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Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have important cardiovascular and renal benefits in adults with type
2 diabetes who have or are at high risk of cardiovascular and renal disease. These benefits are seen in patients with impaired renal
function where the glucose-lowering effects are not observed. Here, we review the pharmacokinetics and pharmacology of
SGLT2 inhibitors in relation to cardiovascular and renal outcomes in patients with chronic kidney disease (CKD).
Methods We searched PubMed and EMBASE for original research, meta-analyses and review articles relevant to the pharma-
cokinetics, and cardiac and renal outcomes of SGLT2 inhibitors published up until June 2019. Specialist society guidelines and
publications were also consulted.
Results Renal impairment is currently a contraindication to SGLT2 inhibitor use largely due to limited anti-hyperglycaemic
efficacy. However, in cardiovascular outcome trials, and a dedicated renal outcome trial, cardiovascular and renal benefits were
seen in participants with CKD suggesting that mechanisms underlying the cardiovascular and renal benefits of SGLT2 inhibitors
are likely largely independent of the glucose-lowering action of these agents.
Conclusions Despite minimal glycaemic benefits in patients with type 2 diabetes and stage 3 CKD, the cardiovascular and renal
benefits of these agents are preserved in this group of patients. Whether these agents have cardiovascular and renal benefits in
patients with stage 4 CKD and patients with non-diabetic CKD needs further research.
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Introduction

Approximately 40% of patients with type 2 diabetes have
chronic kidney disease (CKD) [1]. Patients with type 2 diabe-
tes and CKD are a very high risk population for early cardio-
vascular disease (CVD) and mortality and end-stage renal
disease [2]. Sodium-glucose cotransporter 2 (SGLT2) inhibi-
tors, a relatively new type 2 diabetes medication class, inhibit
renal glucose reabsorption leading to glycosuria. The
glycosuric effects of SGLT2 inhibitors are attenuated in pa-
tients with type 2 diabetes and CKD. Cardiovascular outcome
trials (CVOTs) of three SGLT2 inhibitors (empagliflozin,
canagliflozin and dapagliflozin) have shown that this drug
class has beneficial cardiovascular and renal effects in adults
with type 2 diabetes who have CVD or are at high risk of CVD
[3–7]. The first dedicated renal outcome trial to release results,
CREDENCE, found that canagliflozin has renal and cardio-
vascular benefits in adults with type 2 diabetes and albumin-
uric CKD [8]. Thus, these drugs are emerging as important
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therapeutic agents for patients with type 2 diabetes and CKD.
While these drugs are efficacious, SGLT2 inhibitors have rare,
but potentially serious adverse effects, in particular diabetic
ketoacidosis [9]. This review examines the clinical pharma-
cology of SGLT2 inhibitors with particular focus on cardio-
vascular and renal outcomes in patients with CKD and sum-
marises the emerging safety issues.

Glucose reabsorption in the kidney—the role
of sodium-glucose cotransporters (SGLTs)

Glucose is freely filtered in the glomerulus (approximately
180 g/day) [10]. In healthy adults, filtered glucose is
completely reabsorbed by SGLT2 and SGLT1 located in the
apical membrane of the proximal tubule. SGLT2 is responsi-
ble for approximately 97% of glucose reabsorption in the kid-
ney [10]. When SGLT2 is inhibited, SGLT1 can reabsorb
approximately 40–50% of glucose [10]. SGLT2 mRNA is
exclusively expressed in the kidney, whereas SGLT1 mRNA
is more widely expressed—most abundantly in the small in-
testine [11]. The renal transport maximum of glucose (TmG) is
approximately 11.1 mmol/L [10]. Glycosuria occurs when the
plasma glucose exceeds TmG.

Place of SGLT2 inhibitors in the management
of type 2 diabetes

The American Diabetes Association (ADA) and the European
Association for the Study of Diabetes (EASD) released guide-
lines in late 2018 for the management of hyperglycaemia in
type 2 diabetes [12]. Metformin remains as first-line pharma-
cological therapy because of its glucose-lowering efficacy,
good safety profile and low cost [12]. SGLT2 inhibitors are
listed as appropriate second-line agents; however, there are
certain clinical settings where SGLT2 inhibitors are preferred
to other anti-hyperglycaemic agents, most notably those with
established atherosclerotic coronary artery disease and con-
comitant cardiac failure, as well as CKD [12–14].

Pharmacokinetics of SGLT2
inhibitors—empagliflozin, dapagliflozin,
canagliflozin and ertugliflozin

Pharmacokinetics in people without renal or hepatic
impairment

Important pharmacokinetic parameters for empagliflozin,
dapagliflozin, canagliflozin and ertugliflozin are provided in
Table 1. These SGLT2 inhibitors are rapidly absorbed [15–18].
The area under the concentration-time curve (AUC) and peak

plasma concentrations (Cmax) increase approximately proportion-
ally with dose over the therapeutic dose ranges [15, 19, 23, 24].
The major pathway of metabolism is glucuronidation and the
glucuronides are inactive [15–18]. Overall, the pharmacokinetic
parameters between SGLT2 inhibitors are similar, although
empagliflozin has a greater fraction of the parent drug excreted
unchanged in the urine (fe) compared with dapagliflozin,
canagliflozin or ertugliflozin (Table 1) [18, 20, 21]. There are
no grounds, based on pharmacokinetic profiles alone, for differ-
entiating between class members in clinical practice.

Pharmacokinetics in people with renal or hepatic
impairment

Pharmacokinetic studies of SGLT2 inhibitors in people with
renal and hepatic impairment have largely been limited to
single-dose studies [22, 25–29], but population pharmacoki-
netic models for dapagliflozin [30], empagliflozin [31] and
canagliflozin [32] including these patient populations have
been developed. Empagliflozin, dapagliflozin, canagliflozin
and ertugliflozin exposure increases with worsening renal im-
pairment; however, AUC does not exceed two-fold that of
subjects with normal renal function [22, 25, 26, 33].
Similarly, in subjects with mild, moderate and severe hepatic
impairment, increases in empagliflozin and dapagliflozin ex-
posure were less than two-fold that of subjects with normal
hepatic function [27, 28]. In single dose studies of
canagliflozin in subjects with mild and moderate hepatic im-
pairment, and ertugliflozin in subjects with moderate hepatic
impairment, canagliflozin and ertugliflozin exposure, respec-
tively, was comparable to subjects with normal hepatic func-
tion [22, 29]. These data do not identify a class member that is
obviously preferred in patients with CKD.

Pharmacodynamics

Urinary glucose excretion

SGLT2 inhibitors inhibit up to 40–60% of glucose reabsorp-
tion [21, 23]. The renal transport maximum of glucose is re-
duced in a concentration-dependent manner [34]. Urinary glu-
cose excretion induced by SGLT2 inhibitors is reduced with
increasing severity of renal impairment, and this reduction is
more marked in stage 4 CKD (estimated glomerular filtration
rate (eGFR) 15 to < 30 mL/min/1.73 m2) compared with stage
2 or 3 CKD (eGFR 60 to < 90 or 30 to < 60 mL/min/1.73 m2,
respectively) [22, 25, 26, 33].

Metabolic responses to SGLT2 inhibitor use

SGLT2 inhibitor use results in a decrease in plasma insulin
concentration and an increase in plasma glucagon
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concentration [35]. Free fatty acid suppression post-meal is
also impaired [35]. Perhaps paradoxically, endogenous glu-
cose production is increased [35]. Corresponding to the de-
crease in insulin-to-glucagon ratio and increase in free fatty
acids, the concentration of beta-hydroxybutyrate is increased
[36]. These effects are driven by the hypoglycaemic actions
and are muted as renal function declines.

Effect of SGLT2 inhibitors on glycaemic control,
weight and blood pressure

In a network meta-analysis of randomised controlled trials
(RCTs) of at least 24 weeks, empagliflozin, dapagliflozin
and canagliflozin reduced HbA1c (glycated haemoglobin)
by 0.6–0.9% (6.6–9.8 mmol/mol) and fasting plasma glucose
by 1.1–1.9 mmol/L compared with placebo [37]. SGLT2 in-
hibitors reduced body weight by 1.6–2.5 kg and systolic and
diastolic blood pressure by 2.8–4.9 and 1.5–2.0 mmHg, re-
spectively, compared with placebo [37].

In patients with stage 3 CKD, SGLT2 inhibitors have at-
tenuated glycaemic effects but preserved blood pressure and
body weight-lowering effects [38–41]. There are very limited
data regarding the efficacy of SGLT2 inhibitors in patients
with stage 4 CKD. The EMPA-REG RENAL trial evaluated
the efficacy and safety of empagliflozin versus placebo as an
add-on to existing anti-hyperglycaemia treatment in partici-
pants with type 2 diabetes and stage 2, 3 and 4 CKD [42].
As there were a small number of participants with stage 4
CKD, efficacy measures in this participant group were
analysed descriptively. In participants with stage 4 CKD,
empagliflozin 25 mg did not reduce HbA1c at weeks 24 and
52, but clinically meaningful reductions in blood pressure and
body weight were noted at these time points.

Dual SGLT1 and SGLT2 inhibition may have greater anti-
hyperglycaemic efficacy compared with selective SGLT2 in-
hibition in patients with type 2 diabetes and CKD due to
inhibition of SGLT1-mediated intestinal glucose absorption.
In a relatively small study of patients with type 2 diabetes and
stage 3 or 4 CKD, 7 days of sotagliflozin, a dual SGLT1/
SGLT2 inhibitor resulted in significantly lower postprandial
glucose levels compared with placebo [43]. A phase 3 trial
examining the glycaemic effects of sotagliflozin in patients

with type 2 diabetes and stage 3 CKD (ClinicalTrials.gov
Identifier: NCT03242252) will provide further knowledge
on the efficacy of the dual SGLT1/SGLT2 inhibitor in this
patient group.

Effect of SGLT2 inhibitors on haematocrit, uric acid
and lipids

SGLT2 inhibitors induce osmotic diuresis, reflected by an
increase in haematocrit [3]. In addition, a meta-analysis of
62 RCTs involving type 2 diabetes patients found that
SGLT2 inhibitors lowered serum uric acid on average by
38 μmol/L (0.038 mmol/L) compared with control [44].
However, a reduced effect in patients with longer duration of
type 2 diabetes and a higher baseline HbA1c was observed,
and there was no significant reduction in serum uric acid in
patients with eGFR < 60 mL/min/1.73 m2. SGLT2 inhibitor
use is associated with a small increase in both low-density
lipoprotein (LDL) and high-density lipoprotein (HDL) levels
[3, 5]. It is not plausible that the small rise in LDL induces
atherosclerosis. There are insufficient studies examining these
indices to indicate the effects in severe CKD patients that
might contribute to the positive CVD outcomes in these
patients.

Cardiovascular outcome trials (CVOTs) of SGLT2
inhibitors—focus on cardiovascular and renal
outcomes in patients with CKD

The EMPA-REG OUTCOME trial, the CANVAS Program
and the DECLARE-TIMI 58 trial were RCTs examining the
cardiovascular effects of empagliflozin, canagliflozin and
dapagliflozin, respectively, in participants with type 2 diabetes
receiving standard care [3, 5, 6]. These CVOTs were under-
taken to assess cardiovascular safety as part of the United
States Food and Drug Administration (FDA) regulatory re-
quirements and to assess efficacy and safety outcomes.
Supplementary Table 1 outlines the inclusion criteria, study
populations, primary outcomes and the cardiovascular and
renal outcomes of these trials. Of note, the inclusion criteria
of the trials differed in regard to participants’ cardiovascular
status and renal function (Supplementary Table 1). A meta-

Table 1 Therapeutic dose range and pharmacokinetic parameters of empagliflozin, dapagliflozin, canagliflozin and ertugliflozin [15–22]

Empaglilfozin Dapagliflozin Canagliflozin Ertugliflozin

Therapeutic dose range (mg per day) 10–25 10 100–300 5–15

Time to maximum plasma concentration—tmax (hours) ~ 1.5 ~ 1 ~ 1.5 ~ 1

Terminal half-life—t1/2 (hours) ~ 13 ~ 14 14–15 ~ 17

Plasma protein binding (%) 80–86 ~ 91 ~ 99 ~ 94

Fraction of parent drug excreted unchanged in the urine—fe (%) ~ 18 < 2.5 < 1 1.5

“~” approximately
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analysis of the three CVOTs found a significant reduction in
the risk of a major adverse cardiac event (composite of car-
diovascular death, myocardial infarction or stroke) in partici-
pants with atherosclerotic CVD (hazard ratio (HR) 0.86, 95%
confidence interval (CI) 0.80–0.93), as well as a significant
and approximate 30% relative risk reduction in hospitalisation
for heart failure in both participants with atherosclerotic CVD,
and participants with multiple risk factors [7]. In this meta-
analysis, the reduction in hospitalisation for heart failure with
SGLT2 inhibitor use was most apparent in participants with
worse baseline renal function (40% reduction if eGFR <
60 mL/min/1.73 m2, 31% if eGFR 60 to < 90 mL/min/
1.73 m2 and a non-significant 12% reduction if eGFR ≥
90 mL/min/1.73 m2) [7]. The lowest eGFR group had a great-
er reduction in major adverse cardiovascular events compared
with the other two eGFR groups; however, the risk reduction
trend across these subgroups was not significant. Although
not explicitly reported, the improvement in HbA1c is expected
to be least in these groups who most likely experienced the
greatest reduction in major adverse cardiovascular events, re-
inforcing the hypothesis that the glycaemic and cardiovascular
benefits of the SGLT-2 inhibitors are independent.

In the CVOTs, empagliflozin, canagliflozin and
dapagliflozin were found to have important renoprotective
effects (Supplementary Table 1) [4–6]. These renoprotective
effects included a significant reduction in progression of albu-
minuria [4, 5]. Interestingly, in the meta-analysis of CVOTs of
SGLT2 inhibitors, there was a significant reduction in a com-
posite renal outcome of worsening of renal function, end-stage
renal disease or renal death across all baseline eGFR catego-
ries. However, the reduction in this outcome was greatest in
participants with baseline eGFR ≥ 90 mL/min/1.73 m2 (56%
reduction compared with a 44% and 33% reduction for par-
ticipants with eGFR 60 to < 90 and < 60 mL/min/1.73 m2,
respectively, p value for risk reduction trend across sub-
groups = 0.026) [7].

Dedicated renal outcome trials of SGLT2 inhibitors
in patients with CKD

The CREDENCE trial was a multicenter RCT done to exam-
ine the effects of canagliflozin on renal outcomes in patients
with type 2 diabetes and albuminuric CKD (eGFR 30 to <
90 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio
(UACR) > 300 to 5000 mg/g) [8]. Approximately 60% of
participants had an eGFR of 30 to < 60 mL/min/1.73 m2 (part
of a prespecified plan). Participants were required to be taking
the maximum tolerated dose of an angiotensin-converting en-
zyme (ACE) inhibitor or angiotensin receptor blocker (ARB).
The trial was stopped early after a planned interim analysis
due to prespecified efficacy criteria being achieved. The me-
dian follow-up time was 2.6 years. The canagliflozin group
had a significant 30% lower relative risk of the primary

composite outcome of end-stage kidney disease, doubling of
the serum creatinine level or renal or cardiovascular death
compared with the placebo group (HR 0.70, 95% CI 0.59–
0.82). Furthermore, participants in the canagliflozin group had
a lower risk of a composite of cardiovascular death, myocar-
dial infarction or stroke (HR 0.80, 95% CI 0.67–0.95), as well
as hospitalisation for heart failure (HR 0.61, 95% CI 0.47–
0.80). These impressive findings occurred despite modest dif-
ferences between the groups in glycaemic control and body
weight (overall mean differences in HbA1c and body weight
between the canagliflozin and placebo group throughout the
trial were − 0.25% and − 0.80 kg, respectively). Additionally,
while the canagliflozin group had a greater mean reduction in
eGFR during the first 3 weeks of treatment compared with the
placebo group (− 3.72 vs. − 0.55 mL/min/1.73 m2), thereafter
the reduction in eGFRwas lower in the canagliflozin group (−
1.85 vs. − 4.59 mL/min/1.73 m2/year).

With regard to the effect of SGLT2 inhibitors on albumin-
uria in patients with type 2 diabetes and CKD, in the
CREDENCE trial, there was a 31% reduction in the mean
UACR during follow-up in the canagliflozin group [8]. The
recent DELIGHT trial primarily examined the albuminuria-
lowering effect of dapagliflozin with and without saxagliptin,
a dipeptidyl peptidase-4 (DPP-4) inhibitor in patients with
type 2 diabetes, eGFR 25–75 mL/min/1.73 m2 and UACR
30–3500 mg/g [45]. After 24 weeks of treatment, the
dapagliflozin and dapagliflozin-saxagliptin group had a 21%
and 38%, respectively, greater reduction in mean UACR
change from baseline compared with placebo. These reduc-
tions in UACR were not fully mediated by changes in
glycaemic or blood pressure control.

The CREDENCE and DELIGHT trials have important im-
plications for the population of patients with diabetic CKD,
especially given that prior to these findings, ACE inhibitors or
ARBs were the only approved treatment for renoprotection in
patients with type 2 diabetes and CKD. There are dedicated
renal outcome trials underway for empagliflozin and
dapag l i f l oz in (EMPA-KIDNEY and Dapa -CKD
(ClinicalTrials.gov Identifiers: NCT03594110 and
NCT03036150), respectively). These trials will also provide
insight into the effects of empagliflozin and dapagliflozin,
respectively, in patients with non-diabetic CKD as diabetes
is not an inclusion criterion. With regard to patients with
CKD, an area warranting further research is individual vari-
ability in response to SGLT2 inhibitors (cardiovascular, renal
and glycaemic effects) and factors predicting response.

Mechanisms mediating cardiovascular benefits
with use of SGLT2 inhibitors

As discussed above, in patients with CKD, SGLT2 inhibitors
have attenuated glycaemic benefits but preserved cardiovas-
cular benefits [7, 46]. Hence, mechanisms mediating
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cardiovascular benefits are likely largely independent of the
glucose-lowering action of these agents. Proposed mecha-
nisms include

& Natriuresis and osmotic diuresis: leading to a reduction in
preload [47]. By reducing blood pressure and arterial stiff-
ness, SGLT2 inhibitors may also reduce afterload [48, 49].
Natriuresis increases sodium delivery to the macula densa,
which activates tubuloglomerular feedback, resulting in
afferent arteriolar vasoconstriction and a reduction in
intraglomerular pressure [50], likely mediating renal ben-
efits of SGLT2 inhibitors.

& Inhibition of the sodium-hydrogen exchanger in the
myocardium [51, 52]: overactivity of this exchanger leads
to an increase in cytoplasmic sodium and calcium
(through the sodium-calcium exchanger) resulting inmyo-
cardial dysfunction, hypertrophy, apoptosis and failure
[53].

& Use of ketone bodies for cardiac metabolism: as detailed
above, SGLT2 inhibitor use results in an increase in beta-
hydroxybutyrate concentration [35]. It is hypothesised
that beta-hydroxybutyrate is freely taken up by the heart
and oxidised in preference to fatty acids due to reduced
oxygen consumption, leading to improved cardiac effi-
ciency in the impaired myocardium [54].

& Reduced cardiac fibrosis: in rat models of post-
myocardial infarction, dapagliflozin administration was
associated with attenuated myofibroblast infiltration and
cardiac fibrosis [55].

& Favourable changes in adipose tissue inflammatory
cytokines: this is a proposedmechanism but further studies
are needed to confirm this hypothesis [56].

Safety considerations with use of SGLT2 inhibitors

Table 2 provides information on adverse events reported in the
EMPA-REG OUTCOME trial, the CANVAS Program and
the DECLARE-TIMI 58 trial.

Genitourinary infections

SGLT2 inhibitors are associated with an increased risk of gen-
ital infections in both men and women (Table 2) [3, 5, 6].With
regard to rates of urinary tract infections, there was no signif-
icant difference between the SGLT2 inhibitor and placebo
groups in the three CVOTs [3, 5, 6]. In 2015, the FDA issued
a warning about the risk of serious urinary tract infections with
SGLT2 inhibitors due to 19 cases of life-threatening urosepsis
and pyelonephritis reported betweenMarch 2013 and October
2014 [57].

Fournier’s gangrene (necrotising fasciitis of the perineum)

In 2018, the FDA issued a warning concerning reports of
Fournier’s gangrene in patients taking an SGLT2 inhibitor
based on 12 cases up to May 2018 [58]. However, in the
DECLARE-TIMI 58 trial, there was one case of Fournier’s
gangrene in the dapagliflozin group, compared with five cases
in the placebo group.

Hypoglycaemia

There was no significant increased risk of hypoglycaemia in
the SGLT2 inhibitor group compared with the placebo group
in the three trials [3, 5, 6].

Volume depletion and acute kidney injury

By inducing osmotic diuresis, SGLT2 inhibitors may contrib-
ute to volume depletion and postural hypotension, particularly
in the elderly and individuals taking diuretics [59].

In 2015/2016, the FDA issued a warning about the risk of
acute kidney injury with canagliflozin and dapagliflozin based
on 101 cases fromMarch 2013 to October 2015, some requir-
ing hospitalisation and dialysis [60]. In approximately half of
the cases, the acute kidney injury occurred within 1 month of
commencing a SGLT2 inhibitor and most cases improved
after discontinuation. Some patients were dehydrated, hypo-
tensive or were taking potentially nephrotoxic medications. A
propensity-matched analysis of SGLT2 inhibitor users and
non-users in two different cohorts demonstrated no increased
risk of acute kidney injury with SGLT2 inhibitor therapy—in
fact, there was a trend toward decreased risk with SGLT2
inhibitor use [61]. Consistent with this finding, in the
EMPA-REG OUTCOME and DECLARE-TIMI 58 trials,
there was a significantly lower rate of acute kidney injury in
the SGLT2 inhibitor group compared with the placebo group
(Table 2) [3, 6].

Diabetic ketoacidosis (DKA)

In the CVOTs, participants randomised to SGLT2 inhibitor
had 2–3 times the risk of DKA compared with participants
randomised to placebo (Table 2) [3, 5–7]. A register-based
cohort study using nationwide data from Sweden and
Denmark comparing new users of SGLT2 inhibitors and
glucagon-like peptide-1 (GLP-1) receptor agonists found a
similar doubling in the risk of DKA with the use of SGLT2
inhibitors relative to GLP-1 receptor agonists (1.3 events/1000
patient-years among SGLT2 inhibitor users) [62]. A common
precipitating factor to DKA is absolute or relative insulin
deficiency—this includes known or undiagnosed type 1 dia-
betes and insulin dose reduction or cessation [7, 9]. In the
DECLARE-TIMI 58 trial, > 80% of participants who
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developed DKAwere using insulin at baseline [6]. Other pre-
cipitating factors include ketosis-promoting states such as sur-
gery, infection (demonstrated in case studies by Isaac et al.
[63]), very low carbohydrate diets and alcohol abuse [9, 64].
In a review of 105 cases of SGLT2 inhibitor-associated DKA,
35% of cases were relatively euglycaemic, defined as an ad-
mission plasma glucose < 11.1 mmol/L [9]. The majority of
cases were severe and all required hospitalisation. The dura-
tion of SGLT2 inhibitor treatment before the onset of DKA
was very variable. There have been at least three deaths due to
SGLT2 inhibitor-associated DKA [63, 64].

Amputation and fracture

The CANVAS Program was the only CVOT to demonstrate
an increased risk of predominantly distal amputation and frac-
ture in the SGLT2 inhibitor group compared with the placebo
group (Table 2) [3, 5, 6]. This increased risk was not observed
in the CREDENCE trial [8]. In the CANVAS Program, 71%
of affected participants had their highest amputation at the
level of the toe or metatarsal [5]. The Swedish and Danish
cohort study found a 2.3 increase in the risk of lower limb
amputation among SGLT2 inhibitor users relative to GLP-1
receptor agonist users [62]. The vast majority of SGLT2 in-
hibitor users were taking dapagliflozin or empagliflozin, and
therefore, this finding differs with the results of the

DECLARE-TIMI 58 and EMPA-REG OUTCOME trials.
The Swedish and Danish cohort study found no difference
between SGLT2 inhibitor users and GLP-1 receptor agonist
users with regard to the risk of bone fracture.

Safety of SGLT2 inhibitors in patients with CKD

In post hoc subgroup analyses of the EMPA-REG
OUTCOME trial and the CANVAS Program, rates of adverse
events were similar in participants with eGFR < 45, 45 to < 60
and ≥ 60 mL/min/1.73 m2 at baseline [46, 65]. In the
CREDENCE trial, as expected, there was a higher rate of
genital infections and DKA in the canagliflozin group (rate
of DKA in the canagliflozin vs. placebo group 2.2 vs. 0.2 per
1000 patient-years) [8]. The rate of DKA in the canagliflozin
group in this trial was higher compared with the SGLT2 in-
hibitor groups in the three CVOTs [7]. This is possibly due to
the CREDENCE trial having a greater proportion of partici-
pants using insulin at baseline compared with the CVOTs (all
but 1 of the 12 participants who developed DKA in the
CREDENCE trial had insulin treatment at baseline). There
was a non-significant greater event rate of volume depletion
in the canagliflozin group (28.4 vs. 23.5 per 1000 patient-
years). The rate of acute kidney injury in the canagliflozin
group in the CREDENCE trial was not increased compared
with the placebo group (HR 0.85, 95% CI 0.64–1.13). There

Table 2 Adverse events reported in the cardiovascular outcome trials of SGLT2 inhibitors–comparison of the adverse event rate in the SGLT2 inhibitor
versus the placebo group [3, 5, 6]

Adverse event EMPA-REG OUTCOME CANVAS program DECLARE-TIMI 58

Genital infection ~ 4× increase in events consistent
with genital infection (P < 0.001)

~ 4× increased event rate of mycotic
genital infection in women
(P < 0.001)

~ 8× increase in genital infections
that led to discontinuation of study
drug or were considered to be serious
adverse events (0.9% vs. 0.1%, P < 0.001)

Urinary tract infection
(UTI)

No significant difference in events
consistent with UTI

No significant difference in
event rate of UTI

No significant difference in UTIs that led
to discontinuation of study drug or were
considered to be serious adverse events

Hypoglycaemia No significant difference No significant difference Reduction in major hypoglycaemic events
(0.7% vs. 1.0%, P = 0.02)

Volume depletion No significant difference in events
consistent with volume depletion

~ 1.4× increased event rate of volume
depletion (P < 0.01)

No significant difference in symptoms of
volume depletion

Acute kidney injury 1.0% vs. 1.6% (P < 0.05) 3.0% vs. 4.1% (P = 0.33) 1.5% vs. 2.0% (P = 0.002)

Diabetic ketoacidosis 0.1% vs. < 0.1% (P > 0.05) 0.6 vs. 0.3 participants/1000
patient-years (P = 0.14)

0.3% vs. 0.1% (P = 0.02)

Amputation No significant difference Increased event rate of lower-limb
amputation (6.3 vs. 3.4
participants/1000 patient-years,
P < 0.001)

No significant difference

Fracture No significant difference Increased event rate of all fracture
(15.4 vs. 11.9 participants/1000
patient-years, P = 0.02). Trend towards
increased event rate of low-trauma
fracture (11.6 vs. 9.2 participants/1000
patient-years, P = 0.06)

No significant difference

“~” approximately, “×” times, UTI urinary tract infection
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was no significantly increased risk of amputation or fracture.
While there is no clear evidence of an increased fracture risk
with SGLT2 inhibitor use in patients with CKD, a post hoc
analysis of a randomised crossover trial in patients with type 2
diabetes and early-stage CKD (eGFR ≥ 45 mL/min/1.73 m2

and UACR 100–3500 mg/g) found dapagliflozin use to be
associated with increases in serum phosphate, parathyroid
hormone and fibroblast growth factor 23 (FGF23) [66].
Further research is warranted in this area. Furthermore, larger
trials in patients with stage 4 CKD are required to better define
the safety profile of SGLT2 inhibitors in this population.

Contraindications and precautions for SGLT2 inhibitor
use

Table 3 lists contraindications and precautions for SGLT2 in-
hibitor use [67–70]. Renal impairment is a ‘contraindication’
largely because the anti-hyperglycaemic efficacy of SGLT2
inhibitors is dependent on renal function [67–69]. As
discussed above, this is not the same with regard to the car-
diovascular and renal effects of SGLT2 inhibitors. If a patient
is using insulin, their insulin dose may need to be reduced at
the time of SGLT2 inhibitor prescription to minimise the risk

of hypoglycaemia. However, caution should be taken given
the associated risk of DKA.

With regard to SGLT inhibition in type 1 diabetes, there
have been a number of clinical trials assessing the efficacy and
safety of an SGLT2 inhibitor and dual SGLT1/SGLT2 inhib-
itor in adults with type 1 diabetes [72–76]. These studies have
shown that the use of an SGLT2 inhibitor or dual SGLT1/
SGLT2 inhibitor is efficacious with regard to reducing
HbA1c, insulin doses and body weight. However, as expect-
ed, use of these agents is associated with a higher rate of DKA
compared with placebo. For this reason, prescription of an
SGLT2 inhibitor to a patient with type 1 diabetes is not
recommended.

Conclusion

SGLT2 inhibitors are potentially emerging as important drugs
to improve cardiovascular and renal outcomes in patients with
type 2 diabetes and CKD. Greater research is needed particu-
larly with regard to efficacy and safety outcomes in patients
with stage 4 CKD and patients with non-diabetic CKD. The
evidence to date suggests that the glycaemic and cardiovascu-
lar effects of this class of agents are independent.
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