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Abstract. We construct infinitely many two-dimensional Finsler metrics on S
2 and D

2

with non-zero constant flag curvature. They are all not locally projectively flat.

1. Introduction

In Finsler geometry, the flag curvature is an analogue of sectional curvature in
Riemannian geometry. A natural problem is to study and characterize Finsler
metrics of constant flag curvature. There are only three local Riemannian met-
rics of constant sectional curvature, up to a scaling. However there are lots of non-
Riemannian Finsler metrics of constant flag curvature, due to the non-Riemannian
features of general Finsler metrics. The first set of non-Riemannian Finsler metrics
of constant flag curvature are the Hilbert-Klein metric and the Funk metric on a
strongly convex domain. The Funk metric is positively complete and non-revers-
ible with K = −1/4 and the Hilbert-Klein metric is complete and reversible with
K = −1. Both metrics are locally projectively flat [Ok][Sh1]. P. Funk first com-
pletely determined the local structure of two-dimensional projectively flat Finsler
metrics with constant flag curvature [Fk1][Fk2]. R. Bryant has shown that up to
diffeomorphism, there is exactly a 2-parameter family of locally projectively flat
Finsler metrics on S

2 with K = 1 and the only reversible one is the standard
Riemannian metric [Br1][Br2]. He has also extended his construction to higher
dimensional spheres S

n [Br3]. Recently, the author has completely determined the
local structure of projectively flat analytic Finsler metrics of constant flag curvature
in higher dimensions [Sh3]. Our method is different from Funk’s.

The next problem is to classify non-projectively flat Finsler metrics of constant
flag curvature. This problem turns out to be very difficult. The very first step might
be to construct as many examples as possible. In 2000, D. Bao and the author first
constructed a family of non-projectively flat Finsler metrics on S

3 with K = 1 using
the Lie group structure of S

3 [BaSh]. Our examples are in the form F = α + β,

where α(y) =
√
aij (x)yiyj is a Riemannian metric and β(y) = bi(x)y

i is a
1-form. Finsler metrics in this form are called Randers metrics [Ra]. Recently, the
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author has constructed an incomplete non-projectively flat Randers metric with
K = 0 in each dimension [Sh2].

The main technique in [Sh2] is described as follows. Given a Finsler metric �

and a vector field v on a manifold M , define a function F : TM → [0,∞) by

�
( y
F(y)

− εvp
)

= 1, y ∈ TpM. (1)

where ε is a constant with �(−εvp) < 1 at any point p ∈ M . It is easy to see that
F is a Finsler metric when ε is small. An important relationship between � and F

is that their (Busemann-Hausdorff) volume forms are equal, dV� = dVF [Sh2].
When � is a Riemannian metric, then F = α + β is a Randers metric.

The Finsler metricF defined in (1) can also be constructed in the following way.
Let �∗ : T ∗M → [0,∞) denote the Finsler metric dual to � and v∗ : T ∗M → R
denote the 1-form dual to v. They are defined by

�∗(ξ) := sup
y∈TpM

ξ(y)
�(y)

, v∗(ξ) = ξ(v), ξ ∈ T ∗
pM.

Let

F ∗ := �∗ + εv∗.

Since �∗ is a co-Finsler metric, the function F ∗ : T ∗M → [0,∞) is a co-Fins-
ler metric when ε is small. In this case when F ∗ is a co-Finsler metric, we let
F : TM → [0,∞) denote the Finsler metric dual to F ∗, i.e.,

F(y) := sup
ξ∈T ∗

pM

ξ(y)
F ∗(ξ)

, y ∈ TpM. (2)

It is easy to verify that the Finsler metric F defined in (1) is just the one defined in
(1). In this sense, the formula (1) is dual to the formula (1).

The formula (1) is used by A.B. Katok [Ka] to construct many interesting Ran-
ders metrics on S

n with special properties of closed geodesics. See [Zi] for further
discussion. However, the curvature properties are not discussed in their papers.

By choosing an appropriate Finsler metric � and an appropriate vector field v,
one obtains a Finsler metricF with the same curvature properties as�. For example,
if � has constant flag curvature and constant S-curvature, then for an appropriate
vector field v, the Finsler metric F defined in (1) or (1) has the same curvature
properties. This fact was discovered by the author accidently using Maple in [Sh2]
when he was studying the shortest time problem.

In this paper, using (1) we are going to construct a family of Randers metrics
on S

2 with K = 1 and a family of Randers metrics on a disk D
2(ρ) with K = −1

or K = −1/4. They are all not locally projectively flat. These examples show that
the classification problem of non-projectively flat Finsler metrics of constant flag
curvature is very difficult.
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Now let us describe our examples. Let �(y) = √
h(y, y) denote the standard

Riemannian metric on the unit sphere S
2 and v denote the vector field on S

2 defined
by

vp =
(

− y, x, 0
)

at p =
(
x, y, z

)
∈ S

2, (3)

Define F : T S
2 → [0,∞) by (1). Then F = α + β is a Randers metric, where

α = α(y) and β = β(y) are given by

α :=

√
ε2h(v, y)2 + h(y, y)

(
1 − ε2h(v, v)

)
1 − ε2h(v, v)

, β := − εh(v, y)
1 − ε2h(v, v)

. (4)

F is defined on the whole sphere for |ε| < 1 and it is defined only on the open disks
around the north pole and south pole with radius ρ = sin−1(1/|ε|) for |ε| ≥ 1.
Note that when ε = 0, F = � is the standard Riemannian metric on S

2.

Theorem 1.1. Let F = α + β be any Finsler metric on S
2 given in (4). It has the

following properties

(a) K = 1;
(b) S = 0;
(c) F is not locally projectively flat unless ε = 0;
(d) the Gauss curvature K̄ of α is not a constant unless ε = 0,±1. When ε = 0,

K̄ = 1; When ε = ±1, K̄ = −4.

According toYasuda-Shimada [YaSh], if a Randers metric F = α+β is of pos-
itive constant flag curvature, then β must be a Killing form of constant length with
respect to α. However, β in (4) is not a Killing form when ε = 0. This shows that
the Yasuda-Shimada theorem in the positive constant flag curvature case is wrong.

Similarly, let �(y) = √
h(y, y) denote the standard Klein metric on the unit

disk D
2 and v denote the vector field on D

2 defined by

vp = (−y, x) at p = (x, y) ∈ D
2. (5)

Define F : TD
2 → [0,∞) by (1). Then F = α + β is a Randers metric, where

α = α(y) and β = β(y) are given by

α :=

√
ε2h(v, y)2 + h(y, y)

(
1 − ε2h(v, v)

)
1 − ε2h(v, v)

, β := − εh(v, y)
1 − ε2h(v, v)

. (6)

F is a Finsler metric defined on the disk D
2(ρ) with radius ρ = 1/

√
1 + ε2. Note

that when ε = 0, F is the Klein metric on the unit disk.

Theorem 1.2. Let F = α + β be the Finsler metric on the disk D
2(ρ) given in (6).

It has the following properties

(a) K = −1;
(b) S = 0;
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(c) F is not locally projectively if ε = 0;
(d) the Gauss curvature K̄ of α is not constant unless ε = 0. When ε = 0, K̄ = −1.

According toYasuda-Shimada [YaSh] if a Randers metric F = α+β is of neg-
ative constant flag curvature, then the Riemannian metric α is of negative constant
flag curvature. However, the Randers metric defined in (6) do not have this property
when ε = 0. This shows that the Yasuda-Shimada theorem in the negative constant
flag curvature case is wrong.

Besides the Klein metric, the hyperbolic metric can be expressed in many other
forms, such as the Poincare metric and the one arising from the proof of Theorem
1.1. We can use them to construct many non-projectively flat Finsler metrics with
negative constant flag curvature. See Remark 4.1 below.

Finally, let �(y) = √
h(y, y)+h(u, y) denote the Funk metric on the unit disk

D
2, whereh is the Klein metric on D

2 and u = (1−x2−y2)(x ∂
∂x

+y ∂
∂y
) ∈ T(x,y)D

2

is a vector field. �(y), y ∈ TpD
2, is defined by

y
�(y)

+ p ∈ ∂D
2. (7)

Let v denote the vector field on D
2 defined by (5). Define F : TD

2 → [0,∞) by
(1), i.e., √

h
( y
F(y)

− εv,
y

F(y)
− εv

)
+ h

(
u,

y
F(y)

− εv
)

= 1. (8)

Then F = α + β is a Randers metric on D
2(ρ) where ρ = 1/

√
1 + ε2.

Theorem 1.3. Let F = α + β be the Randers metric on D
2(ρ) defined in (8). It

has the following properties:

(a) K = −1/4;
(b) S = 3

2F ;
(c) F is not locally projectively flat unless ε = 0;
(d) the Gauss curvature K̄ of α is not a constant unless ε = 0. When ε = 0,

K̄ = −1.

Again Theorem 1.3 is inconsistent with Yasuda-Shimada’s result in dimension
two, since α does not have constant sectional curvature when ε = 0.

In a recent paper by Bao-Robles [BaRo], they characterize Randers metrics
with constant flag curvature by three equations, giving a correct version of the the-
orem in [YaSh]. Bao-Robles show that the Yasuda-Shimada theorem is still true for
Randers metrics under an additional condition. Moreover, they use the technique
in [Sh2] to construct two-dimensional Randers metrics with the Gauss curvature
K = K(x) independent of the directions, a three-dimensional Randers metric on
S3 with K = 1 and a three-dimensional Randers metric on B3 with K = −1. We
should point out that their example on S3 is not equivalent to that in [BaSh]. With
the examples in [BaSh][BaRo][Sh2], now we have non-projectively flat Randers
metrics with constant flag curvature of any sign in higher dimensions. Recently, the
author learns that Matsumoto-Shimada have written a joint paper [MaSh], giving
a correct version of the result in [YaSh].
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2. Preliminaries

Let F be a Finsler metric on a manifold M . In a standard local coordinate system
(xi, yi) in TM , F = F(x, y) is a function of (xi, yi). Let

gij = 1

2
[F 2]yiyj

and (gij ) := (gij )
−1. The geodesics of F are characterized locally by

d2xi

dt2 + 2Gi
(
x,

dx

dt

)
= 0,

where

Gi = 1

4
gik

{
2
∂gpk

∂xq
− ∂gpq

∂xk

}
ypyq.

The coefficients of the Riemann curvature Ry = Ri
kdx

k ⊗ ∂
∂xi

are given by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj ∂yk
+ 2Gj ∂Gi

∂yj ∂yk
− ∂Gi

∂yj

∂Gj

∂yk
. (9)

F is said to be of constant flag curvature K = λ, if

Ri
k = λ

{
F 2δik − FFyky

i
}
.

When F =
√
aij (x)yiyj is a Riemannian metric, Ri

k = R i
j kl(x)y

j yl , where

R i
j kl(x) denote the coefficients of the usual Riemannian curvature tensor. Thus the

quantity Ry in Finsler geometry is still called the Riemann curvature.
There are many interesting non-Riemannian quantities in Finsler geometry. In

this paper, we will only discuss the S-curvature [Sh1]. Express the (Busemann-
Hausdorff) volume form of F by

dVF = σ(x)dx1 · · · dxn.

The S-curvature is defined by

S(y) := ∂Gi

∂yi
(x, y) − yi

σ (x)

∂σ

∂xi
(x). (10)

See [Sh1] for a related discussion on the S-curvature.
Randers metrics are among the simplest non-Riemannian Finsler metrics, so

that many well-known geometric quantities are computable.
Let F = α + β be a Randers metric on a manifold M , where

α(y) =
√
aij (x)yiyj , β(y) = bi(x)y

i

with ‖β‖x := supy∈TxM β(y)/α(y) < 1. Define bi|j by

bi|j θj := dbi − bj θ
j
i ,
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where θi := dxi and θ
j
i := (̃

j
ikdx

k denote the Levi-Civita connection forms of α.
Let

rij := 1

2

(
bi|j + bj |i

)
, sij := 1

2

(
bi|j − bj |i

)
,

sij := aihshj , sj := bis
i
j , eij := rij + bisj + bj si .

Then Gi are given by

Gi = Ḡi + e00

2F
yi − s0y

i + αsi0, (11)

where e00 := eij y
iyj , s0 := siy

i , si0 := sij y
j and Ḡi denote the geodesic coeffi-

cients of α. See [AIM].
According to Lemma 3.1 in [ChSh],

S = c(n + 1)F ⇐⇒ e00 = 2c(α2 − β2). (12)

where c = c(x) is a scalar function. See also Proposition 5.1 in [Sh2] in the case
when c = 0.

Assume that S = c(n + 1)F for some constant c. Then

Gi = Ḡi + c(α − β)yi − s0y
i + αsi0. (13)

By a direct computation, one obtains a formula for the Riemann curvature is given
by

Ri
k = R̄i

k + 3c2
(
α2δik − yiyk

)
− c2β

(
βδik − bky

i
)

+
(
s0|0δik − s0|kyi

)
+ s0

(
s0δ

i
k − sky

i
)

+
(
sk|0 − s0|k

)
yi

−
(
α2sij s

j
k − yks

i
j s

j
0

)
+ 6csk0y

i + 3sk0s
i
0

−
{
(c2β + 2cs0 + sj s

j
0)

(
α2δik − yky

i
)

+ c2α2
(
βδik − bky

i
)

+2cα2
(
s0δ

i
k − sky

i
)

−
(
α2si0|k − yks

i
0|0

)
+α2

(
sj s

j
0δ

i
k − sj s

j
ky

i
)

+ α2
(
sik|0 − si0|k

)}
α−1. (14)

Taking the trace of Ri
k , we obtain a formula for the Ricci curvature Ric of

F which is expressed in terms of the Ricci curvature Ric of α and the covariant
derivatives of β with respect to α.

Ric = Ric + (n − 1)
{
c2(α2 + β2) + 2c2(α2 − β2) + s0|0 + s0s0

}
+2sk0s

k
0 − α2skj s

j
k

+
{

2sk0|k − (n − 1)
(

4cs0 + 2sj s
j
0 + 2c2β

)}
α. (15)



Two-dimensional Finsler Metrics with constant flag curvature 355

3. Proof of Theorem 1.1

The Finsler metric in Theorem 1.1 is constructed by solving the equation (1), i.e.,

�
( y
F(y)

− εv
)

=
√
h
( y
F(y)

− εv,
y

F(y)
− εv

)
= 1. (16)

v = (−y, x, 0)

p = (x, y, 0)

Let ψ : R2 → S
2+ by

ψ(x, y) :=
( x√

1 + x2 + y2
,

y√
1 + x2 + y2

,
1√

1 + x2 + y2

)
.

With this map, the standard Riemannian metric � on S
2 can be expressed on R2 by

�(y) =
√
(u2 + v2) + (xv − yu)2

1 + x2 + y2 ,

where y = u ∂
∂x

+ v ∂
∂y

∈ T(x,y)R2. The Finsler metric defined by (16) is a Randers
metric F = α + β, where α = α(y) and β = β(y) are given by

α : =

√(
1 + (1 − ε2)(x2 + y2)

)
(u2 + v2) +

(
1 + ε2 + x2 + y2

)
(xv − yu)2

(
1 + (1 − ε2)(x2 + y2)

)√
1 + x2 + y2

β : = − ε(xv − yu)

1 + (1 − ε2)(x2 + y2)
.
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Note that when |ε| > 1, F is defined only on the open disk D
2(r) of radius

r = 1/
√
ε2 − 1. The corresponding domain on S

2 is a metric disk B(ρ) around the
north pole with radius ρ = sin−1(1/|ε|).

To compute the curvatures of F , we express it in a polar coordinate system,
x = r cos(θ), y = r sin(θ). For y = µ ∂

∂r
+ ν ∂

∂θ
, α = α(y) and β = β(y) are

given by

α =

√(
1 + (1 − ε2)r2

)
µ2 + r2

(
1 + r2

)2
ν2(

1 + (1 − ε2)r2
)√

1 + r2

β = − εr2ν

1 + (1 − ε2)r2

Express α =
√
a11µ2 + a12µν + a21νµ + a22ν2 and β = b1µ + b2ν, where

a11 = 1

(1 + r2)(1 + (1 − ε2)r2)
, a12 = 0 = a21, a22 = r2(1 + r2)

(1 + (1 − ε2)r2)2 ,

b1 = 0, b2 = − εr2

1 + (1 − ε2)r2 .

The geodesic coefficients Ḡ1 and Ḡ2 of α are given by

Ḡ1 =
(

1 + (1 − ε2)(1 + 2r2)
)
r

2(1 + r2)
(

1 + (1 − ε2)r2
) µ2 −

(1 + r2)
(

1 + 2r2 − (1 − ε2)r2
)
r

2
(

1 + (1 − ε2)r2
)2 ν2

Ḡ2 = 1 + 2r2 − (1 − ε2)r2

(1 + r2)
(

1 + (1 − ε2)r2
)
r
µν

We immediately obtain the Gauss curvature K̄ of α,

K̄ = 1 − 5ε2 + (1 − ε4)r2

1 + (1 − ε2)r2 .

Note that for ε = ±1, α has negative constant Gauss curvature,

K̄ = −4.
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Now we are going to find the geodesic coefficients G1 and G2 of F . By (11),
we first compute rij , s

i
j and si , etc. A direct computation yields that

r11 = 0 = r22

r12 = ε3r3

(1 + r2)
(

1 + (1 − ε2)r2
)2 = r21

s11 = 0 = s22

s12 = εr(
1 + (1 − ε2)r2

)2 = −s21

s1
1 = 0 = s2

2

s1
2 = εr(1 + r2)

1 + (1 − ε2)r2

s2
1 = − ε

r(1 + r2)

s1 = ε2r

(1 + r2)
(

1 + (1 − ε2)r2
)

s2 = 0.

We obtain that

eij := rij + bisj + bj si = 0

This is equivalent to that S = 0. By (13) and the above identities, we obtain

G1 = Ḡ1 − ε2r

(1 + r2)
(

1 + (1 − ε2)r2
) µ2 + εr(1 + r2)

1 + (1 − ε2)r2 α ν

G2 = Ḡ2 − ε2r

(1 + r2)(1 + (1 − ε2)r2)
µν − ε

r(1 + r2)
α µ

Plugging them into (9), we obtain

Ri
k = F 2

{
δik − Fyk

F
yi

}
. (17)

We conclude that the Gauss curvature K = 1.
We can also use (15) and the above identities to verify that K = 1. To do so, it

suffices to compute s0|0 and sk0|k . They are given by

s0|0 =
ε2

(
1 − (1 − ε2)r4

)
(

1 + r2
)2(

1 + (1 − ε2)r2
)2 µ

2 +
ε2r2

(
1 + (1 + ε2)r2

)
(

1 + (1 − ε2)r2
)3 ν2

sk0|k = −ε(1 − ε2)r2(1 + r2)ν(
1 + (1 − ε2)r2

)2 .
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Plugging them into (15) gives

Ric = F 2.

We conclude that K = Ric/F 2 = 1.

Remark 3.1. Express the spherical metric in a radial form

�(y) =
√
u2 + sin2(r)v2,

where y = u ∂
∂r

+ v ∂
∂θ

∈ T(r,θ)((0,∞) × S1). Take v = ∂
∂θ

∈ T(r,θ)((0,∞) × S1)

and define F by (1). We obtain

F =

√(
1 − ε2 sin2(r)

)
u2 + sin2(r)v2 − ε sin2(r)v

1 − ε2 sin2(r)
. (18)

F satisfies that K = 1 and S = 0, but it is not locally projectively flat.

4. Proof of Theorem 1.2

The Finsler metric in Theorem 1.2 is also constructed by solving the equation (1),
i.e.,

�
( y
F(y)

− εv
)

=
√
h
( y
F(y)

− εv,
y

F(y)
− εv

)
= 1. (19)

p = (x, y)

v = ·(−y, x)

The Klein metric � on D
2 is given by

�(y) =
√
(u2 + v2) − (xv − yu)2

1 − (x2 + y2)
,
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where y = (u, v) ∈ T(x,y)R2. The Finsler metric defined by (19) is a Randers
metric F = α + β, where α = α(y) and β = β(y) are given by

α : =

√(
1 − (1 + ε2)(x2 + y2)

)
(u2 + v2) −

(
1 − ε2 − (x2 + y2)

)
(xv − yu)2

(
1 − (1 + ε2)(x2 + y2)

)√
1 − x2 − y2

β : = − ε(xv − yu)

1 − (1 + ε2)(x2 + y2)
.

To compute the curvatures of F , we take a polar coordinate system, x =
r cos(θ), y = r sin(θ). For a vector y = µ ∂

∂r
+ ν ∂

∂θ
, α = α(y) and β = β(y)

are given by

α =

√(
1 − (1 + ε2)r2

)
µ2 + r2

(
1 − r2

)2
ν2(

1 − (1 + ε2)r2
)√

1 − r2

β = − εr2ν

1 − (1 + ε2)r2 .

Express α =
√
a11µ2 + a12µν + a21νµ + a22ν2 and β = b1µ + b2ν, where

a11 = 1(
1 − (1 + ε2)r2

)
(1 − r2)

a12 = 0 = a21, a22 = r2(1 − r2)(
1 − (1 + ε2)r2

)2 ,

b1 = 0, b2 = − εr2

1 − (1 + ε2)r2 .

The geodesic coefficients Ḡ1 and Ḡ2 of α are given by

Ḡ1 =
(

1 + (1 + ε2)(1 − 2r2)
)
r

2(1 − r2)
(

1 − (1 + ε2)r2
) µ2 −

(
1 − 2r2 + (1 + ε2)r2

)
(1 − r2)r

2
(

1 − (1 + ε2)r2
)2 ν2

Ḡ2 = 1 − 2r2 + (1 + ε2)r2

(1 − r2)
(

1 − (1 + ε2)r2
)
r
µν

The Gauss curvature K̄ of α is given by

K̄ = −1 − 5ε2 + (1 − ε4)r2

1 − (1 + ε2)r2 . (20)

We see that K̄ is not a constant unless ε = 0.
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Now we are going to find the geodesic coefficients G1 and G2 of F = α + β.
Let rij , sij , sij , sj and eij as above. A direct computation yields that

r11 = 0 = r22

r12 = ε3r3

(1 − r2)
(

1 − (1 + ε2)r2
)2 = r21

s11 = 0 = s22

s12 = εr(
1 − (1 + ε2)r2

)2 = −s21

s1
1 = 0 = s2

2

s1
2 = εr(1 − r2)

1 − (1 + ε2)r2

s2
1 = − ε

(1 − r2)r

s1 = ε2r

(1 − r2)
(

1 − (1 + ε2)r2
)

s2 = 0.

We immediately see that

eij := rij + bisj + bj si = 0.

Thus the S-curvature vanishes, S = 0. By (13) and the above identities, we obtain

G1 = Ḡ1 − ε2r

(1 − r2)(1 − (1 + ε2)r2)
µ2 + εr(1 − r2)

1 − (1 + ε2)r2 αν

G2 = Ḡ2 − ε2r

(1 − r2)(1 − (1 + ε2)r2)
µν − ε

(1 − r2)r
αµ.

Plugging them into (9), we immediately obtain

Ri
k = −

{
F 2δik − FFyky

i
}
. (21)

Thus the Gauss curvature K = −1.
We can also use (15) and the above identities to verify that K = −1. To do so,

it suffices to compute s0|0 and sk0|k . They are given by

s0|0 =
ε2

(
1 − (1 + ε2)r4

)
(

1 − r2
)2(

1 − (1 + ε2)r2
)2 µ2 +

ε2r2
(

1 − (1 − ε2)r2
)

(
1 − (1 + ε2)r2

)3 ν2,

sk0|k = ε(1 + ε2)r2(1 − r2)(
1 − (1 + ε2)r2

)2 ν.
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Plugging them into (15), we obtain

Ric = −F 2.

Again, we conclude that K = Ric/F 2 = −1.

Remark 4.1. Express the Klein metric in the radial form,

�(y) =
√
u2 + sinh2(r)v2,

where y = u ∂
∂r

+ v ∂
∂θ

∈ T(r,θ)((0,∞) × S1). Take v = ∂
∂θ

∈ T(r,θ)(R × S1) and
define F by (1). We obtain

F =

√(
1 − ε2 sinh2(r)

)
u2 + sinh2(r)v2 − ε sinh2(r)v

1 − ε2 sinh2(r)
, (22)

where y = u ∂
∂r

+ v ∂
∂θ

∈ T(r,θ)((0,∞) × S1). F satisfies K = −1 and S = 0, but
it is not locally projectively flat.

The Poincare metric on the disk D
2 is given by

�(y) = 2
√
u2 + v2

1 − x2 − y2 , (23)

where y = u ∂
∂x

+ v ∂
∂y

∈ T(x,y)D
2. The Poincare metric has negative constant

sectional curvature K = −1. Take v = −y ∂
∂x

+ x ∂
∂y

∈ T(x,y)D
2 and define F by

(1). We obtain

F =

√
ε2(xv − yu)2 + (u2 + v2)

(
1
4 (1 − x2 − y2)2 − ε2(x2 + y2)

)
− ε(xv − yu)

1
4 (1 − x2 − y2)2 − ε2(x2 + y2)

.

(24)

F satisfies K = −1 and S = 0, but it is not locally projectively flat.
The Riemannian metric α from Theorem 1.1 is given by

�(y) :=
√

u2 + v2 + (xv − yu)2

1 + x2 + y2 + (xv − yu)2,

where y = u ∂
∂x

+ v ∂
∂y

∈ T(x,y)R2. � has constant sectional curvature K = −4.

Take vp = −y ∂
∂x

+ x ∂
∂y

at p = (x, y) and define F by (1). We obtain a Randers
metric F = α + β, where α = α(y) and β = β(y) are given by
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α : =
√
u2 + v2 + (2 + x2 + y2)(xv − yu)2 − ε2(xu + yv)2(1 + x2 + y2)√

1 + x2 + y2
(

1 − ε2(x2 + y2)(1 + x2 + y2)
)

β : = − ε(1 + x2 + y2)(xv − yu)

1 − ε2(x2 + y2)(1 + x2 + y2)
.

F satisfies K = −4 and S = 0, but it is not locally projectively flat when ε = 0.

5. Proof of Theorem 1.3

Let � denote the Funk metric on D
2. It is given by

�(y) =
√
(u2 + v2) − (xv − yu)2 + xu + yv

1 − x2 − y2 ,

where y = u ∂
∂x

+ v ∂
∂y

∈ T(x,y)D
2. The Finsler metric in Theorem 1.3 is defined

by (8). Solving the equation (8), we obtain

F :=

√
u2 + v2 −

(
ε(xu + yv) + (xv − yu)

)2 + (xu + yv) − ε(xv − yu)

1 − (1 + ε2)(x2 + y2)
.

(25)

where y = u ∂
∂x

+ v ∂
∂y

∈ T(x,y)R2. F = α + β is a Randers metric on the disk

D
2(ρ) with ρ = 1/

√
1 + ε2, where α and β are given by

α =

√
u2 + v2 −

(
ε(xu + yv) + (xv − yu)

)2

1 − (1 + ε2)(x2 + y2)

β = (xu + yv) − ε(xv − yu)

1 − (1 + ε2)(x2 + y2)

To compute the curvatures of F = α +β, we express the Randers metric in a polar
coordinate system x = r cos θ, y = r sin θ . For a vector y = µ ∂

∂r
+ν ∂

∂θ
, α = α(y)

and β = β(y) are given by

α =

√
µ2 + r2ν2 − r2

(
rν + εµ

)2

1 − (1 + ε2)r2

β = rµ − εr2ν

1 − (1 + ε2)r2 .
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Express α =
√
a11µ2 + a12µν + a21νµ + a22ν2 and β = b1µ + b2ν, where

a11 = 1 − ε2r2(
1 − (1 + ε2)r2

)2 ,

a12 = − εr3(
1 − (1 + ε2)r2

)2 = a21,

a22 = r2(1 − r2)(
1 − (1 + ε2)r2

)2 ,

b1 = r

1 − (1 + ε2)r2 , b2 = − εr2

1 − (1 + ε2)r2 .

The geodesic coefficients Ḡ1 and Ḡ2 of α are given by

Ḡ1 =
(
ε2 − 5ε2r2 − ε4r2 + 2 − 2r2

)
r

2
(

1 − (1 + ε2)r2
)2 µ2 +

ε
(

1 − r2 + ε2r2
)
r2

(
1 − (1 + ε2)r2

)2 µν

−
(

1 − r2 + ε2r2
)
(1 − r2)r

2
(

1 − (1 + ε2)r2
)2 ν2

Ḡ2 =
ε
(

− 3 + r2 + 3ε2r2
)

2
(

1 − (1 + ε2)r2
)2 µ2 +

(1 − ε2r2)
(

1 − r2 + ε2r2
)

(
1 − (1 + ε2)r2

)2
r

µν

−
ε
(

1 − r2 + ε2r2
)
r2

2
(

1 − (1 + ε2)r2
)2 ν2

The Gauss curvature K̄ of α is given by

K̄ = −1 − 5ε2 + (1 − ε4)r2

1 − (1 + ε2)r2 . (26)

We see that K̄ is not a constant unless ε = 0.
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Now we are going to find the geodesic coefficients G1 and G2 of F = α + β.
Let rij , sij , sij , sj and eij as above. A direct computation yields that

r11 = 1 − r2 − 3ε2r2(
1 − (1 + ε2)r2

)2

r12 = − ε(1 − ε2)r3(
1 − (1 + ε2)r2

)2 = r21

r22 =
(

1 − r2 + ε2r2
)
r2

(
1 − (1 + ε2)r2

)2

s11 = 0 = s22

s12 = εr(
1 − (1 + ε2)r2

)2 = −s21

s1
1 = − ε2r2

1 − (1 + ε2)r2 = −s2
2

s1
2 = εr(1 − r2)

1 − (1 + ε2)r2

s2
1 = − ε(1 − ε2r2)

(1 − (1 + ε2)r2)r

s1 = ε2r

1 − (1 + ε2)r2

s2 = εr2

1 − (1 + ε2)r2 .

We immediately see that

eij := rij + bisj + bj si = aij − bibj . (27)

By Lemma 3.1 in [ChSh], (27) is equivalent to that

S = 3

2
F.

By (13) and the above identities, we obtain

G1 = Ḡ1 + 1

2
(α − β)µ −

εr
(
εµ + rν

)
1 − (1 + ε2)r2 µ −

εr
(
εrµ − ν + r2ν

)
1 − (1 + ε2)r2 α

G2 = Ḡ2 + 1

2
(α − β)ν −

εr
(
εµ + rν

)
1 − (1 + ε2)r2 ν −

ε
(
µ − ε2r2µ − εr3ν

)
r
(

1 − (1 + ε2)r2
) α
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Plugging them into (9), we immediately obtain

Ri
k = −1

4

{
F 2δik − FFyky

i
}
.

Thus the Gauss curvature K = −1/4.
We can also use (15) to verify that K = −1/4. To do so, it suffices to compute

s0|0 and sk0|k . They are given by

s0|0 = ε2(1 + r2 − ε2r2)(
1 − (1 + ε2)r2

)3 µ2 − 4ε3r3(
1 − (1 + ε2)r2

)3 µν + ε2r2(1 − r2 + ε2r2)(
1 − (1 + ε2)r2

)3 ν2

sk0|k = − ε2(1 + ε2)r3(
1 − (1 + ε2)r2

)2 µ + ε(1 + ε2)r2(1 − r2)(
1 − (1 + ε2)r2

)2 ν.

Plugging c = 1/2 and the above identities into (15) gives

Ric = −1

4
F 2.

We conclude that K = Ric/F 2 = −1/4.

Remark 5.1. Below is a byproduct. Let

α : =

√
u2 + v2 −

(
ε(xu + yv) + (xv − yu)

)2

1 − (1 + ε2)(x2 + y2)

α̃ : =

√(
1 − (1 + ε2)(x2 + y2)

)
(u2 + v2) −

(
1 − ε2 − (x2 + y2)

)
(xv − yu)2

(
1 − (1 + ε2)(x2 + y2)

)√
1 − x2 − y2

.

α and α̃ are two Riemannian metrics on D
2(ρ) with radius ρ = 1/

√
1 + ε2. Ac-

cording to (20) and (26), The Gauss curvatures of α and α̃ are equal and given
by

K̄ = −1 − 5ε2 + (1 − ε4)(x2 + y2)

1 − (1 + ε2)(x2 + y2)
.
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