
PHARMACOKINETICS AND DISPOSITION

External evaluation of population pharmacokinetic models
for continuous administration of meropenem in critically ill adult
patients

YL. Wang1,2
& R. Guilhaumou3,4

& O. Blin3,4
& L. Velly5 & Amélie Marsot1,2,6

Received: 27 February 2020 /Accepted: 29 May 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Purpose Beta-lactams (BL), the most commonly prescribed class of antibiotics, are recommended as the first-line therapy for
multiple indications in infectious disease guidelines. Meropenem (MERO) is frequently used in intensive care units (ICU) to treat
bacterial infections with or without sepsis. The pharmacokinetics of MERO display a large variability in patients admitted to
ICUs due to altered pathophysiology. The aim of this study was to perform an external evaluation of published population
pharmacokinetic models of MERO in order to test their predictive performance in a cohort of ICU adult patients.
Methods A literature search in PubMed/Medline database was made following the PRISMA statement. External evaluation was
performed using NONMEM software, and the bias and inaccuracy values were calculated.
Results An external validation dataset from the TimoneHospital inMarseille, France, included 84 concentration samples from 27
patients. Four models of MERO were identified according to the inclusion criteria of the study. None of the models presented
acceptable values of bias and inaccuracy.
Conclusion While performing external evaluations on some populations may confirm a model’s suitability to diverse groups of
patients, there is still some variability that cannot be explained nor solved by the procedure. This brings to light the difficulty to
develop only one model for ICU patients and the need to develop one specific model to each population of critically ill patients.
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Introduction

Meropenem (MERO) is broad-spectrum antibiotics of the car-
bapenem class, with activity against both Gram-positive and
Gram-negative bacteria that are widely used in critically ill
patients [1]. The antimicrobial activity of MERO is time-de-
pendent, meaning that its efficacy is related to the fraction of
the dosing interval that the free plasma concentration is above
the minimum inhibitory concentration (fT>MIC) [2]. New rec-
ommendations have been made on the optimization of beta-
lactam treatment in ICU patients, such as the use of continu-
ous or prolonged infusion of beta-lactam antibiotics in order to
maximize its clinical efficacy for a target attainment of 100%
fT>4xMIC [3]. Indeed, suboptimal drug exposure can lead to
mortality and, possibly, the emergence of antibiotic resistance,
while overexposure may be neurotoxic [4].

Population pharmacokinetic (PK) analyses develop math-
ematical models using specific patient group that then de-
scribe drug’s concentration in various populations and allow
to optimize drug-dosing regimens [5].Multiple population PK

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00228-020-02922-z) contains supplementary
material, which is available to authorized users.

* Amélie Marsot
amelie.marsot@umontreal.ca

1 Laboratoire de Suivi Thérapeutique Pharmacologique et
Pharmacocinétique, Faculté de Pharmacie, Université de Montréal,
Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal,
QC H3T 1J4, Canada

2 Faculté de Pharmacie, Université de Montréal, Montréal,
QC, Canada

3 Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de
la Timone, Assistance Publique des Hôpitaux de Marseille,
Marseille, France

4 Pharmacologie intégrée et interface clinique et industrielle, Institut de
Neuroscience des systèmes, CNRS 7289, Aix Marseille Université,
13385 Marseille, France

5 Service d’Anesthésie-Réanimation, Hôpital de la Timone, Assistance
Publique des Hôpitaux de Marseille, Marseille, France

6 Centre de Recherche, CHU Sainte Justine, Montréal, QC, Canada

https://doi.org/10.1007/s00228-020-02922-z

/ Published online: 4 June 2020

European Journal of Clinical Pharmacology (2020) 76:1281–1289

http://crossmark.crossref.org/dialog/?doi=10.1007/s00228-020-02922-z&domain=pdf
http://orcid.org/0000-0002-9303-8862
https://doi.org/10.1007/s00228-020-02922-z
mailto:amelie.marsot@umontreal.ca


models have been developed during the last few years.
However, these models often do not involve an external eval-
uation procedure, although it is recommended in order to ap-
ply the model to a clinical setting [6]. An external evaluation
involves using an independent dataset to assess the accuracy
of an existing model and to predict its outcome using patients
with similar characteristics to those the model was developed
with [7]. Knowing if the model will fit a given population of
ICU patients proves to be a challenge. Besides, studies have
shown that patients admitted to intensive care units (ICUs)
display large variability in PK primarily due to altered patho-
physiology, as opposed to healthy individuals or non-critically
ill patients [8]. Due to this, optimal dosage is particularly
difficult in these patients. Population pharmacokinetic models
can be used in dosing simulations to predict the probability of
target attainment of different dosing regimens. This proves to
be useful for decision-making in a clinical setting.

The aim of this study was to perform an external evaluation
of published population PK models of MERO in order to test
their predictive performance in a cohort of ICU patients.

Material and methods

Patients

This study was a prospective, multicenter observational study
performed between October 2015 and May 2017, in 2 ICUs
(multidisciplinary critical care (20 beds), cardiovascular criti-
cal care (20 beds)), Timone University Hospital, Marseille,
France. Ethical approval was obtained from the Institutional
ReviewBoard (Comité de Protection des Personnes Sud-Est I,
Saint-Etienne, France, protocol n° 2017-A01446-47) which
waived the need for written consent. Patients or next of kin
was orally informed of the goal and design of the study. The
antimicrobial agent assays were performed by the university-
affiliated pharmacological laboratory (Department of Clinical
Pharmacology and Pharmacovigilance of Timone University
Hospital, Marseille, France). Blood samples were collected
from patients who received a standard loading dose of 2 g of
MERO and subsequently a maintenance dose of 4 g as a
continuous infusion. Antibiotic maintenance dose was adjust-
ed according to impaired renal function. Therapeutic drug
monitoring was done on day 1, day 4, day 7, and at the end
of treatment, and dosage was modified according to the clini-
cian to optimize treatment. Samples were transported in 5 h to
the pharmacological laboratory and were centrifuged for
10 min at 3000g and 4 °C. If necessary, plasma samples were
stored at − 20 °C until analysis and MES buffer (4-
Morpholineethanesulfonic acid, 1 M) was added to plasma
(1/10). The assay protocol was adapted according to the meth-
od of Verdier et al. [9] and validated according to the EMA
guidelines [10]. Briefly, before high-performance liquid

chromatography (HPLC) analysis (Dionex Ultimate 3000
HPLC, Ultraviolet detection), sample preparation consisted
of protein precipitation using acetonitrile and then liquid-
liquid extraction by dichloromethane. The MIAA (5-
Methoxyindole-3-acetic acid) has been chosen as internal
standard. The limit of quantification was 0.5 μg/ml and the
upper limit of linearity has been validated at 50 μg/ml. In case
of higher concentrations observed, the sample was diluted
before reanalysis.

Published models

The PRISMA statement for reporting systematic reviews and
meta-analyses was used to conduct the literature review in-
cluded in the study [11] (Fig. 1). A literature search in
PubMed/Medline database was made using the following
search terms: (meropenem AND pharmacokinetics/ OR renal
elimination/ OR (pharmacokinetic* OR ((pharmaco OR drug)
ADJ kinetic*) OR area under curve? ORAUCOR (renal ADJ
(elimination? OR excretion? OR clearance?))) OR (((nonline-
ar OR non-linear) ADJ mixed effect model*) OR NONMEM
OR WinNonMix OR P-PHARM OR NLMIXED OR
ADAPT) AND EXP population/ OR population groups/ OR
(population? or ethnic group?)). Additional relevant studies
were manually screened from the identified publications.

The inclusion criteria for the published models were as
follows: (1) the study was a population pharmacokinetic anal-
ysis of MERO in ICU adult patients; and (2) the publication
was written in English. The articles were excluded if (1) the
model was not developed with software using parametric ap-
proach or (2) the non-availability of sufficient data to rewrite
the models.

Model evaluation

The external evaluation was conducted using the nonlinear
mixed effect modeling (NONMEM version 7.4; ICON
Development Solutions, Ellicott City, MD, USA) software.
The plots were made using the R version 3.5.1. The final
population PK models were re-established based on the for-
mulas and parameters reported for each of the included pub-
lications. The external evaluation was performed without any
additional fitting of the model to the data (MAXEVAL = 0
option in NONMEM). To assess the predictive performance
of this model, we first compared goodness-of-fit plots of the
predicted concentration and the observed concentration. The
global fit of the population pharmacokinetic models was also
evaluated by visual predictive checks (VPC). Prediction error
(PE) was used to assess the predictive performance of the
models. PE was determined by the following equation:

PE ¼ Cpred−Cobs

Cobs
� 100%
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where Cpred and Cobs are the predicted and observed con-
centration, respectively [12]. The median prediction error
(MDPE) and the median absolute prediction error were used
as a measure of bias and inaccuracy, respectively [13].

1. Inaccuracy (i.e., the size of the typical miss) of model
predictions is given for the ith individual, by the median
absolute performance errors (MADPEi).

MADPEi %ð Þ ¼ median jPEijj; j ¼ 1;…;Ni

� �

2. Bias (i.e., the direction and the size of the deviation from
the predicted concentration) of model predictions is given
for the ith individual by the median prediction error
(MDPEi):

MDPEi %ð Þ ¼ median PEij; j ¼ 1;…;Ni

� �

AMDPE between – 20 and 20% and a MDAPE ≤ 30% are
considered as acceptable criteria for bias and inaccuracy [14].
A Bland-Altman diagram was also produced for comparison
purposes and to show the trend in prediction error. If a model
presented acceptable bias and accuracy, its predictive perfor-
mance based on simulation would be evaluated and the statis-
tics of the observed and simulated time-concentration profiles
would be compared using VPC and NPDE tests [15].

Evaluation of predicted concentration 24 h after the
first dose

As the meropenem clinical efficacy is related to concentration
greater to the minimal inhibitory concentration during 100% of
time interval, the predicted C24h using each of the 4 population
pharmacokinetic models was examined. The C24h (after the first
dose) was calculated for all patients using covariates only (a
priori prediction) or by using observed meropenem concentra-
tion(s) (Bayesian estimation) [16]. The predicted C24h estimated
using the a priori and Bayesian approach were compared.

Results

Patients

Thirty ICU patients on MERO infusion were enrolled in this
study. Three patients were excluded because of incomplete in-
formation. The final database consisted of 27 patients (15 men
and 12 women) (Table 1). In total, 84 concentrations were used

for external evaluation. Creatinine clearance was estimated using
the Cockcroft-Gault formula. The median Simplified Acute
Physiology Score (SAPS) II was 38 (range 17–87) and the me-
dian Sepsis-related Organ Failure Assessment (SOFA) score was
5 (range 2–15). Seventeen patients had documented infections
(Enterobacter aerogenes (n = 1), Enterobacter cloacae (n = 3),
Enterococcus faecium (n = 2), Escherichia coli (n = 7),
Klebsiella pneumoniae (n = 2), Pseudomonas aeruginosa (n =
2),Morganella morganii (n = 1), Raoultella ornithicolithica (n =
1), Serratia marcescens (n = 1), Staphylococcus aureus (n = 1)).
Comedication included amikacin (n = 8), gentamicin (n = 1), and
vancomycin (n = 2).

Published models

Seven models were screened [17–20, 22–24], but three were
excluded due to insufficient information.We tried to reach the
author of one article in order to obtain the values of the resid-
ual variability without any success. The predictive perfor-
mance of four models was evaluated using the external eval-
uation dataset [17–20]. The characteristics of the patients in
the included studies are summarized in Table 1. The details of
the evaluated models are listed in Table 2. Three studies de-
scribed MERO pharmacokinetics with two-compartment
models. Several covariates were used: creatinine clearance
(n = 3), bodyweight (n = 2), age (n = 2), and albumin (n =
1). Estimated values of clearance (CL) and central volume of
distribution (V or V1) were between 9.38 and 13.6 L/h and 7.9
and 26.2 L, respectively.

Model evaluation

Figure 2 shows plots of predicted concentrations versus ob-
served concentrations for each evaluated model. All evaluated
models presented an under-prediction of concentrations with
large inaccuracy. The values of bias and inaccuracy of the
evaluated models are described in Table 3. The values ranged
between − 14.4 and − 33.6 for the bias and 32.4 and 52.8 for
the inaccuracy. The Bland-Altman diagram confirmed the
trend in prediction error (Supplementary material,
Figure S1). The predictive performance of the predicted
meropenem concentration time profiles as revealed from the
VPC of the population pharmacokinetic models was highly
variable (Supplementary material, Figure S2).

Evaluation of predicted concentration 24 h after the
first dose

The C24h of a course of therapy was predicted a priori (covar-
iates only) and estimated from the observed meropenem con-
centrations (Bayesian) with each model. The distribution of
the predicted meropenem C24h was highly heterogeneous
(Fig. 3). Models such as that of Roberts et al. [20]
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demonstrated similar ranges for the a priori and Bayesian es-
timated C24h. This indicated that an a priori prediction of this
model is promising, but can be further improved with the
inclusion of observed meropenem concentrations and
Bayesian.

Discussion

Several population PK models of MERO [17–20, 22–31] in
critically ill patients have been published over the past de-
cades, and predictability was often not fully evaluated [32].
After evaluation, none of the selected models in this study was
found to be suitable for clinical application as they did not
meet the defined criteria. Four population PK models of
MERO [17–20] corresponded to the inclusion criteria and
were evaluated, but none turned out to be valid for the external
validation dataset as bias and inaccuracy were outside of the
determined values. Amongst the four models, two were out-
right eliminated, while the model of Roberts et al. [20] had a
MDPE andMDAPE outside of the acceptable values, but near
the limits. However, this model showed a low difference be-
tween the a priori and Bayesian estimated C24h. This indicated
that an a priori prediction of this model could be promising.
The best predictive model of MERO was developed by

Delattre et al. [17], as its bias was within the criteria, and the
inaccuracy was close to the determined value, albeit outside of
the range. However, bias was close to the limits of admissi-
bility and showed the risk of under-prediction of this model.
Moreover, the difference between the a priori and Bayesian
estimated C24h was as high. This indicates that an a priori
prediction of this model will not be promising. Only an inte-
grated assessment of all predictive performance markers (bias,
inaccuracy, goodness-of-fit plots, and forecasting perfor-
mance) can provide evidence of a model’s relevance.
Although we initially had four possibly models for MERO,
none ended up being appropriate for clinical use under the
herein defined criteria.

Our population consisted of patients with severe infections,
which corresponded to the patients diagnosed with severe sepsis
or septic shock that all studies recruited. However, as bias and
inaccuracy were either near or out the threshold, there may be
other factors that vary between both populations that have to be
considered, such as the severity of the illness, comedications, and
the underlying pathologies common in each group. Moreover,
the high values of the between-subject variability and residual
variability in all the included publications also indicate how dif-
ferent each population of patients is from the other. This could be
due to several factors, including the patient population that the
PK models were derived from and the methods used in the PK

Fig. 1 PRISMA flow diagrams for the inclusion of studies in this review
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modeling. Even though commonly used covariates such as cre-
atinine clearance and body weight were incorporated in most of
the models, a significant variability still remains, which would
explain the difficulty to validate its accuracy using a given pop-
ulation. The differentmethods used to estimate covariates such as
the serum creatinine can affect the transferability of the model to
a clinical setting [6]. Amongst the four evaluated models, certain
covariates are more commonly used than others. Renal clearance
plays a significant role in the predicted levels of MERO, as the
estimated creatinine clearance was incorporated as a covariate in
the PK equation for CL in all evaluated models except for
Mattioli et al. [19]. As MERO is mainly eliminated by renal
route, changes in renal functions would affect the concentrations
of the beta-lactam antibiotics [33]. Therefore, evaluating a pa-
tient’s kidney function is primordial to the validity of the model.
Estimation of renal function in critically ill patients remains an
issue; it is clear that creatinine level is an imperfect tool in
assessing kidney function. All studies evaluated creatinine

clearance using Cockcroft-Gault formula. But, as previously de-
scribed, the Cockcroft-Gault formula is highly inadequate in in-
tensive care unit [34] but remains largely used in clinical practice
and could be explained the large observed variability. Future
investigations should evaluated the Cystatin C as marker of renal
function to reduce this variability [34]. Body weight was also
used as a covariate by Delattre et al. [17] and Li et al. [18]. As
described byMarsot et al., the body weight has an effect on dose
optimization, which could be explained by its relationship with
the volume of distribution [35]. The value of the latter can lower
or increase the concentrations of the antibiotics. Mattioli et al.
[19] included albumin level in their PK equation for the volume
of distribution. Indeed, hypoalbuminaemia is a common but fre-
quently neglected condition in intensive care unit [35]. The inci-
dence is reportedly as high as 40–50% [36]. With decreasing
albumin concentrations, an increase in the unbound fraction
drugs can occur [37]. However, the inclusion of that covariate
is not common in other studiedmodels. Additionally, the patients

Table 1 Characteristics of the patients in the published studies and the external validation dataset

Characteristic Delattre
et al. [17]*

Li et al. [18] Mattioli et al. [19] Roberts
et al. [20]

External validation dataset

Treatment Piperacillin
Cefepime
Ceftazidime
MERO

MERO MERO MERO MERO

Mode of administration II II EI II + CI CI

Number of patients 19 (MERO) 79 21 10 27

Number of samples 418** 341 118 496*** 84

M/F (%) 65/35 61/18 17/10 7/3 15/12

Age (years) 65 (22–89) 35 (18–93) 62 ± 12 55 (48–61) (ii)
57 (54–63) (ci)

57 (31–84)

Weight (kg) 70 (38–125) 70 (40.6–127) 76.2 ± 30.3 80 (75–85) (ii)
75 (75–85) (ci)

73 (55–90)

Height (cm) - 170 (147–185.4) 170.3 ± 7.3 170 (170–180) (ii)
175 (173–183) (ci)

170 (148–180)

BMI (kg/m2) - - 26.1 ± 8.9 - 24.94 (19.03–32.47)

Albumin (g/L) 0.18 (0.08–0.49) - 24.3 ± 6.6 - 24.9 (12–36)****

Serum creatinine (μmol/L) 105.6 (17.6–580.8) 88.0 (35.2–607.2) 114.4 ± 88.0 73 (55–101) (ii)
82 (58–112) (ci)

227 (22–325)

Creatinine clearance (mL/min) 55.5 (12.3–408.3) - 97.4 ± 44.2 106 (98–127) (ii)
93 (69–161) (ci)

60.8 (13.6–336.6)

SAPS II score - - 41 (10–93) - 38 (17–87)

SOFA score 8 (1–19) - - 3 (3–4) (ii)
5 (2–8) (ci)

5 (2–15)

APACHE II score 20 (6–45) - 13 (4–25) - -

The values are represented as median (range) or mean ± SD

II, intermittent infusion; EI, extended infusion; CI, continuous infusion; BMI, body mass index; SAPS II, Simplified Acute Physiology Score; SOFA,
Sepsis-related Organ Failure Assessment; APACHE II, Acute Physiology and Chronic Health Evaluation
* [21] The demographic and biological data of the patients of the study done by Delattre et al. [17] came from this reference
** The 418 samples were collected from patients treated with one of the 4 beta-lactams (piperacillin, ceftazidime, cefepime, and meropenem) combined
with amikacin
*** 222 plasma samples and 274 microdialysis samples were collected in this study
**** The albumin was calculated with the data from 26 patients
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from the external validation dataset were administered
meropenem by continuous infusion (CI), which differed from
the mode of administration of some of the selected studies
(Table 1). However, Roberts et al. [20] compared the mode of
administration between patients that received meropenem either
intermittent bolus administration or an equal dose administered
by CI. They concluded that while the administration by CI main-
tained higher concentrations in subcutaneous tissue and plasma,
it did not have a major impact on the final data. The discrepancy
between mode of administration of the population groups could
still be a potential weakness of the study.

The design of the study also can explain a part of the ob-
served variability [38]. Indeed, the number of patients from
whom the model is derived also plays a significant role in
assessing the model’s robustness [38]. In this study, the num-
ber of patients and the number of samples differed greatly
between each model and the external validation dataset.
Roberts et al. [20] only used ten patients to develop their
population PK model, which could suggest a decreased reli-
ability due to the small numbers of patients. Compared with
Roberts et al. [20], Delattre et al. [17] collected data from 88
ICU patients treated with amikacin but only 19 of these were

coadministered with MERO. Only internal evaluations such
as bootstraps and/or visual predictive checks (VPC) were
done to assess the chosen models. Moreover, half of the se-
lected models [17, 18] were developed based on routine clin-
ical data, possibly leading to incorrect documentation or a lack
of information. A study by Alihodzic et al. [39] demonstrated
that erroneous records could have a considerable impact on
the precision and accuracy of the estimated PK parameters in
population PK modeling.

Recently, Dhaese et al. [31] also realized an external eval-
uation in which eight population PK models of MERO were
compared. We found similar results, concluding that there is a
large variability in the predictive performance of the models
when performing an external validation using an independent
dataset of ICU patients. Moreover, Dhaese et al. [31] sug-
gested that an external evaluation should also be based on its
tendency to under- or over-predict concentrations and that the
consequences of under-dosing of MERO are probably more
important than the consequences of overdosing. However,
several recent studies showed that neurotoxicity exists with
beta-lactams [40, 41]. High such as low MERO concentra-
tions must be avoided. There is a need to develop a population

Table 2 Summary of the evaluated pharmacokinetic models

Residual variability

Model CMT COV ERR CL IIVCL

(%)
V or
V1

IIVV

or V1

(%)

Q IIVQ

(%)
V2 IIVV2

(%)
Additive
(mg/L)

Proportional
(%)

Models (pseudo codes)

Delattre
et al.
[17]

2 CLCR,
WT

Proportional 9.87 44.1 24.4 53.6 4.97 - 7.01 - - 37.1 CL = 9.87 ×
(CLCR/100)

0.51 ×
(WT/70)0.75

V1 = 24.4 × (WT/70)

Li et al.
[18]

2 CLCR,
AGE,
WT

Mixed 12.3 34.6 10.3 37.8 23.3 53.9 16.7 31.9 0.220 18.8 CL (L/h) = 14.60 ×
(CLCR/83)

0.62 ×
(age/35)−0.34

V1 (L) = 10.80 ×
(WT/70)0.99

Mattioli
et al.
[19]

1 ALB,
AGE

Mixed 9.38 44.38 26.2 66.48 - - - - 7.070 0.401 CL = 2.181 × [1 ± θ4] ×
[1 ± θ6] × 44.38

θ4 = 1 male and 1.76
female

θ6 = 0.427 sepsis and 1
severe sepsis/septic
shock

V = 8.305 × [(ALB/22)
× EXP(0.521)] ×
[(age/61) ×
EXP(0.517)] × 66.48

Roberts
et al.
[20]

2 CLCR Mixed 13.6 15.3 7.9 44.7 56.3 22.3 14.8 8.4 0.43 15.2 CL = 13.6 × (CLCR/100)

CMT, compartment; COV, covariates; CLCR, creatinine clearance;WT, weight; ALB, albumin; ERR, residual error; CL, clearance; V, central volume of
distribution; V1, volume of distribution of the first compartment; Q, inter-compartmental clearance; V2, volume of distribution of the second compart-
ment; IIV, interindividual variability
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PK model for each cohort of patients, as every intensive care
unit has a different population, which can affect the
pharmacokinetics.

Some remarks need to be made regarding the design of this
study. First, this study included therapeutic drugmonitoring data,
resulting in the limited number of blood samples per patient
collected, and the data were collected from a clinical setting.
Another limitation for this study was the low number of patients
(n = 27) used for the external evaluation. This element is also
considered to be a limitation in assessing the forecasting perfor-
mance. Indeed, forecasting performance can also be a criterion

Fig. 2 Population-predicted concentrations versus observed concentrations for meropenem models. a Delattre et al. (R2 0.576), b Li et al. (R2 0.629), c
Mattioli et al. (R2 0.403), and d Roberts et al. (R2 0.616)

Table 3 Prediction error of the evaluated pharmacokinetic models

Reference MDPE (%) MDAPE (%)

Delattre et al. [17] − 17.9 32.4

Li et al. [18] − 33.6 37.0

Mattioli et al. [19] − 14.4 52.8

Roberts et al. [20] − 23.0 32.7
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for evaluation [16]. Furthermore, the fact that the exclusion
criteria restricted the models chosen to those developed by a
parametric approach might be considered a limitation.

Conclusion

In conclusion, the predictive performance of evaluated PK
models in ICU patients showed a wide variability. External
evaluation in the population of interest is a necessary step
before defining new dose adaptation. This brings to light the
difficulty to generalize model in ICU population and the need
to develop one specific model to each population of critically
ill patients.
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