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Abstract. We obtain an intrinsic Blow-up Theorem for regular hypersurfaces on graded
nilpotent groups. This procedure allows us to represent explicitly the Riemannian surface
measure in terms of the spherical Hausdorff measure with respect to an intrinsic distance
of the group, namely homogeneous distance. We apply this result to get a version of the
Riemannian coarea forumula on sub-Riemannian groups, that can be expressed in terms of
arbitrary homogeneous distances. We introduce the natural class of horizontal isometries
in sub-Riemannian groups, giving examples of rotational invariant homogeneous distances
and rotational groups, where the coarea formula takes a simpler form. By means of the
same Blow-up Theorem we obtain an optimal estimate for the Hausdorff dimension of the
characteristic set relative to C1,1 hypersurfaces in 2-step groups and we prove that it has
finiteQ− 2 Hausdorff measure, whereQ is the homogeneous dimension of the group.
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0. Introduction

Stratified Lie groups, also known as “Carnot groups”, have been the object of ex-
tensive studies in connection with different areas of Mathematics, e.g. the theory
of Subelliptic Partial Differential Equations, Sobolev Spaces and Optimal Control
Theory. Nevertheless, the project to develop classical tools of Geometric Measure
Theory in these groups and in the more general Carnot-Carathéodory spaces is at
an embryonic stage. Only recently there has been some progress in this direction,
[2], [6], [13], [14], [15], [17], [18], [20], [21], [22], [23], [24], [25], [30], [31], [33],
but the list is surely incomplete.

The initial question that motivated this paper was finding the geometrical mean-
ing of the following integral
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∫
�

(
m∑
i=1

〈Xi, ν〉2

)1/2

dHn−1
|·| (1)

in terms of an arbitrary homogeneous distance of the group, where � is a hyper-
surface of class C1 in R

n, ν is a unit normal vector to �, the vector fields {Xi}
span the horizontal subbundle (which induces the Carnot-Carathéodory structure)
and Hn−1

|·| is the n−1 dimensional Hausdorff measure with respect to the Euclid-
ean norm. The integral term (1) appears in isoperimetric inequalities formulated
in stratified groups and in general Carnot-Carathéodory spaces, when � is the
boundary of a regular open set, see [11], [12], [32]. Moreover, regular sets of finite
perimeter in Carnot-Carathéodory spaces fulfill the same formula for the perimeter
measure, see [5]. Hence formula (1) represents a natural notion of surface measure
in “stratified geometries”. But notice that if we represent a stratified group as R

n

with respect to a system of coordinates, the Euclidean scalar product in (1) prevents
a natural representation of Hn−1

|·| in terms of intrinsic objects of the group. This is
due to the fact that the Euclidean metric in any representation of G as R

q is not
left invariant (in the case of nonabelian groups). So we are forced to employ left
invariant Riemannian metrics.

We reformulate (1) in terms of a left invariant Riemannian metric and a homo-
geneous distance of the group, where the latter can be considered analogously to
a Banach norm. Precisely, we consider graded metrics (see Definition 1.1). Note
that these notions do not depend on the particular system of coordinates fixed on
the group. We state our formula as follows∫

�

|νH |g dσ =
∫
�

θ
g
Q−1 (νH (x)) dSQ−1(x). (2)

The map νH (x) denotes the Riemannian projection of the unit normal ν(x)
onto the horizontal subbundle, SQ−1 is the spherical Hausdorff measure built us-
ing a homogeneous distance, Q is the homogeneous dimension of the group and
θQ−1(νH (x)) is the metric factor, a new object we have introduced to take into
account both the anisotropy of the homogeneous distance and the position of the
tangent space of � at x. The metric factor amounts to the measure of the inter-
section of the hyperplane orthogonal to the direction νH (x) with the unit ball B1
with respect to the homogeneous distance, (Definition 1.11). The main tool to get
formula (2) is the Blow-up Theorem (Theorem 2.1) on the Riemannian surface
measure with respect to a fixed homogeneous distance. This theorem on regular
hypersurfaces can be interpreted as the counterpart of the Blow-up Theorem on
points of the reduced boundary for sets of finite perimeter [14], [16]. In the proof
of Theorem 2.1 we assume the existence of a continuous homogeneous distance,
instead of the classical Hörmander condition, which always guarantees such as-
sumption. In formula (2) we consider the hypersurface � with SQ−1-negligible
characteristic set, (Definition 1.14). Recently, Z. Balogh proved that this assump-
tion is always verified in Heisenberg groups for C1 hypersurfaces, [2]. We mention
that the size of the characteristic set is of great importance in connection with iso-
perimetric estimates and trace theorems in stratified groups as well as in general
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Carnot-Carathéodory spaces, [6], [7], [12]. As a variant of the Blow-up Theorem
(Theorem 3.1) we obtain that the characteristic set of aC1,1 hypersurface in a 2-step
graded group has finiteQ−2 Hausdorff measure and its Hausdorff dimension does
not exceedQ−2 (Theorem 3.2 and Remark 3.3). Due to Theorem 1.4(1) of [2] this
estimate is optimal, i.e. it cannot be improved with a number less thanQ−2. In the
Heisenberg group our upper bound on the Hausdorff dimension fits into the case
α = 1 of Theorem 1.1(2) in [2], where a different method, based on a covering
argument, is employed.

By virtue of the Blow-up Theorem, we also derive a version of the Riemannian
coarea formula on stratified groups. Let f : M −→ R be a Lipschitz map with
respect to the Riemannian distance of the group M. Our coarea formula reads as
follows ∫

E

|DHf |g dµg =
∫

R

( ∫
E∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt . (3)

In order to prove (3) we also use a general coarea estimate, [22], which implies that
the set of singular points in a.e. level set of f is SQ−1-negligible. Formula (3) was
first obtained by P. Pansu in the Heisenberg group, using the Carnot-Carathéodory
distance, [26], and it was extended to general stratified groups for smooth functions
by J. Heinonen, [18]. We point out that the problem of extending the validity of
(3) to Lipschitz maps with respect to a homogeneous distance is an open question,
nevertheless some particular cases have been considered in [22]. In the case M is
an Euclidean space E

n, with the classical Riemannian metric, formula (3) gives an
extension of the classical Euclidean coarea formula∫

E

|Df | dµ =
∫

R

( ∫
E∩f−1(t)

θn−1(ν(x)) dHn−1(x)
)
dt ,

where Hn−1 is the Hausdorff measure with respect to a norm η of E
n and θn−1(ν(x))

is the corrisponding metric factor with respect to the canonical Riemannian met-
ric (Corollary 2.8). We mention that another type of coarea formula for metric
space valued Lipschitz maps on Euclidean normed spaces (or rectifiable subsets)
holds, [1]. Here the role of the metric factor is replaced by an “intrinsic” notion of
“coarea factor”.

Another aspect which naturally comes up is finding particular conditions on
both the Riemannian metric and the homogeneous distance such that the metric
factor becomes a dimensional constant independent of the direction. In Subsec-
tion 2.1 we introduce R-invariant distances and R-rotational groups that possess
these symmetry properties and we present some important examples where these
properties hold.

1. Definitions and notation

In this section we present the notation we are going to use throughout the paper
and we recall the main definitions concerning Carnot groups.
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Let us consider a simply connected graded nilpotent Lie group G, i.e. its Lie
algebra G admits the grading G = V1

⊕ · · ·⊕Vι, with the inclusions [Vj , V1] ⊂
Vj+1, for any j ≥ 1 and Vi = {0} iff i > ι. If we assume further that the preceding
inclusions are equalities we say that the group is a stratified group, or a Carnot
group, see [10], [27]. We we will denote by M all the stratified groups. Notice that
the stratification hypothesis amounts to the so-called Hörmander condition on the
left invariant vector fields which span V1. The integer ι is called degree of nilpoten-
cy or step of the group. The subspace V1 is called the horizontal space. We denote
the translations of the group as lx : G −→ G, lx(y) = xy. Via the differential
of translations we can move V1 to any point x of G, denoting as Hx ⊂ TxG the
horizontal fiber. This family of subspaces generates what we call an horizontal
subbundle of G, denoted by H .

By virtue of the graded structure we can define one parameter group of dilations
δr : G −→ G, r > 0, defined as follows

δr

( ι∑
j=1

vj

)
=
ι∑
j=1

rj vj ,

where
∑ι
j=1 vj = v and vj ∈ Vj for each j = 1, . . . , ι. To any element of Vj we

associate the integer j , which is called the degree of the vector.
Since G is simply connected and nilpotent it follows that exp : G −→ G is a

diffeomorphism. The inverse function of the exponential map is denoted by ln. By
means of these maps there is a canonical way to transpose dilations from G to G.
We will use the same symbol to denote dilations of the group. The following stan-
dard properties hold

1. δr (x · y) = δrx · δry for any x, y ∈ G and r > 0 ,
2. δr (δsx) = δrsx for any r, s > 0 and x ∈ G.

To provide a metric structure on the group we fix a “natural” Riemannian metric g
on G, which is compatible with the algebraic structure of the group.

Definition 1.1. Let G be a stratified group. We say that a Riemannian metric g on
G is left invariant if translations of the group are isometries. A graded metric g on
G is a left invariant metric such that all the subspaces Vj ⊂ G of the grading are
orthogonal each other.

These metrics will be always understood throughout the paper. Stratified groups
endowed with graded metrics are also called sub-Riemannian groups. The Rieman-
nian norm of a vector W ∈ TxG will be denoted by |W |g . We will denote with σ
the Riemannian measure of hypersurfaces, which can be represented precisely as
the q− 1 dimensional Hausdorff measure with repsect to the Riemannian geodesic
distance, where q is the topological dimension of G. In a stratified group M it is
always possible to construct a left invariant distance such that it is 1-homogeneous
with respect to dilations. The standard way to do this is to consider the class of
horizontal curves, i.e. the absolutely continuous curves whose derivatives belong
toH a.e. The conditions on commutators ofH guarantee that each couple of points
in M can be connected by an horizontal curve. Hence, it is possible to define the
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infimum among all the Riemannian lengths of horizontal curves which connect the
two points.

The outcome is a distance, named the Carnot-Carathéodory distance, which is
continuous and satisfies the following properties

1. d(x, y) = d(ux, uy) for every u, x, y ∈ G ,
2. d(δrx, δry) = r d(x, y) for every r > 0 .

We say that any continuous distance satisfying the above properties on a graded
group G is a homogeneous distance. All homogeneous distances are bi-Lipschitz
equivalent and induce the topology of the group. This fact can be proved follow-
ing the classical argument for norms of finite dimensional vector spaces, using the
properties 1. and 2. We denote byQ the Hausdorff dimension of G with respect to
a homogeneous distance. By properties of dilations it is not difficult to prove that
Q = ∑ι

j=1 j dim(Vj ).

Definition 1.2. We define the set Bx,r ⊂ G as the open ball of center x and radius
r > 0 with respect to a homogeneous distance. We will omit the center of the ball
if it coincides with the unit element of the group.

Using properties of homogeneous distances we have

Bx,r = xBr = xδrB1 .

Definition 1.3 (Hausdorff measures). For each a ≥ 0 and E ⊂ G we define the
a-dimensional spherical Hausdorff measure of E as

Sa(E) = lim
ε→0+

inf
{ ∞∑
j=1

rai | E ⊂
∞⋃
i=1

Bxi,ri , ri ≤ ε
}

and the a-dimensional Hausdorff measure of E as

Ha(E) = lim
ε→0+

inf
{ ∞∑
j=1

diam(Fi)a

2a
| E ⊂

∞⋃
i=1

Fi , diam(Fi) ≤ ε
}

where {Fi} are subsets of G and diam(Fi) = sup(x,y)∈Fi×Fi d(x, y).

Definition 1.4. The set of all continuously differentiable real valued functions de-
fined on an open subset A ⊂ G will be denoted by C1(A,R).

Definition 1.5. Let f ∈ C1(A,R), where A is an open subset of G and x ∈ A. We
define the horizontal differential dHf (x) : G −→ R as follows

dHf (x)(W) = lim
r→0

f (x · exp(δrW))− f (x)
r

. (4)
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Remark 1.6. The differentiability of f implies the existence of the limit (4). One
can prove that dHf (x) is a linear map which vanishes on vectors of degree higher
than one and it has the following homogeneity

dHf (x)(δrW) = r dHf (x)(W) .

In fact, DHf (x) can be realized as the composition of df (x) with the projection
of G in He. See [14], [21], [27], [33] for more information on the notion of Pansu
differentiability, or horizontal differentiability, which generalizes (4).

The unique vector of TxG which represents the linear map dHf (x) with re-
spect to the Riemannian metric is denoted by DHf (x) and it is called horizontal
gradient.

Definition 1.7. We fix an orthonormal basis (W1, . . . ,Wq) of G and define the map
J : R

q −→ G as

J (y) = exp
( q∑
i=1

yiWi

)
.

We call the couple (J , y) a system of normal coordinates associated to the basis.

Definition 1.8. Let us denote nj = dim Vj for any j = 1, . . . , ι, m0 = 0 and
mi = ∑i

j=1 nj for any i = 1, . . . , ι. We say that a basis (W1, . . . ,Wq) of G is an
adapted basis, if

(Wmj−1+1,Wmj−1+2, . . . ,Wmj )

is a basis of Vj for any j = 1, . . . , ι.

Definition 1.9 (Weighted coordinates). A system of normal coordinates associ-
ated to an adapted basis will be called a system weighted coordinates. Assuming

to have J (y) = exp
(∑q

i=1 yiWi

)
, we define the weight of the coordinate yi as

di = j + 1 if mj ≤ i ≤ mj+1, for any i = 1, . . . , q.

Notice that any graded metric admits weighted coordinates. We mention that
Definition 1.9 has a natural generalization in Carnot-Carathéodory spaces, see [3],
[23].

Lemma 1.10. LetB1 be the open unit ball with respect to a homogeneous distance
of the group and let L ⊂ G be a hyperplane. We read the hyperplane on G as
L = exp(L). Then for any couple of normal coordinates (J , y) and (T , z) we
have

Hq−1
|·|

(
J −1(L ∩ B1)

)
= Hq−1

|·|
(
T −1(L ∩ B1)

)
,

where Hq−1
|·| denotes the q − 1 dimensional Hausdorff measure with respect to the

Euclidean norm in R
q .
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Proof. It is sufficient to observe that the composition J −1◦T transforms coordi-
nates with respect to different orthonormal bases. Then J −1◦T is an isometry of
R
q with respect to the Euclidean norm. The identity

J −1(L ∩ B1) =
(
J −1◦T

) (
T −1(L ∩ B1)

)
leads us to the claim. ��
Definition 1.11. Consider a vector ν ∈ G \ {0} and its orthogonal hyperplane
L ⊂ G, with L = exp(L). We fix a system of normal coordinates (J , y) and define

θ
g
Q−1(ν) = Hq−1

|·|
(
J −1(L ∩ B1)

)
. (5)

We call θgQ−1(ν) the metric factor of the homogeneous distance d with respect to
the direction ν.

Remark 1.12. In view of the Lemma 1.10, the above definition does not depend
on the choice of normal coordinates. We observe further that the number θgQ−1(ν)

depends only on the direction of ν and the left invariant Riemannian metric on G.
Furthermore, it is not difficult to see from Definition 1.11 that the function θgQ−1(ν)

is uniformly bounded from below and from above by positive constants that depend
only on the homogeneosu distance and the graded metric.

Now we present a simple case which shows that in absence of particular sym-
metry properties the metric factor depends on the horizontal direction ν.

Example 1.13. Let us consider the Euclidean space E
2, with homogenous distance

η(x) = max{|x1|, |x2|}, where (x1, x2) are Euclidean coordinates. We observe that
E

2 is an abelian 2-dimensional stratified group, where the canonical Riemannian
metric is obviously left invariant. We denote by L(α) the straight line which con-
tains the origin and whose direction is α ∈ T

1, where T
1 is the 1-dimensional torus.

In this case, by definition of θ1(α), we have

θ1(α) = H1
|·|
(
L(α + π

2
) ∩ {x ∈ E2 | max{|x1|, |x2|} < 1}

)
,

By a direct computation we have

θ1(α) =




2(cosα)−1 −π
4 ≤ α ≤ π

4
2(sin α)−1 π

4 ≤ α ≤ 3
4π

2| cosα|−1 − 3
4π ≤ α ≤ 5

4π

2| sin α|−1 5
4π ≤ α ≤ 7

4π

.

In Subsection 2.1 we will see some important cases where the metric factor is
constant and can still be computed explicitly.

Definition 1.14. Let � ⊂ G be a hypersurface of class C1, with x ∈ �. Consider
a unit normal ν(x) of � at x. We denote by νH the Riemannian projection of ν(x)
on the horizontal space Hx . We call the vector νH (x) the horizontal normal of �
at x. We say that x ∈ � is a characteristic point of � if |νH (x)|g = 0. We denote
by C(�) the set of all characteristic points of �, namely the characteristic set.
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2. Blow-up and coarea formula

In this section we prove the Blow-up Theorem on graded nilpotent groups. Its main
application is the coarea formula for Riemannian Lipschitz maps on sub-Rieman-
nian groups with respect to arbitrary homogeneous distances (Theorem 2.6).

Next, we introduce the notions of R-invariant distances and R-rotational groups
and we prove that coarea formula can have a simpler form in this class of groups
and distances (Theorem 2.22).

Theorem 2.1 (Blow-up). Let � ⊂ G be a hypersurface of class C1 and let x ∈ �
be a noncharacteristic point. Then we have

lim
r→0

σ(� ∩ xBr)
rQ−1 = θ

g
Q−1(νH (x))

|νH (x)|g , (6)

Proof. Let (X1, . . . , Xm) be an orthonormal frame of the horizontal subbundleH .
We can represent � in a neighbourhood of x as A ∩ f−1(t) ⊂ �, where t ∈ R,
A ⊂ G is an open subset and f ∈ C1(A,R). Since the point x is noncharac-
teristic, the map dHf (x) is surjective, then DHf (x) = ∑m

i=1Xif (x)Xi �= 0.
Let us define the unit vector Y1(x) = DHf (x)/|DHf (x)|g and consider the
corresponding left invariant vector field Y1 ∈ G. We can choose a left invari-
ant orthonormal basis (Y1, . . . , Ym) which span the horizontal subbundle, hence
Yjf (x) = 0, for any j ≥ 2. Next, we complete (Y1, . . . , Ym) to an orthonormal
basis (Y1, . . . , Ym,Z1, . . . , Zs) adapted to the grading of G. We represent f with
respect to the associated weighted coordinates centered at x. Precisely, we consider
an open neighbourhood of the originV ⊂ R

q with weighted coordinates (y, z) ∈ V
such that exp(V ) ⊂ x−1A and we define F : V −→ R as follows

F(y, z) = f
(
x exp

( m∑
i=1

yiYi +
s∑
j=1

zjZj

))
= f (xJ (y, z)) .

We have DyF(0) = (Y1f (x), 0, . . . , 0) = (|DHf (x)|g, 0, . . . , 0). By the Im-
plicit Function Theorem we get a coordinate hyperplane 5x = {(u1, . . . , uq) ∈
R
q | u1 = 0}, an open neighbourhood of the origin U ⊂ V ∩ 5x and a map
φ ∈ C1(U, V ) such that F (φ(u)) = t for any u ∈ U , with φ(0) = 0. Notice that
v = (u1, . . . , uq) = (y, z) is a system of weighted coordinates with di = 1 for any
i = 1, . . . , m and di ≥ 2 for any i = m+ 1, . . . , q, where di is the weight of ui .

We define the set �0 = exp(φ(U)), observing that x�0 is an open neighbour-
hood of x in � and denote by xφ the map (ln x) · φ : U −→ ln(�).

Thus, for any suitable small r > 0 we have

σ(� ∩ xBr) = σ(x�0 ∩ xBr) =
∫
(xφ)−1

(
ln x·B̃r )

)
√

det
(
hij (xφ(u))

)
du ,

where B̃r = J −1(Br) ⊂ R
q and (hij ) denotes the graded metric g restricted to �

with respect to the coordinates u. Let us observe that (xφ)−1(ln x · B̃r ) = φ−1(B̃r ).
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Now, taking into account the weight of coordinates u = (u2, . . . , uq), the dilation
δr reads

δru =
q∑
j=2

rdj uj ej ,

where (ej ) is the canonical basis of R
q−1. Hence, the restriction of δr to 5x has

jacobian rQ−1. Then, we make a change of variable u = δru′, obtaining

σ(� ∩ xBr) = rQ−1
∫
δ1/rφ−1(B̃r )

√
det

(
hij (xφ(δru′))

)
du′ . (7)

Now, we analyze the domain of integration δ1/rφ−1(B̃r ) ⊂ 5x as r → 0. We can
write φ(u) = (ϕ(u), u), with ϕ : U −→ R, obtaining

δ1/rφ
−1(Br) = {u ∈ 5x |

(
ϕ(δru) r

−1, u
)

∈ B̃1 } .

We note that

∂ui ϕ(0) = − ∂yiF (0)
∂y1F(0)

= 0 for i = 2, . . . , m ,

hence, by Taylor formula we get

ϕ(δru)r
−1 =

q∑
i=m+1

∂yiF (0)r
di−1ui + R(δru)r−1 ,

whereR(v)|v|−1 → 0 as |v| → 0 and | · | is a norm on the space5x . For any i > m
we have di ≥ 2, then ϕ(δru)r−1 → 0 as r → 0, uniformly in u which varies in a
bounded set. Hence, for any u ∈ B̃1 ∩5x we have

1δ1/rφ−1(Br )
(u) −→ 1 as r → 0 ,

whereas for any u ∈ 5x \ B̃1 we get

1δ1/rφ−1(Br )
(u) −→ 0 as r → 0 ,

so by formula (7) and Lebesgue Convergence Theorem it follows

lim
r→0

σ(� ∩ xBr)
rQ−1 =

∫
B̃1∩5x

√
det

(
hij (x)

)
du . (8)

Let us compute explicitly the left invariant Riemannian metric restricted to x�0
with respect to our coordinates u ∈ U . We have

hij (xφ(u)) = g(xφ(u))
(
∂(xφ)

∂ui
,
∂(xφ)

∂uj

)

= g(xφ(u))
(
dlx

∂φ

∂ui
, dlx

∂φ

∂uj

)
= g(φ(u))

(
∂φ

∂ui
,
∂φ

∂uj

)
.
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The graded metric (gij ) with respect to the coordinates u coincides with δij at
the unit element e, then we get

√
det

(
hij (x)

) =
√

det

(〈
∂φ

∂ui
,
∂φ

∂uj

〉)
= |DF(0)|

|∂y1F(0)|
= |Df (x)|g

|DHf (x)|g .

Finally, observing that

νH (x) = DHf (x)

|Df (x)|g (9)

and Hq−1
|·| (B̃1 ∩5x) = θgQ−1(νH (x)), equation (8) gives us the thesis. ��

Remark 2.2. A version of Theorem 2.1 can be obtained on less regular hypersur-
faces, such as reduced boundaries of sets of finite perimeter, see [14], [16]. In this
case is required an isoperimetric inequality, which comes from the stratification of
the group. Due to the fact that we are considering aC1 smooth surface, our approach
can be accomplished whenever there exists a continuous homogeneous distance
on G. Clearly, in the case of stratified groups we always have the Carnot-
Carathéodory distance, which is in particular a continuous homogeneous distance.

Theorem 2.3. Consider a hypersurface � ⊂ G of class C1 such that the char-
acteristic set C(�) is negligible with respect to the measure SQ−1. Then for any
measurable set E ⊂ � we have∫

E

|νH (x)|g dσ =
∫
E

θ
g
Q−1(νH (x)) dSQ−1

(10)
and SQ−1(E) =

∫
E

|νH (x)|g
θ
g
Q−1(νH (x))

dσ .

Proof. Theorem 2.1 implies that for any x ∈ � \ C(�) we have

lim
r→0

σ(� ∩ xBr)
rQ−1 = θ

g
Q−1(ν(x))

|νH (x)|g .

Now, using theorems on measure derivatives, see for instance Theorems 2.10.17
(2) and 2.10.18 (1) of [9], and observing that the characteristic set is negligible, the
proof follows by a standard argument. ��
Corollary 2.4. Let A be an open subset of G. Consider a map f ∈ C1(A,R) with
regular value t ∈ f (A). If the characteristic set

C
(
f−1(t)

)
=
{
x ∈ f−1(t) | dHf : Hx −→ R vanishes

}
is negligible with respect to SQ−1, then for any measurable subsetE ⊂ A we have∫

E∩f−1(t)

|DHf (x)|g
|Df (x)|g dσ =

∫
E∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x) .
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Proof. It is enough to use Theorem 2.3 and the following equation

νH (x) = DHf (x)

|Df (x)|g . �� (11)

Now we state the classical Riemannian coarea formula, see section 13.4 of [4].

Theorem 2.5. Let f : G −→ R be a Riemannian Lipschitz function. Then for any
summable map u : G −→ R, the following formula holds∫

G

u |Df |g dµg =
∫

R

( ∫
f−1(t)

u dσ
)
dt , (12)

where µg is the Riemannian volume measure and σ is the Riemannian surface
measure.

The following result is an important application of Theorem 2.1.

Theorem 2.6 (Coarea formula). Let E be a measurable subset of a sub-Rieman-
nian group M and consider a Lipschitz map f : E −→ R with respect to the
Riemannian distance of M. Then we have∫

E

|DHf |g dµg =
∫

R

( ∫
E∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt , (13)

where the spherical Hausdorff measure and the metric factor are understood with
respect to the same homogeneous distance.

Proof. Without loss of generality, we can assume that E is a bounded set and that
f is extended to a Lipschitz map on M.

The Whitney Extension Theorem (see 3.1.15 of [9]) ensures that for any ε > 0
there exists a map f̃ : M −→ R of class C1 such that, defining

E′ =
{
x ∈ M | f (x) = f̃ (x)

}
,

we have µg(E \ E′) ≤ ε. Thus, the gradients of f and f̃ coincide a.e. on E′.
In view of formulae (9) and (12) we obtain∫

E

|DHf |g dµg =
∫

R

( ∫
E∩f−1(t)

|νH |g dσ
)
dt ,

for any measurable subset E ⊂ M.
Hence, the general inequality 2.10.25 of [9] implies

0 ≤
∫
E

|Df |g dµg −
∫

R

( ∫
E′∩f̃−1(t)

|ν̃H |g dσ
)
dt ≤ C Lip(f ) ε ,

where C is a dimensional constant and ν̃H is the horizontal normal relative to the
level sets of f̃ . By virtue of Theorem 2.7 of [22] we know that the set of character-
istic points is SQ−1-negligible for a.e. level set of f̃ . Thus, we can apply formula
(10), getting

0 ≤
∫
E

|Df |g dµg−
∫

R

( ∫
E′∩f̃−1(t)

θ
g
Q−1(ν̃H (x)) dSQ−1(x)

)
dt ≤ C Lip(f ) ε .

(14)
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Let us observe that E′ ∩ f−1(t) = E′ ∩ f̃−1(t) and for a.e. level set we have
Df = Df̃ outside of a SQ−1-negligible set. Thus, for a.e. t ∈ R the following
equality holds for SQ−1-a.e. x ∈ f−1(t)

θQ−1(ν̃H (x)) = θQ−1(νH (x)) .

Hence, inequality (14) becomes

0 ≤
∫
E

|Df |g dµg−
∫

R

( ∫
E′∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt ≤ C Lip(f ) ε .

Again, using the general inequality 2.10.25 of [9] and observing that in view of (5)
the function θgQ−1(·) is bounded, we get

∫
R

( ∫
(E\E′)∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt ≤ C′ Lip(f ) ε .

Finally, joining the last two inequalities we arrive at

−C′Lip(f ) ε ≤
∫
E

|Df |g dµg

−
∫

R

( ∫
E∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt ≤ CLip(f )ε .

Letting ε → 0, the proof is complete. ��

Remark 2.7. It is natural to ask whether it is possible to get a coarea formula
where only the restriction of the left invariant metric g on the horizontal sub-
bundle is involved. The left invariance of µg and SQ implies µg = c SQ, where
c = µg(B1)/SQ(B1). Then formula (13) becomes∫

E

|DHf |g dSQ =
∫

R

( ∫
E∩f−1(t)

σQ−1(νH (x)) dSQ−1(x)
)
dt ,

where σQ−1(ν) = SQ(B1) θQ−1(ν)/µg(B1). Now, by a standard but a bit long cal-
culation one can check that the quotient σQ−1(ν) is constant over all left invariant
metrics which coincide on the horizontal subbundle.

Corollary 2.8. Let E be a measurable subset of E
n and let f : E −→ R be a

Lipschitz map. Consider a norm η : E
n −→ [0,+∞[ and the Hasudorff measure

Hn−1 relative to this norm. Then we have∫
E

|Df | dµ =
∫

R

( ∫
E∩f−1(t)

θn−1(ν(x)) dHn−1(x)
)
dt , (15)

where |Df | is the length of the Euclidean gradient of f , ν is the normal direction to
the level set and θn−1(ν(x)) = Hn−1

|·| (5x ∩ {y ∈ E
n | η(y) < 1}), with 5x equal

to the hyperplane normal to ν(x).
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Proof. Formula (15) follows directly from (13), observing that the intrinsic Haus-
dorff dimensionQ of E

n coincides with n and that any direction in E
n is horizontal.

Thus, the horizontal gradient coincides with the Euclidean gradient and the horizon-
tal normal νH coincides with the normal ν to the level set. Now, we recall that the
spherical Hausdorff measure coincides with the Hasudorff measure on rectifiable
subsets of a normed space. This fact follows by a isodiametric inequality which
holds on any finite dimensional normed space, see [4]. Thus, for a.e. level set
of f we can replace the Sn−1 in formula (13) with Hn−1. This completes the
proof. ��

2.1. Invariant metrics and horizontal isometries

In this subsection we introduce the notion of “horizontal isometry”, that respects
both the Riemannian and the algebraic structure of the group. This concept allows
us to distinguish a class of sub-Riemannian groups that have particular symmetry
properties, namely “rotational groups”. Furthermore, it is always possible to define
homogeneous distances which are compatible with horizontal isometries (see Re-
mark 2.14). The metric factor θgQ−1(ν) with respect to these particular matrics and
homogeneous distances is independent of ν ∈ H \{0}, so it becomes a dimensional
constant in the coarea formula, see Theorem 2.22. In Remark 2.23 we give some
applications of this theorem.

The following definition generalizes the concept of horizontal isometry first
introduced in the particular case of Heisenberg groups, [22].

Definition 2.9. We say that a map T : G −→ G is a horizontal isometry if the
following properties hold

1. T (x · y) = T (x) · T (y) for any x, y ∈ G (T is a group homomorphism)
2. T (δrx) = δrT (x) for any x ∈ G and r > 0 (T is 1-homogeneous)
3. dT (e) : G −→ G is an isometry, where e ∈ G is the unit element.

Notice that conditions 1 and 3 imply that T : G −→ G is an isometry of G in
the sense of Riemannian Geometry. Furthermore, conditions 1 and 2 say that T is
a G-linear map (see [21]), so it is bi-Lipschitz with respect to any homogeneous
distance of the group.

Remark 2.10. We point out that the existence of horizontal isometries is strongly re-
lated to the compatibility of the left invariant Riemannian metric with the algebraic
structure of the group. This fact will appear evident in the following examples.

Definition 2.11 (Invariant distances). Let R be a set of horizontal isometries.
We say that a homogeneous distance is R-invariant if for any T ∈ R we have
T (B1) = B1, where B1 is the open unit ball with respect to the homogeneous
distance.

Definition 2.12 (Rotational groups). A vertical hyperplane L ⊂ G is the or-
thogonal space of a horizontal vector of G. We say that a stratified group G is



68 V. Magnani

R-rotational, if there exists a class R of horizontal isometries such that for any
couple of vertical hyperplanes L and L′ there exists T ∈ R with dT (e)(L) = L′.
We will simply say rotational group, when the class R is understood.

Example 2.13 (Rotational Euclidean spaces). The Euclidean space E
n with the ca-

nonical Riemannian metric is a rotational group. In fact, any hyperplane is vertical,
so it is natural to choose the class of all Euclidean isometries of E

n as R. Hence,
Euclidean spaces are R-rotational, with R-invariant Euclidean distance.

Remark 2.14. Notice that if R is the class of all horizontal isometries and ρ is the
Carnot-Carathéodory distance built with respect to the same Riemannian metric,
then ρ is R-invariant. In fact, any horizontal isometry transforms horizontal curves
into horizontal curves and it preserves their length. So, there is a natural class of
R-invariant distances associated to a stratified group with respect to its Riemannian
metric. A nontrivial question for a general stratified group is to get the existence of
a sufficiently large class of horizontal isometries. In Example 2.15 we will show
that horizontal isometries cannot always be obtained starting from isometries of G.
In other words, if we consider an isometry I : G −→ G, there may not exist a
1-homogemeous group homomorphism T : G −→ G such that dT (e) = I .

Example 2.15. Let us consider the isometry A : R
4 −→ R

4 represented by the
following matrix 


0 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 0


 .

We define the rotation T : C
2 × R −→ C

2 × R as T (x + iy, s) = (A(x, y), s),
where x, y ∈ R

2 and s ∈ R. The map T cannot be a horizontal isometry of the
Heisenberg group H

2 = C
2 × R with the group operation

(z, s) · (w, t) = (z+ w, s + t + 2Im(z · w)) , (16)

where z,w ∈ C
2, zj = xj + iyj , wj = ξj + iηj , with j = 1, 2. In fact, the

homomorphism property would imply

Im(z · w) = Im(Az · Aw) , (17)

which gives

y2η1 − y1η2 − x2ξ1 + x1ξ2 = −x1η1 + y1ξ1 − x2η2 + y2ξ2 .

The last equality fails for xi = 0, yi = ξi = ηi = 1, with i = 1, 2, so T is not a
group homomorphism.

However, Heisenberg groups are important examples of rotational Carnot groups.
This fact will be a consequence of the following example.
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Example 2.16 (Rotational Heisenberg groups). In order to emphasize the crucial
role played by the metric structure associated to a stratified group we consider an
intrinsic version of the Heisenberg group. Let ψ : V1 × V1 −→ R be a symplec-
tic map, where V1 is a vector space of dimension 2n. We define a Lie product on
h2n+1 = V1 ⊕ Rω as follows

[(u+ tω), (v + τω)] = ψ(u, v) ω
for any u, v ∈ V1 and t, τ ∈ R. Then, any homogeneous algebra isomomorphism
T can be written as T = S × (αIdRω) , where T (ω) = αω and

αψ(u, v) = ψ(Su, Sv) (18)

for some α �= 0. When α = 1 the maps S satisfying (18) are the well known sym-
plectic transformations. We recall that ψ admits a symplectic basis (e1, . . . , e2n)

of V1, i.e. ψ(ei, en+j ) = −4δij , ψ(ei, ej ) = 0 and ψ(en+i , en+j ) = 0 for any
i, j = 1, . . . , n. Hence, a metric compatible with the symplectic structure of h2n+1
has to make the basis (ei) ∪ (ω) orthonormal. Such a metric is called symplectic
metric. With this particular choice, we will be able to show the existence of a large
class of horizontal isometries on h2n+1. In fact, the symplectic metric allows us
to get an isometric identification between h2n+1 and H

2n+1= C
n × R, where the

group operation of the latter is defined analogously as in (16). Moreover, the map
ψ in these coordinates is represented as ψ(z,w) = 4Im(z · w). Now, consider a
unitary operator U : C

n −→ C
n and define the map T : C

n × R −→ C
n × R as

T (z, s) = (U(z), s) for any (z, s) ∈ C
n× R. The invariance of the complex scalar

product under unitary trasformations gives condition (18) with α = 1, therefore T
is a group isomomorphism. Properties 2 and 3 of Definition 2.9 are easily verified,
so it follows that T is a horizontal isometry.

Now, vertical hyperplanes in H
n can be characterized as products5×R, where

5 is a real 2n−1 dimensional space of C
n. Furthermore, unitary operators preserve

the real scalar product of R
2n, so it is not difficult to show that for any couple of

hyperplanes L and L′ of C
n there exists a unitary map U : C

n −→ C
n such that

T (L) = L′. Then the product of unitary operators of C
n with the projection on the

last component corresponds to a class R of horizontal isometries in h2n+1. Thus, we
have proved that Heisenberg groups with a symplectic metric are rotational groups.

Remark 2.17 (Rotational H-type groups). The results obtained in the preceeding
example can be achieved also in some more general groups of Heisenberg type.
These are 2-step groups endowed with a scalar product 〈 , 〉 and a linear map
J : V2 −→ End(V1) with the following properties

1. 〈JZX, Y 〉 = 〈Z, [X, Y ]〉 for any X, Y ∈ V1 and Z ∈ V2
2. J 2

Z = −|Z|2I ,

see [19] for more information.
Let us consider the group

G =
{
(φ, ψ) ∈ O(V2)×O(V1) | Jφ(v)(ψ(x)) = ψ(Jv(x))

}
,



70 V. Magnani

where O(V1) and O(V2) denote the group of isometries in V1 and V2, respective-
ly. In Proposition 5 of [29], C. Riehm proves that the maps of (φ, ψ) of G are
homomorphisms, henceG corresponds to a group of horizontal isometries accord-
ing to our definition. Furthermore, denoting by GV1 the projection of G in O(V1),
in [28] there is a precise characterization of H-type groups whereGV1 is transitive
on the sphere V ∗

1 = {v ∈ V1 | |v| = 1}. In view of Definition 2.12, groups with
this transitive property on V ∗

1 are R-rotational with R = G.

In the following proposition we show that R-rotational groups and R-invariant
distances yield a constant metric factor.

Proposition 2.18. Let G be an R-rotational group and let d be an R-invariant
distance of G. Then there exists αQ−1 ∈ R such that

θ
g
Q−1(ν) = αQ−1

for any ν ∈ H \ {0}.
Proof. Let us consider the map J : R

q −→ G associated to a system of normal co-
ordinates. We want to prove that for each vertical hyperplane L, posedL = exp(L),
we have

Hq−1
|·|

(
J −1(L ∩ B1)

)
= Hq−1

|·|
(
J −1(T (L) ∩ B1)

)
,

for any horizontal isometry T ∈ R. We define the isometry I = exp−1 ◦J =
R
q −→ G, observing that I−1◦ dT (e)◦I is an isometry of R

q with respect to the
Euclidean norm. Then we have

Hq−1
|·|

(
J −1(L ∩ B1)

)
= Hq−1

|·|
(
I−1◦ dT (e) exp−1(L ∩ B1)

)
and

I−1◦ dT (e) exp−1(L ∩ B1) = I−1◦ exp−1 ◦ T (L ∩ B1) = J −1 (T (L) ∩ T (B1)) .

Finally, the R-invariance property T (B1) = B1 leads us to the conclusion. ��
Remark 2.19. The number αQ−1 in Proposition 2.18 amounts to the measure of the
intersection between the unit ball and a vertical hyperplane. In the next example,
we will see that αn−1 in E

n with the Euclidean distance corresponds exactly to the
measure ωn−1 of the unit ball in E

n−1.

Example 2.20. Let us consider E
n with standard coordinates x = (xi) and the

classical Euclidean norm η(x) = |x| =
√∑n

i=1 x
2
i . In this case we have

θn−1(ν(x)) = Hn−1
|·|

(
5x ∩ {y ∈ E

n | |y| < 1})
= Hn−1

|·|
(
{y ∈ E

n−1 | |y| < 1}
)

= ωn−1

Example 2.21. Let us consider the distance d ([z, t], 0) = max{|z|, |t |1/2} in the
Heisenberg group H

2n+1. By calculations of Lemma 4.5 (iii) in [14] we have that
the corresponding metric factor is αQ−1 = 2ω2n−1.
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Theorem 2.22. Let G be an R-rotational group and suppose to have an R-in-
variant distance on G. Thus, if f : E −→ R is a Lipschitz map with respect to the
Riemannian distance and E is a measurable subset of G we have∫

E

|DHf |g dµg = αQ−1

∫
R

SQ−1
(
E ∩ f−1(t)

)
dt . (19)

Proof. By virtue of Theorem 2.6 we have∫
E

|DHf |g dµg =
∫

R

( ∫
E∩f−1(t)

θ
g
Q−1(νH (x)) dSQ−1(x)

)
dt .

In view of Proposition 2.18 we get θgQ−1(νH (x)) = αQ−1, so the proof is com-
plete. ��
Remark 2.23. In this remark we present some applications of (19).

1. Classical Coarea formula.
Taking into account Definition 1.3, by classical results on rectifiable sets in
Euclidean spaces we have ωn−1Sn−1 = ωn−1Hn−1 = σ , where σ is the n− 1
surface measure in E

n. In view of these facts, formula (19) and calculation in
Example 2.20 give us the classical coarea formula.

2. Coarea formula in H
2n+1 with respect to the Carnot-Carathéodory distance.

Observing that the Carnot-Carathéodory distance in H
2n+1 is R-invariant (Ex-

ample 2.16), formula (19) yields the coarea formula proved in [26].
3. Coarea formula in H

2n+1 with respect to the maximum distance.
The maximum distance in Example 2.21 gives us the coarea formula (19) with
αQ−1 = 2ω2n−1.

3. Characteristic sets

In this section we study the size of the characteristic set for C1,1 smooth hyper-
surfaces. The following variant of the Blow-up Theorem provides estimates for the
Q−2 densities of C1,1-hypersurfaces in 2-step graded groups.

Theorem 3.1 (Blow-up estimates). Let G be a 2-step graded group with grading
G = V1 ⊕ V2 and let � be a C1,1-hypersurface with a characteristic point x ∈ �.
Then there exist two constants c1, c2 > 0, such that

c2 ≥ lim sup
r→0

σ(� ∩ xBr)
rQ−2 ≥ lim inf

r→0

σ(� ∩ xBr)
rQ−2 ≥ c1 , (20)

where c1 depends on the Lipschitz constant of the normal field on �.

Proof. Let (X1, . . . , Xm) be an orthonormal frame of V1 and let (Z1, . . . , Zs) be
an orthonormal basis of V2. We represent � in a neighbourhood of x with the set
A ∩ f−1(t) ⊂ �, where A is an open subset of G, f ∈ C1,1(A,R) and f (x) = t .

Since x ∈ � is a characteristic point, the horizontal gradientXf (x) is vanishing,
so
∑s
l=1 Zlf (x)Zl �= 0 and we can define the unit vector
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W1(x) =
∑s
l=1 Zlf (x)Zl

|∑s
l=1 Zlf (x)Zl |g

.

Hence we can build an orthonormal basis (W1, . . . ,Ws) of V2. Now, we con-
sider an open neighbourhood of the origin V ⊂ R

q and the function F : V −→ R

defined as

F(y, z) = f
(
x exp

( m∑
l=1

ylXl +
s∑
l=1

zlWl

))
,

so (y, z) are weighted coordinates.We have ∂z1F(0) = W1f (x) �= 0 and ∂zlF (0) =
0 for any l = 2, . . . , s. Hence, by the Implicit Function Theorem there exists a
hyperplane Q = {(y, z′) | y ∈ R

m, z′ = (z2, . . . , zs) ∈ R
s−1}, an open neigh-

bourhood of the origin U ⊂ V ∩ Q and a map φ ∈ C1,1(U, V ) such that φ(0) = 0
and F(φ(u)) = t for any u ∈ U . We can represent a neighbourhood of x in � as
x expφ(U) = x�0 and for any suitable small r > 0 we get

σ(� ∩ xBr) = σ(x�0 ∩ xBr) =
∫
φ−1(B̃r )

√
det

(
hij (xφ(u))

)
du ,

where B̃r = lnBr and (hij ) is the restriction of the graded metric g onto the surface
� with respect to the coordinates u.As coordinates y have weight 1 and coordinates
z′ have weight 2, the representation of the restriction of δr to Q is as follows

δr (y, z
′) = (ryi, r2zj ) .

Then the jacobian of δr |Q is rQ−2. Now, we make a change of variable u = δru
′,

obtaining

σ(� ∩ xBr) = rQ−2
∫
δ1/rφ−1(B̃r )

√
det

(
hij (xφ(δru′))

)
du′ . (21)

Next, we study the shape of the domain δ1/rφ−1(B̃r ) as r → 0. By the Im-
plicit Function Theorem there exists a map ϕ ∈ C1,1(U,R) such that φ(y, z′) =
(y, ϕ(y, z′), z′). Thus, we can represent the set δ1/rφ−1(B̃r ) as follows

δ1/rφ
−1δr (B̃1) = {(y, z′) ∈ Q |

(
y, ϕ

(
δr (y, z

′)
)
r−2, z′

)
∈ B̃1} . (22)

By our choice of coordinates and the fact that Xf (x) = 0 we have

∂ykϕ(0) = −∂ykF (0)
∂z1F(0)

= 0 ∂zl ϕ(0) = − ∂zlF (0)
∂z1F(0)

= 0

for any k = 1, . . . , m and l = 2, . . . , s. Hence, we have proved that Dyϕ(0) = 0
and Dz′ϕ(0) = 0. By Taylor formula for C1,1 smooth functions we get

ϕ
(
δr (y, z

′)
) = θ

(
(ry, r2z′)

)
|(ry, r2z′)|2 (23)

where |·| is a norm on the space Q and θ is a map which is bounded by the Lipschitz
constant of Dϕ.
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Let C ⊂ R
q be an open Euclidean ball contained in B̃1 and let us define the set

E = {(y, z′) ∈ Q | (y, L|y|2, z′) ∈ C} ,

where L = 2‖θ‖∞. Now, we aim to prove that for any (y, z′) ∈ E

1δ1/rφ−1(Br )

(
(y, z′)

) −→ 1 as r → 0 . (24)

Consider (y, z′) ∈ E and choose r0 > 0 such that for any r ∈ (0, r0) we have
|(y, rz′)| ≤ √

2|y|. Then, by equation (23) for any r ∈ (0, r0) we get

r−2|ϕ (δr (y, z′)) | = |θ
(
(ry, r2z′)

)
| |(y, rz′)|2 ≤ 2‖θ‖∞ |y|2 = L |y|2 .

Since C is convex and δ1/rφ−1δr (B̃1) has representation (22) it follows that
(y, z′) belongs to δ1/rφ−1δr (B̃1) for any r ∈ (0, r0), so the limit (24) is proved. In
view of Fatou Theorem and (24) we obtain

lim inf
r→0

∫
δ1/rφ−1(B̃r )

√
det

(
hij (xφ(δru′))

)
du′ ≥

∫
E

√
det

(
hij (x)

)
du .

where √
det

(
hij (e)

) =
√

det

(〈
∂φ

∂ui
,
∂φ

∂uj

〉
e

)
= |DF(0)|

|∂z1F(0)|
= 1 .

Now, we observe that the set E is an open set, whose size depends on the Lips-
chitz constant of the normal field x −→ (Dϕ(x), 1). Then, in view of formula (21)
the positive constant c1 = Hq−1

|·| (E) satisfies our claim. To get the upper estimate
we observe directly from the representation (22) that there exists a bounded set F
which contains δ1/rφ−1(B̃r ) for any r > 0. Thus, we can choose c2 = Hq−1

|·| (F ).
��

Before stating the next theorem, we recall the definition of Hausdorff dimension
of a subset E in a metric space (X, d):

Hd−dim(E) = inf
{
α > 0 | Hα

d (E) = 0
}
.

Theorem 3.2. Let G be a 2-step graded group and let � ⊂ G be a C1,1-hypersur-
face. Then there exist two constants c1, c2 as in Theorem 3.1 such that

c2 SQ−2 (C(�)) ≥ σ(C(�)) ≥ c1 SQ−2 (C(�)) , (25)

moreover we have

HdC−dim (C(�)) ≤ Q− 2 . (26)
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Proof. We adopt the notation of Theorem 2.10.18 in [9], where V = �, µ =
σ�� and F is the family of balls with respect to the homogeneous metric d and
ζ(Bx,r ) = rα for any x ∈ G and r > 0. By virtue of the estimates (20) and
Theorems 2.10.17(2), 2.10.18(1) of [9] we get our claim

c1 SQ−2 (C(�)) ≤ σ (C(�)) ≤ c2 SQ−2 (C(�)) .

Now, let us fix α ∈ (Q− 2,+∞) and observe that by (20) we have

lim sup
r→0

σ��(Bx,r )
rα

≥ t

for any t > 0 and any x ∈ C(�). Thus, again Theorem 2.10.18 of [9] implies that
for each t > 0 we have

t Sα(C(�)) ≤ σ(C(�)) ≤ σ(�) .
Since � can be realized as a countable union of relatively compact hypersurfaces
we can assume that� is relatively compact. Then σ(�) is finite, so letting t → ∞
we get Sα(C(�)) = 0. This ends the proof. ��
Remark 3.3. In the assumptions of Theorem 3.2, if σ(�) <∞ it follows

c1 HQ−2(C(�)) ≤ σ(C(�)) ≤ σ(�) <∞ ,

so the characteristic set has finiteQ− 2 Hausdorff measure.

We observe that the Carnot-Carathéodory distance dC is always greater than or
equal to the Riemannian distance ρ, when both of them are built with the same left
invariant metric. Hence, for any setE ⊂ G and α > 0 we have Hα

ρ(E) ≤ Hα
dC
(E).

So the following inequality holds

HdC−dim(E) ≥ Hρ−dim(E) . (27)

Now, by Theorem 1.4(1) of [2], for any α > 0 there exists a C1,1-hypersurface �α
in the Heisenberg group H

n such that H|·|−dim(C(�α)) ≥ 2n−α, where | · | is the
Euclidean norm in H

n, viewed as a vector space. It is clear that Hρ−dim(C(�)) =
H|·|−dim(C(�)), so by (27) we get

HdC−dim(C(�α)) ≥ 2n − α = Q− 2 − α , (28)

whereQ = 2n+2 is the Hausdorff dimension of H
n with respect to a homogeneous

distance. Thus, by virtue of Theorem 3.2 we get

Q − 2 − α ≤ HdC−dim(C(�α)) ≤ Q − 2 ,

it follows that the estimate (26) is optimal.
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