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Abstract. In this paper we study certain properties of Fourier coefficients of cuspidal rep-
resentations on symplectic groups. We prove that every cuspidal representation has a non-
trivial Fourier coefficient with respect to a certain type of unipotent class.

0. Introduction

An important problem in the theory of automorphic representations is to determine
the Fourier coefficients that a representation has. This knowledge is a basic tool in
many applications such as constructions of Rankin-Selberg integrals or studying
liftings by using automorphic representations as kernel functions.

The most well known Fourier coefficient is the so-called Whittaker Fourier
coefficient and it is known that every cuspidal representation on GLn(A) has such
a Fourier coefficient. However for other classical groups this is not the case. That
is, there are cuspidal representations which have no nontrivial Whittaker Fourier
coefficients.

Maybe the most convenient way to parameterize Fourier coefficients is by using
the parameterization of unipotent orbits. For basic properties of unipotent orbits
we refer the reader to [C] or [C-M]. In Section 2 we show how to associate to each
unipotent orbit a set of Fourier coefficients on a given automorphic representation
of the group Sp2n or its double cover. In [M-W] this kind of association is done for
representations of classical groups over p-adic fields.

As explained in [C] and [C-M] the set of unipotent orbits admits a partial
ordering. Given an automorphic representation π ofG = Sp2n(A) or on its double
cover we define OG(π) to be the set of all unipotent orbits ofG with the following
property. O ∈ OG(π) if π has a nontrivial Fourier coefficient corresponding to
O and for all Õ > O (relative to the above partial ordering) π has no nontrivial
Fourier coefficients corresponding to Õ.

For example, if π has a Whittaker Fourier coefficient then OG(π) = ((2n)). If
θ denotes the minimal representation on S̃p2n then OG(θ) = (212n−2).
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In [M] it is proven (for any classical group) that if π is a representation over
a local p-adic field and if O ∈ OG(π) then O must be special (See [C-M] for
definition.). It follows from [M-W] that if π is supercuspidal and u is a unipotent
element associated with O ∈ OG(π) then u cannot be conjugated into a Levi part
of the group G. (As before this is true for any classical group). In this paper we
prove part of these two results for automorphic representations π of G.

In Section 2 (Theorem 2.1) we show that if π is an automorphic representation
of Sp2n(A) and if O ∈ OG(π) then O is special. The proof is somewhat similar to
the local case as done in [M].

In case π is cuspidal, the result we prove is weaker than the one in the local
p-adic case. Before stating it let us emphasize that since we are working over the
rational points, then for a given unipotent class one can possibly associate infinitely
many nonconjugate Fourier coefficients. Hence it can happen that over the rational
points some unipotent elements u in O could be conjugated into a Levi part and
some may not. We did not prove it but we believe that if u belongs to O which
contains an odd number (see [C] or [C-M]) then u can be conjugated into a Levi part
of G. Motivated by the local results of [M-W] we conjecture that if O ∈ OG(π)

and π is cuspidal then O is even i.e. a partition which consists of even numbers.
In this paper we prove (Theorem 2.7) that there is an even unipotent orbit

O ∈ OG(π). We do however expect that every O ∈ OG(π) will be even.
Finally, we mention the conjecture stated in [M1] p. 259 (and the references

cited there) that OG(π) consists of a unique unipotent class. We do expect this to
happen also over global fields but we have no evidence of that.

1. Fourier coefficients and unipotent classes

In this section we shall show how to associate to a given unipotent class a set of
Fourier coefficients of a given automorphic form. In [M-W] a similar construction
is defined over p-adic fields.

The basic references for the classification of unipotent classes can be found in
[C] or [C-M]. We recall that unipotent classes of classical groups are parameterized
by partitions. For G = Sp2n unipotent classes are parameterizes by all partitions
of 2n where odd numbers occur with even multiplicity. To each partition O we
associate a one-dimensional torus hO(t) as explained in [C] or [C-M] page 80. We
shall always choose hO(t) to be written in decreasing order of the exponents of t .
For example if O = (322) in Sp8 then hO(t) = diag(t2, t2, t, 1, 1, t−1, t−2, t−2).

In terms of matrices, Sp2n is defined with respect to the matrix

(
Jn

−Jn
)

where

Jn =






1

. ..

1




. The torus acts on each one parameter subgroup xα(r) associated

with any root α as
hO(t)xα(r)hO(t)−1 = xα(t

ir).

By our choice if xα(r) is upper unipotent then i ≥ 0. Let V1(O) be the group
generated by all xα(r) such that i ≥ 1. Then V1(O) is a unipotent radical of a
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parabolic subgroup P(O) = M(O)V1(O) of G. We denote by V2(O) the group
generated by all xα(r) such that i ≥ 2. Clearly V2(O) ⊂ V1(O). The group
V2(O)/[V2(O), V2(O)] can be identified with an abelian matrix group and it is
well known that over the closure M(O) acts on this quotient with an open orbit. If
M0 is the stabilizer of this open orbit then M0 is reductive.

Let ψ be a nontrivial additive character of F\A, where F is a number field and
A is its ring of adeles. The group M(O)(F ) acts on the group of all characters of
V2(O)/[V2(O), V2(O)] with points in F\A. Let ψV2(O) be such a character whose
stabilizer in M(O)(F ) is of type M0. The choice of ψV2(O) is not unique and in
fact there could be infinitely many such characters which are not conjugate under
M(O)(F ).

Let ϕ(g) be an automorphic function on G. To the unipotent class O we asso-
ciate the set of Fourier coefficients given by

f1(g) =
∫

V2(O)(F )\V2(O)(A)
ϕ(vg)ψV2(O)(v)dv (1.1)

where g ∈ G(A).
Example. Let G = Sp4 and O = (22). Then hO(t) = diag(t, t, t−1, t−1), and

M(O) = GL2. V1(O) = V2(O) =












1 x y

1 z x
1

1












. In this case the set of Fourier

coefficients associated with O is given by

∫

(F\A)3

ϕ













1 x y

1 z x
1

1






g






ψ(αy + βz)dxdydz

where α, β ∈ (F ∗)2\F ∗. Indeed the stabilizer in M(O)(F ) of each such character
is a one dimensional torus. ��

If V1(O)/[V2(O), V2(O)] is a generalized Heisenberg group then we can write
this quotient as X ⊕ Y ⊕ Z where Z = V2(O)/[V2(O), V2(O)] and X and Y are
maximal abelian subgroups of V1(O)/V2(O). There is always a choice of such
a polarization so that X and Y are subgroups of V1(O) that preserve ψV2(O) and
hence we can define

f2(g) =
∫

Y (F )\Y (A)

∫

V2(O)(F )\V2(O)(A)
ϕ(vyg)ψV2(O)(v)dvdy. (1.2)

Notice that f1(g) defines an automorphic function on M0(F )\M0(A) whereas
f2(g) does not. To fix it we define a third integral as follows. Since V1(O)/
[V2(O), V2(O)] is a generalized Heisenberg group we can find a homomorphismσ :
V1(O)(A) → H2m+1(A) where H2m+1 is the Heisenberg group with 2m+ 1 vari-
ables. Thus every element inH2m+1(A) can be written as (x|y|z) where x, y ∈ A

n
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and z ∈ A is the center ofH2m+1(A).We can chooseσ so that it mapsV1(O)/V2(O)
onto the set (x|y|0). Also if xα(r) is in V2(O) such that ψV2(O)(xα(r)) is nontrivial
and α = β1 +β2 where xβ1(r1) and xβ2(r2) are inV1(O)/V2(O) then σ maps xα(r)
onto the center ofH2m+1. All this means thatM0 can be embedded in Sp2m in such
a way that its action on H2m+1 is compatible with its action on V1(O)/V2(O).

Let θ̃ψO
φ denote a theta function on S̃p2m(A). Here ψO is chosen to be compat-

ible with ψV2(O). That is θ̃ψO
φ (σ (z)g) = ψV2(O)(z)θ̃

ψO
φ (g) where z ∈ V2(O)

is mapped to (0|0|∗) under σ . Recall that the theta function is a function on
H2m+1(A)S̃p2m(A). Thus we can define the integral

f̃3(h) =
∫

V1(O)(F )\V1(O)(A)
θ̃
ψO
φ (σ (v)h)ϕ(vh)ψV2(O)(ker σ(v))dv (1.3)

where h ∈ M0(F )\M̃0(A) i.e. it is automorphic function on the inverse image of
M0 in S̃p2m(A). Here ker(v) denotes the projection of v onV2(O)/[V2(O), V2(O)].
Note that f̃3 need not be a genuine function. If ϕ ∈ π we denote the space of func-
tions generated by f̃3 by DO(π). Thus DO(π) is an automorphic representation
of M0(F )\M̃0(A). We have,

Lemma 1.1. If one of the integrals (1.1), (1.2) or (1.3), is zero for all choice of data
then the other two are also zero for all choice of data.

Proof. We may assume g = h = e. Starting with integral (1.1) and given a polar-
ization X ⊕ Y of V1(O)/V2(O) we write a Fourier expansion along Y (F )\Y (A).
Thus (1.1) equals

∑

ξ∈Fm

∫

Y (F )\Y (A)

∫

V2(O)(F )\V2(O(A)
ϕ(vy)ψV2(O)(v)ψ(y · ξ)dvdy

where y · ξ is the standard bilinear product of y with ξ when we identify Y (A)with
A
m. Let ξ1 ∈ X(F). Sinceϕ is automorphic it is left invariant under ξ1. Conjugating

ξ1 across v and y, the above integral equals

∑

ξ∈Fm

∫

ϕ(v(ξ1, y)yξ1)ψV2(O)(v)ψ(y · ξ)dvdy

where (ξ1, y) is the matrix obtained from the conjugation of ξ1 across y. Here v and
y are integrated as before. Clearly (ξ1, y) lies in V2(O) modulo [V2(O), V2(O)]
and we can choose ξ1 such that the change of variables v → v(ξ1, y)

−1 will give
ψV2(O)(v(ξ1, y)

−1) = ψV2(O)(v)ψ(y · ξ). Thus we may conclude that (1.1) equals

∑

ξ∈Fm

∫

Y (F )\Y (A)

∫

V2(O)(F )\V2(O)(A)
ϕ(vyξ1)ψV2(O)(v)dvdy



On Fourier coefficients of automorphic forms of symplectic groups 5

where ξ1 depends on ξ . From this it follows that (1.1) is zero for all choice of data
if and only if (1.2) is zero for all choice of data. Next we start with (1.3). It equals

∫

V2(O)(A)V1(O)(F )\V1(O)(A)

∫

V2(O)(F )\V2(O)(A)
θ̃
ψO
φ (σ (v2)σ (v1))ϕ(v2v1)

× ψV2(O)(ker σ(v2))dv2dv1

Identifying V2(O)(A)V1(O)(F )\V1(O)(A) with X⊕ Y where X, Y are identified
with (F\A)m we can write the above integral as

∫

θ̃
ψO
φ (σ (v2)σ (y)σ (x))ϕ(v2yx)ψV2(O)(ker σ(v2))dv2dydx

where x is integrated over X(F)\X(A), y over Y (F )\Y (A) and v2 as before.
Unfolding the theta function we have

θ̃
ψO
φ (σ (v2)σ (y)σ (x)) =

∑

ξ∈Fm
ωψO (σ (v2)σ (y)σ (x))φ(ξ)

=
∑

ξ∈Fm
ωψO (σ (ξ)σ (v2)σ (y)σ (x))φ(0)

Here we identify X(F) with Fm, and view ξ accordingly. Since ϕ is automorphic
it is left invariant under ξ . Conjugating in the above integral ξ and σ(ξ) across,
changing variables and collapsing summation with integration we obtain

∫

X(A)

∫

ωψO (σ (v2)σ (y)σ (x))φ(0)ϕ(v2yx)ψV2(O)(ker σ(v2))dv2dydx

where y and v2 are integrated as before. Using the Weil representation action we
conclude that (1.3) equals

∫

X(A)

φ(x)

∫

Y (F )\Y (A)

∫

V2(O)(F )\V2(O)(A)
ϕ(v2yx)ψV2(O)(v2)dv2dydx

Thus if (1.2) is zero for all choice of data so is (1.3). Sinceφ ∈ S(Am) is an arbitrary
Schwartz function, the vanishing of (1.3) for all choice of data implies that (1.2) is
zero for all choice of data. ��

LetG be a reductive group and let π be an automorphic representation ofG(A).
It is clear that π has a nontrivial Fourier coefficient which corresponds to the min-
imal unipotent class. Since there is a partial order on the set of unipotent classes
corresponding toG, it is natural to ask which are the largest unipotent classes such
that π has a nontrivial Fourier coefficient corresponding to these classes. More
precisely,
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Definition. LetG be a reductive group and π an automorphic representation of π .
We shall denote by OG(π) the set of all unipotent classes such that π has a non-
trivial Fourier coefficient corresponding to these classes, and if O is any unipotent
class which is larger than some member in OG(π) then integral (1.1) vanishes for
all choice of data for this unipotent class O. ��

Example. Let G = S̃p4 (double cover of Sp4). Let π be the theta function on G.
Then OG(π) = (212). ��

It will be convenient to use the following terminology. Given a unipotent class
O of a group G and an automorphic representation π of G(A) we will say that
π supports O if there is a choice of data such that the Fourier coefficient of π
corresponding to O as defined in (1.1), is not zero. Similarly, we say that π van-
ishes on O if integral (1.1) which corresponds to O is zero for all choice of data.
It is important to realize that this nonvanishing or vanishing might depend on the
additive character in question. In other words, it is possible that π will vanish on
O for a certain character and will not vanish on O for another character.

Let f be a unipotent class corresponding to G. If V1(f) 	= V2(f) then integral
(1.3), which corresponds to f defines an automorphic function (genuine or not) on
the group M0(F )\M̃0(A). If g is a unipotent class of the group M0 we let f ◦ g
denote the Fourier coefficient corresponding to the integration of (1.3) composed
with the Fourier coefficient corresponding to the unipotent class g. Let UM0 be the
maximal unipotent subgroup of M0. With a certain choice of Y integral (1.2) is
a function defined over UM0(F )\UM0(A). One can check following the proof of
Lemma 1.1 that

∫

V (F)\V (A)
f2(v)ψV (v)dv

is zero for all choice of data if and only if

∫

V (F)\V (A)
f3(v)ψV (v)dv (1.4)

is zero for all choice of data. Here V is a unipotent subgroup of UM0 and ψV
any additive character on V (F)\V (A). Hence, as far as vanishing or nonvanishing
properties, f ◦ g can be studied by either (1.2) or (1.3). However this is not the case
with integral (1.1) which is also a function on UM0(F )\UM0(A). All we can say is
that if

∫

V (F)\V (A)
f1(v)ψV (v)dv

is zero for all choice of data then (1.4) is zero for all choice of data. But the converse
need not be true.
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2. Fourier coefficients on symplectic groups

LetG denote the group Sp2k or the double cover of the symplectic group. We shall
now describe and make a certain choice of subgroups of G in order to describe
integrals (1.1)–(1.3). Let O be a unipotent class of G given by

O =
(

12(n1−n2)2m1−m2 32(n2−n3) . . . (2k − 1)2nk (2k)mk
)

(2.1)

where ni ≥ ni+1 andmj ≥ mj+1. With these notations we haveM(O) = Sp2n1
×

k∏

i=1
GLmi ×

k∏

j=2
GL2nj where GL0 means the identity group. We also have

V1(O)/V2(O) =
( k⊕

i=1

Mmi×2ni

) ⊕ ( k⊕

j=2

M2nj×mj−1

)

and

V2(O)/[V2(O), V2(O)] = M ′
m1×m1

⊕ ( k⊕

i=2

M2ni×2ni−1

) ⊕ ( k⊕

j=2

Mmj×mj−1

)

.

Here M�1×�2 is the group of all �1 × �2 matrices and M ′
m1×m1

= {� ∈ Mm1×m1 :
Jm1� − �tJm1 = 0}. The action of M(O) on V2(O)/[V2(O), V2(O)] is given as
follows. The group Sp2n1

act on M2n2×2n1 as x → xg−1. The group GLm1 acts on
M ′
m1×m1

⊕Mm2×m1 as g : (x, y) → (gxg∗, yg−1) where g∗ = JgtJ . For i > 1,
GLmi and GL2ni acts on Mmi×mi−1 ⊕ Mmi+1×mi and M2ni×2ni−1 ⊕ M2ni+1×2ni
respectively as g : (x, y) → (gx, yg−1).

Next we describe ψV2(O). We start with the groups M2ni×2ni−1 . Define for a
given matrix � ∈ M2ni×2ni−1

ψV2(O)(�) = ψ(�1,1 + �2,2 + · · · + �ni ,ni + �ni+1,2ni−1−ni+1

+�ni+2,2ni−1−ni+2 + · · · + �2ni ,2ni−1)

With this definition the stabilizer in GL2n2 × Sp2n1
is isomorphic to Sp�

2n2
×

Sp2(n2−n1)
and the stabilizer in GL2ni × GL2ni−1 for i ≥ 2 is Sp�

2ni
× Sp2(ni−1−ni)

where Sp�
2ni

is the diagonal embedding. Continuing this process for all i we

obtain that the stabilizer in M(O) of ψV2(O) restricted to
⊕k

i=2M2ni×2ni−1 is
k∏

i=2
Sp�

2(ni−1−ni) as given in [C-M]. Next, for � ∈ M ′
m1×m1

we define

ψV2(O)(�) = ψ(ε1�1,m1 + · · · + εm1�m1,1)

where εi ∈ F ∗. For � ∈ Mmj×mj−1 we defineψV2(O)(�) = ψ(�1,1 +· · ·+�mj ,mj ).
The stabilizer of ψV2(O) in M(O) for this part is

k∏

j=2
O

�
2(mj−1−mj ), again as given

in [C-M]. Finally, we describe the group Y which is contained in V1(O)/V2(O).
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In Mmi×2ni we choose all matrices of the form (0�) where � ∈ Mmi×ni and in

M2nj×mj−1 we choose all matrices of the form

(
�

0

)

where � ∈ Mnj×mj−1 . This

choice of groupY preservesψV2(O) and if we letUM0 be the maximal unipotent sub-
group ofM0 which consists of upper unipotent matrices thenUM0 normalizesY and
hence integrals (1.1)–(1.3) are well defined for any subgroup ofUM0(F )\UM0(A).
(Of course for some O, UM0 may be trivial). The following Theorem is the global
version of Theorem 1.4 in [M].

Theorem 2.1. Letπ be an irreducible automorphic representation ofG = Sp2k(A).
Then OG(π) consists of unipotent classes which are special.

Proof. We sketch the idea. For definition of a special unipotent class see [C-M].
Suppose that O in OG(π) which is not special is given by (2.1). Let (2r − 1) be
the largest integer such that 2(nr − nr+1) is nonzero and the number of even num-
bers, in the partition, which are larger than 2r − 1 is odd. Such a 2r − 1 exists by
definition of special partitions. As explained in [M] (see also [N]) it follows that
the representation given by DO(π) as defined by (1.3) is a genuine representation
of S̃p2(nr−nr+1)

(A) which is a subgroup ofM0. Let xα(�) denote the one parameter
unipotent subgroup of Sp2(nr−nr+1)

corresponding to the highest weight root vector
in this group. Since DO(π) is genuine there is a ∈ F ∗ such that

∫

F\A

f̃3(xα(�))ψ(a�)d� (2.2)

is nonzero for some choice of data. Let Õ be the unipotent class obtained from O by
replacing (2r−1)2 by (2r−2)(2r). Thus Õ > O and applying Fourier expansions
one can check that the nonvanishing of (2.2) is equivalent to the nonvanishing of
(1.3), for some choice of data, where the Fourier coefficient corresponds to the
unipotent class Õ. This contradicts the maximality of O. ��
Remark. With the appropriate definition of special representations, a similar The-
orem is valid also for automorphic representations on the group S̃p2k(A).

We now assume that π is a cusp form on the group G = Sp2k(A) or on its
double cover. To prove our main theorem we start with a few lemmas. Let Ur , for
r ≤ k be the unipotent radical of the parabolic subgroup of G whose Levi part
is GLr1 × Sp2(k−r). We define a character ψUr of Ur as follows. If u ∈ Ur then
ψUr (u) = ψ(u1,2 + · · · + ur−1,r ). We start with:

Lemma 2.2. Let ϕ ∈ π . If the integral
∫

Ur(F )\Ur(A)
ϕ(ug)ψUr (u)du (2.3)

is nonzero for some choice of data and for r < k, then there exists a number
k ≥ m > r such that π has a nontrivial Fourier coefficient corresponding to the
unipotent class ((2m)12(k−m)).
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Proof. Define the matrix xα(�) = I2k+�er+1,2k−r where ei,j is the 2k×2k matrix
with one at the (i, j) position and zero otherwise. Thus xα(r) is the one-dimensional
unipotent subgroup which corresponds to the highest weight root vector in Sp2(k−r)
(embedded in Sp2k). Thus we can expand (2.3) with respect to xα(�) where � is
in F\A. Since (2.3) is nonzero for some choice of data it follows that there is an
a ∈ F such that the integral

∫

F\A

∫

Ur(F )\Ur(A)
ϕ(uxα(�)g)ψUr (u)ψ(a�)dud�

is nonzero for some choice of data. If a 	= 0 then the lemma follows withm = r+1.
If the above integral is nonzero only when a = 0 define z(�1, . . . , �2(k−r−1)) =
I2k + �1e

′
r+1,r+1 + · · · + �2(k−r−1)e

′
r+1,2k−r−1. Here e′ij = eij − e2k−j+1,2k−i+1.

We now expand the above integral, with a = 0, along z(�1, . . . , �2(k−r−1)) with
points inF\A. The group Sp2(k−r−1) acts on the characters of z(�1, . . . , �2(k−r−1))

with two orbits. The trivial orbit will contribute zero by cuspidality whereas the
nontrivial orbit will give the nonvanishing of the integral

∫

Ur+1(F )\Ur+1(A)

ϕ(ug)ψUr+1(u)du.

Continuing by induction the result follows. ��
Next we prove:

Lemma 2.3. Let O = ((2r)12(k−r)) for r < k. Let V be any unipotent radical
subgroup of a maximal parabolic subgroup of Sp2(k−r). If the integral

∫

V (F)\V (A)
f2(vg)dv (where f2 is defined in (1.2) corresponding to O) is nonze-

ro for some choice of data then there exists k ≥ m > r such that ((2m)12(k−m))
supports π .

Proof. This follows as in the proof of Theorem 8 in [G-R-S1]. ��
Lemma 2.4. Let O = ((2r + 1)2d2 . . . ds) with 2r + 1 ≥ di for all i, and suppose
that O supports π . Then there exists a number m such that 2m > 2r + 1 and that
((2m)12(k−m)) supports π .

Proof. From the structure of O we deduce that

hO(t) = diag(t2r , t2r , . . . , td2−1, . . . , t−(d2−1), . . . , t−2r , t−2r ).

There is a Weyl group element w which conjugates hO(t) to the torus

h(t) = diag(t2r , t2r−2, . . . , t−(2r−2), t−2r , td2−1, . . . , t−(d2−1), t2r , . . . , t−2r )

Consider the integral (1.2) corresponding to the unipotent class O. Conjugating it
by the above Weyl element we deduce that the integral

∫

ϕ









u1 �1 �2
0 u2 �

∗
1

0 0 u∗
1









I 0 0
q1 I 0
q2 q

∗
1 I







ψU1(u1)ψU2(u2)duid�j dqn (2.4)
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is nonzero for some choice of data. We now describe the domain of integration. To
determine it we conjugate the above variables by h(t). Since, in (1.2), we integrate
over upper unipotent matrices generated by all positive roots, for which hO(t) acts
with powers t i for i ≥ 2 and by half the numbers of all roots for which hO(t)
acts with a power of t , the same will be true when we conjugate the variables in
(2.4) by h(t). We can choose the Weyl element so that the following happens. First
notice that h(t) acts on u1 with powers of t i with i ≥ 2. This means that u1 is inte-
grated over all upper unipotent matrices in GL2r+1. Moreover, if u1 = (uij ) then
h(t) acts on ui,i+1 with power of t2. Thus, we may choose w so that ψU1(u1) =
ψ(
ui,i+1). Let Õ = (d2 · · · ds). We have hÕ(t) = diag(td2−1, . . . , t−(d2−1))

and hence u2 is integrated over the subgroup of V1(Õ) corresponding to Õ and
ψU2(u2) = ψV2(Õ)(u2). From the action of h(t) we also deduce that �2, q2 ∈
M0
(2r+1)×(2r+1) where M0

(2r+1)×(2r+1) = {� ∈ M ′
(2r+1)×(2r+1) : �ij = 0 if i ≥ j}.

Indeed h(t) acts on matrices inM0
(2r+1)×(2r+1) with powers of t i with i ≥ 2. Next,

we consider the variables �1 and q1. Let h1(t) = diag(t2r , t2r−2, . . . , t−2r ). For
eij ∈ M(2r+1)×(d2+···+ds) we let p be the integer defined by h1(t)eij hÕ(t)−1 =
tpeij . Set M1

(2r+1)×(d2+···+ds) = {� = (�ij ) ∈ M(2r+1)×(d2+···+ds) : �ij = 0 if

p ≤ 0}. In these notations the above matrix �1 ∈ M1
(2r1+1)×(d2+···+ds). Similarly, if

eij ∈ M(d2+···+ds)×(2r+1) let p be the integer defined by hÕ(t)eij h1(t)
−1 = tpeij .

SetM2
(d2+···ds)×(2r+1) = {� = (�ij ) ∈ M(d2+···+ds)×(2r+1) : �ij = 0 ifp ≤ 1}. With

the notations the above matrix q1 ∈ M1
(d2+···+ds)×(2r+1). Let us mention that the

difference between these two groups (i.e. the fact thatp ≤ 0 in the first andp ≤ 1 in
the second) is due to fact that we integrate only “half” of the roots inV1(O)/V2(O),
that is overY and not overX. We choose the Weyl elementw to conjugateY to upper
unipotent matrices. In integral (2.4) all variables are integrated in their groups with
points inF\A. We will show, using Fourier expansions, that (2.3) is an inner integra-
tion of (2.4) and hence it is nonzero for some choice of data. The lemma will follow
using Lemma 2.2. For all 1 ≤ j ≤ i ≤ r let z(�′ij ) = �′ij (eij + e2r−j+2,2r−i+2).
Thus z(�′ij ) is a matrix in M ′

(2r+1)×(2r+1) (embedded in the “l2” corner). We let
�′2 = ⊕z(�′ij ) where the sum runs over 1 ≤ j ≤ i ≤ r . We expand (2.4) along �′2
where �′ij are in F\A. We obtain

∑

βij

∫

ϕ









u1 �1 �
′
2 + �2

0 u2 �∗1
0 0 u∗

1









I 0 0
q1 I 0
q2 q

∗
1 I







ψU1(u1)ψU2(u2)ψ(
βij �
′
ij )d(. . . ) .

Here βi,j ∈ F for all 1 ≤ j ≤ i ≤ r . Next, for 1 ≤ j ≤ i ≤ r , define the matrix
z(q ′

ij ) = q ′
ij (ej,i+1 + e2r−i+1,2r−j+2). Denote q ′

2 = ⊕z(βi,j ) where the sum is

over 1 ≤ j ≤ i ≤ r . Thus q ′
2 ∈ M0

(2r+1)×(2r+1). The matrix





I

I

q ′
2 I



 is a rational

matrix and hence ϕ is left invariant by this matrix. Conjugating this matrix from
left to right in the above integral, changing variables and collapsing summation
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with integration we obtain

∫

ϕ









u1 �1 �2
0 u2 �

∗
1

0 0 u∗
1









I 0 0
q1 I 0
q2 q

∗
1 I







ψU1(u1)ψU2(u2)d(. . . )

Here �2 is in M ′′
(2r+1)×(2r+1) = {� ∈ M ′

(2r+1)×(2r+1) : �ij = 0 if r + 1 ≤ i and

j ≤ r + 1} with points in F\A. Also q2 ∈ M0
(2r+1)×(2r+1) where some variables

are integrated over F\A and some over A. Since it will not matter to us we shall
not be more explicit. Next we proceed as above with the matrix �1. More precise-
ly, suppose that for �1 = (�ij ) we have �i,j = 0 where i ≤ r . This means that
h1(t)eij hÕ(t)−1 = t−peij with p ≥ 0. If we expand the above integral along
�̃1 = �ij eij where �ij ∈ F\A we obtain

∑

βij

ϕ









u1 �̃1 + �1 �2
0 u2 ∗
0 0 ∗









I 0 0
q1 I 0
q2 q

∗
1 I







ψU1(u1)ψU2(u2)ψ(βij �ij )d(. . . )

where βij ∈ F . From the condition on (i, j) and p we obtain that hÕ(t)ej,i+1

h1(t)
−1 = tp+2eij . This means that q̃1 = εej,i+1 is a matrix inM2

(d2+···+ds)×(2r+1)
where ε is any variable. Setting ε = βi,j , conjugating this matrix from left to right
and repeating this process for all i, j with i ≤ r we obtain

∫

ϕ









u1 �1 �2
0 u2 ∗
0 0 ∗









I 0 0
q1 I 0
q2 q

∗
1 I







ψU1(u1)ψU2(u2)d(. . . ).

where now �1 is integrated over all first r rows of M(2r+1)×(d2+···+ds) with points
in F\A. Combining the relevant integrations of u1 �1 and �2 we obtain the integral
over Ur(F )\Ur(A) as inner integration. The lemma now follows from Lemma 2.2.

��
Lemma 2.5. Let n2 > n1 and suppose that the representation π has a nonzero
Fourier coefficient with respect to the unipotent class ((2n1)12(k−n1)) ◦ ((2n2)

12(k−n1−n2)). ( The notation ◦ was defined at the end of section one). Then there
exists a unipotent class (d1d2 . . . ds) with di ≥ di+1 which supports π and where
d1 > 2n1.

Proof. Let

h(t) = diag(t2n1−1, . . . , t, t2n2−1, . . . , t, 1, . . . , 1, t−1, . . . , t−(2n1−1))

where we have 2(k − n1 − n2) ones. We start with integral (1.2) corresponding to
(see the end of section one) ((2n1)12(k−n1)) ◦ ((2n2)12(k−n1−n2)). Let w1 be the
minimal Weyl element of Sp2k which conjugates h(t) to the torus

h1(t)

= diag(t2n1−1, . . . , t3, t2n2−1, . . . , t3, t, t, 1, . . . , 1, t−1, t−1, . . . , t−(2n1−1)) .
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Applying w1 to integral (1.2) we obtain

∫

ϕ









u � q

v �∗
u∗



w1



ψ1(z(u, v, �))d(. . . ) (2.5)

where the variables are integrated over points in F\A of the following groups. First
q ∈ M ′

(n1+n2−2)×(n1+n2−2). The variable u is integrated over all upper unipotent
matrices in GLn1+n2−2. The variable v is integrated over the unipotent group cor-
responding to the partition O1 = (2212(k−n1−n2)) of the group Sp2(k−n1−n2+2).
Finally, � is integrated over {� ∈ M(n1+n2−2)×2(k−n1−n2+2) : �i,1 = 0 for i ≥ n1}.
The character ψ1 is defined as follows. On u = (uij ) we let ψ1(u) = ψ(u1,2 +
· · · + un1−3,n1−1 + un1,n1+1 + · · · + un1+n2−3,n1+n2−2). On v the character ψ1(v)

agrees with ψV2(O1) for the unipotent class O1. Finally, for � = (�ij ) we have
ψ1(�) = ψ(�n1−1,1 + �n1+n2−2,2).

In (2.5) we expand along F\A over the missing variables of � i.e. over �i,1 with
i ≥ n1. Using the n1 − 1 row in u as was done in Lemma 2.3, the nonvanishing of
(2.5) implies the nonvanishing of

∫

ϕ









u � q

0 v �∗
0 0 u∗







ψ1(z(u, v, �))d(. . . ) (2.6)

where now u is integrated over all upper unipotent matrices of GLn1+n2−2 such
un1−1,j = 0 for j ≥ n1. Also � is integrated over all M(n1+n2−2)×2(k−n1−n2+2).
The character ψ1 is not changed. Next let w2 be the minimal Weyl element which
conjugates h1(t) to

h2(t) = diag(t2n1−1, . . . , t5, t2n2−1, . . . , t3, t3, t, t, 1, . . . , 1, . . . )

Applying this Weyl element to (2.6) we deduce that the integral

∫

ϕ









u � q

0 v �∗
0 0 u∗







ψ2(z(u, �, v))d(. . . )

is nonzero for some choice of data. Here u is integrated over all upper unipotent
matrices in GLn1+n2−4 and v is integrated over the unipotent group corresponding
to the partition O2 = (4212(k−n1−n2)) of the group Sp2(k−n1−n2+4). The variable
� is integrated over {� ∈ M(n1+n2−4)×2(k−n1−n2+4) : �i,1 = 0 for i ≥ n1 − 1}.
The character ψ2 is defined as follows. On u = (uij ), ψ2(u) = ψ(u1,2 + · · · +
un1−3,n1−2+un1−1,n1 +· · ·+un1+n2−5,n1+n2−4) and v is the characterψ2(v)which
agrees with ψV2(O2). On � = (�ij ) we have ψ2(�) = ψ(�n1−2,1 + �n1+n2−4,2). All
variables are integrated over F\A. Continuing this process n1 − 1 times we obtain
the nonvanishing of the integral

∫

ϕ









u � q

0 v �∗
0 0 u∗







ψn1−1(z(u, �, v))d(. . . ) (2.7)
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where u is integrated over the upper unipotent subgroup of GLn2−n1 and v is
integrated over the unipotent group corresponding to the partition On1−1 = ((2n1)

2

12(k−n1−n2)). The variable � is integrated over {� ∈ M(n2−n1)×2(k+n1−n2) : �i,1 = 0
for all i}. The character ψn1−1 is defined on u = (uij ) as ψn1−1(u) = ψ(u1,2 +
· · · + un2−n1−1,n2−n1) and on v, ψn1−1 is defined as ψV2(On1−1). On � = (�ij ) we
have ψn1−1(�) = ψ(�n2−n1,2). Next we expand (2.7) along the variables �i,1 for
1 ≤ i ≤ n2 − n1. However, because of the u integration we need to do it one
variable at the time starting from i = 1. Thus the nonvanishing of (2.7) implies
that at least one of the integrals

∫

ϕ









u �m q

0 v �∗m
0 0 u∗







ψn1−1(z(u, �m, v))ψ(αm�m,1)d(. . . ) (2.8)

is nonzero where 1 ≤ m ≤ n2 − n1. Here �m = (�i,j ) such that �i,1 = 0 if i > m

and if i 	= n2−n1 thenαm ∈ F ∗. Ifm = n2−n1 thenα ∈ F .ψn1−1 is defined on �m
by restricting it to the variable � as defined in integral (2.7). Let us first treat the case
whenm = n2 −n1. For some αm (2.8) will represent integral (1.2) for the partition
((2n2)(2n1)12(k−n1−n2)). However, depending also on the characterψn1−1 restrict-

ed to v, this integral might be different. To explain this write v as v =




v1 p1 q1
0 I p∗

1
0 0 v∗

1





where v1 =










I2 x1
I2 x2
. . .

I2 xn1−1
I2










is a matrix of size 2n1×2n1 and xi ∈ M2×2. The

matrix p1 = (pij ) ∈ M2n1×2(k−n1−n2) such that pij = 0 if i = 2n1 − 1, 2n1 and
j ≤ k−n1 −n2. Also, I is the identity matrix of size 2(k−n1 −n2). The character
ψV2(On1−1) restricted to v1 is given by ψ(tr(x1 +· · ·+xn1−1)) and when restricted
to q1 we haveψV2(On1−1)(q1) = ψ(ε1q1(2n1 −1, 2)+ ε2q1(2n1, 1)). Here q1(i, j)

is the (i, j)− th entry of the matrix q1. If ε1ε2 = −β2 for some β ∈ F ∗ and αm is
chosen suitably then there is a rational matrix which when conjugating (2.8) by it
we obtain

∫

ϕ









u � q

0 v �∗
0 0 u∗







 ψ̃n1−1(z(u, �, v))d(. . . ) (2.9)

where now � ∈ M(n2−n1)×2(k−n1−n2) and ψ̃n1−1 is defined on � = (�ij ) asψn1−1(�)

= ψ(�n2−n1,1) and ψ̃n1−1 restricted to q1 = (qij ) (as defined in the above matrix for
v) is given by ψ̃n1−1(q) = ψ(q2n1−1,1). In this case one can find a Weyl element to
conjugate (2.9) and that after a suitable Fourier expansion (similar to the one done
in lemma 2.3) we shall obtain

∫

Un2 (F )\Un2 (A)

ϕ(u)ψUn2
(u)du as inner integration.

Applying Lemma 2.2 our result follows.
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If in (2.8) m < n2 − n1 we consider the rational matrix I2k + αme
′
m+1,n2−n1+1

in Sp2k . Conjugating by this matrix and changing variables we obtain the integral

∫

ϕ









u �m q

0 v �∗m
0 0 u∗







ψm(z(u, �m, v)d(. . . )

where all groups are as in (2.8) and ψm is defined as follows. On v we integrate as
before, on u = (uij ) we have ψm(u) = ψ(u1,1 + · · · + um−1,m + um+1,m + · · · +
un2−n1−1,n2−n1) and on �m = (�ij ) we have ψm(�m) = ψ(αm�m,1 + �n2−n1,2).
Thus we get exactly an integral of the type (2.6). Continuing by induction we will
either get that (2(n2 − i)2(n1 + i)12(k−n1−n2)) supports π for suitable values of i,
or we will get as inner integration on integral over U2i with the character ψ2i for
some i > n1. In either case our result follows. ��
Lemma 2.6. Let O = ((2n)d2 · · · ds) where 2n ≥ di , for all i and d2 + · · · + ds +
2n = 2k. Then for compatible characters, the unipotent class O supports π if and
only if ((2n)12k−(d2+···+ds)) ◦ (d2 · · · ds) supports π .

Proof. The idea is similar to the proof of Lemma 2.4. Let

hO(t) = diag(t2n−1, . . . , td2−1, . . . , t−(d2−1), . . . , t−(2n−1)).

Since the number 2n appears in O at least once then in hO(t)we have the following
powers t2n−1, t2n−3, . . . , t at least once. Let w be the Weyl element of minimal
length which conjugates hO(t) to the torus

h(t) = diag(t2n−1, t2n−3, . . . , t, . . . , td2−1, . . . , t−(d2−1), t−1, . . . , t−(2n−1)).

Consider integral (1.2) corresponding to the unipotent class O. Conjugating the
integral by w we obtain the integral

∫

ϕ









u � x

0 v �∗
0 0 u∗









I

q I

0 q∗ I







ψ1(z(u, v, x))d(. . . ) (2.10)

Here u is integrated over the upper unipotent matrices in GLn, v is integrated as in
integral (1.2) corresponding to the partition Õ = (d2 . . . ds) inside the group Sp2k1
where k1 = d2 +· · ·+ds and x is integrated overM ′

n×n. Finally � is integrated over
M1
n×2k1

as defined in the proof of lemma 2.4 and q is integrated overM2
2k1×n as also

defined in the proof of that Lemma.All variables are integrated overF\A. The char-
acterψ1 is defined as follows. For u = (uij )we letψ1(u) = ψ(u1,2+· · ·+un−1,n).
For x = (xij ) we let ψ1(x) = ψ(εxn,1) for some ε ∈ F ∗ and for v we let ψ1 be
the character ψV2(Õ) as defined by (1.2) for Õ. Using similar Fourier expansion as
in Lemma 2.4, (2.10) equals

∫

ϕ









u � x

0 v �∗
0 0 u∗









I

q I

0 q∗ I







ψ1(z(u, v, x))d(. . . ) (2.11)
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where now � ∈ Mn×2k such that �n,j = 0 for 1 ≤ j ≤ k1 and the integration over
q is over points in A. Using the ideas as in Lemma 1 in [G-R-S2] p. 895 we can
“get rid” of the adelic integration and show that (2.11) is nonzero for some choice
of data if and only if

∫

ϕ









u � x

0 v �∗
0 0 u∗







ψ1(z(u, v, x))d(. . . )

is nonzero for some choice of data. But this last integral is exactly ((2n)12(k−k1)) ◦
(d2 . . . ds) where the ψ which is used to define ((2n)12(k−k1)) is compatible with
ψV2(O). ��

We now prove our main result,

Theorem 2.7. Let π be a cusp form on G = Sp2k(A) or on its double cover. Then
there exists a unipotent class O in OG(π) such that O = ((2n1)(2n2) . . . (2nr))
and ni ≥ ni+1.

Proof. It is easy to see that every automorphic representation has a nonzero Fourier
coefficient corresponding to the unipotent class (212(k−1)). Since we may assume
that π is not generic then there exists a unipotent class ((2n1)12(k−n1)) which sup-
ports π such that n1 < k and that π vanishes on any unipotent class of the form
((2m)12(k−m)) with m > n1. Every nonzero Fourier coefficient corresponding to
the unipotent class above gives, using (1.3), an automorphic representation which
by Lemma 2.3 using the maximality of n1, is a cuspidal representation on the
group Sp2(k−n1)

(A) or on its double cover. The point is that to the unipotent class
((2n1)12(k−n1)) there may correspond many nonzero Fourier coefficients depending
on the additive character. Let n2 be the number such that at least one of these auto-
morphic cuspidal representations is supported by ((2n2)12(k−n1−n2)) and such that
all the automorphic cuspidal representations above vanish on ((2m)12(k−n1−m)) if
m > n2. In other words n2 is defined so that ((2n1)12(k−n1)) ◦ ((2n2)12(k−n1−n2))

supports π and ifm > n2 then ((2n1)12(k−n1)) ◦ ((2m)12(k−n1−m)) vanishes on π .
We claim that n1 ≥ n2. Indeed, if n2 > n1, then by Lemma 2.5 there is a unipotent
class (d1 . . . ds) which supports π such that d1 > 2n1. If d1 = 2� + 1 is odd,
then by Lemma 2.4 there is a number m such that 2m > 2� + 1 and such that
((2m)12(k−m)) supports π . But this contradicts the maximality of n1. If d1 = 2m
with m > n1, then applying Lemma 2.6 we deduce that ((2m)12(k−m)) supports π
and once again we derive a contradiction to the maximality of n1. Thus n1 ≥ n2.
Continuing this process we obtain a set of numbers n1 ≥ n2 · · · ≥ nr such that the
unipotent class

((2n1)1
2(k−n1)) ◦ ((2n2)1

2(k−n1−n2)) ◦ · · · ◦ (2nr)
supports π and it is maximal at every stage. (Since, by Lemma 2.3, we get a cusp
form at every stage we must eventually obtain a generic cusp form.) The maximality
at every stage means that if m > ni then π vanishes on the unipotent class

((2n1)1
2(k−n1)) ◦ · · · ◦ ((2ni−1)1

2(k−(n1+···+ni−1))) ◦ ((2m)12(k−(n1+···ni−1+m))) .
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Using Lemma 2.6 inductively we deduce that O = ((2n1)(2n2) · · · (2nr)) supports
π . To show that O is in OG(π), let Õ = (d1 . . . ds) be a unipotent class which
supports π and that Õ ≥ O. We will show that Õ = O. Suppose that d1 > 2n1. If
d1 = 2� + 1 then Õ = ((2� + 1)2d3 . . . ds). Using Lemma 2.4 there is a number
m such that 2m > 2� + 1 such that ((2m)12(k−n)) supports π . Since m > n1 this
contradicts the maximality of n1. If d1 = 2m with m > n1 then using Lemma 2.6
we derive a contradiction once again. Thus d1 = 2n1. Using Lemma 2.6 we deduce
that ((2n1)12(k−n1)) ◦ (d2 . . . ds) supports π . Arguing by induction we obtain that
s = r and di = 2ni for all i. Thus Õ = O. ��
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