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Abstract
Purpose Bisphosphonates are synthetic analogues of pyro-
phosphate usually used in treating bone disorders such as
osteoporosis, Paget’s disease, fibrous dysplasia, hypercalce-
mia of malignancy, and inflammation-related bone loss.
Though therapeutic effects of bisphosphonates depend pri-
marily on their inhibitory effect on osteoclasts, increasing
attention is being given to other effector cells, such as
osteoblasts. This review focuses on the presumed effect of
bisphosphonates on osteoblasts.
Methods A review of the literature was conducted to eval-
uate the pharmacodynamic effects of bisphosphonates in-
cluding inhibition of osteoclasts and apoptosis of osteocytes
and osteoblasts as well as their potential stimulatory effects
on the proliferation of osteoblasts.
Results Studies have demonstrated that bisphosphonates
may stimulate proliferation of osteoblasts and inhibit apo-
ptosis of osteocytes and osteoblasts.
Conclusion Considering that osteoblasts may be involved in
bone disorders, such as osteoporosis, osteopetrosis, osteo-
genesis imperfecta, and Paget’s disease, and that bisphosph-
onates may stimulate proliferation of osteoblasts and inhibit
apoptosis of osteocytes and osteoblasts, it is conceivable
that a role for bisphosphonates exists in these diseases
beyond merely the osteoclast influence.
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Introduction

Bisphosphonates (BPs) are synthetic analogues of pyrophos-
phate usually used in treating disorders of bone such as oste-
oporosis, Paget’s disease, fibrous dysplasia, hypercalcemia of
malignancy, and inflammation-related bone loss [1–5].

BPs can further be separated into nitrogen-containing and
non-nitrogen-containing BPs. Nitrogen-containing BPs, such
as alendronate, ibandronate, risedronate, and zoledronate,
inhibit the mevalonate pathway of cholesterol synthesis
via inhibition of the enzyme farnesyl diphosphate synthase
and blocking prenylation of small GTPases leading to
interruption of osteoclast function [6]. Non-nitrogen-
containing BPs, such as etidronate and clodronate, suppress
bone resorption by incorporating into intracellular non-
hydrolyzable ATP analogues that have no releasable energy
content, thus leading to osteoclast death [7, 8]. Moreover, BPs
are able to chelate calcium ions and bind to hydroxyapatite
crystals on bone surfaces [9].

BPs determine an acidification process at the osteoclast-
mineral interface, disrupt the actin attachment sites on the
bone surface, and interrupt bone resorption by disturbing the
ruffled border function [10–14].

Even if therapeutic effects of BPs depend on their
inhibitory effect on osteoclasts, there is increasing evidence
that BPs may play a role in osteoblastogenesis [15–21].

Osteoblasts

Osteoblasts are mononuclear specialized cells derived from
mesenchymal precursor cells, responsible for formation,
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deposition, and mineralization of bone tissue, principally
through the deposition of calcium phosphate crystals,
such as hydroxyapatite, and extracellular matrix, including
proteoglycans and type 1 collagen.

Osteoblasts are involved in osteoclast regulation [22].
The interaction of nuclear factor (NF)-ĸB ligand (RANKL),
a membrane-residing protein on osteoblasts that may also be
isolated as a soluble factor as a consequence of matrix
metalloproteinases (MMPs) proteolysis, with RANK, a type I
transmembrane receptor expressed on osteoclast precursors,
is involved in osteoclast precursor differentiation into
osteoclasts. The formation of the RANK-RANKL complex
results in a cascade characterized by the trimerization of
RANK and the activation of TNF receptor-associated factor
6 (TRAF6), which induces NF-ĸB and mitogen-activated
protein kinases (MAPKs), including Jun N-terminal kinase
(JNK) and p38, involved in the activation of transcription
factors such as c-Fos, c-Src, and microphtalmia transcription
factor (MITF) [23–25]. On the other hand, osteoblasts are also
involved in osteoprotegerin (OPG) production, a soluble
decoy receptor for RANKL, which competitively inhibits
the binding of RANKL to RANK on the cell membrane
of osteoclasts, thus impeding RANK activation and the
subsequent osteoclast activation [26].

The control of osteoclastogenesis by osteoblasts underlines
the importance of these cells in the modulation of bone
resorption. Moreover, osteoblasts express numerous other
molecules involved in the regulation of osteoclastogenesis
such as tumor necrosis factor (TNF)-α, interleukin-1 (IL-1),
and macrophage-colony stimulating factor (M-CSF).

TNF-α induces the production of RANKL both directly by
expressing factors such as RANK, TRAF6, and NF-ĸB, which
are involved in activation of osteoclast precursor cells in the
early phase of osteoclast differentiation, and indirectly by
stimulating osteoclastogenesis-supporting mesenchymal cells
[27–30]. The binding of TNF-α to two receptors, TNF receptor
type I (TNFRI) and TNF receptor type II (TNFRII), is respon-
sible for its biological activity. Only the addition of neutraliz-
ing anti-TNFRI, but not anti-TNFRII antibodies, suppresses
RANKL-induced osteoclastogenesis, suggesting that just
TNFRI is involved in RANKL-induced osteoclastogenesis
[31, 32].

IL-1 is a potential regulator of osteoclastogenis only in
the presence of adequate levels of RANKL and induces the
activation of a p38 MAP-kinase in osteoclast precursor and
marrow stromal cells that is involved in TNF-α-mediated
osteoclastogenesis [33].

M-CSF is involved in recruiting osteoclasts, as demonstrated
in mice with mutation in the coding region of the M-CSF;
the mice were characterized by osteoclast-deficient osteopetro-
sis [34]. M-CSF stimulates RANK expression on the cell
surface of pre-osteoclasts rendering them reactive to RANKL
[35]. Moreover, M-CSF induces osteoclast differentiation

via binding to c-fms, a tyrosine kinase receptor that in turn
induces ERK1/2 and PI3-K/AKT activation [36].

Role of osteoblasts in bone disorders

Several studies have showed that osteoblasts may be
involved in bone disorders, such as osteoporosis, osteo-
petrosis, osteogenesis imperfecta, and Paget’s disease.

Even if osteoporosis is primarily characterized by an
imbalance of bone turn-over favoring osteoclastic bone
resorption, osteoblasts play a role in this disease. Osteoporosis
is mainly observed in postmenopause because of the
hormonal modification related to menopause. The decreased
levels of estrogen in postmenopausal women are responsible
for an increased osteoclastogenesis. In fact, estrogen has been
demonstrated to increase OPG levels [37].Moreover, estrogen
has an inhibitory effect on osteoblast production of numerous
paracrine factors, including IL-1, IL-6, and TNF-α, which are
involved in osteoclastogenesis, and inhibits the transcription
factor Egr-1, which is responsible for M-CSF production
[38, 39]. In postmenopausal women, the decreased levels
of estrogen are correlated with increased levels of IL-1,
IL-6, TNF-α, and M-CSF, responsible for an augmented
bone resorption.

Osteopetrosis is a descriptive term that refers to a group
of rare, heritable disorders of the skeleton where the rate of
bone formation is higher than the rate of bone resorption.
Osteopetrosis is caused by failure of osteoclast development
or function, and mutations in at least 10 genes have been
identified as causative in humans, accounting for 70% of
all cases. It has been hypothesized that osteopetrosis is
characterized by an imbalance between bone formation
and bone resorption due to an altered communication
between osteoblasts and osteoclasts. It has been demonstrated
that in cultured osteoblast-like cells from patients affected
by osteopetrosis, the production of osteocalcin, which is
a marker for mature osteoblasts, and M-CSF, which is
involved in osteoclastogenesis, was inhibited, while normal
levels of alkaline phosphatase were detected [40]. These
results suggest that osteopetrosis is characterized by a
deficient differentiation of pre-osteoblasts into mature
osteoblasts, and a reduced maturation and differentiation
of osteoclasts.

Osteogenesis imperfecta is a group of genetic bone
disorders characterized by fractures with minimal or absent
trauma, dentinogenesis imperfecta, and hearing loss. About
90% of individuals with osteogenesis imperfecta types I, II,
III, and IV have an identifiable mutation in either gene
COL1A1 or COL1A2. In recent years, a role for osteoblasts
has been described in three new types of osteogenesis
imperfecta. Differently from types I, II, and III, the new
types, V, VI, and VII, do not have mutations within type
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1 collagen and are characterized by reduced levels of
alkaline phosphatase and normal levels of osteocalcin,
suggesting the presence of an altered osteoblast differen-
tiation, rather than bone formation [41–44].

A role for osteoblasts has been hypothesized also in
Paget’s disease. Although its etiology is still unknown,
alterations in osteoclast function have been described [45].
Nevertheless, considering that Paget’s disease is characterized
by a high alkaline phosphatase activity, which is an indicator
of high osteoblast activity, the presence of a contextual
imperfection in osteoblast function and in the osteoclast-
osteoblast interaction has been hypothesized [45, 46].
Some data seem to support the hypothesis that a defect
in the RANKL-OPG system is responsible for abnormal
osteoclast activity that results in a further osteoblast
activation in order to balance the augmented bone resorption.
In fact, in patients affected by Paget’s disease, high
RANKL mRNA transcripts, lower OPG levels, and a
major responsiveness of osteoclast precursors to RANKL
stimulation have been found in osteoblast-like cells compared
to cells from normal patients [47–49].

BPs and osteoblasts

BPs are used to treat numerous diseases, such as osteoporosis,
Paget’s disease, osteogenesis imperfecta, bone metastases,
hypercalcemia of malignancy, fibrous dysplasia, and
inflammation-related bone loss.

Already in the 1990s, in vitro studies showed that
osteoblasts treated with BPs inhibit osteoclastogenesis
[50, 51]. Although their primary action may be an inhibitory
effect on osteoclasts, increasing attention is being given to
other effector cells that may be influenced by BPs [52].
In recent years, it has been hypothesized that a further
target of BPs may be osteoblasts, which subsequently
influence osteoclasts. In fact, BPs control osteoblast metabo-
lism, albeit with varying or conflicting effects, depending on
the type of BPs used and the different experimental models.

Laboratory data suggest that BPs have a mitogenic
effect on osteoblasts [19–21]. Studies have demonstrated
that BPs inhibit the expression of RANKL and increase
the expression of OPG in human osteoblastic cells, suggesting
that the antiresorptive effect of BPs is mediated by osteoblast
influence on RANKL signaling [53, 54]. Moreover, other
studies have showed that BPs may increase or decrease
osteoblastogenesis in relation to their concentration: a
pro-osteoblastogenic effect has been seen at lower concentra-
tions of BPs ranging from 10−9 to 10−6 M, whereas the
inhibitory effect has been found at concentrations higher
than 10−5 M [21, 55–62].

Moreover, BPs may be involved in the treatment of
skeletal conditions where macrophage-derived cytokines

are important, including arthritis and implant loosening,
by reducing the inhibitory effects of macrophages on
osteoblasts, as demonstrated in vitro by addition of BPs
to co-cultures of osteoblasts and macrophages [63].

By using in vitro models, Im et al. [21] have demonstrated
the anabolic effect of alendronate and risedronate on
osteoblasts. Following the proliferation of a primary human
trabecular bone cell culture and MG-63 osteoblast-like cell
line after treatment with BPs, the maturation of osteoblasts
was assayed using alkaline phosphatase bioassay and
reverse transcription-polymerase chain reaction for
markers of osteoblast differentiation. Treatment with
BPs appreciably increased the cell number and alkaline
phosphatase activity over controls.

Pamidronate and zolendronate are responsible for
increasing protein synthesis, secretion of type I collagen,
and activity of alkaline phosphatase in osteoblasts even if they
inhibit proliferation of other cells, including macrophages,
linfocites, myeloma, and lung cancer cells. Their mechanism
of action directly involves the cellular metabolism. On the
other hand, other BPs, such as etidronate, are characterized
by a different mechanism of action based on chelation of
divalent ions in the culture medium, which probably is
responsible for a different function. In fact, etidronate
inhibits in vitro osteoblast proliferation at concentrations
greater than pamidronate and zoledronic acid [64].

BPs are involved in inducing osteoblast precursor
proliferation and stimulate the development of mineralized
nodules in murine and human bone marrow cultures in
vitro [65]. In particular, clodronate promotes osteoblast
differentiation in cultures of osteoblast-like line cells,
such as ST2 and MC3T3-E1 cells, and in rat organ
cultures, while etidronate stimulates osteoblast differentiation
only inMC3T3-E1 cells [66]. Moreover, etidronate stimulates
osteoblastogenesis and wound closure in rat calvaria [67].
In contrast, alendronate and pamidronate show no effect
on ST2 and MC3T3-E1 cells or in rat organ cultures of
osteoblasts, while alendronate and risedronate significantly
increase osteoblast and osteoblast progenitor proliferation in
primary human trabecular bone cell culture and in MG-63
osteoblast-like cell line, suggesting that BPs may have
different effects on osteoblast formation [66].

By using primary human osteoblast cultures obtained
from cancellous bone of osteoarthritic and osteoporotic
patients and a corresponding healthy control group, Corrado
et al. [68] found that neridronate can modify the metabolic
activity of human osteoblasts by enhancing or decreasing
their biosynthetic activity, both in normal and in pathological
conditions, depending on compound concentration and on
different cell types. Recently, these data have been confirmed
by using primary human osteoblast cultures obtained from
cancellous bone of healthy subjects undergoing bone marrow
biopsy, treated with increasing concentrations of zoledronate,
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with and without 1,25(OH)2 vitamin D3. The results of this
study have demonstrated that BPs have different cellular
biochemical effects depending on dosage and sustain
the hypothesis that their positive effect on bone mineral
density could be partially due to an anabolic action on
osteoblasts [69].

Administration of BPs has been related to apoptosis inhi-
bition on cells of the osteoblastic lineage [70–77]. The exis-
tence of different mechanisms of action for the prosurvival
effect of BPs has been hypothesized. Recently, Bellido and
Plotkin [78] demonstrated that the expression of con-
nexin (Cx) 43 on osteoblast surface is responsible for
this anti-apoptotic effect. In fact, the opening of Cx43
hemichannels leads to the sequential phosphorylation of
kinases such as Src kinase, extracellular signal-regulated
kinases (ERKs), ERK cytoplasmic target p90RSK kinase,
BAD, and C/EBPβ, resulting in inhibition of apoptosis.

Concluding remarks

Though therapeutic effects of BPs depend primarily on their
inhibitory effect on osteoclasts, increasing attention is being
given to other effector cells, such as osteoblasts. BPs may
stimulate proliferation of osteoblasts and inhibit apoptosis of
osteocytes and osteoblasts. Although in vitro studies have
demonstrated a role for BPs in osteoblast stimulation, effects
of BPs on osteoblasts in vivo remain unclear because of
numerous indirect effects on the remodeling cycle mediated
through reduction of bone resorption. Indeed, in vitro stud-
ies with BPs require a careful interpretation with regard to
the presence of many confounding factors, such as different
BP concentrations and different models used, which may
explain the presence of contrasting results. The significance
of these data needs to be assessed considering that in vivo
osteoblasts are exposed to different BPs concentrations in
the bone microenvironment.

Considering that osteoblasts may be involved in bone
disorders such as osteoporosis, osteopetrosis, osteogenesis
imperfecta, and Paget’s disease, it is conceivable that there
is a role for BPs in these diseases that goes beyond the mere
osteoclast influence.
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