I0 for every
neighbourhood W of the neutral element in G. Take x ∈ U . Then U0 := x−1 · U
is a neighbourhood of the neutral element and consequently (y · U0) ∩ B �∈ I0.
Hence (x−1 · U ) ∩ (y−1 · B) �∈ I0. Since x−1 · T ∈ I0 and

D := (x−1 · (U \ T )) ∩ (y−1 · B) = (x−1 · U ) ∩ (y−1 · B) \ x−1 · T,

we have D �= ∅. Take t ∈ D. Clearly xt ∈ U \ T and yt ∈ B, whence x · y−1 =
x · t · (y · t)−1 ∈ (U \ T ) · B−1 and y · x−1 = y · t · (x · t)−1 ∈ B · (U \ T )−1.
Thus we have shown (3). ��
Proposition 2.2. Let (G, ·) be a semitopological group such that the mapping G ∈
y → y−1 ∈ G is continuous and I0 ⊂ 2G be a left-translation invariant local
σ -ideal. Then the family

M := {(U \ C) ∪ D : U ⊂ G is open, C, D ∈ I0}
satisfies hypothesis (M) with S = I := I0.

Proof. Let U ⊂ G be open and nonempty, T ∈ I0 and B ∈ 2G \ I0. Then,
according to Lemma 2.1, condition (3) holds with some y ∈ G, which means
int ((U \ T ) · B−1) �= ∅ and int (B · (U \ T )−1) �= ∅. ��

3. The main results

We need the following three definitions.

Definition 3.1. Let (X, d) be a metric space. We say R ⊂ X2 has intersection prop-
erty provided B1∩B2 �= ∅ for every two balls B1, B2 ⊂ X such that R∩(B1×B2) �=
∅ and R ∩ (B2 × B1) �= ∅.

Remark 3.1. Clearly R = {(x, x) : x ∈ X} has intersection property for every
metric space (X, d). This is also the case if R = {(x, y) ∈ R

2 : x ≤ y} (with the
usual metric in X = R).

Definition 3.2. Let Y be a nonempty set, Z ⊂ Y and I ⊂ 2Y . We say a property
p(x)(x ∈ Z) holds I-almost everywhere in a set E ⊂ Z (abbreviated in the sequel
to I-a.e. in E) provided there exists a set A ∈ I such that p(x) holds for every
x ∈ E \ A.

Definition 3.3. Let G be a nonempty set, M ⊂ 2G, and X be a topological space.
We say f : G → X is M-measurable on a set D ⊂ G provided f −1(U )∩ D ∈ M
for every open set U ⊂ X.

Remark 3.2. Let X be a topological space, (G, ·) be a semitopological group with
the mapping G � x → x−1 ∈ G continuous, f : G → X be continuous at a point
x0 ∈ G, and M := {U ⊂ G : x0 ∈ int U or x0 �∈ U }. Then f is M-measurable
on G and hypothesis (M) holds with S = {∅} and I = {U ⊂ G : x0 �∈ U }.

Now we are in a position to prove the following theorem.
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Theorem 3.1. Let (X, d) be a separable metric space, (G, ·) be a semitopological
group, P ⊂ G be dense in G, E ⊂ G, (M) hold, and ⊂ X2 have intersection
property. Suppose w : E → X is M-measurable on a set D ∈ 2E \ I and satisfies

w(p · x)  w(x) for x ∈ E, p ∈ P with p · x ∈ E . (4)

Then w is constant S-a.e. in E.

Proof. Let Q = {qi : i ∈ N} be a dense subset of X and Bn
i := {x ∈ X : d(qi , x) <

1/n} for i, n ∈ N. For every n ∈ N we have

D ⊂ w−1(X) =
⋃

i∈N

w−1(Bn
i ).

Thus, for each n ∈ N, there exists i(n) ∈ N with

Dn := w−1
(

Bn
i(n)

)
∩ D ∈ M \ I,

because w is M-measurable on D and D �∈ I.
Since X is separable, for every n ∈ N there exists a countable family B(n) of

balls in X such that

X \ cl Bn
i(n) =

⋃

B∈B(n)

B.

Suppose there exist k ∈ N and B0 ∈ B(k) with Bk := w−1(B0) �∈ S. Then,
on account of (M), there are p1, p2 ∈ P such that p1 ∈ int (Bk · D−1

k ) and p2 ∈
int (Dk ·B−1

k ), which means that p1 ·d1 = b1 ∈ Bk ⊂ E and p2 ·b2 = d2 ∈ Dk ⊂ D
with some b1, b2 ∈ Bk and d1, d2 ∈ Dk . Hence

B0 � w(b1) = w(p1 · d1)  w(d1) ∈ Bk
i(k), (5)

and

Bk
i(k) � w(d2) = w(p2 · b2)  w(b2) ∈ B0,

whence  ∩(B0 × Bk
i(k)) �= ∅ and  ∩(Bk

i(k) × B0) �= ∅. This is a contradiction,

because  has intersection property and B0 ∩ Bk
i(k) = ∅.

Thus we have proved that w−1(B) ∈ S for every k ∈ N, B ∈ B(k). Let

L :=
⋂

k∈N

cl Bk
i(k).

Clearly L has at most one element,

A : = w−1(X \ L) = w−1

(
⋃

k∈N

(
X \ cl Bk

i(k)

)
)

=
⋃

k∈N

w−1
(

X \ cl Bk
i(k)

)
=

⋃

k∈N

⎛

⎝
⋃

B∈B(k)

w−1(B)

⎞

⎠ ∈ S,

and w(x) ∈ L for x ∈ E \ A. ��
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Remark 3.3. Note that if = {(x, x) : x ∈ X}, then condition (5) is not necessary
to obtain a contradiction in the proof of Theorem 3.1. Hence, in that case, (4) may
be replaced by the following weaker condition

w(p · x) = w(x) for x ∈ E, p ∈ P with p · x ∈ D, (6)

and hypothesis (M) by the weaker one

(M′) M ⊂ 2G and there exist σ -ideals I,S ⊂ 2G such that

int (D · C−1) �= ∅ for D ∈ M \ I, C ∈ 2G \ S.

Thus we have the subsequent two generalizations of some well known results con-
cerning microperiodic functions (cf. [3, 4, 6, 10, 21, 22]).

Corollary 3.1. Let X, G, E, P be as in Theorem 3.1 and (M′) hold. Suppose w :
E → X is M-measurable on a set D ∈ 2E \I and satisfies (6). Then w is constant
S-a.e. in E.

Proof. It is an immediate consequence of Theorem 3.1 and Remark 3.3. ��
Corollary 3.2. Let X, G, E, P be as in Theorem 3.1. Suppose w : E → X is
continuous at a point x0 ∈ D := int E and (6) holds. Then w is constant.

Proof. Let M := {U ⊂ G : x0 ∈ int U or x0 �∈ U }. Then w is M-measurable on
D and hypothesis (M’) holds with S = {∅} and I = {U ⊂ G : x0 �∈ U }. Hence
Corollary 3.1 yields the statement. ��

For the next corollary we need the following definition.

Definition 3.4. Let Y be a real linear space and v ∈ Y . Then we write

�v:= {(x, y) ∈ Y 2 : y − x = av with some a ∈ R, a ≥ 0}.
Corollary 3.3. Let G, P, E be as in Theorem 3.1, X be a real linear separable
normed space, v ∈ X, h : G → X, and w : E → X. Suppose h(x · y) =
h(x) + h(y) for x, y ∈ G and

w(p · x) �v w(x) + h(p) for x ∈ E, p ∈ P with p · x ∈ E . (7)

Then the following two conditions hold.

1. If (M) holds and the function w − h : E → X, (w − h)(x) := w(x) − h(x) for
x ∈ E, is M-measurable on a set D ∈ 2E \ I, then there exists z0 ∈ X such
that w(x) = z0 + h(x) S-a.e. in E.

2. If the mapping G ∈ y → y−1 ∈ G is continuous and the function w − h is con-
tinuous at a point x0 ∈ int E, then there exists z0 ∈ X such that w(x) = z0+h(x)

for x ∈ E.
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Proof. Take balls B1, B2 ⊂ X such that (B1 × B2)∩ �v �= ∅ and (B2 × B1)∩ �v

�= ∅. Then there exist xi , yi ∈ Bi for i = 1, 2 such that x1 �v x2 and y2 �v y1.
This means that a1v, a2v ∈ B1 − B2 for some a1, a2 ∈ R, a1a2 ≤ 0. Since the
balls are convex sets, so is the set B1 − B2 and consequently 0 ∈ B1 − B2, which
means B1 ∩ B2 �= ∅.

Thus we have shown �v has the intersection property. Next, by (7),

(w − h)(p · x) �v w(x) + h(p) − h(p) − h(x) = (w − h)(x)

for every x ∈ E , p ∈ P with p · x ∈ E . Hence Theorem 3.1 yields statement (1).
Next, arguing as in the proof of Corollary 3.2, from (1) we derive statement (2). ��
Remark 3.4. Note that, in the case X = R and v = 1, we have �v= {(x, y) ∈ R

2 :
x ≤ y}. Thus Corollary 3.3 generalizes the results in Brzdȩk [3].

In the case where (4) is postulated only almost everywhere we have for instance
the subsequent two corollaries.

Corollary 3.4. Let G, P, X, be as in Theorem 3.1, (M) be valid, J ∈ {S, I},
B \ T ∈ M for B ∈ M, T ∈ J , (8)

E0 ⊂ G, P be countable, w : E0 → X be M-measurable on a set D0 ⊂ E0 and,
for each p ∈ P, the condition

if p · x ∈ E0, then w(p · x)  w(x) (9)

hold J -a.e. in E0. Then the following two conditions are satisfied.

1. If J = S and D0 �∈ J0 := {T ∪ V : T ∈ I, V ∈ S}, then w is constant S-a.e.
in E0.

2. If J = I and D0 �∈ I, then w is constant J0-a.e. in E0.

Proof. For every p ∈ P there exists a set Ap ∈ J such that (9) holds for every
x ∈ E0 \ Ap. Write

A :=
⋃

p∈P

Ap.

Then A ∈ J and (4) is valid for E := E0 \ A. Moreover, according to (8), w is
M-measurable on D := D0 \ A �∈ I. Hence, by Theorem 3.1, w is constant S-a.e.
in E , which yields the statement. ��
Corollary 3.5. Let G, P, X, be as in Theorem 3.1, E0 ⊂ G, and J ⊂ 2G be
a left-translation invariant σ -ideal. Suppose the topology in G is metrizable, the
mapping G ∈ y → y−1 ∈ G is continuous, P ⊂ G is countable, w : E0 → X is
continuous at every point x ∈ int E0 �= ∅ and, for each p ∈ P, condition (9) holds
J -a.e. in E0. Then w is constant J -a.e. in E0.
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Proof. The case J = 2G is trivial, so suppose J is proper. This means int T �= ∅
for every T ∈ J (because P is dense and countable). Next, from Proposition 2.1
we derive J is local. Define A as in the proof of Corollary 3.4. Then A ∈ J and
(4) is valid for E := E0 \ A. Clearly (int E0) \ A �∈ J . Take x0 ∈ int E0 \ A. It is
easily seen w is M-measurable on E with

M := {U \ A : U ⊂ G and either x0 ∈ int U or x0 �∈ U }
and, on account of Lemma 2.1, hypothesis (M) holds with S = J and I := {U ⊂
G : x0 �∈ U }. Consequently Theorem 3.1 implies the statement. ��

It seems that, with the same method as in the proof of Corollary 3.5, we cannot
derive from Theorem 3.1 an analogous corollary under the weaker assumption of
continuity of w at least at one point, because it may happen that the only point of
continuity of w, say x0, belongs to A and then E ∈ I, which means we cannot
apply Theorem 3.1. However we can show such a result using a more direct method
of proof. Namely we have the following theorem.

Theorem 3.2. Let (X, d) be a metric space, ⊂ X2 have the intersection property,
(G, ·) be a semitopological group, E0 ⊂ G, J ⊂ 2G be a left-translation invariant
local σ -ideal, and H ∈ J . Suppose P ⊂ G is dense and countable, w : E0 → X
is continuous at a point x0 ∈ int E0 and, for each p ∈ P, the condition

if p · x ∈ E0 \ H, then w(p · x)  w(x) (10)

holds J -a.e. in E0. Moreover assume one of the following two conditions:

1. = {(x, x) : x ∈ X};
2. X is separable and the mapping G ∈ y → y−1 ∈ G is continuous.

Then w(x) = w(x0) J -a.e. in E0.

Proof. Assume J is proper (otherwise the statement trivially holds). Then int T =
∅ for T ∈ J . For each p ∈ P there is Ap ∈ J such that (10) holds for every
x ∈ E0 \ Ap. Let

A := H ∪
⋃

p∈P

Ap ∈ J .

Clearly E := E0 \ A �∈ J and (4) is valid. For each n ∈ N write Bn := {x ∈ X :
d(w(x0), x) < 1/n}, Xn := X \ Bn , Dn := w−1(Bn)\ A and En := w−1(Xn)\ A.
Note

Dn ∈ M := {U \ A : U ⊂ G and x0 ∈ int U } for n ∈ N.

In the remaining part we repeat in many fragments some arguments from the
proof of Theorem 3.1. However, for convenience of a reader we present them here
as well.

First consider the case of (1). Suppose Ek �∈ J for some k ∈ N. Then, by
Lemma 2.1, int (Dk · E−1

k ) �= ∅, whence p · e = d ∈ Dk ⊂ E with some p ∈ P ,



Generalizations of some results concerning microperiodic mappings 273

e ∈ Ek and d ∈ Dk . Hence Bk � w(d) = w(p · e) = w(e) ∈ Xk . This is a
contradiction, because Bk ∩ Xk = ∅.

Thus we have proved that w−1(Xn) ∈ J for every n ∈ N. Let L := ⋂
n∈N

Bn .
Clearly L = {w(x0)}, T := w−1(X \ L) = ⋃

n∈N
w−1 (Xn) ∈ J and w(x) ∈ L

for x ∈ E0 \ T . This completes the proof in the case where (1) holds.
Now assume (2). For each n ∈ N there is a countable family B(n) ⊂ 2X of

balls with X \ cl Bn = ⋃
B∈B(n) B. Suppose there are k ∈ N and B0 ∈ B(k) with

Ck := w−1(B0) \ A �∈ J . Then, on account of Lemma 2.1, there are p1, p2 ∈ P
such that p1 ∈ int (Ck · D−1

k ) and p2 ∈ int (Dk · C−1
k ), whence p1 · d1 = c1 ∈

Ck ⊂ E and p2 · c2 = d2 ∈ Dk ⊂ E with some c1, c2 ∈ Ck and d1, d2 ∈ Dk .
Hence B0 � w(c1) = w(p1 · d1)  w(d1) ∈ Bk and Bk � w(d2) = w(p2 · c2) 
w(c2) ∈ B0, which means  ∩(B0 × Bk) �= ∅ and  ∩(Bk × B0) �= ∅. This is a
contradiction, because  has intersection property and B0 ∩ Bk = ∅.

In this way we have shown w−1(B) ∈ J for every k ∈ N, B ∈ B(k).
Let L := ⋂

k∈N
cl Bk and V := w−1(X \ L). Clearly L = {w(x0)}, V =

w−1
(⋃

k∈N
(X \ cl Bk)

) = ⋃
k∈N

(⋃
B∈B(k) w−1(B)

)
∈ J , and w(x) ∈ L for

x ∈ E0 \ V . ��
Remark 3.5. In the case J = {∅}, the assumption of countability of P in Theorem
3.2 is superfluous; then in the proof we simply take A = H .

The next corollary is a generalization of the result of Montel [13] (cf. [7], pp.
227–229, and [3]).

Corollary 3.6. Let a1, a2 ∈ R, a1 < 0 < a2, a1a−1
2 �∈ Q, and I be a real infinite

interval. Then the following two conditions are valid.

1. Suppose (M) holds with (G, ·) = (R,+), T ∈ I,

T + na1 + ma2 ∈ I for n, m ∈ N0, (11)

A

∖ ⎛

⎝
⋃

m,n∈N0

(T + na1 + ma2)

⎞

⎠ ∈ M for A ∈ M, (12)

E := I \ T , w : E → R is M-measurable on a set D ∈ 2E \ I and satisfies
the subsequent two conditional inequalities

if a1 + x ∈ E, then w(a1 + x) ≤ w(x), (13)

if a2 + x ∈ E, then w(a2 + x) ≤ w(x). (14)

Then w is constant S-a.e. in E.

2. Suppose J ⊂ 2R is a proper σ -ideal with

y + A ∈ J for A ∈ J , y ∈ R,

V ∈ J , E := I \ V , w : I → R is continuous at a point x0 ∈ int I and satisfies
conditions (13) and (14) J -a.e. in I . Then w(x) = w(x0) J -a.e. in I .
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Proof. 1. Let

H :=
⋃

m,n∈N0

(T + na1 + ma2) ∈ I, (15)

and F := I \ H . Then w is M-measurable on D \ H �∈ I and, for every x ∈ F ,

w(x + na1 + ma2) ≤ w(x) for m, n ∈ N with x + na1 + ma2 ∈ F. (16)

Since the set P := {na1 + ma2 : m, n ∈ N} is dense in R, Corollary 3.3 (1)
(with h ≡ 0) completes the proof.

2. There is a set T ∈ J such that V ⊂ T and conditions (13), (14) hold for every
x ∈ I \ T . Analogously as in the proof of (1) (with I = J ) we obtain (16) for
every x ∈ F := I \ H ⊂ E , where H is given by (15). Consequently Theorem
3.2 (with E0 = I ) and Proposition 2.1 complete the proof.

��
Our last corollary corresponds to some recent results of Krassowska and Matkowski
(cf. [8] and [9]).

Corollary 3.7. Let a1, a2, α1, α2 ∈ R, a1 < 0 < a2, a1a−1
2 �∈ Q,

c1 := α1

a1
≥ α2

a2
=: c2

and I be a real infinite interval. Then the subsequent two conditions are valid.

1. Suppose (M) holds with (G, ·) = (R,+), T ∈ I, E := I \ T , conditions (11),
(12) are valid, and

card (E \ A) > 1 for A ∈ S. (17)

If w : E → R satisfies the following two conditional inequalities

if a1 + x ∈ E, then w(a1 + x) ≤ w(x) + α1, (18)

if a2 + x ∈ E, then w(a2 + x) ≤ w(x) + α2, (19)

and the functions g1, g2 : E → R, gi (x) = w(x) − ci x for i=1,2, are M-mea-
surable on a set D ∈ 2E \ I, then α1a2 = α2a1 and there is d ∈ R with

w(x) = α1

a1
x + d S-a.e. in E . (20)

Moreover, if α1a2 = α2a1, w : E → R and (20) holds with some d ∈ R, then
w satisfies (18) and (19) S-a.e. in E.

2. Let J and E be as in Corollary 3.6 (2). Then a function w : I → R, continuous
at a point x0 ∈ int I , satisfies conditions (18) and (19) J -a.e. in I if and only
if α1a2 = α2a1 and

w(x) = α1

a1
(x − x0) + w(x0) J -a.e. in I. (21)
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Proof. 1. For every i, j ∈ {1, 2}, we have α j ≤ ci a j and consequently

gi (x + a j ) = w(x + a j ) − ci (x + a j ) ≤ w(x) + α j − ci x − ci a j ≤ gi (x)

for x ∈ E with x+a j ∈ E . Next g1, g2 are M-measurable on D. Hence, accord-
ing to Corollary 3.6(1), there exist di ∈ R and Ai ∈ S such that gi (x) = di for
x ∈ E \ Ai , i = 1, 2. Since c1x +d1 = w(x) = c2x +d2 for x ∈ E \ (A1 ∪ A2),
by (17) we have c1 = c2 and d1 = d2 =: d.
The converse statement is easy to check. This ends the proof of (1).

2. Assume w : I → R is continuous at a point x0 ∈ int I and satisfies (18) and
(19) J -a.e. in I . Arguing analogously as in the proof of (1) and using Corollary
3.6 (2) we obtain c1x − c1x0 + w(x0) = w(x) = c2x − c2x0 + w(x0) for
x ∈ I \ (A1 ∪ A2), with some A1, A2 ∈ J . Since J is proper and x + A ∈
J for A ∈ J , x ∈ R, we have int A = ∅ for A ∈ J and consequently
card (I \ (A1 ∪ A2)) ≥ 2, which yields α1a2 = α2a1 and (21).
Since it is easy to check that, in the case α1a2 = α2a1, the function w : E → R,
given by: w(x) = α1/a1x +d for x ∈ I satisfies (18) and (19) with every E ⊂ I
and d ∈ R, this completes the proof.

��
Remark 3.6. Let I ⊂ 2R be the σ -ideal of sets of first category and S ⊂ 2R be
the σ -ideal of sets of the Lebesgue measure zero. Then for every set E ⊂ R there
are A ∈ S, B ∈ I with E = A ∪ B (see e.g. [16], Corollary 1.7). Therefore it
seems that without condition (17) in Corollary 3.7 (1) we cannot obtain the equality
α1/a1 = α2/a2.
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