PHARMACOEPIDEMIOLOGY AND PRESCRIPTION



# The association between acid-suppressive agent use and the risk of cancer: a systematic review and meta-analysis

Hyun Jin Song<sup>1,2</sup> · Nakyung Jeon<sup>3</sup> · Patrick Squires<sup>2</sup>

Received: 22 February 2020 / Accepted: 1 June 2020 / Published online: 16 June 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

## Abstract

**Background** Acid-suppressive agents (ASAs) may be associated with cancer; previous studies reported that the risk of cancer with acid suppressants has differed depending on the site of cancer. Here, we conducted a systematic review and meta-analysis of the association between ASA use and the type of cancer risk.

**Methods** MEDLINE, EMBASE, and Cochrane library databases were searched for publications up to the end of September 2019 for MeSH terms and text words related to cancer and ASAs. Studies on the association between ASAs and cancer risk, which included a control group and reported the relative risk of cancer, were included. The inverse-variance random effect model was used to estimate the pooled relative risk (RR) and 95% confidence interval (CI), and subgroup analysis for type of acid suppressants, drug uptake duration, and cumulative doses was performed. Heterogeneity was assessed using the  $I^2$  test and Q statistic.

**Results** Thirty-nine cohort and case–control studies were included. ASA use was found to be significantly associated with a 46% higher risk of gastric cancer (RR, 1.46; 95% CI, 1.18–1.80) and a 53% higher risk of liver cancer (RR, 1.53; 95% CI, 1.31–1.78) compared with nonuse; however, there was no significant association for esophageal, colorectal, pancreatic, lung, breast, prostate, and kidney cancer; melanoma; and lymphoma.

**Conclusions** ASAs were significantly associated with an increased risk of gastric and liver cancer; therefore, special attention of ASA use considering the potential risk of gastric and liver cancer is needed.

**Keywords** Acid-suppressive agent  $\cdot$  Cancer  $\cdot$  Proton pump inhibitor  $\cdot$  Histamine 2-receptor antagonist  $\cdot$  Systematic review  $\cdot$  Meta-analysis

Hyun Jin Song and Nakyung Jeon contributed equally to this work as first authors.

**Electronic supplementary material** The online version of this article (https://doi.org/10.1007/s00228-020-02927-8) contains supplementary material, which is available to authorized users.

Hyun Jin Song hyunjin.song@cop.ufl.edu

- <sup>1</sup> Department of Pharmaceutical Policy and Outcomes Research, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- <sup>2</sup> Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, HPNP Building Room 2320, 1225 Center Drive, Gainesville, FL 32610, USA
- <sup>3</sup> College of Pharmacy, Chonnam National University, Gwangju, South Korea

## Introduction

Histamine 2-receptor antagonists ( $H_2RAs$ ) and proton pump inhibitors (PPIs), common acid-suppressive agents (ASAs), are the mainstay treatments for gastroesophageal reflux disease (GERD) and peptic ulcer disease (PUD). Both classes of drugs can effectively alleviate patient symptoms and decrease the frequency and duration of gastroesophageal reflux, although through different mechanisms of action [1].

During acid-suppressive therapy, hypergastrinemia, defined as an excessive gastrin level (> 100–150 pg/mL), has been implicated as a potential factor in the pathogenesis of carcinoid, which can subsequently spread to different organs. According to a large population-based study analyzing Surveillance, Epidemiology, and End Results (SEER) data, the most frequent sites for carcinoids were the colon (35.9%); small intestine (32.9%); respiratory system, including the larynx, trachea, bronchi, and lung (25.1%); and stomach (3.2%) for more than 8000 patients with carcinoid tumors [2]. Rare carcinoids were also found in the esophagus (0.04%), liver (0.2%), gallbladder (0.2%), pancreas (0.6%), and female reproductive organs (0.6%). H<sub>2</sub>RAs and PPIs, which inhibit gastrin secretion by decreasing gastric acidity, may cause hypergastrinemia. The association between hypergastrinemia and cancer is well documented in the literature [3–5].

Decreased gastric acidity during acid-suppressive therapy may result in bacterial overgrowth in the gut. Studies have postulated that gastric bacterial overgrowth is predictive of several nongastrointestinal clinical outcomes, including lung and liver disease, and even cancer [6, 7]. For example, small intestinal bacterial overgrowth, defined as bacterial culture of >  $10^5$  CFU/mL in the upper jejunal aspirate, is known to be directly related to the severity of liver disease [8]. Another recent study found that the alteration of gut microbiome occurred at a higher rate in patients with lung cancer compared with that in cancer-free individuals [9].

Considering these mechanisms, ASAs may be associated with cancers, and the results of previous studies regarding this association have differed by the site of cancer [10]. A metaanalysis showed an increased risk of gastric cancer in patients using PPI or H<sub>2</sub>RA, whereas it showed a lack of association between colorectal and pancreatic cancers and long-term PPIs. However, a definitive conclusion could not be made because of the limited studies included [10–12]. In addition, the correlation between PPI use and chronic kidney disease and liver dysfunction has been investigated [10, 13–15]. Thus, pooled estimates combining hazard ratios from each study according to different types of cancer and the use of PPI/H<sub>2</sub>RA are needed. We performed a systematic review and meta-analysis of the association between ASA use and the risk of various types of cancer.

## Methods

### Literature search

The MEDLINE, EMBASE, and the Cochrane library core databases were searched for articles published up until the end of September 2019. We used MeSH terms and text words related to cancer ("neoplasm," "tumor," and "adenoma") and ASAs ("proton pump inhibitor" and "histamine H2 antagonist"). The drug name, brand name, and chemical name of all acid-suppressive agents, including PPIs (omeprazole, esomeprazole, pantoprazole, rabeprazole, lansoprazole, dexlansoprazole, tenatoprazole, and benatoprazole) and H<sub>2</sub>RAs (azacitidine, cimetidine, famotidine, lafutidine, nizatidine, ranitidine, and roxatidine), were used in the search. The details of the search strategy are noted in Supplement Table 1.

#### Study selection

Only studies that met the following criteria were included: (1) the study reported the association between ASAs and the risk of cancer; (2) the study compared at least two independent groups (i.e., ASA receiving group and a nonuse group); (3) the study quantified and reported the relative risk of cancer between groups by calculating parameters, such as the risk ratio (RR), hazard ratio (HR), or odds ratio (OR); (4) the studies were randomized controlled trials, nonrandomized controlled studies, and observational studies; (5) peerreviewed original studies; and (6) English-language studies. Two reviewers independently conducted the study selection, quality assessment, and data extraction (HJS, NJ). Disagreement between the two reviewers was resolved by consensus with the third reviewer (PS). We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines [16], and the study protocol was registered to PROSPERO (CRD42019131274) prior to conducting the study.

#### **Quality assessment**

The quality assessment tool used was the Risk of Bias Assessment for Non-randomized Studies (ROBANS) since we could only include observational studies. ROBANS is a domain-based evaluation tool and is developed using 39 nonrandomized studies in 2013; it shows moderate reliability and validity [17]. It is composed of five items (selection of participants, confounding variables, measurement of intervention, blinding for outcome assessment, and incomplete outcome data) and was assessed at three levels (high, unclear, or low) for each study. We added the item of recall bias as another risk of bias since some of the included studies investigated the use of ASAs using patientreported survey.

### **Data extraction**

We extracted the baseline characteristics, exposures, and outcomes of included studies using the prespecified protocol. The study design, country, study period, number of participants (control/case), mean age, and percentage of male participants were collected. Interventions (PPI/H<sub>2</sub>RA) and outcomes, including relative risk and 95% confidence interval (CI), exposure/follow-up period, and covariates in regression analysis or matching, were also extracted.

#### Data analysis

The primary outcome was the adjusted estimates of the risk of cancer associated with ASAs. We used the best-adjusted relative risks with a 95% CI after controlling the confounding

variables from each included study for the meta-analysis. In the base-case analysis, we prioritized data from groups with any use of ASAs ever, PPI use, prescription drug, long-term follow-up, and the highest cumulative defined cumulative daily drug dose (cDDD), in this order. If the study only reported the relative risk of cancer by subdivision, we used the result of the most common cancer type. For example, the studies of gastric cancer reported the results of both gastric cardia and noncardia adenocarcinoma. We used the gastric cardia adenocarcinoma data in the base-case analysis and performed a subgroup analysis for each type of gastric cancer.

The inverse-variance random effect model was used to estimate the pooled data. Each study reported a different type of relative risk, such as HR, RR, or OR. In the meta-analysis, HRs were considered as RRs [18, 19], and ORs were converted to RRs using the method described by Zhang and Yu [20]. In addition, we performed subgroup analysis according to PPI/H<sub>2</sub>RA use, types of cancer (if possible), drug uptake duration, cDDD, specific subgroup patients (e.g., different types of cancers, patients with Helicobacter pylori, patients with hepatitis B or C virus), and studies of low risk of bias of measurement of intervention (i.e., ASAs taken by both prescription and over-the-counter [OTC]). Heterogeneity was assessed using the  $l^2$  test and Q statistic, with significance of the *Q*-statistic test being considered at P < 0.05. Heterogeneity was considered for  $I^2$  values of more than 50% [21]. The funnel plot was used to estimate possible publication bias owing to the tendency to publish studies with positive results. We used Review Manager 5.3 software (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).

## Results

#### Literature search

Our literature search identified 49,694 articles (Fig. 1). After removal of duplicate articles, title or abstract screening was conducted for 43,585 articles. In the title/abstract review, 39,864 articles were removed and 3682 articles were excluded from the full-text review owing to one of the following reasons: no patients with cancer, no acid-suppressant therapy, ineligible study design, no comparator group available, no outcomes of interest reported, and nonoriginal studies. Finally, 39 studies were included in the systematic review and meta-analysis [22–60].

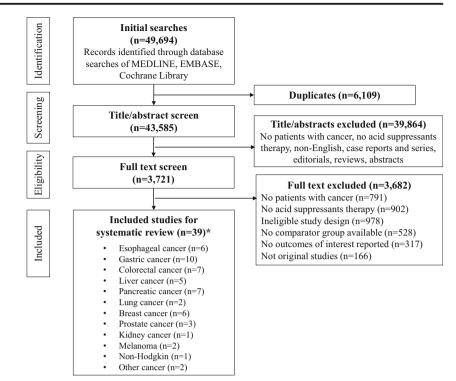
## General characteristics of the included studies

The 39 studies investigated esophageal cancer (n = 6), gastric cancer (n = 10), colorectal cancer (n = 7), liver cancer (n = 5), pancreatic cancer (n = 7), lung cancer (n = 2), breast cancer (n = 6), prostate cancer (n = 3), kidney cancer (n = 1), melanoma

(n = 2), non-Hodgkin lymphoma (n = 1), and other cancers (n = 2). Some studies have included the results of association with more than one cancer; thus, each outcome for different types of cancer, respectively, was analyzed in the metaanalysis of each cancer. There were 30 case–control studies and 11 cohort studies in total, including two cohort studies in the study by Kao et al. and a case–control and a cohort study by Tran et al. (Table 1). The studies were from several countries: the USA, Canada, the UK, Italy, Denmark, Netherlands, Iceland, Taiwan, Hong Kong, and South Korea.

#### **Quality assessment**

The items estimating a low risk of bias with more than 75% were selection of participants, blinding for outcome assessment, incomplete outcome data, and other risk of bias (recall bias) (Fig. 2). The confounding variables and measurement of intervention were assessed as more than 50% of unclear or high risk of bias, because there were studies that only reported crude estimates, and the suitable confounding covariates for the adjusted estimates were not included. ASAs can also be bought as OTC drugs in many countries; thus, we evaluated an unclear risk of bias for the measurement of intervention if the included studies indicated the possibility that the patients assessed were taking OTCs.


#### Acid-suppressive agents and esophageal cancer

Five studies with 15,161 individuals reported that ASAs and the risk of esophageal cancer were not significantly associated (RR, 1.00; 95% CI, 0.77–1.29), with no significant heterogeneity ( $I^2 = 13\%$ , P = 0.33) (Fig. 3a). We did not include the study by Habel et al. in the meta-analysis as they reported the combined relative risk of esophageal and stomach cancer. In the subgroup analysis, both PPI use and H<sub>2</sub>RA use did not show a significant association with esophageal cancer (RR, 0.75; 95% CI, 0.55–1.03 in PPI users and RR, 0.98; 95% CI, 0.72–1.32 in H<sub>2</sub>RA users) (Table 2). The association according to the treatment duration or type of esophageal cancer (adenocarcinoma and squamous cell carcinoma) was also insignificant.

#### Acid-suppressive agents and gastric cancer

Nine studies including 130,074 individuals estimated that ASA users showed a 46% higher risk of gastric cancer compared with that of nonusers (RR, 1.46; 95% CI, 1.18–1.80), with slight significant heterogeneity ( $I^2 = 51\%$ , P = 0.04) (Fig. 3b). There was no evidence of publication bias based on the funnel plot (Fig. 4b). Both PPI use and H<sub>2</sub>RA use were associated with an increased risk of gastric cancer (RR, 1.53; 95% CI, 1.13–2.07 in PPI users and RR, 1.32; 95% CI, 1.08–1.60 in H<sub>2</sub>RA users) (Table 2). The significant association was also

Fig. 1 PRISMA flow diagram of the study selection. \* Some studies have included the results of associations with several different types of cancer



shown in patients with *Helicobacter pylori*. For the group consisting of individuals who used ASAs for 1 year or more/less than 1 year, the subgroup of cardia or noncardia cancer, a significant association with gastric cancer was not shown.

#### Acid-suppressive agents and colorectal cancer

In total, 605,043 individuals in seven studies showed no significant association between ASAs and colorectal cancer (RR, 1.02; 95% CI, 0.91–1.14) (Fig. 3c). We could not detect any evidence for heterogeneity ( $I^2 = 0\%$ , P = 0.74) or publication bias (Fig. 4c). In the subgroup analysis, the results were consistent with those of the base-case analysis: PPI/H<sub>2</sub>RA, drug intake duration of less than 1 year/1 year or more, and fewer than 60 cDDDs/60 cDDDs or more (Table 2).

#### Acid-suppressive agents and liver cancer

Seven cohorts from five studies of the association between ASAs and liver cancer included 809,465 individuals. ASA use was significantly associated with a 53% increased risk of liver cancer compared with nonuse (RR, 1.53; 95% CI, 1.31–1.78) (Fig. 3d). Significant heterogeneity was detected ( $I^2 = 84\%$ , P < 0.001) and there was no evidence of publication bias based on the funnel plot (Fig. 4d). In the subgroup analysis by type of ASAs, there was no significant association between H<sub>2</sub>RA users and the risk of liver cancer, whereas PPIs were significantly associated with liver cancer (Table 2). According to the cDDD, ASA users with 365 DDDs or more and those with less than 365 DDDs did not show a significant

association with the risk of liver cancer. With regard to the type of liver cancer, ASA use associated with an increased risk of hepatocellular carcinoma (RR, 1.40; 95% CI, 1.17–1.68), but not of intrahepatic bile duct carcinoma. PPI use was also associated with the increasing risk of hepatocellular carcinoma in patients with hepatitis B or C virus (RR, 1.45; 95% CI, 1.03–2.03).

#### Acid-suppressive agents and pancreatic cancer

Seven studies including 554,115 individuals demonstrated that the use of ASAs was not significantly related with the risk of pancreatic cancer compared with nonuse (RR, 1.50; 95% CI, 0.92–2.45) (Fig. 3e). Significant heterogeneity was shown ( $I^2 = 84\%$ , P < 0.001), and there was no evidence of publication bias (Fig. 4e). The subgroup analyses of PPI or H<sub>2</sub>RA, drug intake duration, and cDDDs between ASA use and the risk of pancreatic cancer did not show a significant association (Table 2).

#### Acid-suppressive agents and breast cancer

In total, 209,329 individuals were included in six studies to estimate the association between ASAs and breast cancer. ASA use was not significantly associated with the risk of breast cancer (RR, 0.90; 95% CI, 0.80–1.01) with significant heterogeneity ( $I^2 = 86\%$ , P < 0.001) (Fig. 5a). The results of subgroup analyses were consistent with those of the base-case analysis (Table 2).

| Author, year                          | Country                                               | Study design           | Study<br>period | Number of<br>participants<br>(control/case) | Drugs                    | Mean age<br>(SD)/male                         | Exposure/follow-up | Adjustments (matching variables in case-control studies)                                                                                                                                                              | Results (95% confidence interval)                                                                                                                                                                                                       |
|---------------------------------------|-------------------------------------------------------|------------------------|-----------------|---------------------------------------------|--------------------------|-----------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digestive system<br>Esophageal cancer | tem<br>tancer                                         |                        |                 |                                             |                          |                                               |                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                         |
| Suleiman<br>et al., 2000              | UK (                                                  | Case-control 1990-1992 |                 | 56/56                                       | $H_2RA$                  | NA<br>70%                                     | 2 years            | Social class                                                                                                                                                                                                          | Esophageal adenocarcinoma:<br>aRR, 2.56 (0.17–38.09)                                                                                                                                                                                    |
| Tan et al.,<br>2018                   | USA                                                   | Case-control 2004-2011 |                 | 798/300                                     | PPI<br>H <sub>2</sub> RA | 64.8 (9.2)<br>100%                            | 1 year to 3 months | Barrett's diagnosis, smoking, BMI,<br>number of EGDs after Barrett's<br>diagnosis, statin, aspirin, NSAID,<br>H <sub>2</sub> RA/PPI                                                                                   | Esophageal adenocarcinoma<br>• PPI: aOR, 0.59 (0.35–0.99)<br>• H <sub>2</sub> RA: aOR, 0.70 (0.50–0.99)                                                                                                                                 |
| Esophageal/g<br>Duan et al.,<br>2009  | Esophageal/gastric cancer<br>Duan et al., USA<br>2009 | Case-control 1992-1997 | 1992–1997       | 1356/938 (220,<br>277, 441)                 | PPI $H_2RA$              | 58.7 (11.5) to<br>60.0 (9.4)<br>73.5%         | 3 years            | Age, gender, race, BMI, smoke,<br>history of upper gastrointestinal<br>disorders                                                                                                                                      | Esophageal adenocarcinoma:<br>aOR, 1.27 (0.65–2.51)<br>Gastric cardia adenocarcinoma:<br>aOR, 1.29 (0.70–2.36)<br>Distal stomach adenocarcinoma:<br>aOR, 1.15 (0.58–2.29)                                                               |
| Farrow<br>et al., 2000                | USA                                                   | Case-control 1993-1995 | 1993-1995       | 654/760 (194,<br>188, 138,<br>240)          | $H_2RA$                  | NA<br>79.2%                                   | 1 year             | Age, center, sex, cigarette smoking,<br>history of ulcers, BMI, GERD<br>symptom frequency, history of<br>hiatal hernia (esophageal<br>adenocarcinoma), alcohol<br>consumption (esophageal<br>squamous cell carcinoma) | Esophageal adenocarcinoma:<br>aOR, 1.3 (0.6–2.8)<br>Esophageal squamous cell<br>carcinoma: aOR, 0.2<br>(0.04–1.4)<br>Gastric cardia adenocarcinoma:<br>aOR, 0.7 (0.3–1.8)<br>Gastric noncardia<br>adenocarcinoma: aOR, 0.8<br>(0.4–1.7) |
| Habel et al.,<br>2000                 | NSA                                                   | Cohort                 | 1982–1985       | 29,229/4125                                 | Cimetidine               | NA                                            | More than 10 years | Age, gender, pharmacy data source                                                                                                                                                                                     | Esophagus/stomach: aRR, 1.98 (1.27–3.07)                                                                                                                                                                                                |
| García<br>Rodríguez<br>et al., 2006   | NK                                                    | Case-control 1994-2001 | 1994-2001       | 10,000/809<br>(287, 195,<br>327)            | PPI<br>H <sub>2</sub> RA | NA<br>72.0% (case<br>group)                   | More than 3 years  | Age, sex, year, smoking, alcohol<br>consumption, BMI, GERD, hiatal<br>hernia, peptic ulcer, dyspepsia                                                                                                                 | Esophageal adenocarcinoma:<br>aOR, 1.13 (0.75-1.72)<br>Gastric cardia adenocarcinoma:<br>aOR, 1.09 (0.68-1.75)<br>Gastric noncardia<br>adenocarcinoma: aOR, 1.69<br>(1.19-2.41)                                                         |
| Cheung<br>cheung<br>et al., 2018      | Hong Kong Cohort                                      | 5 Cohort               | 2003–2012       | 56,918/139                                  | Idd                      | Median, 54.7<br>(range<br>46.0–65.4)<br>46.5% | More than 3 years  | Age, sex, smoking, alcohol, gastric<br>ulcer, duodenal ulcer, diabetes<br>mellitus, hypertension,<br>dyslipidemia, obesity, ischemic<br>heart disease, atrial fibrillation,<br>congestive heart failure, stroke,      | Gastric cancer: aHR, 2.44<br>(1.42–4.20)<br>• Cardia gastric cancer: aHR,<br>1.97 (0.57–6.82)<br>• Noncardia gastric cancer: aHR,<br>2.59 (1.42–4.72)                                                                                   |

| Table 1 (continued)        | tinued)        |                                    |                                                |                                             |                          |                                                                               |                                                       |                                                                                                                                           |                                                                                                                                      |
|----------------------------|----------------|------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Author, year               | Country        | Study design                       | Study<br>period                                | Number of<br>participants<br>(control/case) | Drugs                    | Mean age<br>(SD)/male                                                         | Exposure/follow-up                                    | Adjustments (matching variables in case-control studies)                                                                                  | Results (95% confidence interval)                                                                                                    |
| Tohnson                    | VSII           | Case control                       | Case control 1088_1002_452/113                 | 511/057                                     | Cimatidine               | <ul> <li>Z</li> </ul>                                                         | and a success                                         | chronic renal failure, cirrhosis,<br>statin, metformin, aspirin,<br>NSAIDs, COX-2 inhibitors,<br>clopidogrel, H <sub>2</sub> RA           | 0 E O D O C AA                                                                                                                       |
| et al., 1996               |                | Case-control                       | 7661-0061                                      | c11/7C4                                     | cumentatione, ranitidine | LAC<br>Case 68%                                                               | 10 years                                              | Ι                                                                                                                                         | (K.C-U(1.U-2.Y))                                                                                                                     |
| La Vecchia<br>et al., 1990 | Italy          | Case-control NA                    | NA                                             | 1501/563                                    | H <sub>2</sub> RA        | Control<br>median 58<br>(23-74),<br>case<br>median 60<br>(27-74)<br>59 7 $\%$ | More than 10 years                                    | Age, sex, area of residence,<br>education, smoking                                                                                        | aRR, 1.8 (1.2–2.8)                                                                                                                   |
| Niikura<br>et al., 2018    | Japan          | Cohort                             | 1998–2017 415/156                              | 415/156                                     | PPI $H_2RA$              | 56%                                                                           | Median follow-up:<br>PPI 1.3 years,<br>H.RA 2 3 years | Age, sex, PPI/H <sub>2</sub> RA, intestinal metaplasia                                                                                    | PPI: aHR, 3.61 (1.49–8.77)<br>H <sub>2</sub> RA: aHR, 2.65 (0.69–10.2)                                                               |
| Poulsen<br>et al., 2009    | Denmark        | Cohort                             | 1990–2003 PPI 18,790<br>H <sub>2</sub> RA 17,4 | PPI 18,790<br>H <sub>2</sub> RA 17,478      | PPI<br>H <sub>2</sub> RA | PPI 62<br>H <sub>2</sub> RA 61<br>46.2%                                       | More than 5 years                                     | Age, gender, calendar period,<br>gastroscopy, NSAIDs, <i>H. pylori</i><br>eradication                                                     | PPI: alRR, 1.2 (0.8–2.0)<br>H <sub>2</sub> RA: alRR, 1.2 (0.8–1.8)                                                                   |
| Tamim<br>et al., 2008      | Canada         | Case-control 1995-2003             |                                                | 12,991/1598                                 | PPI<br>H <sub>2</sub> RA | Control 75.9<br>(8.8), case<br>75.7 (9.3)<br>59.8%                            | 5 years to 5 months                                   | Number of prescriptions to any drug,<br>total length of hospitalization,<br>number of visits to GPs, specialists,<br>and emergency rooms  | PPI and/or H <sub>2</sub> RA: aOR, 1.37<br>(1.22–1.53)<br>• PPI: aOR, 1.46 (1.22–1.74)<br>• H <sub>2</sub> RA: aOR, 1.28 (1.08–1.51) |
| Colorectal cancer          | ncer           |                                    |                                                |                                             |                          |                                                                               |                                                       |                                                                                                                                           |                                                                                                                                      |
| Chubak<br>et al., 2009     | USA            | Case-control 2000-2003             | 2000-2003                                      | 641/641                                     | PPI<br>H <sub>2</sub> RA | 70<br>48.4%                                                                   | NA                                                    | Race, smoking, NSAID, aspirin,<br>PUD, <i>H. pylori</i> infection, diabetes<br>(age, gender, length of enrollment)                        | PPI: aOR, 1.7 (0.8–4.0)<br>H <sub>2</sub> RA: aOR, 0.8 (0.6–1.1)<br>PPI and H <sub>2</sub> RA: aOR, 0.9 (0.5,<br>1.4)                |
| Habel et al.,<br>2000      | NSA            | Cohort                             | 1982–1985                                      | 49,229/4125                                 | Cimetidine               | NA                                                                            | More than 10 years                                    | Age, sex, pharmacy data source                                                                                                            | aRR, 1.12 (0.82–1.52)                                                                                                                |
| Hwang<br>et al., 2017      | South<br>Korea | Cohort                             | 2002–2006                                      | 451,284                                     | Idd                      | NA<br>53.5%                                                                   | 5 years                                               | Age, BMI, socioeconomic status,<br>smoking, alcohol consumption,<br>physical activity, type 2 diabetes,<br>CCI score, aspirin, metformin, | aOR, 0.98 (0.78–1.24)                                                                                                                |
| Robertson<br>et al., 2007  | Denmark        | Case-control 1989-2005 55,890/5589 | 1989–2005                                      | 55,890/5589                                 | Idd                      | 71.0<br>50.2%                                                                 | More than 7 years                                     | H <sub>2</sub> RA, aspirin, NSAIDs, statin,<br>antidiabetic medication, history of<br>cholecystectomy, alcoholism (birth                  | aOR, 1.14 (0.98–1.34)                                                                                                                |
| Siersema<br>et al., 2006   | USA            | Case-control 1998-2002 268/268     | 1998–2002                                      | 268/268                                     | Idd                      | Control 64<br>(12), case<br>66 (11)                                           | NA                                                    | year, sex, place on restructed<br>Barrett's esophagus, age, BMI, other<br>malignancies, aspirin, NSAIDs,<br>alcohol, smoking              | aOR, 0.99 (0.66–1.48)                                                                                                                |

| Table 1 (cont                                        | (continued) |                                    |                 |                                                                |                          |                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |
|------------------------------------------------------|-------------|------------------------------------|-----------------|----------------------------------------------------------------|--------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Author, year                                         | Country     | Study design                       | Study<br>period | Number of<br>participants<br>(control/case)                    | Drugs                    | Mean age<br>(SD)/male                                       | Exposure/follow-up                        | Adjustments (matching variables in case-control studies)                                                                                                                                                                                                                                                                                                                                              | Results (95% confidence interval)                                            |
| Yang et al.,<br>2007                                 | UK          | Case-control 1987-2002             |                 | 44,292/4432                                                    | Idd                      | 97.8%<br>Control 63.6<br>(9.1), case<br>67.5 (8.9)<br>45.1% | More than 5 years                         | Age, sex, alcohol, smoking, BMI,<br>H <sub>2</sub> RA, hormone replacement<br>therapy, NSAIDs, aspirin,<br>colonoscopy or flexible                                                                                                                                                                                                                                                                    | aOR, 1.1 (0.7–1.9)                                                           |
| Van Soest<br>et al., 2008                            | Netherlands | Netherlands Case-control 1996-2005 | 1996–2005       | 7790/594                                                       | Idd                      | Control 69.3<br>(11.9),<br>case 69.5<br>(11.9)<br>51.7%     | 5 years                                   | signoidoscopy<br>Chronic disease score: obesity or<br>BMI, smoking, alcohol abuse,<br>diabetes mellitus, inflammatory<br>bowel disease, and other<br>comorbidities (age, sex, calendar<br>time, duration of follow-up)                                                                                                                                                                                | aOR, 0.85 (0.63–1.16)                                                        |
| Liver/bile duct cancer<br>Kao et al., Taiwar<br>2019 | Taiwan      | Cohort                             | 2003–2013       | 2003–2013 HBV cohort—<br>5577/5577<br>HCV cohort—<br>1915/1915 | Idd                      | ort<br>ort ort                                              | L year                                    | <ul> <li>Age, sex, year of cohort entry</li> <li>Comorbidities: cirrhosis,<br/>nonalcoholic liver disease,<br/>alcoholic liver disease,<br/>hypertension, chronic kidney<br/>disease, hyperlipidemia, diabetes</li> <li>Concomitant medication:<br/>interferon/nucleotides, non-aspirin<br/>NSAIDs, histamine 2 receptor<br/>antagonist, aspirin, statin, fibrate,<br/>insulins, metformin</li> </ul> | HBV cohort: aHR, 1.25<br>(0.80–1.73)<br>HCV cohort: aHR, 1.19<br>(0.88–1.61) |
| Li et al.,<br>2017                                   | SU          | Cohort                             | 2001–2015       | 5774/5752                                                      | Idd                      | 47.7%<br>Median 53<br>(IQR<br>49–57)<br>96.1%               | -up<br>s (IQR<br>users<br>onths<br>(25.9) | <ul> <li>Age, sex, race</li> <li>Diabetes, obesity, alcohol abuse<br/>history, smoking history, statin use</li> <li>HCV genotype, HCV RNA,<br/>baseline ALT, AST, platelet count,<br/>FIB-4 score, attainment of SVR</li> </ul>                                                                                                                                                                       | aHR, 2.01 (1.5–2.7)                                                          |
| Peng et al.,<br>2018                                 | Taiwan      | Case-control 2006-2011 2293/2293   | 2006–2011       | 2293/2293                                                      | PPI<br>H <sub>2</sub> RA | Control 68.3<br>(13.8),<br>case 67.3<br>(10.9)<br>50.1%     | 5 years                                   | Age, biliary tract disease, COPD (sex,<br>age, year of diagnosis CCA,<br>medications [H <sub>2</sub> RA (H2-receptor<br>antagonist), aspirin, metformin]<br>and comorbidities [gastric polyp,<br>gastritis, cirrhosis, diabetes,<br>chronic pancreatitis, hepatitis B                                                                                                                                 | PPI: aOR, 2.57 (2.24–2.94)<br>H <sub>2</sub> RA: OR, 0.94 (0.79, 1.12)       |

| Table 1 (continued)     | tinued)        |                                                                                                   |                                          |                                             |             |                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |
|-------------------------|----------------|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-------------|--------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Author, year            | Country        | Study design                                                                                      | Study<br>period                          | Number of<br>participants<br>(control/case) | Drugs       | Mean age<br>(SD)/male          | Exposure/follow-up                                                                                      | Adjustments (matching variables in case-control studies)                                                                                                                                                                                                                                                                                                                            | Results (95% confidence interval)                                                                                                    |
| Shao et al.,<br>2018.   | Taiwan         | Case-control 2000-2013                                                                            |                                          | 274,508/29,473 PPI                          | Idd         | N/A<br>68%                     | Mean follow-up<br>duration—60                                                                           | infection, hepatitis C infection,<br>inflammatory bowel disease,<br>biliary tract disease, stroke,<br>coronary arterial disease (CAD),<br>chronic obstructive pulmonary<br>disease (COPD), alcohol-related<br>illness, <i>Clonorchis</i> and<br><i>Opisthorchis</i> , <i>Helicobacter pylori</i> ],<br>oral steroid)<br>• Hypertension, diabetes, COPD,<br>acute coronary syndrome, | aOR, 2.86 (2.69–3.04)                                                                                                                |
|                         |                |                                                                                                   |                                          |                                             |             |                                | months (SD 48)                                                                                          | cerebrovascular accident, peptic<br>ulcer disease, gastroesophageal<br>disease, cirrhosis, hyperlipidemia                                                                                                                                                                                                                                                                           |                                                                                                                                      |
| Tran et al.,<br>2018    | UK             | <ul> <li>(i) PCCIU:</li> <li>case-</li> <li>control</li> <li>(ii) UK</li> <li>Biobank:</li> </ul> | (i)<br>1999–2-<br>011<br>(ii)<br>2006–1- | 2103/434<br>471,669/182                     | PPI $H_2RA$ | N/A<br>(i) 67.2%<br>(ii) 46.1% | <ul><li>(i) Median exposure</li><li>5.5 years</li><li>(ii) Median follow-up</li><li>5.6 years</li></ul> | <ul> <li>(i)</li> <li>Obesity, alcohol, smoking</li> <li>Comorbidities: diabetes, CHD, MI,<br/>HF, peripheral vascular disease,<br/>cerebrovascular disease.</li> </ul>                                                                                                                                                                                                             | (i) PCCIU<br>PPI: aOR, 1.80 (1.34–2.41)<br>H <sub>2</sub> RA: aOR, 1.21 (0.84–1.76)<br>(ii) UK Biobank<br>PPI: aHR, 1.99 (1.34–2.94) |
|                         |                | cohort                                                                                            | 010                                      |                                             |             |                                |                                                                                                         | cerebrovascular accident, COPD,<br>mental illness, liver disease, PUD<br>(ii)<br>• Age, sex, deprivation, BMI, alcohol,<br>smoking<br>• Comorbidities: GERD, PUD,<br>cirrhosis, hepatitis, diabetes                                                                                                                                                                                 | H <sub>2</sub> RA: aHR, 1.70 (0.82–3.53)                                                                                             |
| Pancreatic cancer       | ncer           |                                                                                                   |                                          |                                             |             |                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |
| Bradley<br>et al., 2012 | UK             | Case-control 1995-2006 7954/11                                                                    | 1995–2006                                | 7954/1141                                   | PPI $H_2RA$ | 57.3<br>(9.8)/53.7-<br>%       | 2 years                                                                                                 | Smoking, BMI, alcohol, history of<br>chronic pancreatitis, NSAIDs,<br>steroids, HRT, diabetes, prior<br>cancer (year of birth, sex, general<br>practice site)                                                                                                                                                                                                                       | PPI: aOR, 0.93 (0.65–1.32)<br>H <sub>2</sub> RA: aOR, 0.95 (0.71–1.29)                                                               |
| Habel et al.,<br>2000   | USA            | Cohort                                                                                            | 1982–1985                                | 1982–1985 29,229/4125                       | Cimetidine  | NA                             | More than 10 years                                                                                      | Age, sex, pharmacy data source                                                                                                                                                                                                                                                                                                                                                      | aRR, 1.10 (0.57–2.10)                                                                                                                |
| Hicks et al.,<br>2018   | Denmark        | Case-control 2000-2015                                                                            |                                          | 25,809/4998                                 | Idd         | NA/56.7%                       | 2 years                                                                                                 | Age, sex, education, calendar time,<br>diabetes, alcohol-related disease,<br>COPD, chronic parcreatitis,<br>gallstones, peptic ulcer, <i>H. pylori</i><br>infection, HBV, HCV, low-dose<br>aspirin, NSAIDS, statin, HRT, CCI<br>(age, sex, calendar time)                                                                                                                           | aOR, 1.04 (0.97–1.11)                                                                                                                |
|                         | South<br>Korea | Cohort                                                                                            | 2002–2013                                | 2002–2013 403,826/49,789 PPI                | Idd         | NA/53.5%                       | More than 1 year                                                                                        | Age, sex, socioeconomic status, BMI, aHR, 1.32 (1.03–1.70) smoking, alcohol consumption,                                                                                                                                                                                                                                                                                            | aHR, 1.32 (1.03–1.70)                                                                                                                |

| Table 1 (continued)                  | ntinued) |                                    |                 |                                             |                      |                                                         |                                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                 |
|--------------------------------------|----------|------------------------------------|-----------------|---------------------------------------------|----------------------|---------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Author, year                         | Country  | Study design                       | Study<br>period | Number of<br>participants<br>(control/case) | Drugs                | Mean age<br>(SD)/male                                   | Exposure/follow-up                     | Adjustments (matching variables in case-control studies)                                                                                                                                                                                                                                                                                | Results (95% confidence interval)                                               |
| Hwang<br>et al., 2018<br>Verme at al |          | Case control 1005 2012 16.072//113 | 1005 2013       | 16.077/113                                  | DDI                  | Control 71 1                                            | Control 6 36 trans                     | physical activity, type 2 diabetes,<br>chronic pancreatitis, CCI                                                                                                                                                                                                                                                                        | (90 C L 9 L) 58 L QU                                                            |
| 2017<br>2017                         |          | Case-collicol                      | 6107-6661       | 6114/2/0,01                                 | E                    | Control 71.1<br>(11.4),<br>case 70.9<br>(11.5)/51<br>5% | (4.10), case 6.33<br>years (4.09)      | Diabetes, suroking, accord use,<br>obesity (age, sex, practice site,<br>calendar time, follow-up)                                                                                                                                                                                                                                       | (00.7-/0.1) co.1 'MOB                                                           |
| Lai et al.,<br>2014                  | Taiwan   | Case-control 2000-2010 3908/977    | 2000–2010       | 3908/977                                    | PPIH <sub>2</sub> RA | Control 68.1<br>(11.2),<br>case 68.4<br>(11.2)/60<br>1% | Control 9.5 months,<br>case 4.5 months | Acute/chronic pancreatitis, diabetes,<br>obesity, H <sub>2</sub> RA (PPI), statin,<br>nonstatin lipid-lowering drugs,<br>aspirin, COX-2 inhibitors (age,<br>sex, year of pancreatic cancer di-<br>agnosis)                                                                                                                              | PPI: aOR, 9.28 (7.77–11.08)<br>H <sub>2</sub> RA: aOR, 1.90 (1.53–2.35)         |
| Peng et al.,<br>2018                 | Taiwan   | Case-control 2006-2011 1087/1087   | 2006–2011       | 1087/1087                                   | $PPI$ $H_2RA$        | Control 68.3<br>(60.9),<br>case 67.4<br>(11.5)/60<br>3% | 2 years                                | Age, chronic pancreatitis (propensity<br>score: sex, age, year of pancreatic<br>cancer diagnosis, H <sub>2</sub> RA, aspirin,<br>metformin, gastric polyp, gastritis,<br>cirrhosis, diabetes, chronic<br>pancreatitis, HBV, HCV, IBD,<br>biliary tract disease, stroke,<br>coronary arterial disease, COPD,<br>alcohol-related illness) | PPI: aOR, 1.69 (1.42, 2.03)<br>H <sub>2</sub> RA: OR, 1.20 (0.95, 1.52)         |
| Respiratory system<br>Lung cancer    | ystem    |                                    |                 |                                             |                      |                                                         |                                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                 |
| Habel et al.,<br>2000                | NSA      | Cohort                             | 1982–1985       | 29,229/4125                                 | Cimetidine           | NA                                                      | More than 10 years                     | Age, sex, pharmacy data source                                                                                                                                                                                                                                                                                                          | Lung/bronchus: aRR, 1.24<br>(0.94–1.62)                                         |
| Hsu et al.,<br>2013                  | Taiwan   | Case-control 2000-2007 14,108/3    | 2000–2007       | 14,108/3527                                 | $H_2RA$              | 70.9<br>(9.1)/61.2-<br>%                                | Median 7.4 years                       | Short-acting human insulin, insulin<br>glargine, metformin, glinides,<br>NSAIDs, chronic lung disease,<br>calcium channel blockers,<br>retinopathy, angiotensin receptor<br>blockers, PPIs, cerebrovascular<br>disease astririn                                                                                                         | aOR, 1.02 (0.93–1.11)                                                           |
| Breast cancer                        | <u>۲</u> |                                    |                 |                                             |                      |                                                         |                                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                 |
| Chen et al.,<br>2019                 | Taiwan   | Case-control                       | 2004–2013       | Case-control 2004-2013 64,234/64,234        | Idd                  | Control 53.2<br>(11.9),<br>case 53.1<br>(11.8)/0%       | 5 years                                | Age, income, location, hypertension,<br>hyperlipidemia, diabetes, obesity,<br>year                                                                                                                                                                                                                                                      | aOR, 0.75 (0.72–0.78)                                                           |
| Coogan<br>et al., 2005               | USA      | Case-control 1977-2002             | 1977–2002       | 8482/6994                                   | $H_2RA$              | NA/0%                                                   | More than 1 year                       | (Age, center, year)                                                                                                                                                                                                                                                                                                                     | Cimetidine: OR, 0.9 $(0.6-1.2)$<br>Other H <sub>2</sub> RA: OR, 0.9 $(0.6-1.3)$ |
|                                      | Taiwan   | Case-control 2000-2013 4838/4838   | 2000–2013       | 4838/4838                                   | Idd                  | 44 years/0%                                             |                                        | Age, pregnancy, <i>Helicobacter pylori</i> infection, GERD, Crohn's disease,                                                                                                                                                                                                                                                            | aHR, 0.32 (0.20–0.49)                                                           |

 $\underline{\textcircled{O}}$  Springer

| Table 1 (continued)                       | tinued)   |                                           |                    |                                             |            |                                             |                    |                                                                                                                                                                                                                                                                                        |                                                                                           |
|-------------------------------------------|-----------|-------------------------------------------|--------------------|---------------------------------------------|------------|---------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Author, year                              | Country   | Study design                              | Study<br>period    | Number of<br>participants<br>(control/case) | Drugs      | Mean age<br>(SD)/male                       | Exposure/follow-up | Adjustments (matching variables in case-control studies)                                                                                                                                                                                                                               | Results (95% confidence interval)                                                         |
| Ding et al.,<br>2019<br>Habel et al.,     | NSA       | Cohort                                    | 1982–1985 29,229/4 | 29,229/4125                                 | Cimetidine | NA                                          | More than 10 years | obesity, endometriosis, polycystic<br>ovarian syndrome, alcohol-related<br>disease, estradiol, premarin,<br>NSAIDs<br>Age, sex, pharmacy data source                                                                                                                                   | aRR, 1.09 (0.83–1.43)                                                                     |
| 2000<br>Hálfdánar-<br>son et al.,<br>2018 | Iceland   | Case-control 2005–2014 17,390/1739        | 2005–2014          | 17,390/1739                                 | Idd        | Median 62<br>years (IQR<br>52-72)/0-<br>%   | More than 5 years  | NSAIDs (birth year, sex, calendar<br>time)                                                                                                                                                                                                                                             | aOR, 1.03 (0.92–1.16)                                                                     |
| Mathes<br>et al., 2008                    | USA       | Case-control 2000-2004 1390/183<br>(1148, | 2000-2004          | 1390/1836<br>(1148, 688)                    | $H_2RA$    | Range<br>55–79/0%                           | More than 2 years  | Age, year, hormone therapy, study<br>center (race, income, marital status,<br>education, age at menarche, parity,<br>age at first birth, type of<br>menopause, age at menopause,<br>duration of contraceptive use,<br>family history of breast cancer,<br>BMI, smoking, alcohol intake | Ductal carcinoma: aOR, 0.9<br>(0.8–1.2)<br>Lobular carcinoma: aOR, 0.9<br>(0.7–1.2)       |
| Prostate cancer<br>Habel et al.,          | er<br>USA | Cohort                                    | 1982–1985          | 29,229/4125                                 | Cimetidine | NA                                          | More than 10 years | Age, sex, pharmacy data source                                                                                                                                                                                                                                                         | aRR, 1.01 (0.77–1.32)                                                                     |
| 2000<br>Hálfdánar-<br>son et al.,<br>2018 | Iceland   | Case-control 2005-2014                    | 2005–2014          | 18,968/1897                                 | Idd        | Median 70<br>years (IQR<br>63-77)/1-<br>00% | More than 5 years  | NSAIDs (birth year, sex, calendar<br>time)                                                                                                                                                                                                                                             | aOR, 1.12 (1.00–1.25)                                                                     |
| Velicer<br>et al., 2006                   | USA       | Cohort                                    | 2000-2003          | 2000-2003 29,220/1083                       | $H_2RA$    | 61.6<br>idine<br>100-                       | 1-3 years          | Age, prostate-specific antigen testing                                                                                                                                                                                                                                                 | Cimetidine: aRR, 0.97<br>(0.61–1.53)<br>Other H <sub>2</sub> RA: aRR, 0.86<br>(0.64–1.14) |
| Urinary system<br>Kidnev cancer           | с -       |                                           |                    |                                             |            | 2                                           |                    |                                                                                                                                                                                                                                                                                        |                                                                                           |
| Nayan et al., Canada<br>2017              | Canada    | Case-control                              | 1997–2014          | Case-control 1997-2014 35,939/10,377        | Idd        | Range $\geq 65$<br>year-<br>s/57 $3\%$      | 36-42 months       | (Age, sex, comorbidity score, area,<br>history of hypertension)                                                                                                                                                                                                                        | OR, 0.99 (0.88–0.91)                                                                      |
| Skin                                      |           |                                           |                    |                                             |            |                                             |                    |                                                                                                                                                                                                                                                                                        |                                                                                           |
| Melanoma<br>Habel et al.,<br>2000         | NSA       | Cohort                                    | 1982–1985 29,229/4 | 29,229/4125                                 | Cimetidine | NA                                          | More than 10 years | Age, sex, pharmacy data source                                                                                                                                                                                                                                                         | aRR, 0.94 (0.55–1.63)                                                                     |
|                                           | Iceland   | Case-control 2005-2014                    | 2005–2014          | 3850/385                                    | Idd        |                                             | More than 5 years  |                                                                                                                                                                                                                                                                                        | aOR, 0.84 (0.69–1.12)                                                                     |

| Table 1 (continued)                                          | tinued)                                                |                                                                                                                                                                                                                                                 |                                                                           |                                                                               |                                                   |                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |
|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author, year                                                 | Country                                                | Study design                                                                                                                                                                                                                                    | Study<br>period                                                           | Number of<br>participants<br>(control/case)                                   | Drugs                                             | Mean age<br>(SD)/male                                              | Exposure/follow-up                                                            | Adjustments (matching variables in case-control studies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Results (95% confidence interval)                                                                                                                                   |
| Háltdánar-<br>son et al.,<br>2018<br>Lymphoma<br>Non-Hodekin | _                                                      |                                                                                                                                                                                                                                                 |                                                                           |                                                                               |                                                   | Median 55<br>years (IQR<br>42–68)/0-<br>%                          |                                                                               | NSAIDs (birth year, sex, calendar<br>time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                     |
| Beiderbeck<br>et al., 2003                                   |                                                        | Netherlands Case-control 1991-1998 800/211                                                                                                                                                                                                      | 1991–1998                                                                 | 800/211                                                                       | $H_2RA$                                           | 59.7<br>(16.4)/53<br>2%                                            | 5 years                                                                       | Connorbidity indicator, follow-up<br>time (sex, year of birth, community<br>pharmacy, calendar period, dura-<br>tion of follow-up)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aOR, 0.68 (0.41–1.41)                                                                                                                                               |
| Other cancer<br>Chien et al.,<br>2016                        | Taiwan                                                 | Case-control                                                                                                                                                                                                                                    | Case-control 2000-2010 76,762/7681                                        | 76,762/7681                                                                   | Idd                                               | 69.5<br>(11.6)/58<br>1%                                            | NA                                                                            | Choledochal cysts, cholangitis,<br>cholelithiasis, cirrhosis, alcoholic<br>liver disease, NAFLD, HBV,<br>HCV, diabetes, chronic<br>pancreatitis, IBD, PUD, GERD,<br>cardiovascular disease, H <sub>2</sub> RA,<br>aspirin, NSAIDs, statins,<br>metformin, insulins, other<br>antidiabetic drugs, <i>H. pylori</i><br>eradication therapy (age, sex,                                                                                                                                                                                                                                                                                                                              | Periampullary cancer: aOR, 1.35<br>(1.16–1.57)                                                                                                                      |
| Habel et al.,<br>2000                                        | USA                                                    | Cohort                                                                                                                                                                                                                                          | 1982–1985 29,229/4                                                        | 29,229/4125                                                                   | Cimetidine                                        | NA                                                                 | More than 10 years                                                            | follow-up period of PPI exposure)<br>Age, sex, pharmacy data source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uterine: aRR, 0.73 (0.34–1.56)<br>Ovarian: aRR, 0.64 (0.23–1.75)<br>Kidney/bladder: aRR, 1.32<br>(0.90–1.96)<br>Lymphoma/myeloma/leukemia:<br>aRR, 1.09 (0.74–1.61) |
| <i>PPI</i> proton pu incidence rate disease, <i>HRT</i> 1    | ump inhibitor<br>ratio, <i>OR</i> odd<br>hormone repla | <i>PPI</i> proton pump inhibitor, $H_2RA$ histamine 2-receptor antagonist, incidence rate ratio, <i>OR</i> odds ratio, <i>HR</i> hazard ratio, <i>COX-2</i> cyclc disease, <i>HRT</i> hormone replacement therapy, <i>HBV</i> hepatitis B virus | te 2-receptor a<br>zard ratio, <i>CC</i><br><i>i</i> , <i>HBV</i> hepatit | untagonist, <i>BMI</i> t<br><i>X</i> -2 cyclooxyge<br>tis B virus, <i>HCV</i> | ody mass indenase 2, <i>NSAID</i> hepatitis C vin | x, <i>EGD</i> esophaę<br>nonsteroidal an<br>us, <i>IBD</i> inflamm | gogastroduodenoscopie:<br>nti-inflammatory drug, (<br>atory bowel disease, N. | <i>PPI</i> proton pump inhibitor, $H_2RA$ histamine 2-receptor antagonist, <i>BMI</i> body mass index, <i>EGD</i> esophagogastroduodenoscopies, <i>GERD</i> gastroesophageal reflux disease, <i>PUD</i> peptic ulcer disease, <i>IRR</i> incidence rate ratio, <i>OR</i> odds ratio, <i>HR</i> hazard ratio, <i>COX-2</i> cyclooxygenase-2, <i>NSAID</i> nonsteroidal anti-inflammatory drug, <i>CCI</i> Charlson comorbidity index, <i>COPD</i> chronic obstructive pulmonary disease, <i>HRT</i> hormone replacement therapy, <i>HBV</i> hepatitis B virus, <i>HCV</i> hepatitis C virus, <i>IBD</i> inflammatory bowel disease, <i>NAFLD</i> nonalcoholic fatty liver disease | se, <i>PUD</i> peptic ulcer disease, <i>IRR</i><br>D chronic obstructive pulmonary                                                                                  |

**(a)** 

Beiderbeck et al, 2003

Bradley et al, 2012

Cheung et al, 2018 Chien et al, 2016 Chubak et al, 2009

Coogan et al, 2005 Ding et al, 2019

Duan et al, 2009

Farrow et al, 2000

Habel et al, 2000

Hwang et al, 2017 Hwang et al, 2018 Johnson et al, 1996

Hálfdánarson et al, 2018 Hicks et al, 2018 Hsu et al, 2013

Chen et al, 2019

assessn

Blinding for outcome

Measurement of interver

? e

?

2

?

æ

?

ection of Participant Confounding variables

Ŧ


Ŧ

æ

Ŧ ? Ŧ

**A** 

(F



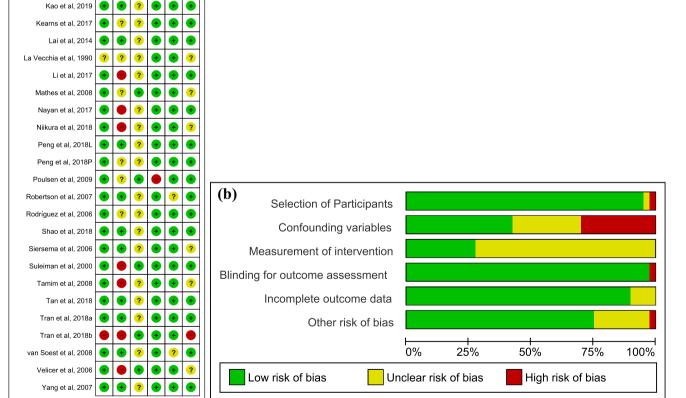
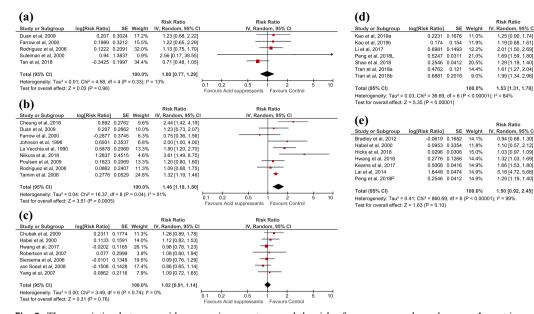




Fig. 2 Quality assessment of included studies using the Risk of Bias Assessment tool for Nonrandomized Studies (ROBANS): a ROBANS graph and b ROBANS summary. +: low risk of bias; ?: unclear risk of bias; -: high risk of bias



0.2 rs Acid sup

Random, 95% C

0.5

0.2 Irs Acid supr

Fig. 3 The association between acid-suppressive agent use and the risk of cancer:  $\mathbf{a}$  esophageal cancer,  $\mathbf{b}$  gastric cancer,  $\mathbf{c}$  colorectal cancer,  $\mathbf{d}$  liver cancer, and  $\mathbf{e}$  pancreatic cancer

## Acid-suppressive agents and prostate cancer

Three studies including 84,522 individuals investigated the association between ASAs and prostate cancer. We did not find a significant association between the risk of prostate cancer and ASA use (RR, 1.09; 95% CI, 0.99–1.20); no heterogeneity was found ( $l^2 = 0\%$ , P = 0.72) (Fig. 5b).

#### Acid-suppressive agents and other cancers

Two studies on lung cancer and two studies of melanoma were also included in the systematic review. ASA use was not significantly associated with the risk of lung cancer or melanoma compared with nonuse with no significant heterogeneity (RR, 1.07; 95% CI, 0.91–1.27;  $I^2 = 43\%$ , P = 0.18 for lung cancer and RR, 0.86; 95% CI, 0.72–1.02;  $I^2 = 0\%$ , P = 0.73 for melanoma).

One study reported kidney cancer, non-Hodgkin lymphoma, periampullary cancer, and all types of cancer. There was no significant association between PPIs and kidney cancer (OR, 0.99; 95% CI, 0.88–0.91) in the study by Nayan et al. and between H<sub>2</sub>RA and non-Hodgkin lymphoma (aOR, 0.68; 95% CI, 0.41–1.41) in Beiderbeck et al.'s study. Chien et al. reported that PPI use increased the risk of periampullary cancer compared with nonuse (aOR, 1.35; 95% CI, 1.16–1.17). Habel et al. studied the association between cimetidine use and all types of cancer and reported no significant association for uterine, ovarian, and kidney/bladder cancers and lymphoma/myeloma/leukemia (Table 1).

## Discussion

This systematic review assessed the association between ASA use and the risk of development of each cancer. We found that ASA use was associated with a 46% increase in the risk of gastric cancer and a 53% increase in the risk of liver cancer, but it was not significantly associated with other cancers, including esophageal, colorectal, pancreatic, breast, and prostate cancer. In particular, the increase in the risk of gastric and liver cancer with PPI use was higher than that with H<sub>2</sub>RA use.

The results of our meta-analysis were similar to previous studies [10, 12]. Previous systematic review reported that long-term PPI use (at least 3 months) was significantly associated with a 78% increase in the risk of gastric cancer compared with nonuse [10], which is slightly higher than our results (36%). It may be because Islam et al. investigated the risk of gastric cancer with long-term PPI, while our study included ever use of PPIs or H2RAs. Another metaanalysis found that PPIs and H2RAs were associated with a 39% and 40% increase in gastric cancer risk [12]. In our subgroup analysis, the risk of gastric cancer in PPI users was higher than H<sub>2</sub>RA users (39% vs. 26%) when compared with nonusers. The mechanism by which ASAs relate an increased risk of gastric cancer is unknown; however, several pathways have been suggested [12]. Researchers have speculated that cancer may arise from bacterial overgrowth and nitrosamine formation caused by the suppression of gastric acid formation [61–65]. In contrast to this theory, other researchers have proposed that acid-suppressing medications cause hypergastrinemia, which ultimately is related to gastric polyps and carcinomas [66-77].

## Table 2 Subgroup analysis of the association between acid-suppressive agent use and the risk of cancer

| Subgroup                                                                                   | Studies,<br>n | Acid-suppressant users, <i>n</i> | Nonusers,<br>n | Random effects, risk ratio<br>[95% CI] | Effect, P<br>value | I <sup>2</sup><br>(%) | Heterogeneity, <i>P</i> value |
|--------------------------------------------------------------------------------------------|---------------|----------------------------------|----------------|----------------------------------------|--------------------|-----------------------|-------------------------------|
| Esophageal cancer                                                                          |               |                                  |                |                                        |                    |                       |                               |
| Type of acid suppressants                                                                  |               |                                  |                |                                        |                    |                       |                               |
| PPI                                                                                        | 2             | 1440                             | 8629           | 0.75 [0.55, 1.03]                      | 0.08               | 0                     | 0.62                          |
| H <sub>2</sub> RA                                                                          | 4             | 1263                             | 10,169         | 0.98 [0.72, 1.32]                      | 0.88               | 30                    | 0.23                          |
| Drug uptake duration                                                                       |               |                                  |                |                                        |                    |                       |                               |
| Less than 1 year                                                                           | 4             | 695                              | 9774           | 0.87 [0.46, 1.64]                      | 0.66               | 60                    | 0.06                          |
| 1 year or more                                                                             | 5             | 1069                             | 10,475         | 1.22 [0.73, 2.05]                      | 0.45               | 67                    | 0.02                          |
| Type of esophageal cancer                                                                  |               |                                  |                |                                        |                    |                       |                               |
| Adenocarcinoma                                                                             | 5             | 2409                             | 10,455         | 1.00 [0.77, 1.29]                      | 0.98               | 13                    | 0.33                          |
| Squamous cell carcinoma                                                                    | 1             | 113                              | 679            | 0.23 [0.05, 1.06]                      | 0.06               | _                     | _                             |
| Studies of low risk of bias of measurement<br>of intervention<br>Gastric cancer            | 3             | 153                              | 2043           | 1.25 [0.81, 1.91]                      | 0.31               | 0                     | 0.87                          |
| Type of acid suppressants                                                                  |               |                                  |                |                                        |                    |                       |                               |
| PPI <sup>a</sup>                                                                           | 5             | 20,620                           | 34,383         | 1.53 [1.13, 2.07]                      | 0.01               | 61                    | 0.04                          |
| H <sub>2</sub> RA                                                                          | 7             | 20,226                           | 38,023         | 1.32 [1.08, 1.60]                      | 0.01               | 26                    | 0.23                          |
| Drug uptake duration                                                                       |               |                                  |                |                                        |                    |                       |                               |
| Less than 1 year                                                                           | 2             | 609                              | 9613           | 1.06 [0.49, 2.31]                      | 0.88               | 70                    | 0.07                          |
| 1 year or more <sup>a</sup>                                                                | 3             | 456                              | 10,323         | 1.21 [0.54, 2.72]                      | 0.64               | 74                    | 0.01                          |
| Type of gastric cancer                                                                     |               |                                  |                |                                        |                    |                       |                               |
| Cardia <sup>a</sup>                                                                        | 4             | 1503                             | 9159           | 1.10 [0.81, 1.50]                      | 0.53               | 0                     | 0.56                          |
| Noncardia <sup>a</sup>                                                                     | 3             | 1307                             | 9094           | 1.54 [0.89, 2.67]                      | 0.12               | 72                    | 0.03                          |
| Patients with Helicobacter pylori                                                          | 2             | 3389                             | 60,541         | 2.71 [1.71, 4.31]                      | < 0.001            | 0                     | 0.46                          |
| Studies of low risk of bias of measurement<br>of intervention<br>Colorectal cancer         | 4             | 19,112                           | 18,895         | 1.23 [0.90, 1.66]                      | 0.19               | 18                    | 0.30                          |
| Type of acid suppressants                                                                  |               |                                  |                |                                        |                    |                       |                               |
| PPI                                                                                        | 6             | 8980                             | 512,196        | 1.06 [0.96, 1.16]                      | 0.26               | 0                     | 0.47                          |
| H <sub>2</sub> RA                                                                          | 2             | 4429                             | 50,207         | 0.96 [0.78, 1.19]                      | 0.71               | 38                    | 0.21                          |
| Drug uptake duration                                                                       |               |                                  |                |                                        |                    |                       |                               |
| Less than 1 year                                                                           | 2             | 2404                             | 50,428         | 1.36 [0.48, 3.92]                      | 0.56               | 96                    | < 0.001                       |
| 1 year or more                                                                             | 3             | 477                              | 108,254        | 1.00 [0.75, 1.33]                      | 1.00               | 0                     | 0.65                          |
| Cumulative defined daily dose (DDD)                                                        |               |                                  |                |                                        |                    |                       |                               |
| < 60 DDDs                                                                                  | 2             | 44,069                           | 409,370        | 0.96 [0.88, 1.05]                      | 0.34               | 0                     | 0.93                          |
| $\geq$ 60 DDDs                                                                             | 2             | 5884                             | 409,370        | 0.97 [0.79, 1.19]                      | 0.77               | 0                     | 0.83                          |
| Studies of low risk of bias of measurement<br>of intervention<br>Liver cancer <sup>b</sup> | 2             | 5777                             | 402,949        | 1.07 [0.85, 1.36]                      | 0.56               | 29                    | 0.24                          |
| Type of acid suppressants                                                                  |               |                                  |                |                                        |                    |                       |                               |
| PPI <sup>c</sup>                                                                           | 7             | 27,188                           | 330,426        | 1.53 [1.31, 1.78]                      | < 0.001            | 84                    | < 0.001                       |
| H <sub>2</sub> RA <sup>c</sup>                                                             | 3             | 4322                             | 2801           | 1.07 [0.86, 1.32]                      | 0.54               | 42                    | 0.18                          |
| Cumulative defined daily dose (DDD)                                                        |               |                                  |                |                                        |                    |                       |                               |
| < 365 DDDs <sup>d</sup>                                                                    | 5             | 3520                             | 323,092        | 1.56 [0.99, 2.45]                      | 0.06               | 86                    | < 0.001                       |
| $\geq$ 365 DDDs <sup>d</sup>                                                               | 4             | 2550                             | 9399           | 1.41 [0.96, 2.08]                      | 0.08               | 76                    | 0.006                         |
| Type of liver cancer                                                                       |               |                                  |                |                                        |                    |                       |                               |
| Hepatocellular carcinoma <sup>c</sup>                                                      | 5             | 23,532                           | 326,959        | 1.40 [1.17, 1.68]                      | < 0.001            | 57                    | 0.06                          |
| Intrahepatic bile duct carcinoma <sup>c, e</sup>                                           | 2             | _                                | _              | 1.90 [0.81, 4.50]                      | 0.14               | 88                    | 0.004                         |
| Patients with hepatitis B or C virus                                                       | 3             | 13,244                           | 13,266         | 1.45 [1.03, 2.03]                      | 0.03               | 72                    | 0.03                          |
| •                                                                                          | 2             | 812                              | 473,576        | 1.70 [1.39, 2.09]                      | < 0.001            | 0                     | 0.37                          |

#### Table 2 (continued)

| Subgroup                                                                           | Studies,<br>n | Acid-suppressant users, <i>n</i> | Nonusers,<br>n    | Random effects, risk ratio<br>[95% CI] | Effect, P<br>value | <i>I</i> <sup>2</sup><br>(%) | Heterogeneity,<br>P value |
|------------------------------------------------------------------------------------|---------------|----------------------------------|-------------------|----------------------------------------|--------------------|------------------------------|---------------------------|
| Studies of low risk of bias of measurement<br>of intervention<br>Pancreatic cancer |               |                                  |                   |                                        |                    |                              |                           |
| Type of acid suppressants                                                          |               |                                  |                   |                                        |                    |                              |                           |
| PPI                                                                                | 6             | 22,375                           | 460,936           | 1.56 [0.93, 2.64]                      | 0.09               | 99                           | < 0.001                   |
| H <sub>2</sub> RA                                                                  | 4             | 9688                             | 400,930<br>38,464 | 1.22 [0.90, 1.65]                      | 0.09               | 86                           | < 0.001                   |
| Drug uptake duration                                                               | 7             | 9088                             | 50,404            | 1.22 [0.90, 1.03]                      | 0.21               | 80                           | < 0.001                   |
| Less than 1 year                                                                   | 2             | 544                              | 9181              | 1.14 [0.82, 1.59]                      | 0.42               | 73                           | 0.05                      |
| 1 year or more                                                                     | 1             | 326                              | 7781              | 0.94 [0.68, 1.30]                      | 0.37               | _                            | _                         |
| Cumulative defined daily dose (DDD)                                                | 1             | 520                              | //01              | 0.91[0.00, 1.50]                       | 0.57               |                              |                           |
| < 365 DDDs                                                                         | 4             | 50,148                           | 443,814           | 1.10 [0.89, 1.35]                      | 0.39               | 91                           | < 0.001                   |
| < 365 DDDs                                                                         | 2             | 1155                             | 38,588            | 1.01 [0.87, 1.18]                      | 0.89               | 0                            | 0.69                      |
| Studies of low risk of bias of measurement<br>of intervention                      |               | 5710                             | 403,826           | 1.32 [1.03, 1.69]                      | 0.03               | _                            | -                         |
| Breast cancer                                                                      |               |                                  |                   |                                        |                    |                              |                           |
| Type of acid suppressants                                                          |               |                                  |                   |                                        |                    |                              |                           |
| PPI                                                                                | 3             | 22,441                           | 134,832           | 0.78 [0.61, 1.00]                      | 0.05               | 93                           | < 0.001                   |
| $H_2RA$                                                                            | 3             | 4750                             | 45,821            | 0.95 [0.89, 1.01]                      | 0.09               | 0                            | 0.58                      |
| Drug uptake duration                                                               |               |                                  |                   |                                        |                    |                              |                           |
| Less than 2 years                                                                  | 3             | 3095                             | 29,989            | 1.03 [0.93, 1.13]                      | 0.59               | 0                            | 0.75                      |
| 2 years or more                                                                    | 3             | 1069                             | 29,989            | 0.98 [0.85, 1.14]                      | 0.82               | 0                            | 0.54                      |
| Cumulative defined daily dose (DDD)                                                |               |                                  |                   |                                        |                    |                              |                           |
| < 365 DDDs                                                                         | 2             | 6390                             | 129,994           | 0.92 [0.79, 1.08]                      | 0.32               | 79                           | 0.03                      |
| $\geq$ 365 DDDs                                                                    | 1             | 1110                             | 133,97            | 1.00 [0.81, 1.23]                      | 1.00               | _                            | _                         |
| Studies of low risk of bias of measurement of intervention                         | 1             | 455                              | 2075              | 0.94 [0.88, 1.00]                      | 0.07               | -                            | _                         |

PPI proton pump inhibitor, H2RA histamine 2-receptor antagonist, DDD defined daily dose

<sup>a</sup> Cheng et al. did not report the number of patients in each group, so we could not include the number of patients from their study

<sup>b</sup> Kao et al. and Tran et al. presented each result from two different cohorts, so we included 5 studies and 7 cohorts for liver cancer

<sup>c</sup> Tran et al. did not report the number of patients in each group of the UK biobank cohort used

<sup>d</sup>Li et al. did not report the number of patients in each group

<sup>e</sup> Peng et al. did not report the number of patients in each group

A previous meta-analysis reported that PPI use did not show a significant association with hepatocellular carcinoma [78], but they mentioned that their meta-analysis lacked sufficient evidence to confirm the association. On the other hand, we found a statistically significant association between ASA use and liver cancer or hepatocellular carcinoma. The risk of liver cancer was associated with PPI use, but not H<sub>2</sub>RA use. The exact pathway through which PPIs associate with an increasing risk of liver cancer is unknown; however, several mechanisms have been suggested [79]. Long-term PPI use and the associated hypergastrinemia have been implicated in carcinogenic effects on liver cells [80]. Other speculated mechanisms include the possibility that bacterial overgrowth due to decreased acid secretion in the stomach causes the transformation of primary bile acids to secondary bile acids, which subsequently exert deleterious effects on the liver, possibly leading to liver cancer [81–83]. In addition, it should be noted that exposure of mouse models to PPIs has been demonstrated to promote liver tumors, the progression of alcoholic liver disease, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis [84, 85]. Tran et al. explained that H<sub>2</sub>RA use generally results in weaker acid suppression and lower effects on gastrin [79, 86].

Hu et al. showed that PPI use was not associated with the risk of esophageal adenocarcinoma and/or high-grade dysplasia in patients with Barrett's esophagus [87]. We also did not find a significant association between ASAs and esophageal cancer. This result was similar for both PPIs and H<sub>2</sub>RAs. Theoretically, PPIs and H<sub>2</sub>RAs decrease esophageal acid and bile refluxate exposure of the esophagus, thereby

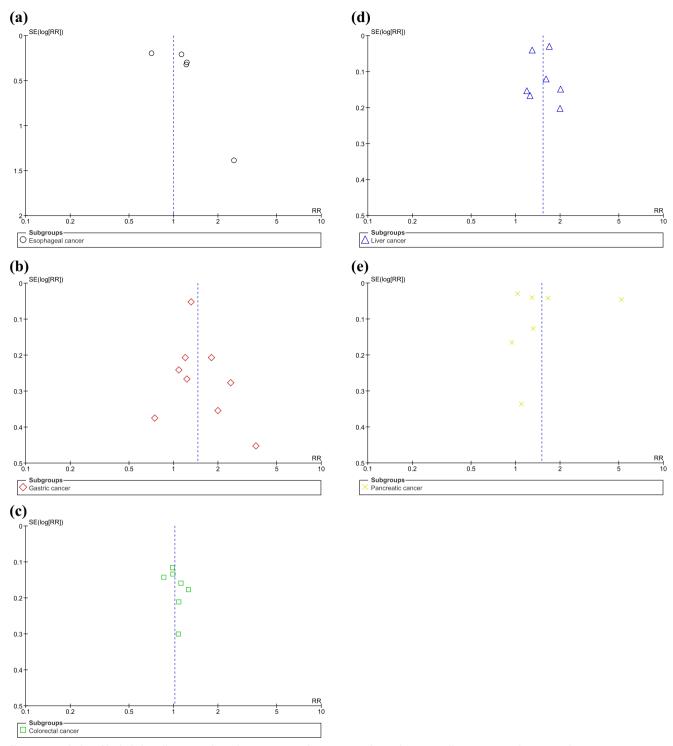



Fig. 4 Funnel plot of included studies: a esophageal cancer, b gastric cancer, c colorectal cancer, d liver cancer, and e pancreatic cancer

promoting mucosal healing and acting as a potential chemoprotective modality to mitigate esophageal cancers [87]. However, the guidelines for GERD recommend the use of ASAs for symptom control and not specifically for the prevention of esophageal adenocarcinoma [88]. It is important to note that reflux symptoms are poorly correlated with the actual amount of esophageal refluxate in patients with GERD; thus, PPI exposure may not be correlated with the incidence of esophageal cancers [89].

When Islam et al. pooled the ORs of colorectal and pancreatic cancers in PPI users and compared these values to those of nonusers, no significant association was observed [10]. These results were similar to our results: the RRs of ASAs for the risk of colorectal cancer and pancreatic cancer

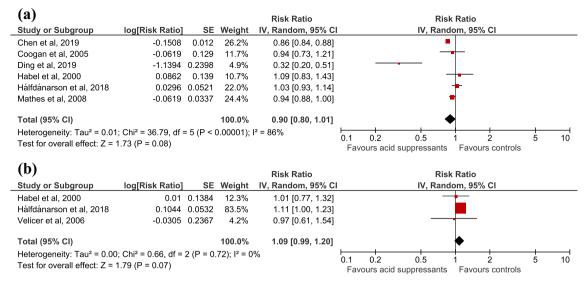



Fig. 5 The association between acid-suppressive agent use and the risk of cancer: a breast cancer and b prostate cancer

were 1.02 (95% CI, 0.91–1.14) and 1.50 (95% CI, 0.92–2.45). We could not find the previous systematic reviews of lung, breast, and prostate cancers and ASAs.

The results of the present study should be interpreted while considering some limitations. First, cohort and case-control studies were included in the final meta-analysis. Owing to the study designs of the included studies, we could not show a causal relationship between ASAs and cancers. However, we can describe a plausible mechanism and relative. Second, the results may include potential confounders, as the metaanalysis pooled studies that reported crude relative outcomes or adjusted outcomes with insufficient covariates. Third, ASAs can be bought OTC without a physician's prescription in most countries, so interventions may have been misclassified. We conducted the subgroup analysis for studies including both prescription medication and OTCs and the results remained consistent. Some results changed but we could not suggest them due to the small number of studies included in the subgroup analysis.

Despite these limitations, to the best of our knowledge, this is the first systematic review and meta-analysis for the association between ASA use and multiple types of cancer. We found that the increased risk of gastric and liver cancers was associated when ASAs were used, but there was no significant association between ASA use and other cancers. Although a limited number of studies were included in this meta-analysis, the results can be the best available evidence. In particular, low heterogeneity and a consistent direction were shown in esophageal cancer and colorectal cancer. We also conducted subgroup analyses according to PPI/H<sub>2</sub>RA, duration of drug uptake, subtypes of cancer, and cumulative daily drug dose; these subgroup results can provide comprehensive and detailed information. Notably, our results showed that PPI use was associated with liver cancer, whereas H<sub>2</sub>RA use was not.

## Conclusions

The results of our meta-analysis suggests that ASA use was associated with an increased risk of gastric and liver cancer, but we did not find it to be significantly associated with esophageal or colorectal cancer. There was no strong evidence for the association of lung, breast, prostate, and kidney cancer; melanoma; and lymphoma risk with ASA use. The prescription of ASAs should be carefully considered under the potential risk of gastric and liver cancer until further well-designed studies with large sample cohorts confirm the results.

Acknowledgments We would like to thank Caitlin E. Kantner for proofreading the manuscript.

Author contributions HJS was involved in the study concept and design, literature search, study selection, quality assessment, data extraction, data analysis, data interpretation, and manuscript writing. NJ was involved in the literature search, study selection, quality assessment, data extraction, and manuscript writing. PS was involved in the study selection, quality assessment, and approved the final version.

**Funding information** This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2017).

#### Compliance with ethical standards

**Conflict of interest** The authors declare that they have no competing interests.

## References

 Antony Q (2009) Preventing stress ulcers with acid suppression. Pharmacy Times. https://www.pharmacytimes.com/publications/ issue/2009/2009-05/hspstressulcers-0509.

- Modlin IM, Sandor A (1997) An analysis of 8305 cases of carcinoid tumors. Cancer 79:813–829. https://doi.org/10.1002/(sici)1097-0142(19970215)79:4<813::aid-cncr19>3.0.co;2-2
- Thorburn CM, Friedman GD, Dickinson CJ, Vogelman JH, Orentreich N, Parsonnet J (1998) Gastrin and colorectal cancer: a prospective study. Gastroenterology 115:275–280. https://doi.org/ 10.1016/s0016-5085(98)70193-3
- Smith JP, Nadella S, Osborne N (2017) Gastrin and gastric cancer. Cell Mol Gastroenterol Hepatol 4:75–83. https://doi.org/10.1016/j. jcmgh.2017.03.004
- Dacha S, Razvi M, Massaad J, Cai Q, Wehbi M (2015) Hypergastrinemia. Gastroenterol Rep (Oxf) 3:201–208. https:// doi.org/10.1093/gastro/gov004
- Rosen R, Amirault J, Liu H, Mitchell P, Hu L, Khatwa U, Onderdonk A (2014) Changes in gastric and lung microflora with acid suppression: acid suppression and bacterial growth. JAMA Pediatr 168:932–937. https://doi.org/10.1001/jamapediatrics.2014. 696
- Bajaj JS (2019) Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 16:235–246. https://doi.org/10.1038/ s41575-018-0099-1
- Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Noble NA, Unser AB, Daita K, Fisher AR, Sikaroodi M, Gillevet PM (2014) Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 60:940– 947. https://doi.org/10.1016/j.jhep.2013.12.019
- Li M, Yuan J, Wen S, Chen J (2018) Alteration of gut microbiome in lung cancer patients. J Thorac Oncol 13:S947. https://doi.org/10. 1016/j.jtho.2018.08.1772
- Islam MM, Poly TN, Walther BA, Dubey NK, Anggraini Ningrum DN, Shabbir SA, Jack Li YC (2018) Adverse outcomes of longterm use of proton pump inhibitors: a systematic review and metaanalysis. Eur J Gastroenterol Hepatol 30:1395–1405. https://doi. org/10.1097/MEG.00000000001198
- Tran-Duy A, Spaetgens B, Hoes AW, de Wit NJ, Stehouwer CD (2016) Use of proton pump inhibitors and risks of fundic gland polyps and gastric cancer: systematic review and meta-analysis. Clin Gastroenterol Hepatol 14:1706–1719.e5. https://doi.org/10. 1016/j.cgh.2016.05.018
- Ahn JS, Eom CS, Jeon CY, Park SM (2013) Acid suppressive drugs and gastric cancer: a meta-analysis of observational studies. World J Gastroenterol 19:2560–2568. https://doi.org/10.3748/wjg.v19.i16. 2560
- Qiu T, Zhou J, Zhang C (2018) Acid-suppressive drugs and risk of kidney disease: a systematic review and meta-analysis. J Gastroenterol Hepatol 33:1566–1573. https://doi.org/10.1111/jgh. 14157
- Lambert AA, Lam JO, Paik JJ, Ugarte-Gil C, Drummond MB, Crowell TA (2015) Risk of community-acquired pneumonia with outpatient proton-pump inhibitor therapy: a systematic review and meta-analysis. PLoS One 10:e0128004. https://doi.org/10.1371/ journal.pone.0128004
- Trifan A, Stanciu C, Girleanu I, Stoica OC, Singeap AM, Maxim R, Chiriac SA, Ciobica A, Boiculese L (2017) Proton pump inhibitors therapy and risk of *Clostridium difficile* infection: systematic review and meta-analysis. World J Gastroenterol 23:6500–6515. https://doi.org/10.3748/wjg.v23.i35.6500
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94. https://doi.org/10.1016/j.jclinepi.2009.06.006
- Kim SY, Park JE, Lee YJ, Seo HJ, Sheen SS, Hahn S, Jang BH, Son HJ (2013) Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising

validity. J Clin Epidemiol 66:408-414. https://doi.org/10.1016/j. jclinepi.2012.09.016

- Davies HT, Crombie IK, Tavakoli M (1998) When can odds ratios mislead? BMJ 316:989–991. https://doi.org/10.1136/bmj.316. 7136.989
- 19. Stare J, Maucort-Boulch D (2016) Odds ratio, hazard ratio and relative risk. Metodoloski zvezki 13:59–67
- Zhang J, Yu KF (1998) What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690–1691. https://doi.org/10.1001/jama.280.19.1690
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557
- Suleiman UL, Harrison M, Britton A, McPherson K, Bates T (2000) H2-receptor antagonists may increase the risk of cardiooesophageal adenocarcinoma: a case-control study. Eur J Cancer Prev 9:185–191
- Tan MC, El-Serag HB, Yu X, Thrift AP (2018) Acid suppression medications reduce risk of oesophageal adenocarcinoma in Barrett's oesophagus: a nested case-control study in US male veterans. Aliment Pharmacol Ther 48:469–477. https://doi.org/10. 1111/apt.14895
- Duan L, Wu AH, Sullivan-Halley J, Bernstein L (2009) Antacid drug use and risk of esophageal and gastric adenocarcinomas in Los Angeles County. Cancer Epidemiol Biomark Prev 18:526–533. https://doi.org/10.1158/1055-9965.EPI-08-0764
- 25. Farrow DC, Vaughan TL, Sweeney C, Gammon MD, Chow WH, Risch HA, Stanford JL, Hansten PD, Mayne ST, Schoenberg JB, Rotterdam H, Ahsan H, West AB, Dubrow R, Raumeni JF Jr, Blot WJ (2000) Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 11:231–238. https://doi.org/10.1023/a: 1008913828105
- Habel LA, Levin TR, Friedman GD (2000) Cimetidine use and risk of breast, prostate, and other cancers. Pharmacoepidemiol Drug Saf 9:149–155. https://doi.org/10.1002/(SICI)1099-1557(200003/04) 9:2<149::AID-PDS481>3.0.CO;2-1
- García Rodríguez LA, Lagergren J, Lindblad M (2006) Gastric acid suppression and risk of oesophageal and gastric adenocarcinoma: a nested case control study in the UK. Gut 55:1538–1544. https://doi. org/10.1136/gut.2005.086579
- Cheung KS, Chan EW, Wong AYS, Chen L, Wong ICK, Leung WK (2018) Long-term proton pump inhibitors and risk of gastric cancer development after treatment for *Helicobacter pylori*: a population-based study. Gut 67:28–35. https://doi.org/10.1136/ gutjnl-2017-314605
- Johnson AG, Jick SS, Perera DR, Jick H (1996) Histamine-2 receptor antagonists and gastric cancer. Epidemiology 7:434–436. https://doi.org/10.1097/00001648-199607000-00016
- La Vecchia C, Negri E, D'Avanzo B, Franceschi S (1990) Histamine-2-receptor antagonists and gastric cancer risk. Lancet 336:355–357. https://doi.org/10.1016/0140-6736(90)91888-h
- Niikura R, Hayakawa Y, Hirata Y, Yamada A, Fujishiro M, Koike K (2018) Long-term proton pump inhibitor use is a risk factor of gastric cancer after treatment for *Helicobacter pylori*: a retrospective cohort analysis. Gut 67:1908–1910. https://doi.org/10.1136/ gutjnl-2017-315710
- Poulsen AH, Christensen S, McLaughlin JK, Thomsen RW, Sørensen HT, Olsen JH, Friis S (2009) Proton pump inhibitors and risk of gastric cancer: a population-based cohort study. Br J Cancer 100:1503–1507. https://doi.org/10.1038/sj.bjc.6605024
- Tamim H, Duranceau A, Chen LQ, Lelorier J (2008) Association between use of acid-suppressive drugs and risk of gastric cancer. A nested case-control study. Drug Saf 31:675–684. https://doi.org/10. 2165/00002018-200831080-00004

- Chubak J, Boudreau DM, Rulyak SJ, Mandelson MT (2009) Colorectal cancer risk in relation to use of acid suppressive medications. Pharmacoepidemiol Drug Saf 18:540–544. https://doi.org/ 10.1002/pds.1749
- Hwang IC, Chang J, Park SM (2017) Emerging hazard effects of proton pump inhibitor on the risk of colorectal cancer in low-risk populations: a Korean nationwide prospective cohort study. PLoS One 12:e0189114. https://doi.org/10.1371/journal.pone.0189114
- Robertson DJ, Larsson H, Friis S, Pedersen L, Baron JA, Sørensen HT (2007) Proton pump inhibitor use and risk of colorectal cancer: a population-based, case-control study. Gastroenterology 133:755– 760. https://doi.org/10.1053/j.gastro.2007.06.014
- Siersema PD, Yu S, Sahbaie P, Steyerberg EW, Simpson PW, Kuipers EJ, Triadafilopoulos G (2006) Colorectal neoplasia in veterans is associated with Barrett's esophagus but not with protonpump inhibitor or aspirin/NSAID use. Gastrointest Endosc 63:581– 586. https://doi.org/10.1016/j.gie.2005.08.043
- Yang YX, Hennessy S, Propert K, Hwang WT, Sedarat A, Lewis JD (2007) Chronic proton pump inhibitor therapy and the risk of colorectal cancer. Gastroenterology 133:748–754. https://doi.org/ 10.1053/j.gastro.2007.06.022
- van Soest EM, van Rossum LG, Dieleman JP, van Oijen MG, Siersema PD, Sturkenboom MC, Kuipers EJ (2008) Proton pump inhibitors and the risk of colorectal cancer. Am J Gastroenterol 103: 966–973. https://doi.org/10.1111/j.1572-0241.2007.01665.x
- 40. Kao WY, Su CW, Chia-Hui Tan E, Lee PC, Chen PH, Tang JH, Huang YH, Huo TI, Chang CC, Hou MC, Lin HC, Wu JC (2019) Proton pump inhibitors and risk of hepatocellular carcinoma in patients with chronic hepatitis B or C. Hepatology 69:1151–1164. https://doi.org/10.1002/hep.30247
- 41. Li DK, Yan P, Abou-Samra AB, Chung RT, Butt AA (2018) Proton pump inhibitors are associated with accelerated development of cirrhosis, hepatic decompensation and hepatocellular carcinoma in noncirrhotic patients with chronic hepatitis C infection: results from ERCHIVES. Aliment Pharmacol Ther 47:246–258. https://doi.org/10.1111/apt.14391
- Peng YC, Lin CL, Hsu WY, Chow WK, Lee SW, Yeh HZ, Chen CC, Kao CH (2018) Association between cholangiocarcinoma and proton pump inhibitors use: a nested case-control study. Front Pharmacol 9:718. https://doi.org/10.3389/fphar.2018.00718
- Shao YJ, Chan TS, Tsai K, Wu SY (2018) Association between proton pump inhibitors and the risk of hepatocellular carcinoma. Aliment Pharmacol Ther 48:460–468. https://doi.org/10.1111/apt. 14835
- 44. Tran KT, McMenamin ÚC, Hicks B, Murchie P, Thrift AP, Coleman HG, Iversen L, Johnston BT, Lee AJ, Cardwell CR (2018) Proton pump inhibitor and histamine-2 receptor antagonist use and risk of liver cancer in two population-based studies. Aliment Pharmacol Ther 48:55–64. https://doi.org/10.1111/apt. 14796
- Bradley MC, Murray LJ, Cantwell MM, Hughes CM (2012) Proton pump inhibitors and histamine-2-receptor antagonists and pancreatic cancer risk: a nested case-control study. Br J Cancer 106:233– 239. https://doi.org/10.1038/bjc.2011.511
- Hicks B, Friis S, Pottegård A (2018) Use of proton pump inhibitors and risk of pancreatic cancer. Pharmacoepidemiol Drug Saf 27: 926–930. https://doi.org/10.1002/pds.4576
- Hwang IC, Chang J, Park SM (2018) Association between proton pump inhibitor use and the risk of pancreatic cancer: a Korean nationwide cohort study. PLoS One 13:e0203918. https://doi.org/ 10.1371/journal.pone.0203918
- Kearns MD, Boursi B, Yang YX (2017) Proton pump inhibitors on pancreatic cancer risk and survival. Cancer Epidemiol 46:80–84. https://doi.org/10.1016/j.canep.2016.12.006

- Lai SW, Sung FC, Lin CL, Liao KF (2014) Use of proton pump inhibitors correlates with increased risk of pancreatic cancer: a casecontrol study in Taiwan. J Kuwait Med Assoc 46:44–48
- Peng YC, Lin CL, Hsu WY, Lu IT, Yeh HZ, Chang CS, Kao CH (2018) Proton pump inhibitor use is associated with risk of pancreatic cancer: a nested case-control study. Dose-Response 16(4): 1559325818803283. https://doi.org/10.1177/1559325818803283
- Hsu CL, Chang CH, Lin JW, Wu LC, Chuang LM, Lai MS (2013) Histamine-2 receptor antagonists and risk of lung cancer in diabetic patients – an exploratory analysis. Pharmacoepidemiol Drug Saf 22:632–640. https://doi.org/10.1002/pds.3441
- Chen CH, Lee CZ, Lin YC, Kao LT, Lin HC (2019) Negative association of proton pump inhibitors with subsequent development of breast cancer: a nationwide population-based study. J Clin Pharmacol 59:350–355. https://doi.org/10.1002/jcph.1329
- Coogan PF, Zhang Y, Palmer JR, Strom BL, Rosenberg L (2005) Cimetidine and other histamine 2-receptor antagonist use in relation to risk of breast cancer. Cancer Epidemiol Biomark Prev 14:1012– 1015. https://doi.org/10.1158/1055-9965.EPI-04-0547
- Ding DC, Sung FC, Chen W, Wang JH, Lin SZ (2019) Proton pump inhibitors reduce breast cancer risk in gastric ulcer patients: a population-based cohort study. Breast J 26:474–478. https://doi. org/10.1111/tbj.13519
- Hálfdánarson ÓÖ, Fall K, Ogmundsdottir MH, Lund SH, Steingrímsson E, Ogmundsdottir HM, Zoega H (2019) Proton pump inhibitor use and risk of breast cancer, prostate cancer, and malignant melanoma: an Icelandic population-based case-control study. Pharmacoepidemiol Drug Saf 28:471–478. https://doi.org/ 10.1002/pds.4702
- Mathes RW, Malone KE, Daling JR, Porter PL, Li CI (2008) Relationship between histamine 2-receptor antagonist medications and risk of invasive breast cancer. Cancer Epidemiol Biomark Prev 17:67–72. https://doi.org/10.1158/1055-9965.EPI-07-0765
- Velicer CM, Dublin S, White E (2006) Cimetidine use and the risk for prostate cancer: results from the VITAL cohort study. Ann Epidemiol 16:895–900. https://doi.org/10.1016/j.annepidem.2006. 03.003
- Nayan M, Juurlink DN, Austin PC, Macdonald EM, Finelli A, Kulkarni GS, Hamilton RJ (2017) Canadian Drug Safety and Effectiveness Research Network (CDSERN). Medication use and kidney cancer risk: a population-based study. Eur J Cancer 83:203– 210. https://doi.org/10.1016/j.ejca.2017.07.001
- Beiderbeck AB, Holly EA, Sturkenboom MC, Coebergh JW, Stricker BH, Leufkens HG (2003) Prescription medications associated with a decreased risk of non-Hodgkin's lymphoma. Am J Epidemiol 157:510–516. https://doi.org/10.1093/aje/kwg004
- Chien LN, Huang YJ, Shao YH, Chang CJ, Chuang MT, Chiou HY, Yen Y (2016) Proton pump inhibitors and risk of periampullary cancers - a nested case-control study. Int J Cancer 138:1401–1409. https://doi.org/10.1002/ijc.29896
- Langman MJ (1985) Antisecretory drugs and gastric cancer. Br Med J (Clin Res Ed) 290:1850–1852. https://doi.org/10.1136/bmj. 290.6485.1850
- Freston JW (1982) Cimetidine: II. Adverse reactions and patterns of use. Ann Intern Med 97:728–734. https://doi.org/10.7326/0003-4819-97-5-728
- Stockbruegger RW (1985) Bacterial overgrowth as a consequence of reduced gastric acidity. Scand J Gastroenterol Suppl 111:7–16. https://doi.org/10.3109/00365528509093749
- Stockbrugger RW, Cotton PB, Eugenides N, Bartholomew BA, Hill MJ, Walters CL (1982) Intragastric nitrites, nitrosamines, and bacterial overgrowth during cimetidine treatment. Gut 23:1048– 1054. https://doi.org/10.1136/gut.23.12.1048
- Rowland JR (1988) The toxicology of N-nitroso compounds. In: Hill MJ (ed) Nitrosamines-toxicology and microbiology. Ellis Horwood pp, London, pp 117–141

- 66. Klinkenberg-Knol EC, Festen HP, Jansen JB, Lamers CB, Nelis F, Snel P, Lückers A, Dekkers CP, Havu N, Meuwis-sen SG (1994) Long-term treatment with omeprazole for refractory reflux esophagitis: efficacy and safety. Ann Intern Med 121:161–167. https://doi. org/10.7326/0003-4819-121-3-199408010-00001
- Lamberts R, Creutzfeldt W, Stöckmann F, Jacubaschke U, Maas S, Brunner G (1988) Long-term omeprazole treatment in man: effects on gastric endocrine cell populations. Digestion 39:126–135. https://doi.org/10.1159/000199615
- Laine L, Ahnen D, McClain C, Solcia E, Walsh JH (2000) Review article: potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. Aliment Pharmacol Ther 14:651– 668. https://doi.org/10.1046/j.1365-2036.2000.00768.x
- Havu N (1986) Enterochromaffin-like cell carcinoids of gastric mucosa in rats after life-long inhibition of gastric secretion. Digestion 35:42–55. https://doi.org/10.1159/000199381
- Smith JP, Wood JG, Solomon TE (1989) Elevated gastrin levels in patients with colon cancer or adenomatous polyps. Dig Dis Sci 34: 171–174. https://doi.org/10.1007/bf01536047
- Seitz JF, Giovannini M, Gouvernet J, Gauthier AP (1991) Elevated serum gastrin levels in patients with colorectal neoplasia. J Clin Gastroenterol 13:541–545. https://doi.org/10.1097/00004836-199110000-00013
- Singh P, Indaram A, Greenberg R, Visvalingam V, Bank S (2000) Long term omeprazole therapy for reflux esophagitis: follow up in serum gastrin levels, EC cell hyperplasia and neoplasia. World J Gastroenterol 6:789–792. https://doi.org/10.3748/wjg.v6.i6.789
- Jalving M, Koornstra JJ, Wesseling J, Boezen HM, DE Jong S, Kleibeuker JH (2006) Increased risk of fundic gland polyps during long-term proton pump inhibitor therapy. Aliment Pharmacol Ther 24:1341–1348. https://doi.org/10.1111/j.1365-2036.2006.03127.x
- Solcia E, Fiocca R, Havu N, Dalväg A, Carlsson R (1992) Gastric endocrine cells and gastritis in patients receiving long-term omeprazole treatment. Digestion 51:82–92. https://doi.org/10.1159/ 000200921
- Pashankar DS, Israel DM (2002) Gastric polyps and nodules in children receiving long-term omeprazole therapy. J Pediatr Gastroenterol Nutr 35:658–662. https://doi.org/10.1097/ 00005176-200211000-00013
- Cats A, Schenk BE, Bloemena E, Roosedaal R, Lindeman J, Biemond I, Klinkenberg-Knol EC, Meuwissen SG, Kuipers EJ (2000) Parietal cell protrusions and fundic gland cysts during omeprazole maintenance treatment. Hum Pathol 31:684–690. https://doi.org/10.1053/hupa.2000.7637
- 77. van Grieken NC, Meijer GA, Weiss MM, Bloemena E, Lindeman J, Baak JP, Meuwissen SG, Kuipers EJ (2001) Quantitative assessment of gastric corpus atrophy in subjects using omeprazole: a randomized follow-up study. Am J Gastroenterol 96:2882–2886. https://doi.org/10.1111/j.1572-0241.2001.04242.x
- Zhao J, Hua L, Li N, An R, Liang C (2018) Letter: proton pump inhibitors use and risk of hepatocellular carcinoma: a meta-analysis of observational studies. Aliment Pharmacol Ther 48:886–888. https://doi.org/10.1111/apt.14962

- 79. Tran KT, McMenamin ÚC, Hicks B, Murchie P, Thrift AP, Coleman HG, Iversen L, Johnston BT, Lee AJ, Cardwell CR (2018) Proton pump inhibitor and histamine-2 receptor antagonist use and risk of liver cancer in two population-based studies. Aliment Pharmacol Ther 48:55–64. https://doi.org/10.1111/apt. 14796
- Caplin M, Khan K, Savage K, Rode J, Varro A, Michaeli D, Grimes S, Brett B, Pounder R, Dhillon A (1999) Expression and processing of gastrin in hepatocellular carcinoma, fibrolamellar carcinoma and cholangiocarcinoma. J Hepatol 30:519–526
- Llorente C, Schnabl B (2015) The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol 1:275–284. https://doi.org/10. 1016/j.jcmgh.2015.04.003
- Jansen PLM (2007) Endogenous bile acids as carcinogens. J Hepatol 47:434–435. https://doi.org/10.1016/j.jhep.2007.06.001
- Komichi D, Tazuma S, Nishioka T, Hyogo H, Chayama K (2005) Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholangiocytes via oxidative DNA damage. Free Radic Biol Med 39:1418–1427. https://doi.org/10.1016/j.freeradbiomed.2005. 07.005
- Llorente C, Jepsen P, Inamine T, Wang L, Bluemel S, Wang HJ, Loomba R, Bajaj JS, Schubert ML, Sikaroodi M, Gillevet PM, Xu J, Kisseleva T, Ho SB, DePew J, Du X, Sørensen HT, Vilstrup H, Nelson KE, Brenner DA, Fouts DE, Schnabl B (2017) Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun 8:1–14. https:// doi.org/10.1038/s41467-017-00796-x
- Hayashi H, Shimamoto K, Taniai E, Ishii Y, Morita R, Suzuki K, Shibutani M, Mitsumori K (2012) Liver tumor promoting effect of omeprazole in rats and its possible mechanism of action. J Toxicol Sci 37:491–501. https://doi.org/10.2131/jts.37.491
- Dacha S, Razvi M, Massaad J, Cai Q. Wehbi M (2015) Hypergastrinemia. Gastroenterol Rep 3:201–208. https://doi.org/ 10.1093/gastro/gov004
- Hu Q, Sun TT, Hong J, Fang JY, Xiong H, Meltzer SJ (2017) Proton pump inhibitors do not reduce the risk of esophageal adenocarcinoma in patients with Barrett's esophagus: a systematic review and meta-analysis. PLoS One 12:e0169691. https://doi.org/ 10.1371/journal.pone.0169691
- Katz PO, Gerson LB, Vela MF (2013) Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol 108:308–328. https://doi.org/10.1038/ajg.2012.444
- Kleiman DA, Sporn MJ, Beninato T, Metz Y, Crawford C, Fahey TJ 3rd, Zarnegar R (2013) Early referral for 24-h esophageal pH monitoring may prevent unnecessary treatment with acid-reducing medications. Surg Endosc 27:1302–1309. https://doi.org/10.1007/ s00464-012-2602-z

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.