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Abstract
Background Lipoproteins are closely associated with the
atherosclerotic vascular process. Elevated levels of high-
density lipoprotein cholesterol (HDL-C) and apolipoprotein
AI (apo AI) in plasma indicate a low probability of
coronary heart disease (CHD) together with enhanced
longevity, and elevated levels of low-density lipoprotein-
cholesterol (LDL-C) and apo B indicate an increased risk of
CHD and death. Studies linking gene activation and the
induction of cytochrome P450 with elevated plasma levels
of apo AI and HDL-C and lowered plasma levels of LDL-C
presented a new potential approach to prevent and treat
atherosclerotic disease.
Objective and methods This is a review aimed at clarifying
the effects of P450-enzymes and gene activation on
cholesterol homeostasis, the atherosclerotic vascular pro-
cess, prevention and regression of atherosclerosis and the
manifestation of atherosclerotic disease, particularly CHD,
the leading cause of death in the world.
Results P450-enzymes maintain cellular cholesterol homeo-
stasis. They respond to cholesterol accumulation by enhanc-
ing the generation of hydroxycholesterols (oxysterols)
and activating cholesterol-eliminating mechanisms. The
CYP7A1, CYP27A1, CYP46A1 and CYP3A4 enzymes
generate major oxysterols that enter the circulation. The
oxysterols activate—via nuclear receptors—ATP-binding
cassette (ABC) A1 and other genes, leading to the elimination
of excess cholesterol and protecting arteries from atheroscle-
rosis. Several drugs and nonpharmacologic compounds are
ligands for the liver X receptor, pregnane X receptor and other

receptors, activate P450 and other genes involved in choles-
terol elimination, prevent or regress atherosclerosis and reduce
cardiovascular events.
Conclusions P450-enzymes are essential in the physiolog-
ical maintenance of cholesterol balance. They activate
mechanisms which eliminate excess cholesterol and coun-
teract the atherosclerotic process. Several drugs and non-
pharmacologic compounds induce P450 and other genes,
prevent or regress atherosclerosis and reduce the occurrence
of non-fatal and fatal CHD and other atherosclerotic
diseases.

Keywords ATP-binding cassette A1 .

Coronary heart disease . Cytochrome P450 .

HDL cholesterol . Liver X receptor–pregnane X receptor .

Oxysterol

Introduction

In the 1960s, cytochrome P450 was known as a hepatic
enzyme directly involved in the metabolism of drugs and
other foreign compounds [1–3]. Studies in the 1970s linked
liver microsomal P450-induction with elevated levels of
plasma apolipoprotein AI (apo AI) and high-density
lipoprotein cholesterol (HDL-C) [4, 5], which then were
identified as powerful predictors of coronary heart disease
(CHD), cerebrovascular and other atherosclerotic diseases
[6, 7]. This was followed by the discovery that plasma
levels of LDL cholesterol (LDL-C) decreased with increas-
ing P450 activity in the liver [8, 9]. High plasma HDL-C
and apo AI indicate a low probability of CHD together with
enhanced longevity, and individuals with high LDL-C or
apo B have an increased risk of CHD and death [6, 7, 10].
The results from the original studies on P450, cholesterol
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fractions, proteins and induction suggested a novel ap-
proach to atherosclerosis—i.e. activation of P450 and other
genes coding proteins which regulate cholesterol balance in
the body— and directed research to new avenues [5, 9, 11].

By 1980, the first P450 isoenzymes were identified [12]
and in the following years, dozens of P450 genes were found
to code enzymes catalysing diverse metabolic processes in
humans [13]. In addition to foreign compounds, P450-
enzymes metabolize endogenous substrates, including vita-
mins, steroid hormones, cholesterol and bile acids [13].
Several P450-enzymes metabolize cholesterol to hydroxy-
cholesterols (oxysterols), which have been identified as
ligands for nuclear receptors in the induction of genes
involved in cholesterol elimination [14, 15]. A number of
drugs and nonpharmacologic compounds also induce P450
and other genes coding for proteins involved in lipid
metabolism, including apo AI, the predominant apolipopro-
tein of HDL. This article reviews studies on P450-enzymes
and gene activation and gene-activating compounds acting in
cholesterol elimination and the prevention and regression of
atherosclerotic cardiovascular disease, particularly CHD,
which has been identified as the leading cause of death in
the world [16].

Liver P450, lipids and proteins and the fate
of cholesterol—effect of gene activation

The first studies on P450, apo AI, HDL and LDL evaluated
the effects of gene-activating agents on lipids and proteins
in the atherosclerotic vascular process (reviewed in [10]).
Persons undergoing therapy with drugs such as phenobarbital,
primidone or phenytoin, alone or in combination, showed an
increase in protein and phospholipid concentrations and P450-
induction in the liver as well as a concurrent and parallel
elevation in apo AI and HDL-C levels in the plasma implying
an upregulation of apo AI and HDL synthesis [11,17]. Further
studies revealed that P450- inducing compounds such as
phenobarbital [18], fenofibrate [19] and gemfibrozil [20]
induce apo AI synthesis, and P450-inhibitors such as
ketoconazole and metyrapone [10,20] prevent it. Studies in
transgenic animals demonstrated that an activation of human
apo AI gene elevates plasma levels of HDL-C and prevents
atherogenesis [21]. Ketoconazole also inhibits cholesterol
synthesis, reduces LDL cholesterol level [22], and by
counteracting the induction of P450 suppresses the genera-
tion of oxysterols and activation of nuclear receptor and
transporter genes which are involved in the elimination of
cholesterol [23]. In contrast to ketoconazole, a high-dose
itraconazole therapy has been found raise plasma HDL
cholesterol [24]. The inducing effect of itraconazole on apo
AI synthesis in Caco-2 cells in vitro suggested a mechanism
for the elevation of HDL-C. From the clinical point of view

it is significant, that a deficient P450-hydroxylase activity
affects the fate of cholesterol leading to cellular cholesterol
accumulation [25], hypercholesterolemia [26], and enhanced
manifestation of atherosclerotic disease.

P450-isoenzymes and cholesterol

Accumulation of excess cholesterol in cells may have
serious consequences; in the arterial wall it can progress to
atherosclerotic disease. P450-enzymes are essential in the
finely tuned physiological system which controls cell
cholesterol balance and takes care of the elimination of
excess cholesterol. They are needed in the synthesis of
oxysterol and bile acid metabolites of cholesterol and in the
activation of the cholesterol-eliminating mechanisms
(Fig. 1) [14, 15, 27]. The oxysterols are endogenous signal
compounds, which via liver X receptors (LXR) induce
genes acting in cholesterol efflux, transport, excretion and
absorption [28]. Hydroxylation of cholesterol to oxysterols
is necessary for the natural activation of these genes; free
cholesterol and cholesterol esters do not have similar ability
[29].

From the quantitative point of view, CYP7A1, CYP27A1,
CYP46A1 and CYP3A4 are the most important P450-
isoenzymes in the formation and metabolism of oxysterols
in man [30] (Fig. 1). CYP7A1 is a hepatic key P450-enzyme
in maintaining cellular cholesterol balance. It is the rate-
limiting enzyme in the most significant pathway for bile acid
synthesis. It generates 7α-hydroxycholesterol [31] which is
further metabolized to bile acids. CYP8B1 is needed in
the synthesis of cholate [32]. CYP27A1, a mitochondrial
P450-enzyme, is expressed in most tissues and cell types,
including macrophages. It generates 27-hydroxycholesterol
which, via the liver X receptor (LXR) activates genes coding
transporter proteins that shuttle intracellular cholesterol to
outer cell membranes for elimination [33]. A direct secre-
tion of 27-hydroxycholesterol contributes to cholesterol
efflux [27]. 27-Hydroxycholesterol is further hydroxylated
by oxysterol 7α-hydroxylase, CYP7B1, and also CYP7A1
[34]. CYP46A1 has an active role in cholesterol metabolism
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Fig. 1 P450-enzymes involved in the synthesis of cholesterol and
major hydroxycholesterols and bile acids [30, 41]
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in the brain [35]. It generates 24S-hydroxycholesterol,
which readily passes the blood brain barrier and thus
transports cholesterol from the brain. This metabolite is also
a ligand for LXR and may regulate cholesterol balance
through transcriptional mechanisms; it may also activate the
apo AI-dependent cholesterol efflux from brain endothelial
cells [36]. Hepatic CYP39A1 and possibly also CYP7A1
and CYP27A1 convert 24S-hydroxycholesterol to bile
acids [35]. CYP3A4, which is expressed particularly in
the liver and intestine, is the most common hepatic P450-
enzyme. It metabolizes about half of all pharmaceutical
agents and also acts on cholesterol and bile acid metabo-
lism. It generates 4β-hydroxycholesterol [30].

CYP51A1 (lanosterol-14α-demethylase) is ubiquitously
expressed and is the only P450 enzyme participating in
cholesterol synthesis [37]. It demethylates lanosterol to
cholesterol in a reaction that produces oxysterols, which
inhibit hydroxymethylglutaryl coenzyme A (HMG-CoA)
reductase and sterol synthesis [37, 38]. Squalene, an
intermediate in cholesterol synthesis, is metabolized to
24S,25 epoxycholesterol in a shunt pathway; this product is
an activator of LXR [15] and may act against cholesterol
accumulation.

Oxysterol binding protein (OSBP) and 11 related
compounds form a cytoplasmic family of OSBP-related-
proteins (ORPs) [39]. These compounds bind intracellular
oxysterols, which are mainly generated by P450-enzymes.
Recent studies suggest that ORPs are lipid sensors in the
integration of lipid and sterol metabolism and transport and
the regulation of cell signalling [39].

Nuclear receptors, ABC transporters, apolipoproteins
and P450-enzymes

Nuclear LXR receptors LXRα and LXRβ, are cholesterol
sensors that mediate the expression of multiple genes
involved in the regulation of cellular cholesterol homeosta-
sis [28]. They are activated by physiological concentrations
of several oxysterols. LXRα is expressed at high levels in
the liver and to lesser extent in the intestine, adipose tissue
and macrophages, whereas LXRβ is ubiquitously
expressed. The LXR induces transcription of ATP-binding
cassette (ABC) transporters, such as ABCA1, G1, G4, G5
and G8, which act in intracellular cholesterol transport,
apolipoproteins in the cluster of apo E, CI, CII and CIV,
which have been shown to participate in the ABCA1-
mediated cholesterol efflux [28], and of apo IV, which may
contribute to the latter [40]. In addition, LXR influences the
expression of several lipoprotein remodelling enzymes,
sterol regulatory binding proteins (SREBPs) and also
hepatic scavenger receptor B1 (SR-B1), which selectively
uptakes HDL-associated cholesterol esters to the liver [28].

Pregnane X receptor (PXR), which is expressed predomi-
nantly in the human liver and to a lesser extent in the small
intestine, is a master regulator of P450 enzymes in the
metabolism of xenobiotic compounds and affects the fate of
cholesterol [31, 41]. It mediates the induction of CYP3A4
and other P450-enzymes and can be activated by numerous
structurally diverse compounds including statins, anticon-
vulsants and hyperforin, a constituent of the herb St John`s
wort [42–45], and bile acid and epoxycholesterol metabo-
lites of cholesterol [46]. The compounds include several
PXR agonists [42–45, 47–49] that induce P450 and elevate
plasma levels of apo AI and HDL-C [10, 11, 45]. A PXR
agonist has been recently found to upregulate CYP27A1
and generate 27-hydroxycholesterol in the intestine, sug-
gesting a LXRα-mediated activation of cholesterol efflux
from intestinal cells to apo AI and HDL [50].

Peroxisome proliferator-activated receptors PPARα, PPARγ
and PPARδ, are transcription factors which affect the devel-
opment of atherosclerosis in many ways. They mediate the in-
duction of apo AI synthesis and co-operate with LXR receptors
and ABC transporters in cholesterol elimination [51, 52].

ATP-binding cassette A1 ABCA1, is a key regulator of
cellular lipid efflux. It transfers cholesterol and phospholi-
pids to the plasma membrane where apo AI picks up them
[53]. Liver ABCA1 has been identified as a main factor
[54] and intestinal ABCA1 as a contributory factor [55] in
the generation of HDL-C levels in the circulation. Intestinal
ABCA1 also controls the absorption of cholesterol by
effluxing it from the enterocytes back to the intestinal lumen
[56]. A genetic defect in ABCA1 causes Tangier disease,
which is characterized by a near or complete absence of
HDL, accumulation of cholesterol esters in tissues, and
enhanced manifestation of cardiovascular disease [57].

ATP-binding cassette G1 ABCG1, which acts in several
tissues, and ABCG4, which acts in the brain, transfer
cholesterol to the HDL [53, 58]. The ABCG5 and ABCG8
transporters promote biliary cholesterol secretion and
reduce the absorption of dietary cholesterol [59]. Mutations
in the ABCG5 or ABCG8 gene cause sitosterolemia, a rare
genetic disorder of sterol metabolism characterized by
hypercholesterolemia, xanthomas and premature coronary
atherosclerosis [60].

Bile acids, nuclear receptors and P450-enzymes

Oxysterols are precursors of bile acids (Fig. 1) which, as
ligands for nuclear receptors, such as FXR (farnesoid X
receptor), PXR, CAR (constitutive androstane receptor) and
VDR (vitamin D3 receptor), activate mechanisms control-
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ling cellular bile acid balance [31, 41]. The FXR has a
central role in the regulation on bile acid levels. Accumu-
lation of bile acids stimulates the FXR-mediated suppres-
sion of CYP7A1 and CYP8B1, which are key enzymes in
the synthesis of bile acids. The FXR also induces the
expression of CYP3A4, which in turn detoxifies bile acids
by oxidizing them. The PXR and VDR regulate the
metabolism of secondary bile acids in the liver and
intestine. They mediate the expression of the CYP3A4
gene and the detoxification of bile acids. The PXR also
downregulates CYP7A1 in response to the elevation of
intracellular bile acid levels. The CAR affects the metab-
olism of xenobiotic compounds and also detoxifies bile
acids.

Drugs and nonpharmacologic compounds,
gene activation and the fate of cholesterol

Many drugs and other compounds activate genes that af-
fect the fate of lipids. These include drugs indicated for the
treatment of lipid disorders, such as statins, fibrates,
cholestyramine and niacin (Table 1), as well as drugs for
other indications.

Statins inhibit HMGCoA reductase and cholesterol
synthesis and via enzyme-, receptor- and transporter-medi-
ated mechanisms enhance cholesterol elimination, and raise
plasma apo AI and HDL-C and reduce apo B and LDL-C.
The drugs are ligands for PXR receptor which is a key
mediator of the induction of P450 enzymes including
CYP3A4 [42–45]. The statins have been identified as
P450 inducing agents [10, 42–44, 47–49], and the effects
of PXR agonists on HDL-C and apo AI have been linked
with their ability to induce CYP3A in rodents [45]. The

drugs have been shown to induce PPARα and apo AI
synthesis [61, 62] and to activate PPARγ, LXR, ABCA1
and ABCG1 genes in cholesterol-loaded macrophages [63]
and ABCA1 in HepG2 cells [64] as well as to increase the
cholesterol efflux to apo AI and HDL [63]. Statins can act
differently in nonloaded macrophages, inhibiting the syn-
thesis of oxysterol ligand for LXR and downregulating
ABCA1 gene and cholesterol efflux [65]. Such effects,
however, have not been seen in vivo.

Fibrates are P450-inducing PPARα agonists, which
stimulate apo AI synthesis, raise plasma apo AI and
HDL-C levels and reduce levels of LDL-C and triglycerides
[10, 52, 66, 67]. They activate the LXR and ABCA1 genes
and promote cholesterol efflux to apo AI [52]. An inhibition
of P450 prevents fibrate-caused oxysterol generation and
the induction of genes acting in cholesterol elimination,
such as LXRα, PPARα, ABCA1 [23] and apo AI [20].

Cholestyramine induces CYP7A1, the rate-limiting en-
zyme of bile acid synthesis, leading to a depletion of hepatic
cholesterol pool, and consequently to an upregulation of the
LDL receptor pathway and lowering of plasma LDL-C level
[68]. The drug also induces apo AI synthesis and raises
plasma apo AI and HDL-C [69]. Niacin similarly raises apo
AI and HDL-C levels and reduces LDL-C [70], but it
differs from many other compounds that elevate HDL-C
levels in that it does not increase P450 activity and apo AI
synthesis. Instead, it has been found to inhibit hepatic
uptake of apo AI, activate the PPARγ, LXRα and ABCA1
genes and stimulate HDL-dependent cholesterol efflux from
monocytoid cells [70].

Anticonvulsants, such as phenobarbital, phenytoin and
carbamazepine, are PXR agonists which upregulate P450-
enzymes, including CYP3A4 [42–44], and raise plasma apo
AI and HDL-C levels proportionately to P450-induction

Table 1 Effect of drugs and alcohol on: increase (+) in P450 and ABCA1 activity and apo AI synthesis (S) and decrease (↓) in CHD mortality
and CHD/cardiovascular morbidity

Drug P450 ABCA1 Apo AI-S Mortality Morbidity References

Statin + + + ↓ ↓ 10, 42–44, 47–49, 61, 63, 64, 100–102
Fibrate + + + ↓a ↓a, b 10, 19, 52, 66, 67, 92, 93, 103
Cholestyramine + ? + ↓ 10, 68, 69, 92
Niacin - + - ↓ 70
Anticonvulsant + ? + ↓c 10, 42–45, 104
Glitazone + + + ↓d 43, 44, 51, 52, 72–75, 106
Alcohol + + + ↓e ↓e 10, 76–80, 96, 97, 105

P450, Cytochrom P450; ABC, ATP-binding cassette; CHD, Coronary heart disease; Apo AI, apolipoprotein AI
a Gemfibrozil [103]
b Fenofibrate [92], bezafibrate [93]
c Anticonvulsant therapy (phenytoin ± carbamazepine ± barbiturate), case-control study [104]
d Pioglitazone, cardiovascular events in type 2 diabetics [106]
eModerate alcohol consumption [105]
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[10, 11]. Phenobarbital induces hepatic apo AI mRNA [18],
and a recent study linked the effect of phenobarbital and
other PXR agonists on apo AI and HDL-C with their ability
to induce CYP3A in mice [45]. Anticonvulsants also en-
hance the generation of 4β-hydroxycholesterol [71], a LXR
agonist which may—via transcriptional mechanisms—
increase cholesterol efflux and raise HDL-C. The inverse
relation of LDL-C level to the induction [8, 9] probably
reflects the inhibiting effect of oxysterols on cholesterol
synthesis and enhanced LDL-C elimination via the upregu-
lated LDL receptor pathway.

Glitazones are PPARγ and PXR agonists and P450-
inducing agents [43, 44, 72–74] that increase apo AI
synthesis, raise plasma HDL-C levels [75] and, via activation
of the LXRα, ABCA1, ABCG1, apo E and SR-B1 genes,
promote cholesterol efflux from macrophages [51, 52].

Alcohol enhances P450 activity [10, 76] and apo AI
synthesis [10, 77], and persons using alcohol regularly
show an elevation of plasma apo AI and HDL-C [76–79]
levels that is proportional to the increase in P450 [78].
Alcohol also promotes ABCA1- and cAMP-mediated
cholesterol efflux from macrophages [80].

Vitamin A derivates—retinoids—upregulate several
genes involved in reverse cholesterol transport, such as
CYP27A1, LXRα, PPARγ, ABCA1, ABCG1 and the
apolipoproteins CI, CII, CIV and E [73, 81]. Hyper-
triglyceridemia and other adverse effects have limited
the clinical usage of retinoids. Calcium channel blockers
also have the potential to induce P450 [44]. Verapamil,
nifedipine and nicardapine were found to induce ABCA1
expression and increase apo AI-dependent cholesterol
efflux from macrophages [82]. Telmisartan, an angiotensin
receptor blocker, has been shown to enhance both apo AI- and
HDL-mediated cholesterol efflux from macrophages by
increasing ABCA1, ABCG1 and SR-B1 expression via
PPARγ-dependent and LXR-dependent/-independent path-
ways [83]. Angiotensin-converting enzyme (ACE) inhibitors
can also affect the fate of cholesterol [84, 85]. Adenosine
A2A receptor agonists have been found to upregulate
CYP27A1 and ABCA1 expression and prevent the forma-
tion of foam cells [86] and biphosphonate, to inhibit foam
cell formation [87], to induce ABCA1 transcription and to
stimulate cholesterol efflux from monocytoid cells [88].

Drugs and other compounds against atherosclerosis

Several drugs prevent or retard the progression, or even
regress, atherosclerosis, as assessed by angiography, ultraso-
nography or histological/ biochemical analysis. These include
statins, such as rosuvastatin [89], atorvastatin [90] and
simvastatin [91], which have been shown to regress coronary
atherosclerosis. Positive results have also been obtained with

lovastatin, fluvastatin, gemfibrozil, fenofibrate [92], bezafi-
brate [93] and cholestyramine [10]. Niacin was recently
found to reduce carotic intimal media thickness in persons
with metabolic syndrome [94].

The recent ASTEROID trial demonstrated that rosuvas-
tatin therapy, which effectively reduced LDL-C and apo B
and raised HDL-C and apo AI, resulted in a significant
regression of atherosclerosis in coronary arteries of CHD
patients [89]. A post-hoc analysis combining data from four
prospective intravascular ultrasonography–statin trials
revealed, in particular, that patients whose HDL-C levels
increased by more than 7.5% in addition to effective LDL-
C lowering exhibited the most profound regression of
atherosclerosis [95]. The increases in HDL-C levels were
found to be an independent predictor of a beneficial
outcome with statin therapy.

Many compounds used for other purposes than dyslipi-
demia also have antiatherogenic effects. Phenobarbital
prevents cholesterol accumulation and the formation of
atherosclerotic lesion in arterial wall [10], and those
persons using alcohol moderately show less carotic [96]
and coronary [97] atherosclerosis. Pioglitazone and etidro-
nate have been found to reduce carotic intima-media
thickness in type 2 diabetic subjects [98] and those with
osteopenic type 2 diabetes, respectively [99].

Drugs and other compounds and cardiovascular events

Several trials have evaluated the effects of statins and other
compounds on the occurrence of cardiovascular events
(Table 1). Statins reduce coronary events, strokes and all-
cause mortality [100, 101]. A meta-analysis of data on more
than 90,000 participants revealed that the change in total
mortality reflects a decrease in coronary mortality [101]. A
recent atorvastatin study found that a relatively small
increase (mean 7%) in HDL-C level independently of
LDL-C lowering is linked with a reduced risk of major
coronary events and stroke [102]. An analysis of 18-years
of follow-up data from the Helsinki Heart Study revealed
that gemfibrozil reduces both CHD mortality and total
mortality in the subgroup of persons with dyslipidemia
related to the metabolic syndrome [103]. In type 2 diabetic
subjects, bezafibrate has been shown to reduce the
incidence of coronary events [93], niacin, that of myocar-
dial infarctions [92] and fenofibrate, that of non-fatal
myocardial infarctions [92]. A follow- up survey conducted
9 years after the completion of a niacin trial, showed a 11%
lower total mortality in patients originally treated with
niacin compared with placebo-treated patients [70]. Chole-
styramine reduces the risk of CHD death and/or non-fatal
myocardial infarction [92], a reduced death rate from CHD
has been reported also for people undergoing anticonvul-
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sant therapy [104], and population studies show that
moderate alcohol consumption reduces CHD morbidity
and mortality, and also total mortality [105].

Pioglitzone has been found to reduce cardiovascular
events in type 2 diabetics [106], whereas a meta-analysis
reported an increase in the risk of myocardial infarction and
an increase cardiovascular death of borderline significance
with rosiglitazone [107]. This controversy led to the
warning stating that rosiglitazone is not recommended in
CHD and/or peripheral artery disease, and that it is contra-
indicated in acute coronary syndrome [EMEA, European
Medicines Agency].

Mutation and inhibition of P450, enhanced
atherogenesis and cardiovascular events

A mutation in the P450 gene affects the fate of cholesterol
and enhances the atherosclerotic process. A defect in the
CYP27A1 gene causes cerebrotendinous xanthomatosis,
CTX, a genetic disease characterized by xanthoma forma-
tion and premature atherosclerosis [25], and a mutation in
the CYP7A1 gene can lead to hypercholesterolemia and
enhance atherogenesis [26]. A low P450 activity could also
impede oxysterol generation and LXR-mediated activation
of the proteins participating in cholesterol transport, such as
ABC transporters, apolipoproteins, lipoprotein-modifying
enzymes, SREBPs and SR-B1.

An exogenous inhibition of P450 can similarly promote
cholesterol accumulation. Carbon monoxide (CO) binds to
ferrous heme of P450, consequently blocks oxidative re-
actions [3], and promotes cholesterol accumulation and
formation of atherosclerotic lesions in arterial walls [108].
The effect of CO on P450 could contribute to the increased
incidence of cardiovascular events and deaths observed
with increasing CO exposure in smokers [109]. Early studies
with interferon showed a decrease in plasma HDL-C and
apo AI level [110] and, later on, interferon γ was found to
reduce P450 and ABCA1 activity, impede reverse choles-
terol transport and promote atherogenesis [111, 112].
Ketoconazole prevents P450-induction, and consequently
oxysterol generation and the activation of genes involved
in reverse cholesterol transport, such as LXRα, PPARα,
ABCA1 [23].

Discussion and conclusions

Advanced methods in molecular biology and genomics have
identified diverse biological and clinical roles for isoenzymes
of P450, which was once believed to be one enzyme in the
hepatic detoxification system. P450s hydroxylate both endog-
enous and foreign substances and affect multiple metabolic

processes and clinical outcomes. P450-enzymes are essential
for the physiological maintenance of cholesterol homeostasis,
responding to elevated cholesterol by activating mechanisms
which efflux cellular cholesterol and raise plasma HDL-C and
suppress cholesterol synthesis, thereby reducing LDL-C.
Correspondingly, a naturally low P450 activity or a genetic
defect in P450 can promote cholesterol accumulation and
atherogenesis. A mutation in a transporter gene, such as
ABCA1, G5, G8, or apo AI, can impede the response to
activation and also enhance the atherosclerotic process.

Several drugs and nonpharmacologic compounds also
induce genes with similar effects as the endogenous gene
activation on lipid and proteins, and prevent or regress
atherosclerosis, thereby reducing cardiovascular events. These
compounds can produce a lipoprotein pattern comparable
with that in familial hyper-HDL-emia, which is characterized
by a low risk of CHD and enhanced longevity [10]. A recent
statin study revealed that individuals who show increases in
HDL-C level greater than the mean percentage change
together with an effective LDL-C reduction experience the
greatest degree of atheroma regression [95]. Statins increase
HDL-C level up to 15% and can regress atherosclerosis,
whereas torcetrapib, an inhibitor of CETP (cholesterol ester
transfer protein) which raised HDL-C level up to 60%, failed
to slow the progression of coronary plaques [113]. This
difference emphasizes the significance of the mechanisms by
which the drugs raise HDL-C.

The discovery of LXRs and oxysterols, with the latter
functioning as ligands for LXRs and as secretory forms for
cellular cholesterol efflux, significantly clarified the cholester-
ol-lowering mechanisms. The investigations that identified
PXR, PPAR, FXR and several other receptors as well as ABC
and other transporters—and their functions—further explained
important processes in maintaining cholesterol homeostasis.
The progress in studies on cholesterol regulation has greatly
stimulated the search for new agents with a potential to regress
atherosclerosis. Recently, a LXR agonist was found to
stimulate reverse cholesterol transport by promoting choles-
terol efflux from macrophages and transporting it to liver and
further to feces in vivo in mice [114]. Another study showed
that LXR agonist increases ABCA1 activity in atherosclerotic
lesions and also induces the regression of these lesions in
mice [115].

The liver is of critical importance in the metabolism and
elimination of endogenous and exogenous compounds.
Many natural and foreign compounds upregulate key
effectors in cellular cholesterol efflux, including hepatic
ABCA1 and apo AI, main factors in the generation of
plasma HDL-C levels, and the LDL receptor, which leads
to a lowering of LDL-C levels. Liver disease and a change
in liver size can also affect the fate of cholesterol [10, 116,
117]. Patients treated with P450-inducing drugs show an
elevation of plasma HDL-C and the HDL-C/LDL-C ratio
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together with an increase of metabolically active liver mass
[116], and the 24S-hydroxycholesterol levels reflect the
balance between cerebral production capacity and the
metabolic capacity in the liver [117].

An atherogenic diet upregulates hepatic P450-enzymes,
hydroxycholesterols [38] and ABCA1, thereby supporting a
major role for the liver in the dietary modulation of HDL-C
levels [118]. In accordance with this, a recent study found
that an upregulation of the hepatic LXRα protects animals
on a Western diet from atherosclerosis, underlining the
potential of selective activators of LXR target genes in the
liver as agents against lipid disorders and atherosclerosis
[119]. The PXR, a master regulator of hepatic CYP3A4 and
other P450 enzymes, also protects against the toxicity
caused by a high-cholesterol diet [120], and PXR agonists
raise apo AI and HDL-C levels. Interestingly, a recent statin
study revealed that the increases in HDL-C levels indepen-
dently predict the rate of atherosclerosis regression in
coronary arteries [95]. Modification of life-style factors,
including the Western-type diet, together with or without
effective drug therapy are key factors in the fight against
atherosclerosis and the epidemic of CHD.
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