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Abstract. In this paper we construct a Sobolev extension domain which, together with its
complement, is topologically as nice as possible and yet not uniform. This shows that the well
known implication that Uniform ⇒ Sobolev extension cannot be reversed under strongest
possible topological conditions.

1. Introduction

In this paper we investigate whether, under certain topological conditions, the fol-
lowing implications of analytic/geometric properties of domains can be reversed.

Uniform ⇒ Sobolev extension ⇒ QED ⇒ Loewner ⇒ LLC. (1)

1.1. Uniform domains

Recall that a domain D in the Euclidean space R
n (n ≥ 2) is said to be uniform

if there exists a constant c = c(D), 1 ≤ c < ∞, such that each pair of points
x1, x2 ∈ D can be joined by a continuum (or, equivalently, a curve) β in D for
which

dia(β) ≤ c|x1 − x2| and min
j=1,2

|x j − x | ≤ c d(x, ∂ D) (2)

for each x ∈ β. Here dia(β) denotes the diameter of β and d(x, ∂ D) the distance
from x to the boundary ∂ D.

1.2. Sobolev extension domains

As usual, let L p(D) (p ≥ 1) denote the Banach space of L p-integrable functions
on a domain D. We consider the Sobolev classes W 1

p(D) and L1
p(D), where

W 1
p(D) = L1

p(D) ∩ L p(D) and L1
p(D) is the family of measurable functions
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whose first distributional derivatives belong to L p(D). The norms on W 1
p(D) and

L1
p(D) are given by

‖u‖W 1
p(D) = ‖∇u‖L p(D) + ‖u‖L p(D) and ‖u‖L1

p(D) = ‖∇u‖L p(D),

respectively. We call D ⊂ R
n an L1

p(D)-extension domain if there is a bounded
linear extension operator from L1

p(D) to L1
p(R

n). Similarly one can define W 1
p(D)-

extension domains. The W 1
p(D)-extension property and/or L1

p(D)-extension prop-
erty is usually referred as Sobolev extension property.

Uniform domains and Sobolev extension domains play important roles in anal-
ysis and geometry. These two classes of domains are closely related to each other
and to several other interesting classes of domains. Jones [7] showed that uniform
domains are W 1

p-extension domains for all p and L1
n-extension domains. In this line,

Herron and Koskela [5] further showed that uniform domains and bounded W 1
p-

extension domains are all L1
p-extension domains for all p. Koskela [8] established

that L1
n-extension domains are QED (quasi-extremal distance) domains while Geh-

ring and Martio [2] proved that QED domains are LLC (linearly locally connected).
For definitions and more details on QED and LLC domains we refer the reader to
[2, 8] and references therein. Sobolev extension domains have also been studied by
Maz’ja [10], Gol’dshtein and Vodop’yanov [3, Chapter 6].

The Loewner condition, which is similar to (but appears weaker than) the QED
condition in the Euclidean space, was introduced by Heinonen and Koskela [4] in a
general metric measure space setting. They showed that Loewner domains are LLC.
Recently Brania and Yang [1] established that QED domains are Loewner domains
and that Loewner domains enjoy many function-theoretic and geometric properties
of QED domains. But the question of whether the implication QED⇒Loewner
can be reversed remains open. However, all other implications in (1) cannot be
reversed in general, as illustrated by numerous examples (see [2, 5–7]). Therefore,
it is important to seek for conditions under which the implications in (1) can be
reversed. In this regard, the following can be easily established.

1.3. Fact

Suppose D is quasiconformally equivalent to a uniform domain. Then D is uniform
if and only if D is LLC.

This can be proved as follows. Let f be a quasiconformal map from a uniform
domain G onto an LLC domain D. By [2, Theorem 3.1], f is quasimöbius. There-
fore, it follows from [12, Theorem 4.11] that D is also uniform.

It is usually difficult to verify the condition that D is quasiconformally equiva-
lent to a uniform domain. Thus a purely topological and intuitive condition is more
desirable. In fact such a condition does exist in the plane. It is well known that a
Jordan domain in the plane is LLC if and only if it is uniform (or, equivalently,
a quasidisk). Thus all the conditions in (1) are equivalent for Jordan domains in
the plane. In higher dimensions, however, the situation is much more complicated
(as illustrated by examples mentioned above). As a matter of fact, in this paper we
show that such a topological condition does not exist in higher dimensions.
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1.4. Main result

Theorem 1. There is a homeomorphism of R
n (n ≥ 3) such that the image of the

upper half space is an L1
p-extension (and a W 1

p-extension) domain for all p ≥ 1,
but not uniform.

Corollary 1. There is a Jordan domain in R
n (n ≥ 3) which is topologically equiv-

alent to the unit ball and LLC, but not uniform.

In Sect. 2 we give the construction of the domain and show that it is not uniform.
Its Sobolev extension property will be verified in Sect. 3 as a consequence of a more
general extension result. We conclude with an open discussion on what possible
geometric condition can be added in order to reverse the implications of (1) in this
strongest possible topological setting.

The author would like to thank David Herron and Pekka Koskela for valuable
discussions.

2. Construction of the domain

For simplicity of notation, the construction will be done in R
3. Let H denote the

open upper half space in R
3 and B(x, r) the open ball centered at x of radius r > 0.

2.1. The construction of domain D

For j = 1, 2, 3, . . ., let Fj be the closed circular cylinder of height h j = 1√
j

and

radius r j = 1
10 j3 with its base centered at the point ( 1

j , 0, 0), that is,

Fj = {(x1, x2, x3) ∈ R
3 :

(
x1 − 1

j

)2

+ x2
2 ≤ r2

j , 0 ≤ x3 ≤ h j }.

Let D = H\⋃
j≥1 Fj . Thus D is the complement in H of the union of the cylinders

Fj . Note that Fj are mutually disjoint and very thin cylinders (for large j).

2.2. D is not uniform

To show that the domain D constructed above is not uniform, we consider a sequence
of pairs of points y j , z j in D determined by

y j =
(

1

2

(
1

j
+ 1

j + 1

)
,

1

j3/2 ,
1

j3/2

)
, z j =

(
1

2

(
1

j
+ 1

j + 1

)
,− 1

j3/2 ,
1

j3/2

)

for j = 1, 2, 3, .... We shall show that the uniformity conditions are violated for
the pair y j , z j when j is large. The idea is that in order to join y j and z j in D, one
has to either go through the narrow passages formed by the cylinders (which will
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be in violation of the second condition in (2)), or go around them (in violation of
the first condition in (2)).

Observe that y j and z j are symmetric about the x1x3-plane and that |y j − z j | =
2

j3/2 . For a fixed j , let γ be a continuum in D joining y j and z j . Fix a point P in

the intersection of γ and the x1x3-plane and let Q = ( 1
2 ( 1

j + 1
j+1 ), 0, 0).

Assume first that P /∈ B(Q, 1
2 j ). Then

dia(γ ) ≥ |P − Q| − |Q − y j | ≥ 1

2 j
− 2

j3/2 .

This yields that dia(γ )/|y j −z j | → ∞ as j → ∞, which violates the first condition
in (2).

Assume next that P ∈ B(Q, 1
2 j ). Then P lies in one of the “narrow passages”

between cylinders that intersect B(Q, 1
2 j ). To be more precise, let P = (p1, p2, p3).

Then it follows that 1
2( j+1)

< p1 < 2
j , p2 = 0, 0 < p3 < 1

2 j . Thus, when j
is large enough, the third coordinate p3 of P is smaller than the heights of the
cylinders Fi for 2( j + 1) < i < j/2. Therefore, it follows that

d(P, ∂ D) ≤ 1

2
max

j/2<i<2( j+1)
d(Fi+1, Fi ) ≤ 1

2

(
1

j/2
− 1

1 + j/2

)
= 2

j ( j + 2)
,

which, together with the fact that |P − y j | = |P − z j | ≥ 1
j3/2 , yields

min{|P − y j |, |P − z j |}
d(P, ∂ D)

≥ j ( j + 2)

2 j3/2 → ∞

as j → ∞. This is in violation of the second condition in (2) and shows that D is
not a uniform domain.

2.3. The topology of D

By the construction of D, it is routine, but tedious, to show that there is a homeo-
morphism f : R

3 → R
3 such that f (H) = D. Thus the domain D is topologically

as nice as possible.

3. Sobolev extension property

In this section we establish a general extension result for some domains that are not
necessarily uniform (or locally uniform). As a corollary, we verify that the domain
D constructed in Sect. 2 has the desired Sobolev extension properties, hence com-
pleting the proof of Theorem 1. We note that, however, the domain D is not even
locally uniform (in the sense of [5, 3.1]) or uniformly collared (in the sense of [5,
Sect. 7]). Therefore, the Sobolev extension property of D is not a consequence of
existing extension results in this line and requires a proof.
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3.1. Whitney decomposition

We employ similar extension techniques used by Jones [7] and Koskela [9], which
depend heavily on Whitney cube decompositions of open sets. Recall that any open
set G ⊂ R

n admits a Whitney cube decomposition G = ∪k Qk , where Qk are
closed cubes with pairwise disjoint interiors and sides parallel to the coordinate
axes, and satisfy

1 ≤ d(Qk, ∂G)

l(Qk)
≤ 4

√
n, for all k,

and

1

4
≤ l(Q j )

l(Qk)
≤ 4 if Q j ∩ Qk = ∅.

Here l(Qk) denotes the side length of a cube.

Lemma 3.2 ([7, Lemma 2.6]). Let G ⊂ R
n be a c-uniform domain. Then there

exists a constant C1 ≥ 1 depending only on the uniformity constant and the dimen-
sion n with the following property. If W1 = {Sk} and W2 = {Qi } are Whitney
decompositions of G and R

n\Ḡ, respectively, then to each cube Qi ∈ W2 one can
associate a cube Q∗

i = Sk ∈ W1 such that

1 ≤ l(Q∗
i )

l(Qi )
≤ C1 and 1 ≤ d(Qi , Q∗

i )

l(Qi )
≤ C1. (3)

Furthermore, for each cube Sk ∈ W1 there are at most C1 cubes Qi ∈ W2 such
that Q∗

i = Sk.

Suppose that Q1, Q2, . . . , Qm are cubes (in a Whitney decomposition) such
that Q j ∩ Q j+1 = ∅ for all j , 1 ≤ j ≤ m −1. We say then that {Q1, Q2, . . . , Qm}
is a chain of length m connecting Q1 to Qm .

Lemma 3.3 ([7, Lemma 2.8]). Let G ⊂ R
n be a c-uniform domain. Then there

exists a constant C2 ≥ 1 depending only on the uniformity constant and the dimen-
sion n with the following property. If W1 = {Sk} and W2 = {Qi } are Whitney
decompositions of G and R

n\Ḡ, respectively, and if Q∗
j , Q∗

k ∈ W1 are cubes cor-
responding to cubes Q j , Qk ∈ W2 with Q j ∩ Qk = ∅, as described in Lemma
3.2, then there is a chain F(Q∗

j , Q∗
k) = {Q∗

j = S1, . . . , Sm = Q∗
k} of cubes in W1

connecting Q∗
j to Q∗

k with length m ≤ C2.

Now we can formulate the extension result. It may not be in the most general
form. But it does cover the example constructed in Sect. 2 as a special case.

Theorem 3.4. Let � ⊂ R
n be a c-uniform domain and Fj , j = 1, 2, . . ., be pair-

wise disjoint continua in �̄ such that �\Fj is uniform with the uniformity constant
independent of j for all j and that ∪ j Fj is closed relative to �. Assume further
that

∂ Fj = ∂ F◦
j and d(Fj , Fk) ≥ Cd(x, ∂ Fj ) (4)
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for all j = k and x ∈ F◦
j , where C > 1 is a constant which is to be determined

in the proof and which depends only on the uniformity constant and dimension n.
Then G = �\∪ j Fj has the W 1

p- extension property and the L1
p- extension property

for all p ≥ 1.

3.5. Remarks Condition (4) means that the continua Fj are slim, but nowhere
degenerate, “tubes” and far away from each other. It also implies that Fis cannot
accumulate near any Fj . We require the constant C in (4) so large that any chain
of corresponding cubes determined by a pair of cubes in F◦

j will not intersect any
chain of cubes determined by a pair of cubes in F◦

k for j = k. Here and in what
follows we let F◦ denote the interior of a set F and |F | the n-measure of F . The
idea is that under these assumptions, one can extend a Sobolev function across Fj

using only the information about the function near Fj . Thus the extensions across
different Fjs will not interfere with each other.

Throughout the proof of Theorem 3.4, we will frequently use the properties of
the Whitney cubes recorded in 3.1–3.3, without mentioning them each time they
are invoked.

3.6. Proof of Theorem 3.4. We only verify the W 1
p- extension property of �\∪ j Fj .

The L1
p- extension property can be established similarly (but more easily). Since

� is a uniform domain, it suffices to construct a bounded extension operator

E : W 1
p(�\ ∪ j Fj ) −→ W 1

p(�).

For each j ≥ 1, fix a Whitney cube decomposition of R
n\(�\Fj ) and let W j

denote the collection of cubes Q in this decomposition such that Q ∩ F◦
j = ∅.

Since �\Fj is a c-uniform domain, as in Lemma 3.2, we can associate to each
cube Qi, j ∈ W j a cube Q∗

i, j ⊂ �\Fj such that

1 ≤ l(Q∗
i, j )

l(Qi, j )
≤ C1 and 1 ≤ d

(
Qi, j , Q∗

i, j

)
l(Qi, j )

≤ C1, (5)

where C1 = C1(c, n) is the constant as in Lemma 3.2. In fact, according to Lemma
3.7 below, we have Q∗

i, j ⊂ �\ ∪ j Fj .
Next we choose a partition of unity {φi, j } (see [11, Chapter 6]) corresponding

to the collection {Qi, j : Qi, j ∈ W j } such that each φi, j has support in the cube
(3/2)Qi, j and that

|∇φi, j (x)| ≤ C

l(Qi, j )
(6)

for all x , where C is a constant depending only on n.
For any Sobolev function u ∈ W 1

p(�\ ∪ j Fj ), we define the extension Eu on
� by

Eu(x) =
{

u(x), x ∈ �\ ∪ j Fj ,∑
i, j ai, jφi, j (x), x ∈ ∪ j Fj ,

(7)
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where ai, j is the average of u on Q∗
i, j . We will show that E is the desired exten-

sion operator by establishing several lemmas. We note that φi, j (x) = 0 on Fl for
l = j . The first lemma spells out the requirement for the constant C in Theorem
3.4.

Lemma 3.7. There is a constant C = C(c, n) > 1 such that if (4) is satisfied,
then the collections W j of Whitney cubes described above have the following prop-
erty. If Qi, j , Ql, j ∈ W j , Qs,k, Qt,k ∈ Wk , and if Q∗

i, j , Q∗
l, j , Q∗

s,k, Q∗
t,k are

the corresponding cubes described above, then the two chains F(Q∗
i, j , Q∗

l, j ) and
F(Q∗

s,k, Q∗
t,k) of cubes, defined in Lemma 3.3, are disjoint and are subsets in

�\ ∪ j Fj .

Proof. We need to find a constant C = C(n, c) such that if condition (4) is satisfied,
then

d(S j , Sk) > 0 and d(S j , Fk) > 0

for all cubes S j ∈ F(Q∗
i, j , Q∗

l, j ) and Sk ∈ F(Q∗
s,k, Q∗

t,k), and all j = k. To this
end, we fix such cubes S j and Sk , and fix points x j ∈ S j , yk ∈ Sk , qi, j ∈ Qi, j ∩ F◦

j
and qs,k ∈ Qs,k ∩ F◦

k . By 3.1–3.3, there is a constant λ = λ(C1, C2) depending
only on the constants in Lemmas 3.2 and 3.3 such that

d(x j , qi, j ) ≤ λl(Qi, j ) ≤ λd(qi, j , ∂ Fj ).

Thus, if we choose constant C = C(n, c) > 2λ, then (4) yields

d(S j , Sk) ≥ d(qi, j , qs,k) − d(x j , qi, j ) − d(yk, qs,k)

≥ d(Fj , Fk) − λ(d(qi, j , ∂ Fj ) + d(qs,k, ∂ Fk)) > 0

as desired. Similarly, we have d(S j , Fk) > 0. This proves Lemma 3.7.
We want to remind the reader that the forth mentioned properties of Whitney

cubes and partition of unity will be used freely throughout. We will use C to denote
a generic constant whose value may vary from line to line but only depends on
n, c, p.

Lemma 3.8. There is a constant C = C(n, c, p) such that

‖Eu‖L p(∪F◦
j ) ≤ C‖u‖L p(�\∪Fj ).

Proof. For simplicity of notation, for a fixed j we write Qk, j as Qk and φk, j as φk .
We note that, by Hölder inequality,

|ak |p = 1

|Q∗
k |p

∣∣∣∣
∫
Q∗

k

u(x)dx
∣∣p ≤ 1

|Q∗
k |

∫
Q∗

k

|u(x)

∣∣∣∣
p

dx .
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Therefore, for each i and fixed j , we have

∫
Qi

|Eu|pdx =
∫
Qi

∣∣∣∣∣∣∣∣∣
∑

Qk∈W j
Qk∩Qi =∅

akφk(x)

∣∣∣∣∣∣∣∣∣

p

dx

≤ C
∑

Qk∈W j
Qk∩Qi =∅

|ak |p|Qk | ≤ C
∑

Qk∈W j
Qk∩Qi =∅

∫
Q∗

k

|u(x)|pdx .

Since each cube Qi, j has only a bounded number of adjacent cubes and each Q∗
can be only associated to a bounded number of Qi, j , by taking the summation over
all i, j , the above inequality yields that∫

∪ j F◦
j

|Eu(x)|pdx ≤ C
∑

j

∑
i

∑
Qk∈W j

Qk∩Qi =∅

∫
Q∗

k

|u(x)|pdx ≤ C
∫

�\∪Fj

|u|pdx .

Thus Lemma 3.13 follows as desired.

Lemma 3.9. There is a constant C = C(n, c, p) such that

‖∇(Eu)‖L p(∪F◦
j ) ≤ C‖∇u‖L p(�\∪Fj ).

Proof. To simplify notation, as in the proof of the previous lemma, we write Qk, j

as Qk and φk, j as φk for a fixed j . We observe that for x ∈ Qi we have

Eu(x) =
∑

Qk∈W j
Qk∩Qi =∅

akφk(x) = ai +
∑

Qk∈W j
Qk∩Qi =∅

(ak − ai )φk(x).

Thus

∫
Qi

|∇Eu(x)|pdx =
∫
Qi

∣∣∣∣∣∣∣∣∣
∑

Qk∈W j
Qk∩Qi =∅

(ak − ai )∇φk(x)

∣∣∣∣∣∣∣∣∣

p

dx

≤ Cl(Qi )
−p|Qi |

∑
Qk∈W j

Qk∩Qi =∅

|ak − ai |p. (8)

Next we estimate |ak − ai | for Qk ∩ Qi = ∅. As in Lemma 3.7, there is a chain
F(Q∗

i , Q∗
k) = {Q∗

i = S1, . . . , Sm = Q∗
k} of cubes in �\ ∪ Fj connecting Q∗

i to
Q∗

k . Let ur denote the average of u on Sr and ur,r+1 the average of u on Sr ∪ Sr+1.
Then

|ak − ai |p = |u1 − um |p ≤ C
m−1∑
r=1

(|ur − ur,r+1|p + |ur,r+1 − ur+1|p).
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Using Hölder’s inequality and a variant of the classical Poincare–Sobolev inequality
(see [7, Lemma 2.2] or [5, Lemma4.2]), we deduce that

|ur − ur,r+1| = 1

|Sr ∪ Sr+1|

∣∣∣∣∣∣∣
∫

Sr ∪Sr+1

(u − ur )dx

∣∣∣∣∣∣∣
≤ 1

|Sr ∪ Sr+1| ‖u − ur‖L p(Sr ∪Sr+1)|Sr ∪ Sr+1|1−1/p

≤ Cl(Sr )

|Sr ∪ Sr+1|1/p
‖∇u‖L p(Sr ∪Sr+1).

Thus

|ur − ur,r+1|p ≤ Cl(Qi )
p

|Qi |
∫

Sr ∪Sr+1

|∇u|pdx

for r = 1, . . . , m − 1 and hence

|ak − ai |p ≤ C
m−1∑
r=1

(|ur − ur,r+1|p + |ur,r+1 − ur+1|p)

≤ Cl(Qi )
p

|Qi |
∫

F(Q∗
i ,Q∗

k )

|∇u|pdx

for all k with Qk ∩ Qi = ∅, where F(Q∗
i , Q∗

k) also denotes the union of the cubes
in the chain. Therefore, it follows from (8) that

∫
Qi

|∇Eu(x)|pdx ≤ C
∑

Qk∈W j
Qk∩Qi =∅

∫
F(Q∗

i ,Q∗
k )

|∇u|pdx .

Taking the summation over i and j , the above inequality yields

∫
∪F◦

j

|∇Eu(x)|pdx ≤ C
∫

�\∪ j Fj

|∇u|pdx .

Thus Lemma 3.9 follows.
Finally, we complete the proof of Theorem 3.4 as follows. Fix any Sobolev

function u ∈ W 1
p(�\ ∪ j Fj ) and let Eu be the extension in � determined by the

extension operator (7). Since for each j �\Fj is c-uniform, |∂ Fj | = 0. To see that
Eu is Sobolev in �, we note that being in the Sobolev class is a local property.
Thus it suffices to show that Eu is in the Sobolev class in a neighborhood of each
boundary point x0 ∈ ∂ Fj . This follows from the fact that �\Fj is c-uniform and
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the extension result of Jones [7]. Furthermore, by Lemmas 3.8 and 3.9, the Sobolev
norm of Eu can be estimated as follows:

‖Eu‖p
W 1

p(�)
=

∫
∪F◦

j

(|∇Eu|p + |Eu|p)dx +
∫

�\∪ j Fj

(|∇u|p + |u|p)dx

≤ C
∫

�\∪ j Fj

(|∇u|p + |u|p)dx .

Thus

‖Eu‖W 1
p(�) ≤ C‖u‖W 1

p(�\∪ j Fj )
.

This completes the proof of Theorem 3.4. ��
As a corollary to Theorem 3.4, we next show that the domain constructed in

Sect. 2 has the desired extension property.

Corollary 3.10. For sufficiently large N the domain D = H\⋃
j≥N Fj constructed

in Sect. 2 satisfies the conditions of Theorem 3.4, and hence has the Sobolev exten-
sion property.

Proof. Recall that H is the open upper half space in R
3 and Fj is the closed circular

cylinder of height h j = 1√
j

and radius r j = 1
10 j3 with its base centered at the point

( 1
j , 0, 0), j = 1, 2, 3, . . ..

To see that H\Fj is c-uniform with uniformity constant c independent of j ,
we observe that under a similarity map of R

3 H\Fj is equivalent to a domain
Gh = H\F , where F is the closed circular cylinder based on the unit disk of
height h. Routine (but tedious) case by case verification shows that domain Gh is
c-uniform with c independent of the height h.

Finally, to verify condition (4), we let C = C(c, n) > 1 (with n = 3 here) be
the constant determined in Lemma 3.7. For all j = k and x ∈ F◦

j , it follows that

d(Fj , Fk) =
∣∣∣∣1

j
− 1

k

∣∣∣∣ − r j − rk, d(x, ∂ Fj ) ≤ r j .

Thus

d(Fj , Fk)

d(x, ∂ Fj )
≥

| 1
j − 1

k | − 1
10 j3 − 1

10k3

1
10 j3

−→ ∞

as j, k → ∞. Therefore, there is a positive integer N such that, when j, k ≥ N
and j = k, we have

d(Fj , Fk) ≥ Cd(x, ∂ Fj ).

This completes the proof of Corollary 3.10. ��
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3.11. Remarks Theorem 1 shows that even under the strongest possible topological
conditions the implications in (1) cannot be reversed. Therefore, certain geometric
conditions (on the domain or its complement) are needed. Finally we note that
the complementary domain D∗ of the domain D constructed in 2.1 is not linearly
locally connected (or LLC). A natural question to ask is if both D and D∗ are LLC,
are they also uniform?
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Research Committee of Emory University.
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