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Abstract
Purpose A meta-analysis was performed to evaluate the correlation between single-nucleotide polymorphisms (SNPs) and risk
of statin-induced myopathy (SIM).
Methods We retrieved the studies published on SIM until April 2019 from the PubMed, Embase, and Cochrane Library
databases. We collected data from 32 studies that analyzed 10 SNPs in five genes and included 21,692 individuals and nine
statins.
Results The analysis of the heterozygous (p = 0.017), homozygous (p = 0.002), dominant (p = 0.005), and recessive models (p =
0.009) of SLCO1B1 rs4149056 showed that this SNP increases the risk of SIM. Conversely, heterozygous (p = 0.048) and
dominant models (p = 0.030) of SLCO1B1 rs4363657 demonstrated that this SNP is associated with a reduced risk of SIM.
Moreover, an increased risk of SIM was predicted for carriers of the rs4149056 C allele among simvastatin-treated patients,
whereas carriers of the GATM rs9806699 A allele among rosuvastatin-treated patients had a lower risk of SIM.
Conclusion The meta-analysis revealed that the rs4149056 and rs4363657 SNPs in SLCO1B1 and the rs9806699 SNP inGATM
are correlated with the risk of SIM.

Keywords Meta-analysis . Single-nucleotide polymorphism .Mitochondrial myopathy . Hydroxymethylglutaryl-CoA reductase
inhibitor

Introduction

Statins act as inhibitors of the enzyme 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby
competitively inhibiting the synthesis of endogenous choles-
terol. Although modern proprotein convertase subtilisin/kexin
type 9 (PCSK9) serine protease inhibitors can also be used to

lower serum lipid levels, statins are still widely used in clinical
treatment, since they are well-tolerated and improve the con-
dition of patients with cardiovascular disease [1]. However,
the prolonged use of statins may result in statin-induced my-
opathy (SIM), myalgia, and life-threatening rhabdomyolysis.
The clinical manifestations of SIM include acute or chronic
muscle pain, myasthenia, and elevated levels of creatine ki-
nase (CK) in asymptomatic patients. The potential pathogenic
mechanism underlying the emergence of SIM includes cho-
lesterol deficiency, decreased stability and permeability of the
myocyte membrane, coenzyme Q10 deficiency leading to
dysfunctional mitochondrial respiration and energy genera-
tion in myocytes, and decreased synthesis of isozymes
resulting in enhanced risk of muscle toxicity [2, 3].
However, the occurrence of SIM varies among individuals
depending on drug tolerance, underlying health conditions,
and genetic factors. On average, SIM affects 1 in 1000 patients
undergoing statin treatment. As a consequence, SIM is the
major reason for non-adherence to and/or discontinuation of
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statin treatment, which results in adverse cardiovascular out-
comes [4].

The genetic factors associated with SIM have been widely
studied. In particular, single-nucleotide polymorphisms
(SNPs) in some genes have been reported to affect SIM inci-
dence. For instance, SNP-dependent dysfunction of solute
carrier organic anion transporter family member 1B1
(SLCO1B1 or OATP1B1), a major transporter of statins in-
volved in drug detoxification in the liver, is one of the factors
influencing the specific efficacy and side effects of statins in
different individuals. Additionally, SNPs in genes involved in
drug metabolism, such as cytochrome P450 family genes
(CYPs), COQ2, and ABCB1, have been reported to be associ-
ated with SIM [5]. However, these studies are limited and still
inconclusive.

Our previous meta-analysis indicated that the SLCO1B1
T521C polymorphism is correlated with a markedly higher
risk of SIM, especially upon treatment with simvastatin,
rosuvastatin, and cerivastatin [6]. Moreover, the results of oth-
er meta-analyses were consistent with our findings [7].
However, another meta-analysis revealed that COQ2
rs4693075 is not correlated with SIM [8]. Similarly, another
study reported that there was no significant correlation be-
tween the ABCB1 C3435T polymorphism and SIM, but that
SIM risk was increased in patients using statins for longer than
5 months [9]. Most of these meta-analyses focused on one or
two SNPs and used a random-effect or fixed-effect model
according to the results of a homogeneity test. To overcome
such limitations, in this study, we employed a mixed-effects
model that could decompose the random error term into the
corresponding level of the hierarchical structure. Furthermore,
this model allowed to examine factors affecting the heteroge-
neity among the considered studies. Therefore, to comprehen-
sively analyze current evidence of the correlation between
genetic polymorphisms and the risk of developing SIM upon
treatment with various statin types, we systematically
screened the literature to include all reported genetic polymor-
phisms related to SIM and different types of statins.

Methods

Data source, search strategy, and study selection

This study was conducted according to the Meta-analysis of
Observational Studies in Epidemiology (MOOSE) guidelines
[10]. Two authors searched the literature through the PubMed,
Embase, and Cochrane Library databases for studies pub-
lished in English from inception to April 2019. The following
terms were used in the search strategy: statin, statins, myalgia,
myopathy, muscle injury, muscle pain myalgias, rhabdomy-
olysis, myotoxicity, polymorphism, SNP, genetic, mutation,
variation, allelic, allele, and genotype. The details of the

search strategy in PubMed are shown in Table S1. The refer-
ence lists of the retrieved studies and relevant reviews were
also manually searched to obtain potentially new eligible
studies.

Studies were included in the meta-analysis if they belonged
to one of the following categories: (1) Case-control or cohort
studies comparing patients developing SIM and patients
exhibiting statin tolerance (no myopathy) after statin treat-
ment; (2) studies assessing the correlation between genetic
polymorphisms and risk of SIM; and (3) studies reporting
the frequencies of specific alleles or the effect sizes of indi-
vidual genotypes between SIM cases and controls. The exclu-
sion criteria for the meta-analysis were set as follows: (1)
Studies designed as case series; (2) studies not involving
SIM; (3) studies using the healthy population as control group;
(4) studies not involving SNPs; and (5) studies that did not
report allelic frequencies or effect sizes. Additionally, reviews,
case reports, and family genetic studies were excluded.

Data extraction and quality assessment

Two authors independently extracted the following data from
the studies included in the meta-analysis: first author’s name,
publication year, study location, study design, sample size and
age, purpose of steroid treatment, types of statins employed,
and genes of interest. The Newcastle-Ottawa Scale (NOS) was
used to evaluate the quality of the included studies [11].
Through the NOS, it is possible to assign a rating to a study
according to its scores in the following three categories: selec-
tion (four items, four stars), comparability (one item, two
stars), and exposure (three items, three stars). The study qual-
ity was assessed by two authors, and any disagreement was
resolved by another author after perusal of the original article.

Statistical analysis

Deviations of allele frequencies from Hardy-Weinberg equi-
librium (HWE) were tested to assess the consistency of allele
frequencies between subgroups of the included population
[12]. Correlation analysis was performed using five genetic
models: allelic (M vs W), dominant (MM + WM vs WW),
recessive (MM vsWM +WW), heterozygous (WM vsWW),
and homozygous (MM vs WW), where W represents the ma-
jor (wild-type) allele and M represents the minor (mutant-
type) allele [13]. The odds ratio (OR) and its 95% confidence
interval (CI) were calculated to estimate pooled effect sizes,
while heterogeneity across the included studies was assessed
by I2 statistic. A random-effect model was applied to calculate
the pooled effect size when I2 ≥ 50%, otherwise fixed-effect
models were used. Subgroup analyses were performed with
respect to the country-specific population if data were obtain-
ed from more than three studies. In addition, a meta-analysis
using a mixed-effects model was conducted to assess the
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potential impacts of specific types of statins and SNPs on the
risk of developing SIM. Publication biases for the investigated
SNPs were assessed using two-tailed Egger’s and Begg’s
tests. A p value of 0.05 was considered a threshold for statis-
tical significance. The STATA software (version 10.0; Stata
Corporation College Station, TX, USA) was employed for all
statistical analyses in this study.

Results

In total, 1457 studies were identified from the various data-
bases. Among these, 1379 studies were excluded after screen-
ing of the title and abstract. The full text of the remaining 78
articles was then examined. During the full-text screening
process, the following number of studies were excluded based
on the following exclusion criteria: case-control studies not
related to SIM (n = 22); studies lacking data on the number
of SNP carriers or on effect size in each group (n = 7); studies
that used the healthy population as control group (n = 6);
reviews (n = 6); case reports (n = 2); conference articles (n =
2); and duplicated research (n = 1). Finally, 32 studies exam-
ining a total of 21,692 patients undergoing statin treatment
were included in our analysis [14–45] (Table 1, Fig. 1).

The studies included in the meta-analysis were published
between 2005 and 2018. Additionally, the test populations in
these studies were from Europe and North America. All stud-
ies were designed as case-control studies, except for one ret-
rospective study [38]. The average age of the patients was
generally between 50 and 70 years. However, three studies
did not specify the age of the patients [24–26]. The statins
used in these studies were mainly simvastatin, rosuvastatin,
pravastatin, atorvastatin, lovastatin, fluvastatin, pitavastatin,
and cerivastatin. The NOS scores of the included studies were
7–9 points. Hence, the overall quality of the considered obser-
vational studies was ideal for our meta-analysis (Table 1).

In this study, we comprehensively analyzed the following
SNPs: rs4149056, rs2306283, and rs4363657 in SLCO1B1;
rs1045642 and rs2231142 in ABCB1; rs4693075 in COQ2;
rs776746 in CYP3A5; and rs9806699, rs1719247, and
rs1346268 in GATM. Each of these SNPs was examined in
more than three studies included in the analysis. The effect of
each SNP on SIM in each model is summarized in Table S2.
For this analysis, we did not distinguish the effects of statins
based on their type.

The analysis of heterozygous (OR: 1.51; 95% CI:
1.08–2.13; p = 0.017), homozygous (OR: 2.65; 95% CI:
1.43–4.92; p = 0.002), dominant (OR: 1.63; 95% CI:
1.16–2.29; p = 0.005), and recessive models (OR: 2.19;
95% CI: 1.33–3.61; p = 0.009) of SLCO1B1 rs4149056
showed that this SNP is associated with an increased risk
of SIM. However, there was no significant correlation
between this mutation and risk of SIM in the allelic model

(OR: 1.34; 95% CI: 0.98–1.83; p = 0.069). On the con-
trary, the analysis of heterozygous (OR: 0.87; 95% CI:
0.76–1.00; p = 0.048) and dominant models (OR: 0.87;
95% CI: 0.76–0.99; p = 0.030) of SLCO1B1 rs4363657
revealed that the presence of the C allele decreases the
risk of SIM. There were no other significant correlations
between SNPs and the risk of SIM (Table 2). In addition,
subgroup analysis of the UK and US populations revealed
that heterogeneity was not reduced with respect to the
general population. However, we observed a significant
correlation between rs4149056 and the risk of SIM in
the UK population, whereas no significant correlation
was found in the US population. Subgroup analysis was
not performed for the other SLCO1B1 SNPs because of
the limited number of studies that reported these SNPs in
each country (Table 2).

Due to the complexity of population characteristics in
each included study, we analyzed the impact of different
statin types and genetic polymorphisms on the risk of
SIM using a mixed-effects model. In this analysis, we
mainly included studies examining the effects of simva-
statin, rosuvastatin, and atorvastatin. The other types of
statins were not included as the respective studies did
not separately report the results relative to those statins.
The results of the analysis based on statin type are report-
ed in Table 3. Within the simvastatin-treated population,
the carriers of the mutation (TC/CC) responsible for the
SLCO1B1 rs4149056 SNP exhibited a greater risk of SIM
when compared to the wild-type population (OR: 3.10;
95% CI: 2.11–4.55; p < 0.001). Similar results were ob-
tained when analyses were conducted separately for het-
erozygote (TC) carriers vs wild-type population (OR:
2.80; 95% CI: 1.81–4.31; p < 0.001) and homozygote
(CC) carriers vs wild-type population (OR: 9.27; 95%
CI: 4.04–21.22; p < 0.001). Interestingly, the rs4149056
SNP in heterozygote carriers within the rosuvastatin-
treated population was associated with a reduced risk of
SIM (OR: 0.82; 95% CI: 0.70–0.95; p = 0.012) (Table 3).
However, this may be due to the greater heterogeneity and
to the smaller number of studies dealing with these fac-
tors. In particular, this significant correlation could be
biased towards the study conducted by Bai et al. [14],
which included a large number of individuals carrying
the rs4149056 SNP in the rosuvastatin-treated population.
Additionally, GATM rs9806699 (mutant A allele) carriers
within the rosuvastatin-treated population exhibited a low-
er risk of SIM when compared to the wild-type population
(OR: 0.37; 95% CI: 0.17–0.78; p = 0.009). Similar results
were obtained when the analyses were conducted sepa-
rately for heterozygote carriers vs wild-type population
(OR: 0.36; 95% CI: 0.17–0.76; p = 0.007) and homozy-
gote carriers vs wild-type population (OR: 0.36; 95% CI:
0.18–0.72; p = 0.004) (Table 3).
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Discussion

This study analyzed the correlation between genetic polymor-
phisms and risk of SIM within the statin-treated population
using SNPs that had been reported in more than three studies.
The analysis included 10 SNPs in five genes. Additionally, we
performed a subgroup analysis in different populations and
analyzed the impact of different statin types and genetic poly-
morphisms on the risk of SIM. The summary OR of the het-
erozygous, homozygous, dominant, and recessive models in-
dicated a positive correlation between the nonsynonymous
rs4149056 mutation in SLCO1B1 and SIM incidence.
Conversely, the rs4363657 SNP, which exhibited nearly com-
plete linkage disequilibrium with the rs4149056 SNP [39],
was correlated with reduced SIM incidence in the heterozy-
gous and dominant models. On the contrary, the rs1045642

SNP in ABCB1; the rs4693075 SNP in COQ2; the rs776746
SNP in CYP3A5; and the rs9806699, rs1719247, and
rs1346268 SNPs in GATM were not correlated with the risk
of SIM when the effects of all statins were analyzed together.
However, when the analysis was stratified based on statin
type, we observed that rs4149056 C carriers within the
simvastatin-treated population presented an increased risk of
SIM when compared to that within the wild-type population.
Furthermore, GATM rs9806699 A carriers within the
rosuvastatin-treated population exhibited a reduced risk of
SIM. These findings could provide useful indications for the
treatment of individuals carrying certain genetic polymor-
phisms with specific statins, in order to avoid excessive SIM
risk.

The effect of the rs4149056 SNP in SLCO1B1 on the risk
of SIM was consistent with previous meta-analyses [6, 7],

Fig. 1 Details of the processes of literature search and study selection
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although this was not confirmed by the allelic model. This
could depend on the fact that, compared with the other
models, our allelic model included three more studies from
Saudi Arabia, the USA, and Italy [16, 33, 37]. However, these
three studies did not report the frequencies of each genotype
and hence were not considered in the other models. Moreover,
subgroup analysis revealed no significant correlation between
rs4149056 and SIM risk in the US population, which was
included in our allelic model and in the study reported by
Marciante et al. [33]. This study also included a large sample
size (n = 917) in which the experimental group was treated
with cerivastatin, whereas the control group was treated with
lovastatin, simvastatin, atorvastatin, and pravastatin.
Additionally, less than 1% of patients received cerivastatin.
Therefore, the non-significant correlation that we observed
may be due to the small number of studies included in the
analysis and to the unbalanced experimental setup of the study
conducted byMarciante et al. [33]. Moreover, the effect of the
SLCO1B1 rs4149056 SNP on the risk of SIM varied

according to the statin type. This phenomenon could be due
to SNP-dependent altered transport activity of the organic an-
ionic transporter SLCO1B1, possibly mediating the absorp-
tion of statins in hepatocytes [39, 46, 47].

Interestingly, the GATM rs9806699 A carriers within the
rosuvastatin-treated population protected against the risk of
SIM. This may be due to the involvement of the GATM gene
in the energy metabolism of skeletal muscles [48]. Indeed, the
A allele of GATM has been correlated with lower expression
ofGATM, which is responsible for creatine synthesis and thus
provides a major energy source in skeletal muscles [24].
Therefore, the GATM A allele could induce attenuation of
cellular metabolism and, consequently, diminish the energy-
storing capacity of myocytes [24]. However, the cases in
which GATM rs9806699 A carrier patients were treated with
other types of statins were not addressed in this meta-analysis,
since data were obtained from less than three studies.

In summary, our meta-analysis revealed that the 10 SNPs
in five genes and nine statin types are correlated with the risk

Table 3 Analysis of statin types and gene polymorphisms on risk of statin-induced myopathy (SIM) by multilevel mixed-effects logistic regression
model

Genes SNPs Statin type Model# Comparisons No. of studies Sample size OR LCI UCI p value

SLCO1B1 rs4149056 Atorvastatin Recessive model TCCC vs TT 4 545 1.22 0.76 1.96 0.413

Heterozygous model TC vs TT 4 545 1.63 0.57 4.67 0.361

Homozygous model CC vs TT 4 545 1.21 0.12 11.90 0.873

Simvastatin Recessive model TCCC vs TT† 4 573 3.10 2.11 4.55 < 0.001

Heterozygous model TC vs TT 4 573 2.80 1.81 4.31 < 0.001

Homozygous model CC vs TT 4 573 9.27 4.04 21.22 < 0.001

Rosuvastatin Recessive model TCCC vs TT 3 4394 0.89 0.77 1.03 0.126

Heterozygous model TC vs TT 3 4394 0.82 0.70 0.95 0.012

Homozygous model CC vs TT 3 4394 1.33 0.90 1.97 0.153

SLCO1B1 rs2306283 Atorvastatin Recessive model AGGG vs AA 2 380 0.77 0.38 1.57 0.477

Heterozygous model AG vs AA 2 380 0.62 0.23 1.65 0.338

Homozygous model GG vs AA 2 380 1.17 0.46 2.95 0.741

Rosuvastatin Recessive model AGGG vs AA 2 842 0.93 0.32 2.72 0.895

Heterozygous model AG vs AA 2 842 0.79 0.25 2.42 0.674

Homozygous model GG vs AA 2 842 1.02 0.34 3.03 0.969

CYP3A5 rs776746 Atorvastatin Heterozygous model AG vs AA 3 416 3.12 0.84 11.60 0.089

Homozygous model GG vs AA 3 416 3.42 0.95 12.41 0.061

Simvastatin Heterozygous model AG vs AA 3 221 1.62 0.30 8.77 0.573

Homozygous model GG vs AA 3 221 1.95 0.37 10.17 0.427

CYP2D6 rs3892097 Simvastatin Recessive model any*4 vs *1*1 2 192 1.51 0.84 2.73 0.168

GATM rs9806699 Rosuvastatin Heterozygous model GA vs GG 2 839 0.37 0.17 0.78 0.009

Homozygous model AA vs GG 2 839 0.36 0.17 0.76 0.007

Recessive model GAAA vs GG 2 839 0.36 0.18 0.72 0.004

LCI, lower confidence intervals; OR, odds ratio; SNP, single-nucleotide polymorphism; UCI, upper confidence intervals

†Characters in the table indicate that the p value is less than 0.05

#Allelic (W vs M), dominant (WW + WM vs MM), recessive (WW vs WM + MM), heterozygous (WM vs MM), and homozygous (WW vs MM)
models, in which W represents the major wild-type allele, and M represents the minor mutant-type allele
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of SIM. However, subgroup analysis based on the country-
specific population was conducted only for the rs4149056
SNP of SLCO1B1. On the contrary, stratified analyses based
on the statin type were performed only for the rs4149056 and
rs2306283 SNPs of SLCO1B1, the rs776746 SNP ofCYP3A5,
the rs3892097 SNP of CYP2D6, and the rs9806699 SNP of
GATM, since a smaller number of studies investigated the
remaining SNPs and those results needed further verification.

This meta-analysis is characterized by several strengths: (1)
This meta-analysis provides comprehensive analysis of SNPs
reported in more than three studies associated with the risk of
SIM; (2) the results of a mixed-effects model were calculated
to avoid random error; and (3) the analysis was based on a
large sample size, and therefore, the results of this meta-
analysis are more robust than those of each individual study.
However, there are also several limitations in this meta-anal-
ysis. Indeed, this analysis was conducted at the study level, but
not at the individual level, and did not include non-English
literature, possibly resulting in data insufficiency.
Furthermore, a mixed-effects model was used in this study,
and hence, the effects of country location, patient’s clinical
status, drug dose, and follow-up time on the outcome of statin
treatment are still unclear. Moreover, since the analyses of this
study were conducted on SNPs reported in more than three
studies related to SIM, some key SNPs may have been
overlooked if they had not been studied extensively. In addi-
tion, stratified analysis was conducted based on the country-
specific population since most studies did not report the spe-
cific ethnic background of the patients. Finally, the results of
stratified analyses were not conclusive because of the small
number of included studies relative to numerous subgroups.
Therefore, our study was mainly limited by the number of
studies available at the time of analysis.

In conclusion, the rs4149056 SNP of the SLCO1B1 gene is
correlated with an increased risk of SIM. On the contrary, the
heterozygous and dominant models of SLCO1B1 rs4363657
showed that this SNP may protect against the risk of SIM.
Additionally, the correlation of SLCO1B1 rs4149056 and
GATM rs9806699 with the risk of SIM may depend on the
use of simvastatin and rosuvastatin, respectively. A large-
scale study should be conducted in the future to verify these
findings and evaluate whether these correlations are influ-
enced by the genetic or physiological characteristics of the
patient.
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