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Abstract Purpose: Several data mining algorithms
(DMAs) are being studied in hopes of enhancing
screening of large post-marketing safety databases for
signals of novel adverse events (AEs). The objective of
this study was to apply two DMAs to the United States
FDA Adverse Event Reporting System (AERS) data-
base to see whether signals of potentially fatal AEs with
cancer drugs might have been identified earlier than with
traditional methods.
Methods: Screening algorithms used for analysis were
the multi-item gamma Poisson shrinker (MGPS) and
proportional reporting ratios (PRRs). Data mining was
performed on data from the FDA AERS database.
When a signal was identified, it was compared with that
in the year in which the event was added to package
insert and/or the year a ‘‘case series’’ was published. A
recent publication summarizing the time of dissemina-
tion of information on potentially fatal AEs to cancer
drugs provided the data set for analysis.
Results: The peer-reviewed published analysis contained
21 drugs and 26 drug–event combinations (DECs) that
were considered sufficiently specific for data mining.
Twenty-four of the DECs generated a signal of dispro-
portionate reporting with PRRs (6 at 1 year and 16 from
2 years to 18 years prior to either a published ‘‘case
series’’ or a package insert change) and 20 with MGPS
(3 at 1 year and 11 from 2 years to 16 years prior to

either a published ‘‘case series’’ or a package insert
change). Two DECs did not signal with either DMA.
Conclusion: At least one commonly cited DMA gener-
ated a signal of disproportionate reporting for 24 of 26
DECs for selected cancer drugs. For 16 DECs, one could
conclude that a signal was generated well in advance
(‡2 years) of standard techniques in use with at least one
DMA. DMAs might be useful in supplementing tradi-
tional surveillance strategies with oncology drugs and
other drugs with similar features. (i.e., drugs that may be
approved on an accelerated basis, are known to have
serious toxicity, are administered to patients with sub-
stantial and complicated comorbid illness, are not
available to the general medical community, and may
have a high frequency of ‘‘off-label’’ use).

Purpose

A compilation of potentially fatal adverse drug reactions
for cancer drugs previously published in an oncology
journal concluded that these events may be discovered as
many as 36 years after a drug receives United States
Food and Drug Administration (FDA) approval [8].
This suggested to the authors that there was a need for
continued vigilance for such reactions with cancer drugs.
In hopes of enhancing the ability to screen large data-
bases of adverse event (AE) reports, several computer-
assisted statistical signal detection algorithms—also
known as data mining algorithms (DMAs)—are being
studied in hopes of improving safety surveillance [1–7,
9–11]. These algorithms might be especially useful for
cancer drugs that (1) can be approved on an accelerated
basis, (2) are known to have serious toxicity, (3) are
administered to patients with substantial and compli-
cated comorbid illness, (4) are not available to the gen-
eral medical community, and (5) may have a high
frequency of ‘‘off-label’’ use. In this study, we applied
the DMAs known as the multi-item gamma-Poisson
shrinker (MGPS) and proportional reporting ratios
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(PRRs) to the FDA Adverse Event Reporting System
(AERS) database to determine whether these methods
would have flagged a sample of serious AEs obtained
from the aforementioned published compilation of
cancer AEs in advance of the ‘‘traditional’’ methods that
were in operation at the time.

Methods

The FDA AERS database is a computerized informa-
tion database for post-approval safety surveillance. It
functions as an early warning system for adverse drug
reactions not detected during pre-approval testing. It
contains AE reports with approved drugs and thera-
peutic biological products submitted in accordance with
mandatory reporting obligations by pharmaceutical
companies and voluntarily by health care professionals
and consumers. AEs are submitted on MedWatch
forms. AE reports are reviewed and coded for data entry
in accordance with the standardized terminology of the
Medical Dictionary for Medical Regulatory Activities
(MedDRA). Quarterly extracts are available through the
National Technical Information Service (NTIS). These
quarterly updates are subjected to extensive cleaning
(i.e., removal of redundant drug nomenclature and
duplicate reports) prior to data mining. The data extract
used for the current analysis was through the first
quarter of 2003 [12].

The two DMAs chosen for this analysis were PRRs
[2] and the empirical Bayesian MGPS, (Lincoln Tech-
nologies, Wellesley Hills, MA, USA) [11].

The PRR is a simple metric relating the proportional
representation of an event of interest with a drug of
interest compared with the proportional representation
of that event among all other drugs in the database
(Table 1). For this analysis, a PRR>2 with an associ-
ated v2>4 (with Yates correction) was considered a
‘‘signal’’ of disproportionate reporting (SDR), which
has been frequently cited in published studies of data
mining in conjunction with case count thresholds (e.g.,
n>2) [2]. We also examined whether imposing a case
count threshold (n>2) in series with PRRs affected the
results.

The theoretical basis of MGPS has been described in
detail elsewhere [1, 11] but briefly is as follows. Expected
counts for item sets (i.e., drug–event combinations or
DECs) are based on the product of the marginal prob-
abilities of each item (drug and event) in the database.

The observed to expected (O/E) ratio is initially calcu-
lated as a crude disproportionality metric. Since the
same ratio could be obtained from cell counts (fre-
quencies) of markedly different sizes (O/E ratios based
on smaller cell counts being considered more variable or
imprecise) further modeling using maximum likelihood
estimation and Bayesian inference are used to adjust the
crude O/E ratios based on the respective cell counts.
Each cell is considered to represent a Poisson process in
which the Poisson parameter distribution is related to a
mixture of two gamma distributions. The prior proba-
bility distribution of the gamma parameters are obtained
by applying an interactive maximum likelihood algo-
rithm to a negative binomial mixture likelihood. Pos-
terior estimates of the gamma parameters are obtained
by updating the prior with the individual cell counts via
Bayes theorem.

Using logarithmic transformations or taking the
lower 5% cut-off of the posterior distribution (EB05), an
expectation value that adjusts for the variability by
down weighting or ‘‘shrinking’’ the parameters associ-
ated with low cell counts is obtained. These metrics are
known as the empirical Bayes geometric mean (EBGM)
and the EB05. An EB05 of 8 may therefore be interpreted
to mean that reports of the particular DEC occur in the
database eight times more frequently than would be
expected if drug and event were independently distrib-
uted in the database. The signal metric used for a
threshold in the current analysis was the frequently cited
lower 5% cut-off of the EBGM greater than two
(EB05>2) [1]. The developers of MGPS have stated that
for EB05‡2, ‘‘our experience indicates that the signals
using this cutoff have high enough specificity to deserve
further investigations.’’

A variety of data mining options and parameters
exist including basic covariate adjustment (stratification
by age, gender, and year of report) and cumulative
subsetting. Stratification tends to reduce spurious asso-
ciations due to confounding and markedly decreases the
volume of disproportionalities [1, 5].

For the present analysis, the data mining was per-
formed on suspect drug–AE pairs using stratification by
age, gender, and FDA year of report with cumulative
subsetting by year.

A recent peer-reviewed publication summarizing all
AEs associated with oncology drugs reported from 2000
to 2002 using a pre-defined search strategy provided the
sample of DECs for this analysis.1 In addition to the
drug and event, this publication provided the year the
drug was approved, the data source for the AE (e.g.,
FDA MedWatch Program, investigative team’s com-
prehensive cancer center) and the time interval between
approval and package insert revision. It also supplied
the year and reference in which ten or more cases (i.e.,
‘‘case series’’) of the AE were described in a single arti-
cle. The year in which the signal metric exceeded the
specified thresholds was compared with the year of the
package insert revision and/or publication of a ‘‘case
series.’’ For each specific AE or group of AEs, the ver-

Table 1 Proportional reporting ratios

Drug of
interest

All other
drugs

Total

Reaction(s) of interest A B A+B
All other reactions C D C+D
Total A+C B+D A+B+C+D

PRRs = [A(A + C)]/[B/B + D)]
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batim term(s) from the paper and all MedDRA Pre-
ferred Terms that were considered clinically equivalent
or closely related to the verbatim term as determined by
an experienced reviewer were used for data mining. A
second experienced reviewer reviewed and verified the
initial findings.

Results

The peer-reviewed published analysis contained 21 drugs
and 26 DECs that were considered sufficiently specific
for data mining. Prior to 1995, 10 of the drugs were
approved in the United States. Of the 11 drugs approved
in 1995 or later, 6 underwent standard approval process
and the remaining 5 drugs underwent an accelerated
approval process. Of the DECs, 24 generated a signal of
disproportionate reporting with PRR (6 at 1 year and
16 from 2 years to 18 years prior to either a published
‘‘case series’’ or a package insert change) and 20 with
MGPS (3 at 1 year and 11 from 2 years to 16 years prior
to either a published ‘‘case series’’ or a package insert
change). One DEC did not generate a signal with either
algorithm. With PRRs, 18 DECs (7 involving drugs that

underwent accelerated approval) would have been
highlighted in the year the first MedWatch form (range
for number of reports received in first year: 1–14) was
received. With MGPS, 6 DECs (4 involving drugs that
underwent accelerated approval) would have been
highlighted in the year the first MedWatch form (range
5–24) was received. These and other findings are pro-
vided in Table 2. Imposing a case count threshold of
n>2 in series with a PRR threshold affected timing to
initial SDR for three DECs. For only one of these DECs
(gemtuzumab-hepatic venoocclusive disease) did this
threshold effect timing of SDR in relation to package
insert change/’’case series’’ (i.e., SDR occurred one year
after instead of the same year).

Discussion and conclusion

At least one DMA appeared to generate a signal of
disproportionate reporting for 22 of 26 DECs 1 year or
more prior to publication of a case series and/or a
package insert change for selected cancer drugs. The
temporal resolution of 1 year is a limitation to this
study, which makes it difficult to determine with any

Table 2 Data mining on 26 potentially fatal drug–event combinations with 21 oncology drugs

Drug (approval date [month/year])a: event Timing (year)

‘‘Case
series’’a

1st
MedWatch

1st year
PRR>2(v2>4)

1st year
EB05>2

Year of
package insert
changea

Drugs approved before 1995
Vinblastine (11–65): fatalities with intrathecal use 1969 1991 – 2000
Tamoxifen (12/77): endometrial carcinoma 2000 1983 1984 1984 2002
Tamoxifen (12/77): uterine sarcoma 2000 1989 1989 1993 2002
Immune globulin (3/81): stroke and other thrombotic episodes 2000 1985 1999 2002 –
Interferon alpha-2a (6/86): neuropsychiatric events – 1986 1989 1990 2001
Interferon alpha-2b (6/86): neuropsychiatric events – 1987 1992 1993 2001
Flutamide (1/89): interstitial pneumonitis 2002 1990 1999 2001 –
Erythropoietin (6/89): pure red cell aplasia 2002 1999 1999 2000 2002
Erythropoietin (6/89): serratia infection 2001 – NA NA –
Fludarabine (4/91): pancytopenia – 1992 1992 1992 2002
Pamidronate (10/91): severe renal toxicity 2001 1983 1983 1996 2002
Vinorelbine (12/94): interstitial pneumonitis 1996 1995 1995 2002 2000
Drugs approved after 1995 (standard approval)
Bicalutamide (10/95): interstitial pneumonitis 2002 1996 1996 – 2001
Gemcitabine (5/96): hemolytic uremic syndrome 1999 1996 1996 1997 2000
Oprelvekin (11–97): papilledema – 1999 1999 2001 2001
Rituxamab (11/97): severe infusion reactions 2000 1998 1998 1998 1999
Trastuzumab (9/98): severe infusion reactions 1999 1998 1998 1999 2000
Arsenic trioxide (9/00): torsades/sudden death 2001 2002 2002 – In 1st label
Drugs approved after 1995 (accelerated approval)
Irinotecan (6/96): treatment-related fatalities 2001 1996 1996 1996 2002
Capecitabine (4/98): warfarin interaction (PT increased) – 1998 1998 1998 2001
Capecitabine (4/98): renal failure – 1999 – – 1999
Capecitabine (4/98): neutropenia
in patients with renal insufficiency

– 1998 1998 2000 2000

Thalidomide (7/98) DVT and PE 2002 1999 1999 1999 –
Gemtuzumab (5/00): hepatic veno-occlusive disease 2001 2001 2001 2002 2001
Gemtuzumab (5/00): severe infusion reactions 2001 2000 2000 2000 2001
Imatinib (5/01): tumor/GI bleeding 2002 2001 2001 – 2002

aAs stated in journal article and rounded off to the nearest year except where noted
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degree of certainty whether the signal from the DMA
truly predated the initial signal identified in the cases in
which the difference was only 1 year. Nevertheless, for
16 DECs with PRRs and 11 DECs with MGPS, one
could conclude that a SDR was significant in that it
would have been generated well enough in advance (‡
2 years) of standard techniques in use at the time.
Therefore, both methods could have had potential utility
in this setting. PRRs have certain advantages (e.g., they
are simpler and more ‘‘sensitive’’), but a potential
drawback of such methods is reduced ‘‘specificity,’’
which could result in an overabundance of signals,
including ‘‘false-positive’’ signals that would be difficult
to manage in general pharmacovigilance settings.
However, in the specific situation studied here, the en-
hanced ‘‘sensitivity’’ may justify the reduced ‘‘specific-
ity.’’ Going forward, any performance differentials
between PRR and MGPS similar to what we observed
are likely to be significantly mitigated when these
methods are used as one element of a comprehensive
pharmacovigilance program that utilizes multiple ap-
proaches to signal detection. Additionally, given that
currently cited thresholds are unvalidated, somewhat
subjective, and adjustable, performance gradients would
be mitigated by titrating or optimizing thresholds.
Noteworthy is the finding that performance differentials
seemed to narrow with the most recently approved
drugs, especially those that went with accelerated ap-
proval (e.g., four of the eight listed DECs in this cate-
gory ‘‘signaled’’ in the same year, which was the first
year of reporting for the relevant DEC). One possible
explanation is that there might have been more intensive
reporting for these drugs because of proactive targeted
surveillance by the manufacturer. It should be noted that
our retrospective analysis may not reflect ‘‘real-life’’
pharmacovigilance in that we preselected our event
terms and did not do ‘‘open-ended’’ (i.e., all events
exceeding designated thresholds were reviewed for rele-
vance) data mining and that a SDR reflects reporting
behavior and may or may not correlate with causality.
Currently, drugs in this class may be approved on an
accelerated basis, are known to have serious toxicity, are
administered to patients with substantial and compli-

cated comorbid illness, are not available to the general
medical community and may have a high frequency of
‘‘off-label’’ use. Automated methods of drug surveillance
might usefully supplement traditional surveillance
strategies for oncology drugs and drugs marketed under
similar circumstances.
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