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Abstract
Purpose Tigecycline is one of few antibiotics active against multidrug-resistant bacteria; however, the assessment of dosing strategies
to optimize its activity is needed. The purpose was to use Monte Carlo Simulation (MCS) to determine if safe tigecycline dosing
options attaining breakpoints for pharmacokinetic/pharmacodynamic (PK-PD) targets in non-critically ill adults could be identified.
Methods Publications that evaluated tigecycline dosing regimens and provided mean PK variables of interest (minimum 2 of:
elimination rate constant or half-life and volume of distribution or clearance), with SDs, were included. Weighted mean (±SDs)
for each PK parameter were determined. Food and Drug Administration minimum inhibitory concentration (MIC) tigecycline
breakpoints for susceptible (MIC ≤ 2 μg/mL), intermediate (MIC 4 μg/mL), and resistant (MIC ≥ 8 μg/mL) Enterobacteriaceae
were used. MCS probability distributions for PK-PD target attainment of AUC for total tigecycline plasma concentration from 0
to 24 h following an intravenous dose (AUCtotal, 0-24h) toMIC ratios of ≥ 18, 7, and 4.5 were generated, with success defined as ≥
80% probability of target attainment at a given MIC.
Results Ten studies (n = 442) were eligible. Tigecycline 150 mg IV q12h for ward patients with resistant bacteria up to a MIC of
0.48, 1, and 2 μg/mL for an AUCtotal, 0-24h/MIC target attainment of 18, 7, and 4.5, respectively, may be appropriate.
Conclusion Bacterial infections with tigecycline MICs ≥ 0.48–2 μg/mL, depending on AUCtotal, 0-24h/MIC target, may require
treatment with alternate antibiotics due to target attainment failure.
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Introduction

Worldwide, over 700,000 patients die annually from infections
caused by multidrug resistant (MDR) pathogens (resistance to 3
or more potentially useful antibiotics), with millions more suf-
fering from serious complications [1]. By 2050, an estimated 10
million patients will die annually due to antimicrobial resistance
[2], a number which will surpass deaths due to cancer, diabetes,
and automobile accidents [1]. The most common resistant path-
ogens are Enterococcus faecium, Staphylococcus aureus,
Clostridium difficile, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacteriaceae species [3–5]. Several
global strategies have been developed to combat the concerning
trend of antimicrobial resistance, including increased epidemio-
logical surveillance, appropriate antimicrobial use in human and
animals, enhanced infection prevention, development of new
therapies, and optimizing dose regimens using patient popula-
tion pharmacokinetics and microbial pharmacodynamics [1].
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Clinicians are often confronted with the challenge of ap-
propriately choosing and dosing antibiotics for extensive
drug-resistant pathogens based on limited clinical data and/
or significant toxic effects while trying to meet the
pharmacokinetic/pharmacodynamic (PK-PD) targets that
maximize bacterial killing and clinical cure [1, 6]. Monte
Carlo simulation (MCS) is a recognizedmethod for evaluating
the probability of success with different antibiotic dosing strat-
egies, where known PK-PD targets associated with improved
clinical and microbiological outcomes are input as the surro-
gate marker for success [6].

Increased resistance to currently available antibiotics forces
clinicians to treat highly resistant infections with relatively
ineffective and/or toxic second-line agents, such as tigecycline
or polymyxins [7, 8]. Tigecycline has been approved to treat
various infections, including complicated skin and skin struc-
ture infections (cSSSI), complicated intra-abdominal infec-
tions (cIAI), and community-acquired pneumonia (CAP).
Tigecycline is a bacteriostatic agent that exhibits time-
dependent killing, where the ratio of the area under the
concentration-time curve for total tigecycline concentration
from 0 to 24 h (AUCtotal, 0-24h) to minimum inhibitory con-
centration (MIC) (AUCtotal, 0-24h /MIC) is most predictive of
clinical and microbiological cure [9]. The AUCtotal, 0-24h /MIC
(or corresponding AUCfree, 0-24h /MIC) targets for tigecycline
vary depending on the type of infection, skin infections (≥
17.9), intra-abdominal infections (≥ 6.96), and hospital-
acquired pneumonia (HAP) (≥ 4.5 or with a free fraction of
0.2, area under the concentration-time curve for free tigecyc-
line concentration from 0 to 24 h (fAUC0-24h)/MIC ≥ 0.9)
[9–11].

Tigecycline has activity against a broad range of
antibiotic-susceptible and resistant gram-positive bacteria
(GPB), anaerobes, atypical bacteria, and MDR gram-
negative bacteria (GNB). It is one of the few available
antibiotics with antimicrobial activity against MDR GNB;
however, there are limitations with its use [12–17] and
resistance rates as high as 50% have been reported [7].
Therefore, tigecycline is by no means an optimal antibiot-
ic. Tigecycline is one of the few antibiotic alternatives for
MDR bacteria; however, assessment of dosing strategies to
optimize its antibiotic activity is needed.

Acinetobacter baumannii is one of the critical priority bac-
teria identified by the World Health Organization for which
optimal antibiotic therapy is lacking and tigecycline may be an
option for treatment [18]. For this reason, the tigecycline MIC
profile for this species was selected in this study as the proto-
type to reflect MDR GNB susceptibility. Ward patients with
no renal or hepatic impairment were selected for study, since
this was the only patient population for which a reasonable
number of tigecycline PK-PD studies have been published to
allow determination of more robust weighted pharmacokinet-
ic mean values to input into MCSs (Fig. 1).

The objective of this study was to use MCS to evaluate
different potential tigecycline dosing strategies to determine
if safe dosing options could be identified that would attain
practical numerical breakpoints for the tigecycline PK-PD tar-
gets (AUCtotal, 0-24h /MIC ≥ 18, 7, or 4.5) in adult normal
volunteer and ward patients who were not on any dialysis
mode and did not have end-stage renal disease (ESRD) or
hepatic dysfunction.

Methods

Data collection

A literature search of Medline (Ovid; 1946 –December 2019)
was conducted using the terms “tigecycline,” “pharmacoki-
netic,” “adult,” and “human” to identify tigecycline

Fig. 1 Study Selection. aTigecycline pharmacokinetic studies that were
excluded because they did not contain a minimum of 2 required
pharmacokinetic values to perform Monte Carlo simulations: healthy
patients (n = 3), pneumonia (n = 2), liver impairment (n = 2), critically
ill (n = 1), obesity (n = 1), intra-abdominal infection and skin and soft
tissue infection (n = 1), skin and soft tissue infection (n = 1), and acute
myeloid leukemia (n = 1); no pharmacokinetic studies in patient popula-
tions other than adult normal volunteer and ward patients who were not
on any dialysis mode and did not have end-stage renal disease (ESRD) or
hepatic dysfunction contained the required pharmacokinetic data
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pharmacokinetic (PK) and pharmacodynamic (PD) parame-
ters (Fig. 1). Studies were included if they evaluated clini-
cally relevant tigecycline dosing regimens and provided
mean PK variables of interest (at minimum 2 of: elimina-
tion rate constant (k−1) or half-life (t1/2) and volume of
distribution (Vd) or clearance (CL)), with corresponding
standard deviations (SD)). Of 86 identified studies, 9 stud-
ies in adult healthy volunteers (n = 426) [15, 16, 19–25] and
one study in adult patients with chronic wound infection
(n = 16) [26] provided relevant data for study inclusion
(Fig. 1). Study characteristics and steady-state mean phar-
macokinetic data (k−1, t1/2, Vd, CL, and AUCtotal, 0-24h),
along with SD around the values, were extracted from eli-
gible studies into a Microsoft Excel 2010 Workbook
(Appendix A), and weighted mean and SDs for each
parameter were determined.

Data analysis

Since there are no Clinical and Laboratory Standards Institute
(CLSI) Acinetobacter spp. MIC breakpoints for tigecycline
[27], CLSI recommends that the Food and Drug
Administration (FDA) [17, 28] breakpoints for susceptible
(MIC ≤ 2 μg/mL), intermediate (MIC 4 μg/mL), and resis-
tant (MIC ≥ 8 μg/mL) Enterobacteriaceae be used.
Therefore, these were the MIC breakpoints used in this
s tudy. Inst i tu t ional Acinetobacter spp. MICs at
Sunnybrook Health Sciences Centre (SHSC) were not
available at the time of the study for tigecycline; therefore,
the percent of tigecycline resistant isolates at the study hos-
pital could not be determined.

The weighted mean PK parameters (k−1, Vd (L/kg) and pa-
tient weight (kg)) from the eligible studies and a range of MICs
were input to perform MCSs (Crystal Ball v11.1.2.4.000).

MCS probability distributions (1 million iterations) for PK-
PD target attainments of AUCtotal, 0-24h/MIC ratios of ≥ 18, 7,
and 4.5 and the number of times the steady-state concentration
(Css) was above the MIC were generated for several tigecyc-
line dosing strategies. The MCS inputs were a log-normal dis-
tribution for the weighted means of the one compartment mod-
el tigecycline k−1 ± SD and Vd ± SD, a normal distribution of
the weighted mean ± SD for patient weight and MIC inputs
ranging from 0.06 to 18 μg/mL (0.06 μg/mL, 0.12 μg/mL,
0.24 μg/mL, 0.48 μg/mL, 0.96 μg/mL, 1 μg/mL, 2 μg/mL,
4 μg/mL, 6 μg/mL, 8 μg/mL, 10 μg/mL, 12 μg/mL, 14 μg/
mL, 16 μg/mL, and 18 μg/mL). Using these inputs, MCS
probability distributions for the PK-PD targets were deter-
mined for intermittent infusion dosing regimens of 50 mg
IV q12h, 75 mg IV q12h, 100 mg IV q12h, 125 mg IV q12h,
and 150 mg IV q12h infused over 0.5 h and continuous
infusion dosing regimens of 100 mg and 300 mg IV q24h
infused over 24 h. The corresponding MCS probability of
target attainment was determined for each aforementioned
MIC value with each dosing regimen. A potentially suc-
cessful regimen was defined as one in which the probability
of attaining the target AUCtotal, 0-24h/MIC was at least 80%
at a given MIC for ward patients who were not on any
dialysis mode and did not have ESRD or hepatic
dysfunction.

Results

Pharmacokinetic data

Patient population-specific weighted means and SDs were de-
termined from all studies in normal volunteer and ward pa-
tients who were not on any dialysis mode and did not have

Table 1 Summarized weighted
pharmacokinetic parameters Parameter Healthy subjects

(N = 442, # studies = 10)

Patient weight kg (n = 199) 80.37 ± 7.11

Elimination rate constant (k) h−1 (n = 397) 0.0296 ± 0.0150

Volume of distribution (Vd) L/kg (n = 307) 8.70 ± 3.44

Clearance (CL) L/h/kg (n = 307) 0.29 ± 0.06

Biliary Excretion (%) (n = 12) 58.60 ± 0.04

Urinary Excretion (%) (n = 44) 20.25 ± 0.03

Pharmacokinetic parameters for multiple dose tigecycline 50 mg iv q12h (N = 171, # studies = 6) a

Peak concentration (Cmax,ss) mg/L (n = 163) 3.40 ± 5.61

Trough concentration (Cmin,ss) mg/L (n = 60) 3.25 ± 3.15

Peak time (Tmax) h (n = 110) 2.46 ± 2.25

Mean Area Under the Concentration Curve (AUCtotal, 0-24h) mg*h/L (n = 144) 59.77 ± 106.83

a: Data reflect total plasma or serum concentrations
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ESRD or hepatic dysfunction (n = 442, total of 10 studies)
(Table 1). Weighted means and SDs for dose-dependent PK
parameters (i.e. steady state peak and trough concentrations,
time for peak concentration, and AUCtotal, 0-24h) are also de-
tailed in Table 1 for 50 mg IV q12h dosing (n = 171, total of 6
studies). All included studies provided only one compartment
model pharmacokinetic data.

Monte Carlo simulation analyses

The probability of attaining a target AUCtotal, 0-24h/MIC rela-
tive to a variety ofMICs with different tigecycline intermittent
infusion dosage regimens is shown for an AUCtotal, 0-24h/MIC
of 18 (Fig. 2), 7 (Fig. 3), and 4.5 (Fig. 4). All dosage regimens
attained all three AUCtotal, 0-24h/MIC targets up to a MIC of
0.12 μg/mL. Intermittent infusion dosing of 125 mg and
150 mg IV q12h both enabled an AUCtotal, 0-24h/MIC target
attainment of ≥ 18 with over 80% probability up to a MIC of
0.48 μg/mL (Fig. 2). When the AUCtotal, 0-24h/MIC target was
dropped to ≥ 7, the intermittent infusion dosing regimens of

100 mg, 125 mg, and 150 mg IV q12h achieved a ≥ 80%
probability of target attainment up to a MIC of 1 μg/mL.
When the AUCtotal, 0-24h/MIC target was 4.5, 150 mg IV
q12h achieved a ≥ 80% probability of target attainment up to
a MIC of 2 μg/mL.

MCS of continuous infusion dosing regimens of 100 mg
IV q24h and 300 mg IV q24h infused over 24 h demonstrated
that these regimens were able to attain at least a concentration
equal to the MIC with a probability of ≥ 80% up to a MIC of
0.12 μg/mL and 0.24 μg/mL, respectively (Fig. 5). Figure 6
and Figure 7 show the probability of attaining a Css of 2 and
3 times above the MIC, respectively, with dosing of 100 mg
and 300 mg IV q24h infused over 24 h at various MIC
thresholds.

Discussion

Using a target probability of success of ≥ 80%, this MCS
study supports the use of intermittent infusion tigecycline

Fig. 2 Probability of AUCtotal, 0-

24h /MIC target attainment of at
least 18 relative to MIC with a
variety of Tigecycline intermittent
infusion dosing regimens.
AUCtotal, 0-24h, area under the total
tigecycline concentration time
profile from 0 to 24 h, IIV, inter-
mittent infusion over 0.5 h, MIC,
minimum inhibitory
concentration

Fig. 3 Probability of AUCtotal, 0-

24h /MIC target attainment of at
least 7 relative to MIC with a va-
riety of Tigecycline intermittent
infusion dosing regimens.
AUCtotal, 0-24h, area under the total
tigecycline concentration time
profile from 0 to 24 h, IIV, inter-
mittent infusion over 0.5 h, MIC,
minimum inhibitory
concentration
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150 mg IV q12h for ward patients with resistant GNB up to a
MIC of 0.48μg/mL, 1 μg/mL, and 2 μg/mL for an AUCtotal, 0-

24h/MIC target attainment of 18, 7, and 4.5, respectively, in
adult normal volunteer and ward patients. Continuous infu-
sion dosage regimens were explored as an alternative to
intermittent dosing to see if the AUCtotal, 0-24h/MIC targets
could be achieved at higher MIC values. Unfortunately,
continuous infusion tigecycline 100 mg and 300 mg IV
q24h only achieved a Css to just meet a MIC of 0.12 μg/
mL and 0.24 μg/mL, respectively. Therefore, continuous
infusion tigecycline does not provide any advantage in
achieving necessary concentrations for higher MICs. In ad-
dition, tigecycline is only stable for 6h at room temperature
in the vial and is relatively unstable after reconstitution,
both of which make the use of continuous infusion tigecyc-
line challenging [12].

Studies have demonstrated that the theoretical tigecycline
MIC breakpoint increases with increasing tigecycline dose [9,
10, 29]. Ni et al. [29] observed that with a target of fAUC0-24h/
MIC > 0.90 (equivalent to AUCtotal, 0-24h/MIC > 4.5), the prob-
ability of target attainment with tigecycline 50 mg IV q12h was

> 99% at aMIC of 0.5μg/mL and decreased to < 10% at aMIC
of 2 μg/mL. At the PK/PD target of fAUC0-24h/MIC > 0.90
(equivalent to AUCtotal, 0-24h/MIC > 4.5), we similarly found
that the probability of target attainment with tigecycline 50 mg
IV q12h was > 95% up to a MIC of 0.5 μg/mL and decreased
to < 25% at a MIC of 2 μg/mL (Fig. 4). Xie et al. [9] assessed a
range of MIC breakpoints (0.004–16 μg/mL) and found that
the target attainment was AUCtotal, 0-24h/MIC ≥ 18, tigecycline
achieved >99% attainment with both 50 mg and 100 mg IV
q12h at a MIC of ≤ 0.25 μg/mL that decreased to 0% and
67.98%, respectively, for a MIC of 0.5 mg/L. When the target
attainment was AUCtotal, 0-24h/MIC of 7, while both tigecycline
50 mg IV q12h and 100 mg IV q12h were able to achieve
100% attainment at a MIC of ≤ 0.5 μg/mL, target attainment
decreased to 96.6% and 12.93%, respectively, for tigecycline
100mg IV q12h and 50mg IV q12h for aMIC of 1μg/mL and
0% target attainment with both regimens for a MIC ≥ 2 μg/mL.
This study [9] used the same AUCtotal, 0-24h/MIC targets and
MIC breakpoints as we explored. Similarly, we found that tige-
cycline 100 mg IV q12h at a MIC of 0.48 μg/mL only had a
69% probability of target attainment for an AUCtotal, 0-24h/MIC

Fig. 4 Probability of AUCtotal, 0-

24h /MIC target attainment of at
least 4.5 relative to MIC with a
variety of Tigecycline intermittent
infusion dosing regimens.
AUCtotal, 0-24h, area under the total
tigecycline concentration time
profile from 0 to 24 h, IIV, inter-
mittent infusion over 0.5 h, MIC,
minimum inhibitory
concentration

Fig. 5 Probability the Css is at
least equal to the MIC with
continuous infusion dosing. CI
continuous infusion without a
loading dose, Css steady-state
concentration, MIC minimum in-
hibitory concentration
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of 18. Our study examined higher tigecycline dosage regimens
than Xie et al. [9], enabling provision of PK-PD target attain-
ment data for other tigecycline dosing regimens at higher
MICs. In another study by Xie et al. [10], it was observed that
tigecycline 150 mg q12h, tigecycline was able to achieve
96.6% target attainment of AUCtotal, 0-24h /MIC of 7 at a MIC
of 4 μg/mL. They recommended the standard dose of tigecyc-
line 50 mg IV q12h as this was able to achieve 97.3% target
attainment of AUCtotal, 0-24h /MIC of 4.5. When the target was
an AUCtotal, 0-24h /MIC of 18, > 90% target attainment was
achieved with tigecycline 200 mg IV q12h, 100 mg IV q12h,
and 50 mg IV q12h for MICs of 2, 1, and 0.5 μg/mL, respec-
tively. Patients in this study were critically ill patients with
severe infections [10]. When using an AUCtotal, 0-24h/MIC at-
tainment of 18, and a dosing regimen of tigecycline 150 mg IV
q12h, Xie et al. [10] demonstrated that tigecycline was effective
up to a MIC of 4 μg/mL. This was different from our results,
which demonstrated that when using an AUCtotal, 0-24h/MIC
target of 18, tigecycline 150 mg IV q12h was only effective
up to a MIC of 0.48 μg/mL in non-critically ill patients. Of
note, Xie et al. [10] also observed that target attainment was
significantly lower for obese patients. The patients had a mean

weight of 69.1 kg in the study by Xie et al. [10], whereas the
patients in our study had a mean weight of 80.37 kg. The
differences in patient weight and population (non-critically ill
vs critically ill) between our study and that of Xie et al. [10]
likely account for the differences in target attainment with the
different tigecycline dosing regimens evaluated.

As the dose of tigecycline increased, the theoretical MIC
breakpoint for which tigecycline treatment is effective im-
proved. Although increasing the dose of tigecycline would
likely increase the success of the regimen, there are gastroin-
testinal dose-limiting side effects that prevent increasing the
dose beyond 300 mg/day, even with the use of an anti-emetic,
such as ondansetron [14–16]. This was a crucial factor when
determining the maximal tigecycline dosing evaluated in this
study.

The FDA tigecycline susceptibility breakpoint against
Enterobacteriaceae is a MIC ≤ 2 μg/mL. However, the dos-
age regimens examined in this study only met the AUCtotal, 0-

24h/MIC target of ≥ 18 up to a MIC of 0.48 μg/mL, which is
significantly lower than the FDA breakpoint. The failure to
meet the PK-PD target for tigecycline at safe and tolerated
dosing regimens up to 150 mg iv q12h in our MCS study

Fig. 7 Probability the Css is 3
times above the MIC with
continuous infusion dosing. CI
continuous infusion without a
loading dose, Css steady-state
concentration, MIC minimum in-
hibitory concentration

Fig. 6 Probability the Css is 2
times above the MIC with
continuous infusion dosing. CI
continuous infusion without a
loading dose, Css steady-state
concentration, MIC minimum in-
hibitory concentration
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may provide evidence of limited clinical success against path-
ogens with MICs above 0.48 μg/mL.

Although no clinical data for tigecycline MICs against
Acinetobacter spp. at SHSC were available at the time of
the study, a North American study [30] showed that the
prevalence of Acinetobacter spp. in North America is still
low and that tigecycline-resistant MIC breakpoints are rare-
ly encountered. Nicolau et al. [30] identified 17 patients
with intra-abdominal infections due to A. baumannii, with
tigecycline MICs ranging from ≤ 0.06 to 2 μg/mL; no iso-
lates had a MIC ≥ 2 μg/mL and only 2 of 17 (11.8%) pa-
tients had a MIC of 2 μg/mL. Given that IAIs need the
highest target AUCtotal, 0-24h/MIC attainment value of 18,
the fact that no MICs were ≥ 2 μg/mL is encouraging for the
use of tigecycline in North America, for at least the near
future.

This study used the largest available dataset of tigecycline
PK values, which was that of normal, healthy patients.
Although other tigecycline MCS studies have been published
[9, 10, 31–34], they were completed in different populations
or in relation to different bacteria and used PK values that
were obtained from a single published study. This study used
weighted PK parameters obtained from the inclusion of 10
eligible studies. Given that the study excluded other patient
populations (e.g., critically ill and burn patients), the results of
the study may not be generalizable to other patient popula-
tions. Selection of a single standard tigecycline dosing regi-
men to optimize PK-PD target attainment is not possible for
all of its therapeutic indications, given the broad range of
AUCtotal, 0-24h/MIC target values for different types of infec-
tion. Although the sample size was large (n = 442),
interpatient variability in the pharmacokinetic values
existed, which may increase the risk of error and variability
in the weighted PK values that were established for adult
ward patients lacking renal or hepatic dysfunction. No data
were available for tigecycline MICs for Enterobacteriaceae
or Acinetobacter spp. at SHSC; therefore, North American
data were relied on to estimate encountered Acinetobacter
spp. at our hospital. However, we modeled a large range of
MICs and provided data for the probability of target attain-
ment with different dosing regimens at specific MICs.
Therefore, if the microbial MIC distribution is known, hos-
pitals could use the data provided in this study to identify
the probability of target attainment with a given dose of
tigecycline. Finally, these results assume that you must
meet the target AUCtotal, 0-24h/MIC attainment value for
clinical cure or microbiological eradication and does not
account for alternative factors or interventions that may
influence patient outcomes, such as source control or com-
bination therapy [35].

This study focused on otherwise healthy patients, since
data was lacking in other patient populations. Studies eval-
uating tigecycline PK-PD target attainment with different

dosage regimens in other populations (e.g. critically ill and
burn patients) are needed. Based on our study observations,
further research focusing on alternative therapeutic options
to tigecycline when the MIC is > 0.48 μg/mL are needed.
Finally, as the dose of tigecycline increased, the theoretical
MIC breakpoint for which tigecycline treatment is effective
improved. Therefore, further research should focus on ways
to overcome gastrointestinal dose-limiting side effects to
increase the likelihood of treatment success.

Conclusion

The results of this MCS study support the use of intermittent
infusion tigecycline 150 mg IV q12h for ward patients with
resistant GNB up to a MIC of 0.48 μg/mL for an AUCtotal, 0-

24h/MIC target attainment of 18, up to a MIC of 1 μg/mL for
an AUCtotal, 0-24h/MIC target attainment of 7, and up to a MIC
of 2 μg/mL for an AUCtotal, 0-24h/MIC target attainment of
4.5. Continuous infusion tigecycline regimens did not offer
an advantage over intermittent infusion tigecycline against
bacteria with higher MICs (> 0.12–0.24 μg/mL). Resistant
GNB infections that are associated with a tigecycline MIC
≥0.48 μg/mL may require treatment with alternate antibi-
otics, based on the failure to attain PK-PD tigecycline
targets.
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