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Abstract
Objectives Digoxin is a well-known probe for the activity of
P-glycoprotein. The objective of this work was to apply
different methods for covariate selection in non-linear
mixed-effect models to study the relationship between the
pharmacokinetic parameters of digoxin and the genotype for
two major exons located on the multi-drug-resistance 1
(MDR1) gene coding for P-glycoprotein.
Methods Thirty-two healthy volunteers were recruited in
three pharmacokinetic drug interaction studies. The data
after a single oral administration of digoxin alone were
pooled. All subjects were genotyped for the MDR1 C3435T

and G2677T/A genotypes. The concentration-time profile of
digoxin was established using 12–16 blood samples taken
between 15 min and 72 h after administration. We modelled
the pharmacokinetics of digoxin using non-linear mixed-
effect models. Parameter estimation was performed using the
stochastic approximation EM method (SAEM). We used
three methods to select the covariate model: selection from
a full model using Wald tests, forward inclusion using the
log-likelihood ratio test and model selection using the
Bayesian Information Criterion.
Results The three covariate inclusion methods led to the same
final model. Carriers of two T alleles for the C3435T
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polymorphism in exon 26 of MDR1 had a lower apparent
volumeof distribution thancarriers of aC allele. Theonlyother
covariate effect was a shorter absorption time-lag in women.
Conclusion The apparent volume of distribution of digoxin
is lower in TT subjects, probably reflecting differences in
bioavailability. Non-linear mixed-effect models can be
useful for detecting the influence of covariates on pharma-
cokinetic parameters.

Keywords Digoxin . Pharmacogenetics . P-glycoprotein .

Population pharmacokinetics

Introduction

Pharmacogenetics is a recent field of research that focuses
on investigating the variability in drug effects due to
genetic factors. Genetic variation occurs at many levels:
drug absorption, distribution and metabolism, receptors for
drug action and drug elimination. Single nucleotide poly-
morphisms (SNPs) have been identified which induce
modifications in the pharmacokinetics (drug course through
the body) or pharmacodynamics (drug efficacy and safety)
of a given drug. SNPs have also been shown to modify
bioavailability [1, 4] and decrease excretion [25] –
sometimes inducing severe toxicity [10] – and they have
been linked to drug efficacy [6, 13]. Thus, pharmacogenetics
is the next step to providing individualised treatments.

Studies including pharmacogenetic data have become
more numerous over the last few years. In an overwhelming
majority of these studies, non-compartmental analysis
(NCA) has been used to compare pharmacokinetic mea-
surements, such as AUC (area under the curve) or
maximum concentration between groups. This technique
requires a large number of sampling points for every
subject. On the other hand, modelling approaches can take
advantage of sparse individual designs and can be used in
patients with routine clinical data [26]; these more
sophisticated approaches, however, are seldom used. One
issue with these approaches is the method used for
covariate selection and hypothesis testing, since detecting
a gene effect can be thought of as a model selection
problem. Awide variety of approaches have been proposed.
The mainstream method consists in stepwise selection [17,
23], possibly following prior screening of relevant candi-
date covariates. The criterion for model selection is usually
the likelihood ratio test (LRT), which is widely used to
compare nested mixed-effect models. Tests assessing the
statistical significance of the final parameters in the final
model, such as the Wald test, can also be used as a selection
criterion [26]. Other criteria can be used in model selection,
such as the Akaike (AIC) or the Bayesian Information
Criterion (BIC) [22]. Regardless of the method used, the

clinical relevance is sometimes also assessed by examining
the magnitude of the effects found.

In a previous paper, Verstuyft et al. estimated the AUC of
digoxin, a probe for the activity of P-glycoprotein, in healthy
volunteers using non-compartmental analysis and showed an
increase in subjects carrying the TT genotype for the
C3435T polymorphism of multi-drug-resistance 1 (MDR1)
[38]. The objective of the present paper was to reanalyse
the data in the investigation of Verstuyft et al. by a
modelling approach, using three covariate model selection
methods: (1) likelihood ratio tests; (2) backwards selection
from a full model using Wald tests, which take into account
potential correlations between covariates; (3) model selec-
tion using the BIC, which considers all the potential
models. A related problem in covariate selection is that
the false positive rate (type I error) of the tests has been
shown to increase when the estimation methods rely on
linear approximations to the likelihood [7, 40]. In the
present work, we therefore use a recent estimation method
(EM), the stochastic EM algorithm SAEM [20]. Although
the three methods can be applied together with other
estimation algorithms, SAEM allows the estimation of the
likelihood without approximation, via stochastic simula-
tion, and has been shown to have better statistical properties
than linearised methods [33].

Materials and methods

Data

Pharmacokinetic data was collected from 32 healthy
volunteers included in three pharmacokinetic interaction
studies dealing with oral digoxin [38]. Seven subjects
participated in a macrogol-digoxin interaction study [30],
12 in a grapefruit juice-digoxin interaction study [2] and 13
in a dipyridamole-digoxin interaction study [39]. The three
studies were performed in accordance with the Declaration
of Helsinki and its amendments. Protocols were approved
by the Ethics Committee of the Pitié-Salpêtrière Hospital
(CCPPRB), Paris, France, and written informed consent
was obtained from all subjects. The three studies took place
in the same clinical unit under the supervision of the same
research team.

All subjects received a 0.5 mg oral dose of digoxin with
a glass of water after an overnight fast. Pharmacokinetic
samples were obtained at times 15, 30 and 45 min, and 1,
1.5, 2, 4, 6, 8, 12, 24 and 48 h after the dose for two of the
studies [2, 39]. For the last study [30], samples were taken
at 15, 30 and 45 min, and 1, 1.5, 2, 2.5, 3, 4, 6, 9, 12, 16,
24, 48 and 72 h.

The three studies included 23 men and 9 women, with a
mean age of 25.8±5.2 years (range: 19–35 years). The
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patients were genotyped for two MDR1 polymorphisms, the
C3435T polymorphism in exon 26 and the G2677T/A
polymorphism in exon 21. In the study of Verstuyft et al.
[39], patients were genotyped prior to inclusion to balance
the genotypes for the C3435T polymorphism, while in the
two other studies, genotyping was performed after inclusion.
As a result, the genotypes of the 32 patients for this
polymorphism included 10 TT (mutant homozygotes,
31%), 8 CT (heterozygotes, 25%) and 14 CC (wild-type
homozygotes, 44%). G2677T/A genotyping revealed 12 GG
(38%), 11 GT (34%), 7 TT (22%), 1 GA (3%) and one AA
(3%) subjects, with a linkage disequilibrium between the two
polymorphisms (Somer’s D′=0.72).

Digoxin was measured using a modified enzyme multi-
plied digoxin immunoassay (EMIT 2000; Dade Behring,
Cupertino, Calif.), with a quantification limit of 0.1 ng/ml.
The MDR1 C3435T and G2677T/A genotypes were deter-
mined by TaqMan allelic discrimination. More details on the
analytical methods can be found in Verstuyft et al. [37, 38].

Statistical methods

Pharmacokinetic model The pharmacokinetics of digoxin
were described using a two-compartment model [15] with
first-order absorption and elimination, and an absorption
time-lag, using the analytical form of the model. We
assumed a proportional variance model for the residual
error. This model included six parameters: ka, kel, Vc/F, Tlag

and the two transfer rate constants, k1,2 and k2,1. Interindi-
vidual variability was estimated for the first four parame-
ters, with no covariance between them (diagonal variance
matrix Ω).

Denoting f to be the function describing this model, the
statistical model for concentration yIj in individual I at time
tIj is:

yi j ¼ f qi; ti j
� �þ "i j ð1Þ

where θi denotes the vector of parameters for individual i,
and its components are assumed to follow a log-normal
distribution:

qi ¼ q0e
ηi ð2Þ

where ηi∼ (0, Ω) is the vector of individual random
effects.

The residual errors ɛij are assumed to be independent,
with distribution (0, s2

i j), where the variance of the
error is modelled using a proportional error model:
σ2
i j ¼ σ2 f qi; ti j

� �2
.

The model for covariate effect describes the relationship
between the individual pharmacokinetic parameters and a
given covariate. The effect of polymorphism in exon 26 on

a component θ(k) of the vector of parameters θ was
modelled as:

q kð Þ
i ¼ q kð Þ

0 1þ b kð Þ
CT

� �CT
1þ b kð Þ

TT

� �TT
eηi ð3Þ

Thus, the expected value of q kð Þ
i is q kð Þ

0 for subjects with
genotype CC, q kð Þ

0 1þ b kð Þ
CT

� �
for subjects with genotype CT

and q kð Þ
0 1þ b kð Þ

TT

� �
for subjects with genotype TT. This model

was used for the four parameters with variability (ka, kel,
Vc/F, Tlag). In the following, we will drop the superscript
(k) for simplicity. For each parameter in the model, there
are five possible models for the gene-parameter relation-
ship: the full model with three classes as in Eq. 3 (denoted
H1 in the following), three intermediate models with two
classes that we denote H0a:{βCT =0}, H0b:{βTT =0} and
H0c: bCT � bTT ¼ 0f g and the model with no gene effect
H0:{βCT =βTT =0}. In the following, we first illustrate the
three covariate selection approaches using the polymor-
phism in exon 26, then we apply these methods considering
all the available covariates.

Backward covariate selection using the Wald test One
approach to selecting the covariate model is to estimate
the parameters of a full model and perform a significance
test using the Wald statistics to select which parameters
should be kept in the model [26]. The advantage of this
method is that model selection is performed in one step and
that interactions between covariates are taken into account
in the estimation of the parameters. Given the model
described in Eq. 3, we test if the three parameters βCT,
βTT and (βCT−βTT) are significantly different from zero by
comparing the corresponding Wald statistics to the critical
value of a χ2 with 1 df.

A screening step is often performed to eliminate
candidate covariates that have a very small probability of
influencing the parameters, thereby improving the estima-
tion of the remaining parameters in the model. We choose
an arbitrary value of 0.25 as the significance threshold, and
we eliminate the covariates for which the p-values of the
three tests corresponding to the three null hypotheses H0a,
H0b and H0c are higher than 0.25. This yields a simplified
model in which some parameters are modelled according to
model H1 and some parameters are the same regardless of
the genotype. This step eliminates from the model those
relationships that are totally irrelevant and increases the
precision of estimation of the other, possibly meaningful,
parameters.

In the next stage, we estimate once again the parameters
and their standard errors using the simplified model. For
each parameter modelled using H1, the p-values of the three
Wald tests are used to select the appropriate relationship,
after correction for multiple tests by applying the Simes
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procedure [3, 35]. This method allows control of the
family-wise error rate for the three simultaneous tests
performed. For a given parameter, the final model for the
gene-parameter relationship depends on which hypotheses
are rejected. For example, if H0a and H0c are simultaneous-
ly rejected for a parameter, Eq. 3 simplifies to:

qI ¼ q0 1þ bCTð ÞCTeηI ð4Þ

This procedure leads to the final model.

Forward covariate selection using the log-LRT Conver-
gence problems and non-identifiability may occur when
trying to estimate the parameters of a full model with many
covariates. The alternative is to build the model using forward
selection. Different forms of this approach are used in most
studies using nonlinear mixed-effect models [17, 23].

For forward selection, we start from a model without
covariates (basic model) and compute empirical Bayes
estimates (EBE) of the individual parameters. One-way
analysis of variance (ANOVA) is used to test for a
difference between the three genotypes for each parameter
[23]. As previously, we begin with a screening step:
candidate relationships are selected as those where the p
value of the ANOVA is less than 0.25. We then model the
candidate relationships as in Eq. 3 one at a time, starting
with the most significant according to the LRT. We stop
when none of the remaining relationships provide a
significant improvement in the model according to a LRT.
We then test for all parameter-gene relationships the three
submodels H0a, H0b and H0c using the LRT again,
correcting the p values using the Simes procedure. The
best model for the corresponding relationship is selected as
in the previous strategy, based on the p-values for the three
corresponding tests.

Covariate selection using the Bayesian Information Criterion
We compared the two previous selection methods with
model selection using the BIC given by:

BIC ¼ �2LLþ P log ntotð Þ ð5Þ

where P is the number of parameters (fixed and variance) in
the model and ntot is the total number of observations.

The best model is defined as the model with the lowest
BIC. For model selection using the BIC, we also consider
models close to the lowest BIC. From the definition of
Bayes factor as a ratio of posterior to prior odds used in
Bayesian model selection, Raftery shows that the strength
of evidence of one model versus the other is limited when
models are within 3 points of BIC, while a larger difference
provides positive evidence [18, 29].

A practical problem is the number of models to test. For
each parameter in the model, there are five possible models
when considering the genotype for exon 26 alone. To test all
possible combinations for the four parameters with variability
would require generating and fitting 625 models. Although
technically feasible here, this would soon become impractical
with more covariates or more parameters; therefore, we
propose a simplified approach. In a first step, for each
parameter we keep the model with the lowest BIC, as well
as models within 3 points of BIC to the lowest. The model
without covariate (H0) is also added to this list of possible
models. In a second step, we build combined models where
the possible models for one parameter are combined with
each of the models for the other parameters. We estimate the
corresponding BIC, and the best model is selected is the one
having the lowest BIC overall. Again, we also examine
models with BIC close to the lowest value.

Estimation method The parameters are estimated using
maximum likelihood approaches. Because the regression
function is nonlinear with respect to the random effects, the
likelihood function has no closed form. The most com-
monly used estimation methods rely on approximations of
the likelihood function through first-order Taylor expan-
sions and have been implemented, for example, in the nlme
package in R/Splus [27], and in the NONMEM software
[34]. To avoid this approximation, Bayesian approaches
have been proposed which integrate the likelihood using
Monte-Carlo Markov chains (MCMC) [36]. An alternative
approach is to consider random effects as missing data and
to use the EM algorithm [9]. An algorithm called SAEM has
been recently developed using the EM approach: stochastic
approximation combined with MCMC methods to simulate
the random effect in the E-step provides a convergent
algorithm and consistent estimates of the population
parameters [8]. This method has better statistical properties
since no linearisation is involved in the computation of the
likelihood and, hence, the statistical tests based on the
results have better properties [20]. It has also been recently
applied in two applications, the study the pharmacokinetics
of saquinavir in HIV patients [21] and the modelling of the
viral load decrease to compare two treatments in a clinical
trial [32].

The SAEM algorithm is implemented in the MATLAB
language in the software MONOLIX, available on the
author’s website (http://www.math.u-psud.fr/~lavielle/
monolix/logiciels.html). We used version 1.1 of MONOLIX,
in a Linux environment (Red Hat 9.0; GNU Fortran
compiler), with MATLAB version 7. The analysis of the
results was handled using the R statistical and graphical
environment [28]. MONOLIX provides an estimate of the
parameters (fixed effects and variance of the random
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effects) as well as an estimate of the estimation error via the
Fisher information matrix [20].

The likelihood is computed by an importance sampling
procedure [31]. Since a good estimate of the log-likelihood
was required to perform LRTs, we used the average of five
successive estimations of the likelihood to obtain a more
stable estimate.

Model building The three strategies described above were
applied to the digoxin data in terms of the exon 26
polymorphism. We then performed the same analysis for
exon 21. For the G2677T/A polymorphism in exon 21, five
different genotypes were found in the population (GG, GT,
GA, TT and TA). We performed first an analysis taking
them all into account, and second an analysis where we
regrouped the mutant alleles, yielding three groups (group
1, GG; group 2, GT or GA; group 3. TT or TA). The
influence of the polymorphism in exon 21 was analysed
first independently from the results of the analysis,
including exon 26, then including the model developed
for exon 26 alone. We also considered the homozygous
wild-type diplotype (combined genotype) CC-GG, combin-
ing the GG genotype at position 2677 in exon 21 and the
CC genotype at position 3435 in exon 26, versus all other
diplotypes. The functional haplotype has previously been
shown to influence the area under the curve (AUC) of
digoxin [16]. Other haplotype analyses were not performed
since the number of subjects was too small. Finally, full
covariate analysis was performed; the following covariates
were available in the study in addition to gene effect:
gender, age, weight, body mass index and smoking status.
Renal function was not evaluated in these subjects.

We examined the following plots to evaluate the
goodness-of-fit of the final model provided by each
approach: scatterplots of predictions (population and indi-
vidual) versus individual observations; population-weighted
residuals versus predictions and versus independent vari-
able (time); absolute individual-weighted residuals versus
individual predictions. In addition, model validation was
performed using prediction distribution errors [5], which
are computed as the quantiles of the observations in the
predicted distribution. The predicted distribution for each
observation was obtained through 1000 simulations of the
data set given the final model. The prediction distribution
errors were decorrelated as proposed in Brendel et al. [5] to
take into account the correlation induced by the multiple
observations within one subject. If the model is adequate,
the distribution of the prediction distribution errors is
expected to follow a uniform distribution over the interval
[0–1], and we used a Kolmogorov-Smirnov test to test this
assumption.

Results

Backward covariate selection using the Wald test

A full model including the effect of exon 26 genotype on all
parameters was fit. The volume of distribution was the only
parameter for which at least one of the p values of the Wald
tests for the gene effect was lower than 0.25. The results are
shown in Fig. 1: for each parameter, we show the estimate
of βCT, βTT and the difference βCT−βTT as well as the
corresponding confidence interval. The horizontal line
represents the expected value of 0 in the absence of effect.
As seen from this figure, only βTT and βCT−βTT for
parameter Vc/F were found to be significantly different
from zero using Wald tests.

The model was then re-run with only Vc/F, yielding the
following estimates for the gene effects: βCT =0.065 (NS),
βTT =−0.164 (p <0.01), βCT − βTT=0.229 (p<0.02). A final
model was therefore run, including only a different Vc/F for
TT subjects.

Forward covariate selection using the LRT

Figure 2 displays the empirical Bayes estimates of the four
parameters with intra-individual variability (ka, kel, Vc/F and
Tlag), separated according to the genotype for exon 26. As
with the Wald test, only Vc/F was found to have a significant
relationship with the MDR1 polymorphism on exon 26 (p<
0.017 according to the ANOVA), with the other three tests
yielding p values larger than 0.4. Inclusion of the full gene
effect in the model for Vc/F led to an improvement in the
model (p=0.007 according to a LRT, df=2).

In the next and final stage, we then tested the three
submodels versus H1 using LRT; this yielded the following
p values: p=0.003 for H0a={βCT=0}, p=0.29 for H0b=
{βTT=0}, and p = 0.049 for H0c ¼ bCT � bTT ¼ 0f g. Using
the Simes procedure, the final model selected was the
model where TT subjects have different Vc/F from the two
other groups. For the effect of exon 26 polymorphism, the
model selected by this strategy was therefore the same as
that for the selection based on Wald tests.

Covariate selection using the Bayesian Information
Criterion

The selection for each parameter separately yielded the
following results: for Vc/F, the best model was a model
with a different population mean for the TT subjects; for the
other parameters, the best model was a model without
covariates, and there was no model within 3 points of BIC
of the lowest model. The results are illustrated in Fig. 3,
which shows the BIC of the five models tested for each
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parameter. For each parameter, the model with the lowest
BIC is shown as a full circle.

The models were then combined, and again, the best
model overall was here the model with a different
population mean for Vc/F in TT subjects.

Final model

For the analysis of exon 26 alone, the three methods led to
the same final model, a model where the carriers of the TT
genotype have a different population mean for Vc/F.

The same analyses were done considering the genotype
for exon 21. We found no significant parameter-genotype
relationship when considering the five genotype groups for
exon 21, but some genotypes were present in few subjects,
suggesting a lack of power. When we regrouped the
subjects into three groups according to the number of
mutant alleles, the estimate of the volume of distribution
was slightly lower in group 3 (TT or TA) versus the other
groups (p<0.04). However, when the model for exon 26
was taken into account, this relationship disappeared,
showing that the difference is accounted for by exon 26
because of the strong linkage between the two exons
(Somers D′=0.72). The three approaches presented above

therefore gave the same results for the selection of genetic
covariates in the model.

In addition, 11 subjects carried the CC-GG diplotype,
and a slight difference was found between the estimates of
the volume of distribution for these patients when using a
Wald test (p=0.045). However, the two other methods (BIC
and EBE) did not pick this difference up.

In the final step, we then added the other covariates to the
model. Because of the strong linkage disequilibrium between
the two exons, the full covariate model included only exon 26.
Using the Wald test approach, the final model included a
different population mean for Vc/F in TT subjects, as
previously, as well as a smaller absorption time-lag in
women. Using the LRT approach, we also found a small
increase in Tlag (2.5%) for smoking patients, but the size of
the effect was not clinically significant and thus the final
model was the same as with the Wald approach. The BIC
approach was not implemented for the full covariate
selection because of time constraints.

The parameter estimates and estimates of the standard
errors are given in Table 1. The parameters were all well
estimated, with standard errors lower than 20% except for
the two covariate effects, for which it was less than 40%.
The residual (intra-individual) error was also small (17%).

Fixed effects for exon 26 polymorphism
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Fig. 1 Estimates of the genetic fixed effect for the different parameters in the model
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In this model, subjects with the TT genotype have a volume
of distribution lower by 17% relative to carriers of at least a
C allele, and women have a 54% shorter absorption time
relative to men. The within-subject variability was largest
for the absorption rate constant ka.

A plot of the concentrations of digoxin as a function of
time for the three genotypes for exon 26 is shown in Fig. 4.
Overlayed is the corresponding population predictions for
the group. Diagnostic graphs for this model are shown in
Fig. 5. The two upper graphs show the population (left) and
individual (right) predictions, respectively, versus observed
concentrations. The two bottom graphs show the individual
predictions for the first two subjects in the dataset. The

graphs show a satisfactory fit, and the absorption phase is
well described. A slight underestimation can be seen
around 24 h, as the model does not capture a small rebound
at that time. We tested two alternative models, one with a
double absorption phase and one assuming enterohepatic
recycling, but both encountered numerical difficulties and
unphysiological estimates, and the bias in the model was
not improved. Therefore, the two-compartment model was
kept. We performed model validation for the final model;
using prediction discrepancies, we did not reject the
hypothesis that the data observed could have been obtained
under the model (NS, p=0.49) and considered the model to
be adequately qualified.

Genotype

E
m

pi
ric

al
 B

ay
es

 E
st

im
at

es
 o

f k
a

0
5

10
15

CC CT TT

Genotype

E
m

pi
ric

al
 B

ay
es

 E
st

im
at

es
 o

f k
el

0.
08

0
0.

08
5

0.
09

0
0.

09
5

0.
10

0

CC CT TT

Genotype

E
m

pi
ric

al
 B

ay
es

 E
st

im
at

es
 o

f V
d

12
0

14
0

16
0

18
0

20
0

22
0

CC CT TT

Genotype

E
m

pi
ric

al
 B

ay
es

 E
st

im
at

es
 o

f T
la

g

0.
16

0.
18

0.
20

0.
22

0.
24

CC CT TT

Fig. 2 Empirical Bayes esti-
mates of ka, kel, Vc/F and Tlag

with the model without
covariate

Eur J Clin Pharmacol (2007) 63:437–449 443



Discussion

With the recent availability of cheaper genotyping methods,
it is now possible to collect genetic information related to
drug transporters, metabolic complexes or receptor struc-
ture on a routine basis in clinical trials or before a patient is
given a new treatment. In pharmacokinetics and pharma-
codynamics, the time course of drug concentrations or
effects is described using models with a small number of

parameters, and pharmacogenetic data is being increasingly
used to characterise their variability. There are now reports
of pharmacogenetics studies for a large variety of drug
classes, confirming the widespread interest and potential
applications of pharmacogenetics.

The statistical analysis in these studies, however, is
usually limited to using non-compartmental approaches to
study the influence of genotype on AUC, apparent
clearance or maximum or trough concentration. Only a
few papers have reported the use of more sophisticated
methods, such as mixed-effect models or Bayesian analysis,
despite the fact that these approaches can be more
informative. These latter methods also can take advantage
of sparse designs, which could be useful when designing
studies for screening genetic factors or for use during
therapeutic monitoring. We present here the first pharma-
cokinetic population model for digoxin that includes a
pharmacogenetics analysis.

In this study, we used three different methods to explore
the relationships between the pharmacokinetic parameters
and the genetic covariates: forward stepwise selection,
Wald test-based selection and criteria-based selection.
Although in the present application, these led to the same
final model, the three methods all have different character-
istics and strengths.

Table 1 Estimates of the population pharmacokinetic parameters
for the final model

Parameter Population
mean (SE as %)

Variability as %
(SE on ω2 as %)

ka (h
−1) 3.15 (20) 85 (32)

kel (L/ h) 0.09 (6) 17 (63)
Vc/F (L) 172.70 (5) 15 (30)
βV, TT (–) −0.17 (31) –
Tlag (h) 0.21 (8) 28 (42)
βTlag, women

(−) –0.43 (27) –
k1,2 (h

−1) 0.32 (7) –
k2,1 (h

−1) 0.10 (7) –
σ (%) 0.18 (4) –

*p=0.001 according to Wald test; **p=0.0002 according to Wald test

Models tested for each parameter(1:basic, 2: CT=TT, 3: CC=TT, 4: CC=CT, 5: full)
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The tests for the three approaches are asymptotic; that is,
they assume that the number of subjects as well as the number
of points per subject is large enough. All three methods
require good estimates of the likelihood, and the Wald test
additionally requires good estimates of the standard errors.
The only approximation in the computation of the estimated

standard errors of estimation involved in SAEM lies in the
asymptotic approximation applied to the finite dataset [20],
so that we expect better statistical properties of the tests
based on estimates obtained by SAEM relative to more
traditional methods based on first-order linearisation such as
are implemented in NONMEM [34] or in the library nlme for
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Fig. 4 Concentration versus
time data for digoxin, for the
three genotype classes for exon
26 polymorphism (in log-scale).
Overlayed is the line corre-
sponding to the predictions
using the population parameters
in each group, for men
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R [28]. Indeed, the standard errors of estimation of the
parameters estimated using the SAEM software have been
shown to be accurately predicted [33].

Genetic covariates (genotypes or haplotypes) are usually
modelled as categorical covariates, except for some genes
such as CYP2D6 where a numeric variable representing the
number of mutant alleles has been used as the genetic
covariate [19]. Categorical covariates bring specific chal-
lenges. We need to estimate one parameter for each possible
genotype and the number of possible covariate models
increases exponentially with the number of genotypes.
Also, the dataset is often unbalanced, with sometimes a
very small number of patients for the rarer genotypes,
which can generate problems for parameter estimation.

Given these specific challenges, the capability of being
able to select the covariate model in one step with the Wald
test is appealing, and has been proposed by Panhard [26].
All the potential relationships are included in the model,
and a simultaneous estimation of the significance of all the
parameters is provided. This approach could be most

interesting in sparse data settings where the empirical
Bayes estimates (EBE) do not contain as much information
as they do in our example where the pharmacokinetic
sampling was rich. The three methods described above can
be applied regardless of the estimation method, and have
been used in NONMEM [17] and nlme [26]. Using the new
algorithm SAEM, we can obtain good estimates of the
parameters and their estimation error, which allows us to
select the covariate model by backwards deletion from a
full model. Compared to the two other methods, the Wald
test requires an additional assumption in that the confidence
interval for the estimated parameters is assumed to be
symmetrical, which makes it less robust than the LRT.

The LRT, by contrast, does not require any additional
hypothesis beyond that of the asymptotic. Stepwise inclusion is
therefore the main method used for covariate model selection in
pharmacokinetics/pharmacodynamics models. However, it
suffers from a number of known problems: inflation of type I
error due to multiple testing during the building process,
selection bias, collinear variables and no guarantee that the final
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Fig. 5 Goodness-of-fit plots for
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model selected using these methods is the correct model [41].
Inflation of the type I error is also inherent to the first-order
linearisation of the log-likelihood used by NONMEM [7],
while the stochastic approximation of the log-likelihood
performed by SAEM retains a type I error closer to the
nominal value, as shown in simulation studies [14]. Variants
of stepwise methods include building generalised additive
models using the empirical Bayes estimates of a model
without covariate [24]; however, these do not address the
issues mentioned above. An interesting combination of the
LRT approach and the Wald approach could be outlined as
follows: first, build a full model with all potential covariates
included and keep as candidate covariates those for which the
Wald test is significant; finally, build the covariate model
using LRT-based forward or backward selection from these
candidate covariates. This would reduce the number of models
to test in the selection while allowing for a combination of
covariates to enter the model.

Finally, the advantage of criterion-based strategies lies in
their systematic exploration of all possible models. The use
of model selection criteria such as AIC or BIC is more
frequent in the Bayesian literature [29] and has a solid
theoretical background in information theory. In practice,
however, AIC often proves to be anti-conservative and has
been shown to be non-consistent [42], and here we use the
BIC. Criterion-based strategies have two main drawbacks.
The first drawback is that the number of possible models
increases exponentially with the number of covariates,
although we can simplify the number of possible models by
considering prior physiological knowledge to eliminate
unlikely parameter-genotype relationships. The second
drawback is that there is no formal test of the relative
performance of two models. Kass and Raftery propose
using the difference in BIC as a measure of the strength of
evidence of one model versus another [18], but one can be
left with several competing models of similar strength using
that approach.

In summary, despite known problems that we have
discussed here, stepwise selection strategies are less
computationally cumbersome than criteria-based selection,
while being more robust to poor estimations of the standard
errors than selection based on the Wald test. However, it
can be useful to explore candidate relationships using this
last method, especially in the presence of a large number of
covariates, because, as shown here, it can provide reliable
estimates in one step and because effects due to a
combination of several covariates may be missed by
stepwise approaches.

The strategies outlined in this work can be used for all
types of covariates (demographic data, clinical character-
istics, biological measurements, among others) as well as
for building the structural model.

Our main finding, the difference in volume of distribu-
tion found for TT subjects, explains the higher AUC
observed for these subjects in the previous non-compart-
mental analysis performed using this data [38]. It can be
interpreted as a higher bioavailability in TT subjects relative
to CC or CT subjects. This result should be confirmed in
patients receiving digoxin and probably does not warrant
dose adjustment for digoxin, especially considering the
high variability in absorption. A possible exception would
be to adjust dosage in certain populations, such as elderly
patients or patients receiving other co-medications. The
proportion of digoxin-treated patients experiencing thera-
peutic drug monitoring has been shown to increase with the
number of PgP inhibitors received [11], which could make
it useful to determine the genotype governing PgP activity
[12].

In conclusion, we modelled the pharmacokinetics of
digoxin, including pharmacogenetic data, using nonlinear
mixed-effect models. Our main finding was that carriers of
the TT genotype for the C3435T polymorphism in exon 26
of the MDR-1 gene have a lower apparent volume of
distribution. Several methods can be used to test for genetic
effects. In addition to the usual stepwise selection method,
we recommend using the Wald test to screen candidate
covariates.

Acknowledgments This study complies with the current laws of
France, where they were performed, and the protocols were approved
by the Ethics Committee of the Pitié-Salpêtrière Hospital (CCPPRB),
Paris, France.

Appendix

The SAEM algorithm is implemented in the MATLAB
language in the software MONOLIX, available on the
author’s website (http://www.math.u-psud.fr/~lavielle/
monolix/logiciels.html). We used MONOLIX version 1.1.

The dataset was prepared in R as a two-dimensional
array, with columns representing subject identification (ID),
time and observed concentrations. A column representing
the dose was also added (with the same value at all times
and for all subjects). To code for the categorical covariates
representing the genotypes of MDR1, we used dummy
variables. For example, to code for the exon 26 polymor-
phism, we defined three dummy variables, one with value 1
for the subjects with CC genotype and 0 for the other two
genotypes; one with value 1 for the subjects with CT
genotype and 0 otherwise; one with value 1 for the subjects
with TT genotype and 0 otherwise. Each dummy variable
was entered as an additional column in the dataset.
Exemples of datasets used with MONOLIX are included
in the Zip file containing the program.
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The following code was used to define the pharmacoki-
netic model (lines beginning with the symbol % are
comments), using the explicit analytical equation:

f=d.*ka./V.*(((k21-ka)./((alp-ka).*(bet-ka))).*exp(-ka.*(t-Tlag))+...

((k21-alp)./((ka-alp).*(bet-alp))).*exp(-alp.*(t-Tlag))+...

((k21-bet)./((ka-bet).*(alp-bet))).*exp(-bet.*(t-Tlag)));

function   [f,g]=dig_funct(phi,x,id);
d=x(:,1,:);

g=f;

t=x(:,2,:);
ka=exp(phi(id,1,:));
ke=exp(phi(id,2,:));
V=exp(phi(id,3,:));

Tlag=exp(phi(id,4,:));
k12=exp(phi(id,5,:));
k21=exp(phi(id,6,:));

bet=(ke+k12+k21-sqrt((k12+k21+ke).^2-4*k21.*ke))./2;
alp=(k21.*ke)./bet;

The program MONOLIX is run from within MATLAB. A
window opens in which the user specifies the dataset, the
model function and the number of covariates to include in
the analysis. In our analysis, the variance-covariance matrix
was set to diagonal and the variance for parameters k1,2 and
k2,1 was set to 0. The covariate model was also specified
via the graphical interface as a linear combination of the
dummy covariates defined above.

Version 1.1 of the software requires some tuning of the
numerical procedure to ensure convergence of the Markov
chain during the stochastic approximation step (see the user
manual on the website). We used the following sequence of
four stepsizes in the algorithm:

a1 ¼ 0 duringK1 ¼ 500 iterations
a2 ¼ 0:5 duringK2 ¼ 100 iterations
a3 ¼ 0:8 duringK3 ¼ 100 iterations
a4 ¼ 1 duringK4 ¼ 2000 iterations

8>><
>>:

ð6Þ

The output from MONOLIX consists of a series of graphs
as well as a table of parameter estimates with their associated
standard errors. Hypothesis testing opens a new window in
which the two models compared are specified, and the
corresponding criteria (AIC, BIC, log-likelihood) are shown
after the fit of each model is performed. Empirical Bayes
Estimates (EBE) of the individual parameters are obtained as
the mean of the posterior distribution, and the standard errors
on these parameters (the standard deviations of the posterior
distribution) are also reported.
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