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Abstract. We prove that the Hermite functions are an absolute Schauder basis for many
weighted spaces of (ultra)differentiable functions and ultradistributions including the space
of Fourier hyperfunctions. The coefficient spaces are also determined.

1. Introduction

It is well known that the Hermite functions Hγ , γ ∈ N
n
0, are an orthonormal

basis in L2(R
n) and that they also are a Schauder basis in the Schwartz space

S(Rn) of rapidly decreasing C∞−functions (see e.g. Meise and Vogt [7, 14.9 and
29.5(2)]). In this paper we will study the natural question, to which weighted spaces
of (ultra)differentiable functions the latter result can be extended.

Starting with a (multi)sequence (Mα)α∈N
n
0

which satisfies Komatsu’s standard
condition (M2′) (stability under differential operators) we will consider weighted
(FS)− spaces (and (DFS)− spaces) of ultradifferentiable functions f ∈ C∞(Rn)

such that

sup
α,β∈N

n
0

‖xα∂βf ‖∞C|α|+|β|/Mα+β < ∞ (1.1)

for any C ≥ 1 (and for some C > 0, respectively).
The specific condition needed for our problem is the following: there is H > 0

such that for any C > 0 there is B > 0 (there are C > 0 and B > 0, respectively)
such that

αα/2Mβ ≤ BC|α|H |α+β|Mα+β for any α, β ∈ N
n
0 . (1.2)

Notice that we do not assume that the classes of functions are non quasi analytic.
For example, (1.2) is satisfied by Mα := α!r for r > 1/2 and (1.1) then leads to
spaces of entire functions if 1 > r > 1/2 (see section 5).

We will show that the Hermite functions are a basis in the spaces of type (1.1)
if (1.2) is satisfied. This result is optimal, since we can prove that (1.2) already
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holds if H0 is contained in these spaces and if we additionally assume that there is
H > 0 such that

MαMβ ≤ CHα+βMα+β for any α, β ∈ N
n
0

(see Remark 3.3). In the case of one variable, the latter condition is satisfied if the
sequence (Mα) is logarithmically convex.

We will obtain corresponding results for the dual spaces of weighted (ultra)
distributions and analytic functionals. Moreover, we will determine the coefficient
spaces corresponding to this Hermite expansion.

In this way we obtain explicit sequence space representations for many classical
spaces of analysis including the spaces Sr

r of Gelfand and Shilov [1] for r ≥ 1/2
and Sato’s Fourier hyperfunctions.

The paper is organized as follows: In the next section we will give the basic
notions and definitions which are used in this paper. Section 3 contains the proof of
the Hermite expansion, and we then discuss the connection of our results to power
series spaces in section 4. Many concrete examples are finally presented in section
5.

The results of the present paper will be applied to the study of convolution
operators and their continuous linear right inverses on Fourier hyperfunctions in
the forthcoming papers [5] and [6].

2. Preliminaries

In this paper (Mα)α∈N
n
0

will always denote a (multi) sequence of positive numbers
with M0 = 1. We will generally assume that Komatsu’s condition (M2′) is satisfied,
i.e. that there is A ≥ 1 such that

Mα+ej
≤ A|α|+1Mα for any α ∈ N

n
0 and any j ≤ n. (2.1)

(M2′) is the standard assumption which implies that the spaces of ultradifferentia-
ble functions defined below are stable under differentiation and multiplication with
polynomials.

To define the coefficient space for the Hermite expansion we will need the
associated function of (Mα) defined by

M(t) := ln sup
α∈N

n
0

|tα|
Mα

for t ∈ R
n.

An easy calculation shows that there are B1, B2 ≥ 1 such that for any t ∈ R
n

eM(t)(1 + |t |)2n+2 ≤ B1e
M(B2t) (2.2)

if (Mα) satisfies (2.1).
We do not assume that the sequence (Mα) satisfies Komatsu’s condition (M3′),

i.e. that the corresponding classes of ultradifferentiable functions are non quasi
analytic. Instead, we will use (1.2) from the introduction.
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We will consider the following two types of weighted spaces (and their dual
spaces) in this paper:

S{Mα} := {f : R
n → C |

‖f ‖∞,j := sup
α,β∈N

n
0

‖xα∂βf ‖∞/(j |α|+|β|Mα+β) < ∞ for some j ∈ N}.

and

S(Mα) := {f : R
n → C |

|f |∞,j := sup
α,β∈N

n
0

‖xα∂βf ‖∞j |α|+|β|/Mα+β < ∞ for any j ∈ N}.

Condition (1.2) will be needed for any C > 0 if S(Mα) is considered (and for
some C > 0 if S{Mα} is considered).

Several modern applications of the structure theory of Frechet spaces such as
splitting theory for power series spaces of finite type are based on precise (so called
tame) continuity estimates for the linear operators in question. In fact, our study of
right inverses for partial differential operators and convolution operators on Fourier
hyperfunctions will also rely on tame splitting theory and (linearly) tame mappings
(see Langenbruch [5, 6]). We will therefore aim at tame estimates in this paper.

Let us recall the precise definitions: let (E, (| |j )j∈N) and (F, (‖ ‖j )j∈N) be
Frechet spaces with fixed increasing systems of semi norms defining the topology.
A continuous linear mapping

T : (E, (| |j )j∈N) → (F, (‖ ‖j )j∈N)

is called tame if there are C, j0 ∈ N such that for any j ∈ N with j ≥ j0 there is
C1 > 0 such that for any f ∈ E

‖T (f )‖j ≤ C1|f |Cj .

Similarly, for (LB)-spaces E = lim indj→∞ Ej and F = lim indj→∞ Fj with
fixed increasing systems of Banach spaces (Ej , | |j )j∈N and (Fj , ‖ ‖j )j∈N, a con-
tinuous linear mapping

T : E = lim ind
j→∞

Ej → F = lim ind
j→∞

Fj

is called tame if there are C, j0 ∈ N such that for any j ∈ N with j ≥ j0 there is
C1 > 0 such that for any f ∈ Ej

‖T (f )‖Cj ≤ C1|f |j .
A linear mapping is called a tame isomorphism if it is bijective and if both T

and T −1 are tame.
Two systems {| |j | j ∈ N} and {‖ ‖j | j ∈ N} of semi norms on a Frechet

space E are called tamely equivalent if

id : (E, (| |j )j∈N) → (E, (‖ ‖j )j∈N) is a tame isomorphism.
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For (LB)−spaces this notion is defined similarly.
Since Hermite functions are an orthonormal basis in L2(R

n) it is more con-
venient to work with L2−norms instead of sup −norms. This is allowed by the
following

Remark 2.1. Let (Mα) satisfy (1.2) and (2.1). Then the system (| |∞,j )j∈N of semi
norms on S(Mα) is tamely equivalent to the system (| |2,j )j∈N defined by

|f |2,j := sup
α,β∈N

n
0

‖xα∂βf ‖2j
|α|+|β|/Mα+β

and the system (‖ ‖∞,j )j∈N on S{Mα} is tamely equivalent to the system (‖ ‖2,j )j∈N

defined by

‖f ‖2,j := sup
α,β∈N

n
0

‖xα∂βf ‖2/
(
j |α|+|β|Mα+β

)
.

Proof. We will use the following well known estimate for functions f in the
Schwartz space S:

‖f ‖∞ ≤ C1‖f̂ ‖1 ≤ C2‖(1 + |x|2)n+1f̂ ‖2

≤ C3‖(1 − �)n+1f ‖2 ≤ C4 sup
|γ |∞≤2n+2

‖∂γ f ‖2 (2.3)

where ̂ is the Fourier transformation and � denotes the Laplacian.
The claim now easily follows from the following estimates for functions f in

the respective spaces

‖xα∂βf ‖2 ≤ C5‖(1 + |x|2)(n+1)/2xα∂βf ‖∞

and

‖xα∂βf ‖∞ ≤ C6 sup
|γ |∞≤2n+2

‖∂γ
(
xα∂βf

)‖2

by (2.3). To estimate Mα+β+γ for finitely many γ ∈ Z
n, we use (1.2) and

(2.1). �	

3. Hermite functions

In this section we will show that Hermite functions are a basis in S{Mα} and in
S(Mα), respectively. Recall that for γ ∈ N

n
0 the Hermite function Hγ is defined by

Hγ (x) := (2|γ |γ !πn/2)−1/2 exp

(
−

∑

j≤n

x2
j /2

)
hγ (x), (3.1)

where the Hermite polynomial hγ is defined by

hγ (x) := (−1)|γ | exp

(∑

j≤n

x2
j

)
∂γ exp

(
−

∑

j≤n

x2
j

)
, x ∈ R

n.
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The proofs in this section are based on the well known connection of Hermite
functions to certain partial differential operators (see e.g. Meise and Vogt [7, p.362]
for the case of one variable) which we study first:

For i ≤ n, α ∈ N
n
0 and f ∈ C∞(Rn) let

A±,i (f ) := ∓∂i(f ) + xif and Aα
± :=

∏

i≤n

A
αi

±,i (f )

where A0
±,i := id.

Notice that the operators A+,i and A−,i are commuting, e.g.

A+,iA+,j = A+,jA+,i for any 1 ≤ i, j ≤ n. (3.2)

Lemma 3.1. Let f ∈ C∞(Rn).

a) For any γ ∈ N
n
0 and any x ∈ R

n we have

(A
γ
+f )(x) =

∑

α+β≤γ

cα,β(γ )xα∂βf (x),

where

|cα,β(γ )| ≤ dα,β(γ ) := 3|γ |(γ !/(α + β)!)1/2.

b) Assume that

sup
α,β∈N

n
0

‖xα∂βf ‖2/(C
|α|+|β|Mα+β) ≤ C1. (3.3)

and that (Mα) satisfies (1.2) for this constant C. Then we have for any γ ∈ N
n
0

‖Aγ
+f ‖2 ≤ C1B(9HC)|γ |Mγ

Proof. a) The estimate for |cα,β(γ )| is trivial if γ = ej , j ≤ n, is a canonical unit
vector. Let it hold for any γ̃ ∈ N

n
0 with |γ̃ | ≤ m and fix γ ∈ N

n
0 with |γ | = m. For

j ≤ n we then get by (3.2) and the induction hypothesis

(A
γ+ej

+ f )(x) = (A
ej

+ (A
γ
+f ))(x) =

∑

α+β≤γ

cα,β(γ )xα+ej ∂βf (x)

−
∑

α+β≤γ

cα,β(γ )xα∂β+ej f (x) −
∑

α+β≤γ,1≤αj

cα,β(γ )αjx
α−ej ∂βf (x).

The estimates for |cα,β(γ + ej )| now follow from the induction hypothesis since
for α + β ≤ γ ,

dα,β(γ ) ≤ dα+ej ,β(γ + ej )/3 = dα,β+ej
(γ + ej )/3

and

dα,β(γ )αj ≤ dα−ej ,β(γ + ej )/3 if 1 ≤ αj .
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b) By a) and (1.2) we get

‖Aγ
+f ‖2 ≤ C13|γ | ∑

α+β≤γ

(
γ

α + β

)1/2

(γ − α − β)!1/2C|α+β|Mα+β

≤ C1B(3HC)|γ |Mγ

∑

α+β≤γ

(
γ

α + β

)
≤ C1B(9HC)|γ |Mγ ,

since
∑

α+β≤γ

(
γ

α + β

)
≤

∑

α≤γ

( ∑

β≤γ−α

(
γ − α

β

)
γ !β!

(α + β)!(γ − α)!

)

≤
∑

α≤γ

2|γ−α|
(

γ

α

)
= 3|γ |.

�	
We also need an appropriate weighted L2− estimate for the derivatives of the

Hermite functions which especially shows that the Hermite functions are contained
in S(Mα) and S{Mα}.
Lemma 3.2. a) For α, β, γ ∈ N

n
0 we have

‖xα∂βHγ ‖2 ≤ 2|α+β|/2
(

(α + β + γ )!

γ !

)1/2

(3.4)

b) Let (1.2) be satisfied for some C > 0. Then

sup
α,β∈N

n
0

‖xα∂βHγ ‖2/((2HC)|α|+|β|Mα+β) ≤ BeM(γ 1/2/C)

for any γ ∈ N
n
0 (here γ 1/2 := (γ

1/2
1 , . . . , γ

1/2
n )).

Proof. a) (3.4) is trivial for α = β = 0, since ‖Hγ ‖2 = 1 for any γ . For |α +
β| = 1 this directly follows from orthogonality and the following equations (see
Meise,Vogt [7, (***) on p. 362] for the case of one variable and set Hβ := 0 if
βj = −1 for some j)

∂jHγ = (√
γjHγ−ej

− √
γj + 1Hγ+ej

)
/
√

2 (3.5)

and

xjHγ = (√
γjHγ−ej

+ √
γj + 1Hγ+ej

)
/
√

2. (3.6)

Let (3.4) be true for any α̃, β̃ ∈ N
n
0 with |̃α + β̃| ≤ m for some m ≥ 1 and let

|α + β| = m. We then get from (3.5) and the assumption

‖xα∂β+ej Hγ ‖2 ≤ 1

21/2

(√
γj‖xα∂βHγ−ej

‖2 + √
γj + 1‖xα∂βHγ+ej

‖2

)

≤ 2(|α+β|−1)/2
(√

γj

(
(α + β + γ − ej )!

(γ − ej )!

)1/2

+
(

(α + β + γ + ej )!

γ !

)1/2)

≤ 2|α+β+ej |/2
(

(α + β + ej + γ )!

γ !

)1/2

.
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We finally have to consider the case where β = 0 and |α| = m. Using (3.6) we
get similarly as above

‖xα+ej Hγ ‖2 ≤ 1

21/2

(√
γj‖xαHγ−ej

‖2 + √
γj + 1‖xαHγ+ej

‖2

)

≤ 2(|α|−1)/2
((

(α + γ )!

(γ − ej )!

)1/2

+
(

(α + γ + ej )!

γ !

)1/2)

≤ 2|α+ej |/2
(

(α + ej + γ )!

γ !

)1/2

.

b) For fixed α, β, γ ∈ N
n
0 let

J := {j ≤ n | αj + βj ≤ γj } and J̃ := {j ≤ n | αj + βj > γj }
and set

δJ :=
∑

j∈J

δj ej for δ ∈ N
n
0 .

δJ̃ is defined similarly. By a) and (1.2) we get

‖xα∂βHγ ‖2 ≤ 2|α+β|/2(α + β + γ )(α+β)/2

≤ 2|α+β|(αJ̃ + βJ̃ )(αJ̃ +βJ̃ )/2γ
(αJ +βJ )/2
J

≤ B(2HC)|α+β|Mα+βγ
(αJ +βJ )/2
J /

(
MαJ +βJ

C|αJ +βJ |).

This implies that

sup
α,β∈N

n
0

‖xα∂βHγ ‖2/((2HC)|α+β|Mα+β)

≤ Bγ (αJ +βJ )/2/
(
C|αJ +βJ |MαJ +βJ

) ≤ BeM(γ 1/2/C).

by the definition of the associated function M(t) (see section 2). �	
We will show now that our special assumption (1.2) is optimal for the results

we want to prove if we additionally assume that there is H̃ > 0 such that

MαMβ ≤ H̃ |α+β|Mα+β. (3.7)

For sequences (Mp)p∈N0 this assumption is obviously satisfied if

M2
j ≤ Mj−1Mj+1 if j ∈ N, (3.8)

that is, if the sequence is logarithmically convex (this is Komatsu’s condition (M1)).

Remark 3.3. Let (Mα) satisfy (2.1) and (3.7). The following are equivalent:

a) The Hermite functions are contained in S{Mα} (or S(Mα), respectively)
b) There are C > 0 and C1 > 0 (or for any C > 0 there is C1 > 0) such that

αα/2 ≤ C1C
|α|Mα if α ∈ N

n
0 . (3.9)
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c) (Mα) satisfies (1.2) for some C > 0 (or for any C > 0, respectively).

Proof. “c) ⇒ a)” This follows follows from Lemma 3.2.
“a) ⇒ b)” If H0(x) := π−n/4 exp(− ∑

j≤n x2
j /2) satisfies

sup
α,β∈N

n
0

‖xα∂βH0‖2/(C
|α|+|β|Mα+β) < ∞ (3.10)

for some C > 0, we get

sup
x∈Rn

exp
(
M(x/(AC)) −

∑

j≤n

x2
j /2

)

= sup
α

‖xα exp(−
∑

j≤n

x2
j /2)/(Mα(AC)|α|)‖∞

≤ C4 sup
|γ |∞≤2n+2,α

‖∂γ (xα exp(−
∑

j≤n

x2
j /2))/(Mα(AC)α)‖2

≤ C5 sup
α,β

‖xα∂βH0(x)/(Mα+βC|α+β|)‖2 < ∞

for suitable A > 0 (independent of C) by the Leibniz rule, (3.7), (1.2), (3.10) and
(2.1). Thus,

M(x/(AC)) ≤
∑

j≤n

x2
j /2

and we get by the definition of the associated function M(t)

Mα/(AC)|α| ≥ sup
x∈Rn

|xαe−M(x/(AC))|

≥ sup
x∈Rn

|xα exp
(−

∑

j≤n

x2
j /2

)| = αα/2e−|α|/2.

“b) ⇒ c)” This is evident by (3.7). �	
A (multi) sequence (eγ )γ∈N

n
0

in a locally convex space E is called an absolute
(Schauder) basis if for any x ∈ E there are unique ξγ (x) ∈ C such that x =∑

γ ξγ (x)eγ and such that for any continuous semi norm p on E there are a con-
tinuous semi norm q on E and C > 0 such that

∑

γ

|ξγ (x)|p(eγ ) ≤ Cq(x) for all x ∈ E.

The continuous linear mappings (ξγ )γ∈N
n
0

are called the coefficient functionals of
the basis. Set

	{Mα} := {(cα)α∈N
n
0

| ∃j ∈ N
n
0 : ‖(cα)‖j := sup

α∈N
n
0

|cα|eM(α1/2/j) < ∞}

and

	(Mα) := {(cα)α∈N
n
0

| ∀j ∈ N
n
0 : |(cα)|j := sup

α∈N
n
0

|cα|eM(jα1/2) < ∞}.
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Let


 : L2(R
n) → l2, 
(f ) := (ξγ (f ))γ∈N

n
0

:=
(∫

f (x)Hγ (x) dx
)

γ∈N
n
0

.

The following is the main result of this section:

Theorem 3.4. Let (Mα) satisfy (2.1) and (1.2) for some C > 0 (and for any C > 0,
respectively, if S(Mα) is considered). Then the Hermite functions are an absolute
basis in S{Mα} (and in S(Mα)) with coefficient functionals (ξγ )γ∈N

n
0

and 
 defines
a tame isomorphism


 : S{Mα} → 	{Mα} (and 
 : S(Mα) → 	(Mα), respectively).

Proof. Since the Hermite functions are a real valued basis of the Hilbert space
L2(R

n) and since S{Mα} and S(Mα) are continuously embedded in L2(R
n), we need

to prove only the last statement.
I) Let f ∈ C∞(Rn) satisfy

sup
α,β∈N

n
0

‖xα∂βf ‖2/(C
|α+β|Mα+β) =: C1 < ∞

for some C > 0.
Let Hβ := 0 if βj = −1 for some j . We then have

A−,i (Hα) =
√

2αiHα−ei
if α ∈ N

n
0

(see Meise/Vogt [7, Example 29.5(2)]). This implies by Lemma 3.1b)

|ξγ (f )|2γ α ≤ |〈f, Hγ 〉|22|α| (α + γ )!

γ !
= |〈f, Aα

−(Hγ+α)〉|2

= |〈Aα
+(f ), Hγ+α〉|2 ≤ ‖Aα

+(f )‖2
2 ≤ C2

1B2(9HC)2|α|M2
α

by the Cauchy-Schwarz inequality and since ‖Hγ+α‖2 = 1. By the definition of
the associated function we thus get

sup
γ∈N

n
0

|ξγ (f )|eM(γ 1/2/(9HC)) ≤ C1B.

II) Let (cγ )γ∈N
n
0

satisfy

sup
γ∈N

n
0

|cγ |eM(γ 1/2/C) = C1 < ∞

for some C > 0 and let (1.2) hold for B2C where B2 is chosen from (2.2). Then
Lemma 3.2b) implies that

∑

γ∈N
n
0

|cγ | sup
α,β

‖xα∂βHγ ‖2/((2B2HC)|α+β|Mα+β)

≤ B
∑

γ∈N
n
0

|cγ |eM(γ 1/2/(B2C))

≤ BC1

∑

γ∈N
n
0

eM(γ 1/2/(B2C))−M(γ 1/2/C). (3.11)

Since the sum in (3.11) is finite by (2.2), the theorem is proved. �	
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Since the Hermite functions are a real valued basis of the Hilbert space L2(R
n),

Theorem 3.4 implies by duality

Corollary 3.5. Under the assumptions of Theorem 3.4, the Hermite functions are
an absolute basis in (S{Mα})′b (and in (S(Mα))

′
b) with coefficient functionals (̃ξγ )γ∈N

n
0
,

ξ̃γ (T ) := T (Hγ ) for T ∈ (S{Mα})′b (and T ∈ (S(Mα))
′
b) and 
̃ := (̃ξγ )γ∈N

n
0

defines
a tame isomorphism


̃ : (S{Mα})′b → (	{Mα})′b (and 
̃ : (S(Mα))
′
b → (	(Mα))

′
b, respectively).

Spaces of the type S{Mα} and S(Mα) have been introduced in the literature since
in these spaces, Fourier transformation is a topological isomorphism which can be
extended by duality to an isomorphism in spaces of ultradistributions, (Fourier)
hyperfunctions and analytic functionals (see Roumieu [8], Gelfand and Shilov [1]
and Sato [9]).

It is well known that Hermite functions are well adapted to Fourier transforma-
tion, namely

Ĥγ = (2π)−n/2(−i)γ Hγ for γ ∈ N
n
0 (3.12)

(see Meise and Vogt [7, Corollary 14.9]). Thus Theorem 3.4 directly implies

Corollary 3.6. Let (Mα) satisfy the assumptions of Theorem 3.4. Then the Fourier
transformation is a tame isomorphism in S{Mα} (and in S(Mα), respectively).

Proof. The mapping

(cγ )γ → ((−i)γ cγ )γ

clearly is a tame isomorphism in 	{Mα} and 	(Mα). The claim thus follows from
Theorem 3.4 and (3.12). �	

It is often useful to separate the bounds at ∞ from the bounds on the derivatives,
i.e. the following spaces are considered

W{Mα} := {f : R
n → C |

‖f ‖j := sup
x∈Rn,β∈N

n
0

exp(M(x/j))|∂βf (x)|/(j |β|M|β|) < ∞ for some j ∈ N}.

and

W(Mα) := {f : R
n → C |

|f |j := sup
x∈Rn,β∈N

n
0

exp(M(xj))|∂βf (x)|j |β|/M|β| < ∞ for any j ∈ N}.

To include these spaces into the setting of this paper, Komatsu’s condition (M2) is
needed, that is, we will assume that there is H > 0 such that

Mα+β ≤ H |α+β|+1MαMβ for any α, β ∈ N
n
0 . (3.13)

Theorem 3.7. Let (Mα) satisfy (3.13). Then the Hermite expansion from Theorem
3.4 defines a tame isomorphism
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a) from W{Mα} onto 	{Mα}, if (Mα) also satisfies (1.2) for some C > 0,
b) from W(Mα) onto 	(Mα), if (Mα) also satisfies (1.2) for any C > 0.

Proof. (3.13) clearly implies (2.1). By Theorem 3.4 it suffices to show that the
identity is a tame isomorphism from S({Mα}) onto W{Mα} (and from S((Mα))

onto W(Mα), respectively). This easily follows from (3.13) and the definitions
involved. �	

4. Power series spaces

For the existence of continuous linear right inverses or the solvability of vector
valued problems in analysis it is important to know if the spaces which are involved
are isomorphic to power series spaces (or to their dual spaces, respectively). We
will consider this question here for the weighted spaces S{Mα} and S(Mα). Since
we already have the isomorphism from Theorem 3.4 we thus mainly have to con-
sider the sequence spaces 	(Mα) and 	{Mα}. Similar sequence spaces occur when
sequence space representations for spaces of periodic ultradifferentiable functions
are considered (see Langenbruch [3]), so we will profit here a lot from the detailed
study in that paper.

We therefore restrict our considerations to functions of one variable in this sec-
tion, that is, n = 1 and (Mp)p∈N0 is an ordinary sequence. The results can easily
transferred to the following two standard cases in several variables:

a) (Mα)α∈N0 is isotropic, i.e. Mα = N|α| for some sequence (Np)p∈N0 . Notice
that then

M(x) = N(|x|) for x ∈ R
n. (4.1)

b) (Mα)α∈N0 is a product of the form Mα = ∏
j≤n Mj,αj

with sequences
(Mj,p)p∈N0 , j ≤ n. Notice that then

M(x) =
∑

j≤n

Mj (xj ) for x ∈ R
n. (4.2)

Recall that power series spaces and their canonical semi norm systems are
defined as follows: Let (ak)k∈N0 be sequence of positive numbers. Then

	0(ak) := {(ck)k∈N0 | ∀j ∈ N : |(ck)|j := sup
k∈N0

|ck|e−ak/j < ∞}

and

	∞(ak) := {(ck)k∈N0 | ∀j ∈ N : ‖(ck)‖j := sup
k∈N0

|ck|ejak < ∞}.

For the dual spaces we use the corresponding dual norms.
	0(ak) (and 	∞(ak)) are called power series spaces of finite type (and of

infinite type, respectively).
Since we are dealing with functions of one variable, the natural general assump-

tions are (M1) (see (3.8)), (M2′) (see (2.1)) and (3.9) (see Remark 3.5).
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To state our first results concerning S(Mα) we need some more standard notation:
Let

mp := Mp/Mp−1 for p ∈ N

and

m(t) := max{p | mp ≤ |t |} for t ∈ R.

Theorem 4.1. Let (Mp)p∈N0 satisfy (2.1), (3.8) and also (3.9) for any C > 0. The
following are equivalent:

a) S(Mα) is isomorphic to a power series space.
b) There is C ∈ N such that

2mp ≤ mCp if p ∈ N is large . (4.3)

c) The mapping

T : f → (〈f, Hk〉eM(k1/2))k∈N0 ,

is a topological isomorphism from S(Mα) onto 	∞(m(k1/2)).

Proof. For any j ∈ N and x ∈ R

M(x) + jm(jx) ≤ M(jejx) and M(jx) ≤ M(x) + ln(j)m(jx) (4.4)

(see Langenbruch [3, Lemma 1.2c)]). By Theorem 3.4, T is an isomorphism from
S(Mα) onto

	 := {(ck)k∈N0 | ∀j ∈ N : sup
k∈N0

|ck|eM(jk1/2)−M(k1/2) < ∞},

which by (4.4) is isomorphic to

	1 := {(ck)k∈N0 | ∀j ∈ N : sup
k∈N0

|ck|ejm(jk1/2)) < ∞}.

“a) ⇒ b)” By a) and the above remarks, 	1 is isomorphic to a power series
space. This implies (4.3) by the proof of Langenbruch [3, Theorem 3.1].

“b) ⇒ c)” This is evident by the isomorphism above.
“c) ⇒ a)” This is trivial. �	
Especially, S(Mα) never is isomorphic to a power series space of finite type.
For S{Mα} we get the following:

Theorem 4.2. Let (Mp)p∈N0 satisfy (2.1), (3.8) and also (3.9) for some C > 0.
The following are equivalent:

a) S{Mα} is isomorphic to the dual of a power series space of infinite type.
b) For any j ∈ N there is k ∈ N such that

jm(t) ≤ M(t) − M(t/k) if t is large . (4.5)



Hermite functions 281

c) The mapping

T : f → (〈f, Hk〉eM(k1/2))k∈N0 ,

is an isomorphism from S{Mα} onto 	∞(m(k1/2))′b.

Proof. This again follows from Theorem 3.4 and the results of Langenbruch [3]
(use the proof of Theorem 4.4 in loc. cit.) �	

A useful sufficient condition for (4.5) is the following: There is C ∈ N such
that for any j ≥ 1.

jmp ≤ mCp if p ∈ N is large (4.6)

(see Langenbruch [3, (4.5’)] and compare (4.3)). Thus, (Mp) is rapidly increasing
and S{Mα} is large in this case (see 5.1 for a typical example).

In canonical cases like the Gevrey sequence, S{Mα} is isomorphic to the dual of
a power series space of finite type:

Theorem 4.3. Let (Mp)p∈N0 satisfy (2.1), (3.8) and also (3.9) for some C > 0.
The following are equivalent:

a) S{Mα} is isomorphic to the dual of a power series space of finite type.
b) (Mp)p∈N0 satisfies condition (M2) (see (3.13)) and (4.3).
c) The Hermite expansion from Theorem 3.4 is an isomorphism from

S{Mα} onto 	0(m(k1/2))′b.

Proof. This follows from Theorem 3.4 and Langenbruch [3, 4.3]. �	

5. Examples

In this section, we will present some instructive and typical examples and we will
also calculate explicitly the corresponding sequence spaces and counting of semi
norms. More examples can be found in the literature (e.g. in Langenbruch [3, 4]).
For non quasi analytic classes of functions some of the sequence space representa-
tions of this paper can also be proved using Pelczynski’s trick. However, no explicit
bases nor coefficient functionals can be obtained in that way.

Theorem 4.2 usually applies to rapidly increasing sequences (Mp) and large
spaces S{Mα}. (4.4) indicates that it might be difficult to obtain a tame isomorphism
in Theorem 4.2. However, for specific examples this is possible:

Example 5.1. Let Mp := e|p|r for p ∈ N
n
0. Then (Mp) satisfies (1.2) and (2.1) iff

1 < r ≤ 2. For these r , the mapping

T̃ : f → (〈f, Hk〉e−M(|k|1/2))k∈N
n
0
,

defines tame isomorphisms

T̃ : S{Mα} → 	∞(ln(|k|))1/(r−1))′b
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and

T̃ : S(Mα) → 	∞(ln(|k|))1/(r−1)),

if we use the systems

{‖ ‖ej | j ∈ N} in S{Mα} and {| |ej | j ∈ N} in S(Mα).

Proof. The first claim is trivial. A direct calculation shows that there are Cr, C > 0
such that

Cr(ln(|t |))r/(r−1) − ln(|t |) − C ≤ M(t) ≤ Cr(ln(|t |))r/(r−1) (5.1)

if t ∈ R
n and |t | is large. The claim now follows from Theorem 3.4, (4.1) and

the mean value theorem since r ≤ 2. Finally, the standard enumeration of N
n
0 is

used. �	

More examples of the type considered in Theorem 4.2 are given in Langenbruch
[4, Examples 1.3].

Mp := ep2
is an extreme case for the spaces considered here. S

(eα2
)

is isomor-
phic to the space (s) of rapidly decreasing sequences, hence also to the Schwartz
space S and to the space of 2π -periodic C∞-functions. S{eα2 } is isomorphic to the

space (s)′b.
Since the Hermite functions are also a basis in S (and in S ′), the mapping

L : f →
∑

e−(ln(k))2/16〈f, Hk〉Hk

provides the isomorphisms of S
(eα2

)
and S (and of S{eα2 } and S ′, respectively) since

C2 = 1/4 in (5.1).
Theorem 4.1 and Theorem 4.3 can be applied e.g. for the classical Gevrey type

spaces:

Remark 5.2. Let Mp := (p!)r (ln(2 + p))ps for p ∈ N0.

a) Mp satisfies (3.9) for any C > 0 iff r > 1/2 and s ∈ R (and for some C > 0
iff r > 1/2 and s ∈ R or r = 1/2 and s > 0). For these r and s, also the other
assumptions of Theorems 4.1 and 4.3 (including (3.13)) are satisfied.

b) There are constants 0 < C1 < C2 such that

C1t
1/r

(
ln(t))−s/r ≤ m(t) ≤ C2t

1/r
(
ln(t))−s/r if t is large. (5.2)

This estimate also holds for M(t) (with different constants Cj ).

Proof. a) This is easy.
b) (3.13) implies that there is k ∈ N such that

2M(t) ≤ M(kt) if t is large.
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By (4.4) this implies that

m(t/e) ≤
∫ ln(t)

ln(t)−1
m(eτ ) dτ ≤ M(t) − M(t/e) ≤ M(t)

≤ M(kt) − M(t) ≤ ln(k)m(kt)

if t is large. It is therefore sufficient to prove (5.2) for m(t).
We first consider mp. Clearly,

1

2
pr(ln(p))s ≤ mp = Mp/Mp−1 ≤ 2pr(ln(p))s if p is large.

This implies that

max{p | 2pr(ln(p))s ≤ t} ≤ max{p | mp ≤ t} = m(t)

≤ max{p | 1

2
pr(ln(p))s ≤ t} if t is large.

We first assume that s ≥ 0 and set p := [C2t
1/r (ln(t))−s/r ] + 1 where [ ] is the

Gauss bracket. Then

2pr(ln(p))s ≥ 2
(
C2t

1/r (ln(t))−s/r
)r(

ln
(
C2t

1/r (ln(t))−s/r
))s

= 2Cr
2 t (ln(t))−s

(
ln(C2) + ln(t)/r − s ln(ln(t))/r)

)s

≥ 2Cr
2 t/(2r)s > t if t is large

for suitable C2 > 0. This shows that

m(t) ≤ C2t
1/r (ln(t))−s/r

i.e. the right hand side of (5.2) is proved. The left hand side and the case s < 0 are
treated similarly. �	

The following example includes the spaces of type Sr
r of Gelfand and Shilov

[1].

Example 5.3. For 0 < r and s ∈ R let Mp := (p!)r (ln(2 + p))ps, p ∈ N0, and let

S{r,s} := {f : R
n → C | ∃j ∈ N :

|f ‖j := sup
x∈Rn,β∈N

n
0

exp
(1

j
|x|1/r/ ln(|x|)s/r

)|∂βf (x)|/(j r|β|M|β|) < ∞}

and

S(r,s) := {f : R
n → C | ∀j ∈ N :

|f |j := sup
x∈Rn,β∈N

n
0

exp
(
j |x|1/r/ ln(|x|)s/r

)|∂βf (x)|j r|β|/M|β| < ∞.}

Then the Hermite expansion from Theorem 3.4 is a tame isomorphism

a) from S(r,s) onto 	∞( k1/(2rn)

ln(k)s/r ) if r > 1/2
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b) from S{r,s} onto 	0(
k1/(2rn)

ln(k)s/r )
′
b if r > 1/2 or r = 1/2 and s > 0.

Proof. a) By Theorem 3.7, (4.1) and Remark 5.2 we know that W(Mp) is tamely
isomorphic to 	(Mp) which is tamely isomorphic to

	̃(Mp) := {(ck)k∈N0 | ∀j ∈ N0 : |(ck)|j := sup
k∈N

n
0

|ck|ej1/r |k|1/(2r)/ ln(|k|)s/r

<∞}.

We thus have to use the grading {| |jr | j ∈ N} in W(Mp) to obtain the grading of
a power series space for 	̃(Mp). Finally, we use the standard enumeration of N

n
0 to

obtain the tame isomorphism to the above power series spaces. This shows a).
b) This is follows as in a). �	

Notice the different skaling of j in S{r,s} and S(r,s) for the growth of the variable
and the derivatives, respectively.

We could also treat non isotropic versions of these spaces (use (4.2)).
The spaces S{r,0} are the well known spaces Sr

r of Gelfand and Shilov [1].
The Hermite functions cannot be a basis in the spaces S

ρ
r (see Gelfand and Shilov

[1, chapter IV, section 2.3]) for r �= ρ since this would imply that the Fourier
transformation is an isomorphism in S

ρ
r by (3.12) which is false for r �= ρ.

For 1/2 ≤ r < 1 the functions in Sr
r can be extended to entire functions with

non radial growth conditions and we get a tame sequence space representation for
these from Example 5.3. For ρ > 1 let

H{ρ} := {f ∈ H(Cn) | ∃j ∈ N :

‖f ‖j := sup
z∈Cn

|f (z)| exp
(|�(z)|ρ/j − j1/(ρ−1)|�z)|ρ/(ρ−1)

)
< ∞}.

and

H(ρ) := {f ∈ H(Cn) | ∀j ∈ N :

|f |j := sup
z∈Cn

|f (z)|exp(
j |�(z)|ρ − j−1/(ρ−1)|�(z)|ρ/(ρ−1)

)
< ∞}.

Notice again the different skaling of j for the growth in real and imaginary direction.

Example 5.4. The Hermite expansion from Theorem 3.4 is a tame isomorphism

a) from H(ρ) onto 	∞(kρ/(2n)) if 1 < ρ < 2
b) from H{ρ} onto 	0(k

ρ/(2n))′b if 1 < ρ ≤ 2

Proof. By Gelfand and Shilov [1, (2) on p. 208 and chapter IV,section 7.5,Theorem
3], the identity is a tame isomorphism from H{ρ} onto S{1/ρ,0} and from H(ρ) onto
S(1/ρ,0) if 1 < ρ ≤ 2. The claim thus follows from Example 5.3. �	

Again, a non isotropic version of this example can be treated.
Finally, the interesting example of Fourier hyperfunctions is considered: the

space of test functions for the Fourier hyperfunctions is usually denoted by P∗ (see
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Kaneko [2]) and corresponds to the holomorphic extension of the space S{1,0} (= S1
1

in Gelfand and Shilov’s notation). It is defined as follows:

P∗ := lim ind
j→∞

P∗,j ,

where

P∗,j := {f ∈ H(Uj ) | ‖f ‖j := sup
z∈Uj

|f (z)| exp(|�(z)|/j) < ∞},

where Uj is the strip

Uj := {z ∈ C
n | |�(z)| < 1/j}.

Similarly, let

P∗∗ := {f ∈ H(Cn) | |f |j := sup
|�(z)|<j

|f (z)| exp(j |�(z)|) < ∞}.

Example 5.5. The Hermite expansion from Theorem 3.4 is a tame isomorphism
from P∗ onto 	0(k

1/(2n))′b and from P∗∗ onto 	∞(k1/(2n)), respectively.

Proof. It is easily seen that P∗ (and P∗∗) are tamely isomorphic to W{α!} (and W(α!),
respectively). The claim thus follows from Theorem 3.7 and Remark 5.2. �	

Using the results of the present paper, convolution operators and their continu-
ous linear right inverses are studied on Fourier hyperfunctions in the forthcoming
papers Langenbruch [5, 6].
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