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Coral reef habitat mapping:
how much detail can remote sensing provide?
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Abstract The capability of satellite and airborne re-
mote-sensing methods for mapping Caribbean coral
reefs is evaluated. Reef habitats were categorised into
coarse, intermediate and ®ne detail, using hierarchical
classi®cation of ®eld data (percent cover in 1 m quadrats
and seagrass standing-crop). Habitats were de®ned as
assemblages of benthic macro-organisms and substrata
and were mapped using the satellite sensors Landsat
MSS, Landsat TM, SPOT XS, SPOT Pan and merged
Landsat TM/SPOT Pan. Habitats were also mapped
using the high-resolution digital airborne sensor, CASI
(compact airborne spectrographic imager). To map ar-
eas >60 km in any direction with coarse detail, Landsat
TM was the most accurate and cost-e�ective satellite
sensor (SPOT XS when <60 km). For maps with in-
termediate habitat detail, aerial photography (from a
comparable study in Anguilla) exhibited similar accu-
racy to Landsat TM, SPOT XS, SPOT Pan and merged
Landsat TM/SPOT Pan. Landsat MSS was consistently
the least accurate sensor. Maps from CASI were sig-
ni®cantly ( p < 0:001) more accurate than satellite sen-
sors and aerial photographs. Maps with detailed habitat
information (i.e. >9 reef classes) had a maximum ac-
curacy of 37% when based on satellite imagery, but
aerial photography and CASI achieved accuracies of 67
and 81%, respectively. Commissioning of new aerial
photography does not appear to be a cost-e�ective op-
tion; satellites are cheaper for coarse habitat-mapping,
and detailed habitat-mapping can be conducted more
accurately and cheaply with CASI. The results will guide

practitioners in matching survey objectives to appro-
priate remote-sensing methods.

Introduction

Ever since Smith ®rst examined Landsat data of the
Great Barrier Reef (Smith et al. 1975), the search for
applications of satellite imagery to coral reef science and
management has been almost exhaustive (see reviews by
Jupp 1986; McCracken and Kingwell 1988; Green et al.
1996). Satellite imagery has been used for cartographic-
base mapping (Jupp et al. 1985), detecting change in
coastal areas (Loubersac et al. 1989; Zainal et al. 1993),
environmental-sensitivity mapping (BinÄ a 1982), charting
bathymetry (Benny and Dawson 1983), ®sheries man-
agement (Populus and Lantieri 1990) and even stock
assessment of commercial gastropods (Bour 1989). The
most widespread use of satellite imagery has been the
mapping and inventory of coastal resources (e.g. Ku-
chler et al. 1986; Bastin 1988; Luczkovich et al. 1993).
Maps of reef habitat are a useful planning tool which,
among other uses, allows management boundaries to be
located (Kenchington and Claasen 1988) and the iden-
ti®cation of representative reef systems (McNeill 1994).
This paper is speci®cally concerned with the use of re-
mote sensing for mapping coral-reef systems.

The past three decades have witnessed development
of a multitude of sensors and a plethora of analytical
(processing) methodologies. The main sensors pertinent
to reef assessment are listed in Table 1. This list is not
exhaustive, since it ignores recent instruments which
have not been widely reported in the literature [e.g. LISS
(linear imaging self-scanning) sensors on the Indian
Remote Sensing satellite). The most widely used satel-
lites are Landsat MSS, Landsat TM, SPOT XS and
SPOT Pan (see Table 1 for explanation of abbrevia-
tions). The literature concerning their relative capabili-
ties for habitat mapping is disparate, and very few
comparative assessments have been undertaken. Ahmad
and Neil (1994) found that Landsat TM gave greater
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geomorphological detail on reef structure than Landsat
MSS. When correlating reef-survey data to satellite im-
agery, Bainbridge and Reichelt (1989) found SPOT XS
to be better correlated than Landsat MSS, which has
poorer spatial resolution. Studies of reef ¯ats in Thai-
land (Thamrongnawasawat and Sudara 1992) suggested
that whilst Landsat TM was more useful than SPOT
Pan, a merged data source might prove superior to ei-
ther. However, this hypothesis was not tested.

Until the relative capabilities of these sensors have
been rigorously assessed, practitioners will continue to
be faced with the di�cult problem of matching survey
objectives to the most appropriate sensor. This problem
is exacerbated by a general overselling of remote-sensing
capabilities to the user community (Currey et al. 1987;
Meaden and Kapetsky 1991). Whilst intuition and some
published literature indicate that sensors with the
greatest spatial and spectral resolution should provide
the most detailed (and possibly accurate) information on
reef systems, we need to quantify such relationships. In
addition, the adequacy of satellite remote sensing of
coral reefs must be considered in relation to other
methods. There are two principal alternatives: (i) con-
ventional mapping using aerial photography and
(ii) more recently developed digital airborne remote-
sensing. The latter instruments have good spatial and
spectral resolutions (Table 1) and therefore possess great
potential for habitat mapping (Kenchington and Claa-
sen 1988; Clark et al. 1997; Mumby et al. 1997b).

Given the need to compare various remote-sensing
methods, this paper embraces the following questions
with respect to coral reef habitat-mapping, where habi-
tats are de®ned as assemblages of benthic macro-
organisms and substrata: (1) What are the relative
capabilities of satellite sensors? (2) How does satellite
imagery compare to aerial photography? (3) How does
satellite imagery compare to digital airborne multispec-
tral imagery (CASI)?

Materials and methods

Imagery-acquisition details

All ®eld studies were carried out near the island of South Caicos,
Turks and Caicos Islands, British West Indies (Fig. 1). To enable

comparisons to be made between satellite imagery and CASI, three
considerations were made: (1) Data for use in habitat categorisa-
tion were drawn from a wide area to represent the range of habitats
present in all image types (2) To obtain replicate pixels of each
habitat type and mitigate spatial autocorrelation (Cli� and Ord
1973), a larger area was visited for satellite sensors than for CASI
(i.e. a single seagrass bed may represent hundreds of CASI pixels
but only a few, relatively autocorrelated pixels in a satellite image)
(3) The high costs associated with ¯ying and processing CASI
dictated that only a relatively small area of Caicos Bank could be
surveyed. Cockburn harbour was chosen because most habitats
were represented in a microcosm of the bank (Fig. 1: inset).

Imagery-acquisition dates were June 1992 for Landsat MSS,
November 1990 for Landsat TM andMarch 1995 for SPOT XS and
SPOT Pan. CASI data were obtained in July 1995 (see Clark et al.
1997; Mumby et al. 1997c). The CASI data presented here are for
comparison purposes: a full analysis is presented elsewhere (Mumby
et al. 1997b). Aerial photographs were not available for the Caicos
Bank, but the results of Sheppard et al. (1995) from Anguilla are
comparable to the habitats examined in the present study. These
authors used colour aerial photography at a scale of 1:10 000.

Table 1 Principal speci®cations of relevant remotely-sensed data
sources. Satellite costs based on 1996 prices. Costs for airborne-
imagery are based on commercial quotes for surveying an area of
' 1 500 km2 at a photographic scale of 1:10,000 and a CASI pixel

size of 3 m (MSS multispectral scanner; TM thematic mapper;
SPOT systeÁ me probatoire de l'observation de la terre; XS multi-
spectral scanner; Pan panchromatic; CASI compact airborne
spectrographic imager)

Speci®cation Landsat
MSS

Landsat
TM

SPOT
XS

SPOT
Pan

CASI
(airborne)

Aerial photography

Spatial resolution (m) 80 30 20 10 10±0.5 variable ! 0.2
No. spectral bands
available for reef mapping

2 3 2 1 8±21 user de®ned 1 analogue

Area covered (km) 185 ´ 172 185 ´ 185 60 ´ 60 60 ´ 60 variable variable
Cost/image (£) 160 2838 1700 2205 81,000 160,000
Cost (£ km)2 image)1) 0.005 0.08 0.47 0.61 540 1070

Fig. 1 Study area in Turks and Caicos Islands, showing locations of
all ®eld sites. The compact airborne spectrographic imager (CASI)
was ¯own across Cockburn Harbour (inset)
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Field survey

A wide variety of sampling techniques exist for coral reefs (for
reviews see Stoddart and Johannes 1978; English et al. 1994;
Rogers et al. 1994). Semi-quantitative methods such as manta tow
(Kenchington 1978) and plotless belt-transects (Mumby et al. 1995)
are fast and well-suited to mapping reef geomorphology and broad
ecological zonation (Bainbridge and Reichelt 1989; Mumby et al.
1996). However, these methods are unlikely to provide accurate
estimates of benthic cover at small scales (e.g. <10 m). Given the
disparity in spatial resolution between sensors (i.e. from 1 m in
CASI to 80 m in Landsat MSS), sampling was optimised for the
most detailed imagery (CASI) and the overall extent of habitat at
each site was estimated to allow scaling-up to larger pixel sizes.

Compared to most other quantitative sampling techniques,
quadrats have the advantage that data are acquired rapidly in the
®eld and are moderately accurate (Rogers et al. 1994). The main
disadvantages of quadrat sampling are (i) quadrats cannot be used
to measure spatial relief (rugosity), (ii) large branching corals such
as elkhorn coral (Acropora palmata) are di�cult to sample, and
(iii) quadrats only provide data on a two-dimensional surface area,
thus underestimating coverage of features which have a predomi-
nant orientation in the vertical plane. However, although the latter
limitation is pertinent to ecological assessment, it may in fact be
advantageous in the context of remote sensing where the sensor
also samples a two-dimensional (¯at) surface area.

In July and August 1995, 180 sites were sampled using a min-
imum of six replicate 1 m quadrats per site (up to 18 samples were
used for more heterogeneous habitats on the fringing reef). Percent
cover was visually estimated using a 1% grid. Data were recorded
to species level for hard corals and macroalgae but to higher level
taxon for sponges. The density of soft corals was also recorded.
Seagrass composition and standing crop were measured using a
calibrated, rapid visual-assessment method (Mumby et al. 1997a).
The diameter of each site was visually estimated and usually ex-
ceeded 80 m. The location of ®eld sites was determined using a
di�erential global positioning system with a ``circle error probable''
of 2 to 5 m (Trimble Navigation Ltd. 1993).

Categorisation of ®eld data into habitat classes

Our use of the term ``habitat'' is fairly open and embodies species
assemblages and associated substrata. The term ``descriptive reso-
lution'' is used to describe the biological detail to which a sensor
will map a given area and is used inter-changeably with ``habitat
discrimination''. A coarse descriptive resolution would be simply
coral, algae, sand and seagrass. A ®ner descriptive resolution would
include species/substrata assemblages, variations in seagrass stan-
ding crop and so on.

Many methods exist for classifying multivariate data sets (re-
viewed by Greig-Smith 1983). Agglomerative hierarchical classi®-
cation with group-average sorting was used here because it is one of
the most popular and widely available algorithms (Clarke and
Warwick 1994). The ecological similarity between sites was mea-
sured using the Bray±Curtis similarity coe�cient (Bray and Curtis
1957), because this has a number of biologically desirable proper-
ties such as ignoring joint absences of species, taking a value of 0
when two sites have no species in common, and taking a value of 1
when the abundances for all species are identical. Further, simu-
lation experiments with various similarity measures have found the
Bray±Curtis similarity coe�cient to be a particularly robust mea-
sure of ecological distance (Faith et al. 1987). Percent cover data
were not transformed, so that dominant cover features were al-
lowed to exert an appropriately large in¯uence on the classi®cation.
This was because it was deemed more likely that satellite imagery
would discriminate habitats on the basis of dominant benthic fea-
tures rather than more cryptic species/substrata. The species com-
position of seagrass samples was square-root transformed to place
values in the same range as standing-crop estimates.

Characteristic and discriminating species/substrata of each class
were determined using similarity percentage (SIMPER) analysis

(Clarke 1993). A summary of the classi®cation scheme (with
quantitative descriptors) was used to direct a second survey period
in March 1996. Since habitats had been de®ned earlier, all non-
seagrass sites were assigned to their appropriate habitat class by
visual inspection of the benthos, using a glass-bottomed bucket.
This method was approximately four times faster than quadrat
sampling. The standing crop of seagrass sites was estimated using
the visual-assessment technique. More than six hundred sites were
surveyed during this second phase, and these data were set aside for
assessing the accuracy of imagery classi®cations.

Imagery analysis

Image data were geo-coded using Ordnance Survey maps (root
mean square error < width of a single image pixel) and radio-
metrically corrected to account for sensor calibration, time of year
and atmospheric conditions (see Price 1987; Tanre et al. 1990).

One of the most commonly cited di�culties with remote sensing
of underwater environments is the confounding in¯uence of vari-
able depth on bottom re¯ectance (e.g. Cracknell et al. 1987). For
example, the spectra (spectral signature) of sand at 20 m may be
similar to that of seagrass at (say) 3 m. The e�ects of variable depth
were compensated using the model derived by Lyzenga (1978, 1981).

For the ®rst ®eld survey, 180 ®eld sites were located on the
imagery. At each site (pixel), ®eld data identi®ed the habitat type
and the overall extent of the habitat. A spectral signature was
created from the image data at each site using the software Erdas
Imagine 8.2. Signatures were developed using the region-growing
tool, which allows neighbouring pixels to be incorporated into the
signature. A geographic constraint was set on this process so that
only those pixels found within the overall extent of each habitat
were selected. For example, if the habitat at a site was considered to
have a diameter of at least 100 m (7860 m2) and a signature was
created for SPOT XS imagery whose pixels cover 400 m2 each, up
to 20 (�7860 ¸ 400) pixels were allowed to contribute to the sig-
nature for that site. Pixels further from the ®eld site could not be
expected to represent the same habitat type reliably.

The habitat type at each site was de®ned to its ®nest descriptive
resolution. Individual signatures for each habitat type were then
progressively merged to provide characteristic habitat spectra.
Spectra were then used to train a supervised image classi®cation
which is a multivariate discriminant function (Mather 1987). Pixels
were assigned to habitat classes using the maximum-likelihood
decision rule (Mather 1987). The resulting thematic map of habitats
was evaluated visually and obvious areas of pixel mis-assignment
were identi®ed (e.g. pixels classi®ed as Montastrea spp. reef which
were situated in known seagrass beds). The spectra of habitats
which had over-classi®ed (in this example, Montastrea spp. reef)
were then down-weighted and the supervised image classi®cation
was repeated. All habitat spectra had equal weighting in the ®rst
classi®cation (P � 1). Down-weighting was achieved by reducing
the probability that pixels would be assigned to speci®c habitat
classes (in this example, the new probability, P, forMontastrea spp.
was 0.7). This heuristic procedure was repeated and re®ned up to
six times, beyond which no further improvements were noticed by
visual inspection.

The success of a supervised image classi®cation is dependent on
the separability of spectra for di�erent habitats in the imagery.
Similar spectra may lead to confusion in the supervised classi®ca-
tion and misclassi®cations in the output-image map. If the sources
of misclassi®cation are known, it is possible to improve map
accuracy by contextual editing (Groom et al. 1996). This process is
perhaps best thought of as ``the application of common sense to
habitat mapping''. Contextual rules may be applied to pairs of
habitats which have similar spectra but exist in di�erent, yet pre-
dictable, physical environments, such as seagrass beds and forereef
escarpments. Pixels which classi®ed as seaward patches of seagrass
were reclassi®ed to the appropriate reef categories. Similar reclas-
si®cation was carried out for fringing reef pixels which had been
incorrectly classi®ed as sheltered communities of calci®ed rho-
dophytes with sponge (Class F7, Table 2).
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Accuracy assessment

The accuracies of habitat maps were determined using three com-
plementary measures which are based on error matrices derived
from independent ®eld data. An error matrix compares true ref-
erence data (from habitats visited in the ®eld) to the habitat types
predicted from image classi®cation (see Congalton 1991):

Overall accuracy. This is the overall degree of agreement in the
matrix (i.e. the sum of correctly labelled test sites divided by
the total number of test sites). It is a reasonable way to describe the
overall accuracy of a map, but does not account for the component
of accuracy resulting from chance alone. A chance component of
accuracy exists because even a random assignment of pixels to
habitat classes would include some correct assignments.

User accuracy. This is the probability that a classi®ed pixel actually
represents that category on the ground (Congalton 1991). It is
particularly useful for assessing the accuracy of individual habitat
classes.

Tau coe�cient (T ). This statistic is readily interpretable, permits
hypothesis testing, and accounts for chance agreement within the
matrix (Ma and Redmond 1995). A T of 0.80 indicates that 80%
more pixels were classi®ed correctly than would be expected by
chance alone. The coe�cient's distribution approximates to nor-
mality, and Z-tests (Mar and Redmond 1995) can be performed to
examine di�erences between matrices. Tau is calculated from:

T � P0 ÿ Pr

1ÿ Pr
; where Pr � 1

N 2

XM
i�1

ni � xi ;

P0 = overall accuracy; M = number of habitats, i = i th habitat,
N = total number of sites, ni = row total for habitat i, and
xi = diagonal value for habitat i (i.e. number of correct assign-
ments for habitat i ).

Results

The hierarchical cluster analyses described (at least)
three levels of inter-habitat similarity. These were
treated as three levels of descriptive resolution, the
simplest level being habitats dominated by either corals,
algae, sand or seagrass. The intermediate and ®ne levels
consisted of 8 and 13 habitats, respectively, and their
principal attributes are described in Table 2.

What are relative capabilities of satellite sensors?

A pronounced and usually signi®cant drop in accuracy
of image-derived maps was consistently found between
coarse, intermediate and ®ne habitat-discrimination
(Fig. 2). For mapping at coarse descriptive resolution
(i.e. four habitat classes; sand, coral, algae, seagrass),
Landsat TM was signi®cantly more accurate than other
satellite sensors (overall accuracy 73%). SPOT XS also
achieved a relatively high overall accuracy (67%). The
accuracy of merged Landsat TM/SPOT Pan was lower
than that of SPOT XS, but not signi®cantly so
(a � 0:05). The maps derived from Landsat MSS and
SPOT Pan had an accuracy of <60% (Fig. 2).

Overall, the di�erence in accuracy between interme-
diate and ®ne descriptive resolution was considerably
larger than the variation between sensors for a given
level of descriptive resolution. In practical terms, if the
objective is to map more detail than coral reef, algae,
sand and seagrass, then the accuracy of a habitat map is
more sensitive to the choice of descriptive resolution

Table 2 Description and characteristics of benthic habitats de-
termined from hierarchical classi®cation of ®eld data (except for A.
palmata which was added later), showing mean percent cover,
densities and standing crop where appropriate. Class assignment is

described for three levels of habitat discrimination: coarse (C ),
intermediate (I ) and ®ne (F ). Fine-level habitat categories present
in aerial imagery (AI ) are also listed

Description and characteristic features Class Assignment No.

C I F AI

Living and dead stands of Acropora palmata 1
Microdictyon marinum (77%), Sargassum spp. (4%), medium soft-coral
density (5 m)2) and rubble (10%)

1 1 1

Bare substratum (40%), low soft-coral density (3 m)2), Microdictyon
marinum (30%), Lobophora variegata (12%)

1 2 2 2

Bare substratum (80%), medium soft-coral density (5 m)2) 1 2 3 3
Bare substratum (60%), high soft-coral density (8 m)2), Lobophora
variegata (14%), high live coral cover (18%) of which �9% is Montastrea spp.

1 2 4 4

Lobophora variegata (76%) and branching red/brown algae (9%) 2 3 5 5
Sand and occasional branching red algae (<6%) 3 4 6 6
Amphiroa spp. (40%), sand (30%), encrusting sponge (17%), sparse
Thalassia testudinum and calcareous green algae

2 5 7

Thalassia testudinum of low standing crop (5 g m)2) and Batophora spp. (33%) 3 6 8
Thalassia testudinum of low standing crop (5 g m)2) and sand 3 6 9
Medium-dense colonies of calcareous algae ± principally Halimeda spp. (25 m)2)
Thalassia testudinum of medium standing crop (�80 g m)2)

3 7 10

Dense colonies of calcareous algae ± principally Penicillus spp. (55 m)2) and
Halimeda spp. (100 m)2) Thalassia testudinum of medium standing crop (�80 g m)2)

2 7 11 7

Thalassia testudinum and Syringodium ®liforme of 5±80 g m)2 standing crop 4 8 12 8
Thalassia testudinum and Syringodium ®liforme of 80±280 g m)2 standing crop 4 8 13 9
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than the choice of sensor. Overall accuracies for both of
the higher descriptive resolutions were low; intermediate
(8 habitats) 38 to 52%, ®ne (13 habitats) 21 to 37%.

Coral and sand habitats were generally more accu-
rately distinguished than algal and seagrass habitats
(Table 3). At detailed scales of reef habitats, there was
considerable variability in accuracy among sensors
(Table 3).

How does satellite imagery compare
to aerial photography?

Satellite-based map accuracies were re-calculated for the
habitat classes mapped from 1:10,000 aerial photogra-
phy (Sheppard et al. 1995). The accuracies for satellite
sensors in Fig. 3 were higher than those in Fig. 2 be-
cause the re-calculation necessitated exclusion of several
rarer habitat categories (see Table 2) which, when
mapped, reduced overall accuracy. Inclusion of these
categories in Fig. 2 would have reduced accuracy for
two reasons. First, being fairly rare, the accuracy asso-
ciated with mapping these classes was disproportion-
ately low. Second, inclusion of these categories increased
the total number of habitat classes for intermediate and
®ne descriptive resolution and, in probabilistic terms,
reduced the chances of obtaining such high accuracies.

Fig. 2 Comparison of satellite sensors for mapping coral-reef habitats
of Caicos Bank, showing overall accuracies and tau coe�cients (error
bars upper 95% con®dence intervals of tau coe�cient). Three levels of
descriptive resolution are described for each sensor: coarse (4 habitat
classes), intermediate (8 habitat classes) and ®ne (13 habitat classes).
(See Tables 1 and 2 for explanation of sensor abbreviations and
de®nition of habitat classes, respectively)

Table 3 User accuracies of habitat classes for all sensors and at
two levels of descriptive resolution (coarse and ®ne). Note: details
of habitat types do not apply directly to API categories which were
described by Sheppard et al. (1995); however, categories of Shep-
pard et al. are broadly analogous to those described in table (MSS

Landsat MSS; TM Landsat TM; TM/P merged Landsat TM/
SPOT Pan; XS SPOT XS; Pan SPOT Pan; API aerial photo in-
terpretation; CASI compact airborne spectrographic imager). The
most accurate satellite sensors for each habitat are underlined to
facilitate comparison with airborne remote sensing

Habitat type Accuracy/sensor (%)

MSS TM TM/P XS Pan API CASI

Living and dead stands of Acropora palmata 52 90
Microdictyon marinum (77%), Sargassum spp. (4%),
medium soft-coral density (5 m)2) and rubble (10%)

0 0 69 19 13

Bare substratum (40%), low soft-coral density (3 m)2),
Microdictyon marinum (30%), Lobophora variegata (12%)

32 44 57 54 32 81

Bare substratum (80%), medium soft-coral density (5 m)2) 4 34 44 39 10 48 80
Bare substratum (60%), high soft-coral density (8 m)2),
Lobophora variegata (14%), high live coral cover (18%),
of which �9% is Montastrea spp.

33 18 36 51 47 66 83

Lobophora variegata (76%) and branching red/brown algae (9%) 13 41 31 41 0 38 82
Amphiroa spp. (40%), sand (30%), encrusting sponge (17%),
sparse Thalassia testudinum and calcareous green algae

11 25 24 75 7

Sand and occasional branching red algae (<6%) 11 45 64 46 50 73 75
Thalassia testudinum of low standing crop (5 g m)2) and
Batophora spp. (33%)

100 8 14 22 14

Thalassia testudinum of low standing crop (5 g m)2) and sand 49 50 35 73 36
Medium-dense colonies of calcareous algae - principally
Halimeda spp. (25 m)2) Thalassia testudinum of medium
standing crop (�80 gm-2)

6 3 5 8 0

Dense colonies of calcareous algae ± principally Penicillus spp.
(55 m)2) and Halimeda spp. (100 m)2) Thalassia testudinum
of medium standing crop (�80 g m)2)

0 12 8 0 0 68 77

Thalassia testudinum and Syringodium ®liforme of 5±80 g m)2

standing crop
6 15 37 2 15 40 72

Thalassia testudinum and Syringodium ®liforme of 80±280 g m)2

standing crop
48 40 34 56 46 100 93

Coral 67 86 80 81 53 76 93
Algae 14 47 28 41 21 58 92
Sand 46 83 74 78 80 73 75
Seagrass 32 59 44 45 65 63 87
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The results can be segregated according to descriptive
resolution. First, for coarse and intermediate habitat
types, results from Landsat TM were found to be sig-
ni®cantly ( p < 0:01) more accurate than those from ae-
rial photography. The accuracy of aerial photography
did not di�er signi®cantly from that of merged Landsat
TM/SPOT Pan, SPOT XS or SPOT Pan. In general,
coral reef and sand habitats were more accurately map-
ped than algal and seagrass habitats (Table 3). Second,
for ®ne descriptive resolution, aerial photography was
more accurate than all satellite sensors (Fig. 3, Table 3).

Maps from Landsat MSS were signi®cantly less ac-
curate than those from aerial photography regardless of
the descriptive resolution employed.

How does satellite imagery compare to digital airborne
multispectral imagery (CASI)?

For all three levels of descriptive resolution, CASI im-
agery gave signi®cantly more accurate results than sat-
ellite sensors and aerial photography (Fig. 3, p < 0:001).
The accuracy with which individual habitats were
mapped was more consistent than that of satellite sen-
sors or aerial photography (Table 3).

Discussion

Most remote-sensing studies of coral reefs have focused
on mapping geomorphological classes (Green et al.
1996). Labelling such classes is relatively straightforward
because several geomorphological classi®cation schemes
exist (Hopley 1982; Kuchler 1986; Holthus and Maragos
1995) and geomorphology may be interpreted directly
from remotely-sensed imagery. Ecological assemblages
do not lend themselves to standard classi®cations so
easily. Species/substrata assemblages can be highly

variable, and several distinct assemblages may be pres-
ent in each geomorphological zone (see Fagerstrom
1987). Further, some ®eld survey is required to identify
ecological assemblages. Even if an image-interpreter has
some ®eld knowledge of an area, assigning classes based
on a ``best guess'' principle is likely to result in either
vague habitat labels or, at worst, labels which are in-
correct or meaningless to potential users of the map.

An important aspect of this study is the ecological
approach to de®ning habitats. We described habitats
using standard reef-sampling techniques and then at-
tempted to map the boundaries of these habitats by re-
mote sensing. This approach di�ered to the frequent
remote sensing strategy of deriving mapped classes from
spectral data followed by a posteriori assignment of
habitat labels according to perceived di�erences between
spectral classes. While this has often been done with some
®eld data, the resulting maps have been di�cult to in-
terpret on either a biological or geomorphological basis.

Accuracy requirements

Before speci®c accuracies and the suitability of various
satellite sensors for habitat mapping are discussed, it is
necessary to comment on the importance of accuracy. It
is extremely di�cult to suggest a threshold accuracy
which may be considered adequate or acceptable ± even
for the purposes of general guidance. As scientists or
decision-makers, our ®rst instinct might be to think in
terms of statistical error margins where a permissible
Type I error may be <5%. In most situations, however,
it would be unrealistic to expect map accuracies to ex-
ceed 95%. This is because habitat maps impose an or-
dered classi®cation on a benthos which actually exhibits
semi-continuous gradients of structure and composition
(usually with depth or wave exposure). There is, there-
fore, a degree of natural uncertainty in the placement of
most habitat boundaries and this incurs error.

An alternative viewpoint might be to ask whether an
accuracy of (say) 40% is worthwhile when the alterna-
tive is no mapped information at all? This is a di�cult
question to answer at present. The solution may become
clearer once research addresses the economic importance
of habitat data in various coastal management contexts.
Similarly, insight might be drawn from the consequences
of taking inappropriate management action on the basis
of inaccurate information. However, to the best of our
knowledge, such data are not available.

Given the arguments above, we have elected to use a
di�erent type of accuracy benchmark; that achieved with
aerial photography. This is because aerial photography
has been the conventional mapping medium for many
decades and is widely available.

Coarse and intermediate habitat-discrimination

On the basis of the results from Sheppard et al. (1995),
satellite sensors compared favourably to aerial photog-

Fig. 3 Comparison of satellite sensors, aerial photography and
airborne multispectral (CASI) data for mapping coral-reef habitats,
showing overall accuracies and tau coe�cients (error bars upper 95%
con®dence intervals of tau coe�cient). Three levels of descriptive
resolution are described for each sensor; coarse (4 habitat classes),
intermediate (6 habitat classes) and ®ne (9 habitat classes). (See Tables
1 and 2 for explanation of sensor abbreviations and de®nition of
habitat classes, respectively.) Data for aerial photography were re-
calculated from Sheppard et al. (1995)
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raphy for coarse and intermediate levels of habitat dis-
crimination. Aerial photography was found to be infe-
rior to Landsat TM and similar to merged Landsat TM/
SPOT Pan, SPOT XS and SPOT Pan. This may appear
surprising given the superior spatial resolution of aerial
photography. However, digital satellite sensors have
better spectral resolution and at coarse/intermediate
descriptive resolutions, the habitats were su�ciently
dissimilar from one another (Bray±Curtis similarity, 10
to 15% and 30 to 50%, respectively) to enable a crude
discrimination of their spectra.

In general terms, algal and seagrass habitats were
spectrally and spatially confused with one another, re-
sulting in lower overall accuracies than coral and sand
habitats. This result is not unusual (e.g. Kirkman et al.
1988), and has several causes. Whilst the photosynthetic
pigments in algae and seagrass (e.g. chlorophyll, phy-
coerythrin and fucoxanthin) have di�erent re¯ectance
characteristics, satellite spectral bands are generally un-
suitable for distinguishing them (see Maritorena et al.
1994), because at wavelengths of>580 nmpenetration of
water is poor, preventing the characteristic re¯ectance
minima and maxima of photosynthetic pigments being
detected. For example, whilst most photosynthetic pig-
ments show re¯ectance minima below 450 nm, the max-
ima lie between 670 and 700 nm and, therefore, the ``red
edge'' lies beyond the range of penetrating irradiance.
Where distinguishingminima andmaxima existwithin the
water-penetrating spectrum, satellite bands may be too
broad to distinguish them. For example, the re¯ectance
minima for both green and brown algae are below 500 nm
and their maxima are 550 and 575 nm, respectively
(Maritorena et al. 1994). SPOT XS band 1 cannot di�er-
entiate these maxima because it detects radiance within
the range 500 to 590 nm. Landsat TM can, in principle,
distinguish these maxima because Band 1 is sensitive to
450 to 520 nm and Band 2 detects within the range 520 to
600 nm. However, given sensor noise and light-attenua-
tion problems, precise discrimination is unlikely.

Coral habitats also possess a high cover of macroal-
gae, and the corals themselves contain photosynthetic
pigment-bearing algae (zooxanthellae). Whilst they may

be spectrally confused with seagrass and some algal
habitats, coral reefs may be spatially distinguished. This
is because their location (context) within the reef land-
scape is usually con®ned to the seaward margin of the
coastal zone (i.e. fringing reef), where wave exposure is
moderate to high. In this study, contextual discrimina-
tion of algal and seagrass habitats was di�cult because
gradients of exposure were generally less obvious and it
was not easy to predict the location of habitats.

Although Landsat TM and SPOT sensors provided
similar accuracies to aerial photography for reef habitat-
mapping with moderate detail, there are other reasons
for choosing satellite imagery in preference to photog-
raphy. First, the generation of a geo-coded map is sim-
pler when based on a single satellite image than when
faced with mosaicing and geo-coding, for example, ®fty
aerial photographs. Second, the time required to visually
interpret and digitise aerial photography is likely to be 1
to 2 orders of magnitude greater than that required for
processing digital satellite imagery. Third, existing aerial
photographs for a particular study site may be quite old
(especially if they were collected for the purposes of
cartographic mapping), and satellite imagery will gen-
erally provide a more recent data source. This does,
however, open up the wider issue of cost-e�ectiveness.

If new imagery is required for a site, the most cost-
e�ective solution depends on the mapping objectives,
required accuracy, the size of the area, climate of the
area (e.g. persistence of cloud cover), the volume of data
required, and the availability of technical expertise and
equipment. An analysis of these issues is beyond the
scope of this paper and will be reported at a later date.
However, a few simple rules emerge (Table 4).

Fine habitat-discrimination

The results presented in this study suggest that satellite
imagery is not well suited to detailed mapping of benthic
habitats; aerial photography provided consistently
greater accuracies. This conclusion is in agreement with
Bainbridge and Reichelt (1989), who concluded that

Table 4 Relative cost-e�ectiveness of satellite sensors, CASI and
1:10 000 colour aerial photography for mapping marine habitats
with coarse, intermediate and ®ne detail. Note: satellite sensors

cannot be used for mapping reefs with ®ne habitat discrimination
(where accuracy is <37%) (Abbreviations as in legend to Table 1)

Method Cost-e�ectiveness

Landsat TM For areas >60 km in any direction (size of single SPOT image), Landsat TM is likely to be most cost-e�ective
option. While being approximately £1140 more expensive than SPOT XS, it covers nine times the area and may o�er
greater habitat-mapping accuracy. If two SPOT scenes are required, SPOT would be more expensive than Landsat
TM

SPOT XS This is cheaper than SPOT Pan and o�ers greater habitat-map accuracy

Merged Landsat
TM/SPOT Pan

This is not a cost-e�ective option. It is particularly expensive and does not provide a corresponding improvement in
accuracy

CASI CASI is signi®cantly more accurate than satellite imagery for all levels of reef-habitat mapping
It is at least as accurate, if not more so, than aerial photography for the same purpose
It is less expensive to acquire than aerial photography and is, therefore, more cost-e�ective

199



satellite imagery is more appropriate for studying reef
geomorphology than reef biology. The combined spatial
and spectral resolutions of satellite sensors were not
capable of reliably distinguishing habitats with relatively
high inter-habitat similarity (Bray±Curtis similarity, 60
to 80%). This was borne out by the high variability in
accuracy associated with individual habitat classes. The
poor separability of spectra rendered the underlying
discriminant function (supervised classi®cation) unable
to assign pixels to appropriate habitat classes, and re-
sulted in large and variable allocation errors.

CASI consistently provided the most accurate results.
Even ®ne habitat-discrimination was possible with an
accuracy of 81% (almost double that achieved with any
satellite). CASI has the advantage of o�ering tremen-
dous ¯exibility to the user. In this case, four narrow
spectral bands were set to penetrate water which in-
creased the likelihood of distinguishing habitat spectra
(band settings 402.5 to 421.8 nm, 453.4 to 469.2 nm,
531.1 to 543.5 nm, 571.9 to 584.3 nm). (Note: if we had
not also been interested in mangrove habitats, up to eight
spectral bands could have been selected for this purpose.)

Whilst CASIwas found to provide signi®cantly greater
accuracies than aerial photography, the comparison was
not entirely balanced. Although the habitat categories
were comparable, Sheppard et al. (1995) mapped a much
larger area than that tested forCASI (14 600 ha vs 100 ha).
It is perhaps safest to conclude that for comparable areas,
CASI would be at least as good as aerial photography (for
further discussion see Mumby et al. 1997b).

The cost-e�ectiveness of remote-sensing methods for
detailed habitat-mapping is detailed in Table 4.

Potential limitations of this study

Satellite imagery is usually acquired from an image ar-
chive and it is common to ®nd considerable disparity
between the date of imagery acquisition and the date of
®eld work (Luckzovich et al. 1993). If the landscape (or
seascape) has undergone change in the intervening pe-
riod, ®eld data may be inappropriate and may result in
lower map accuracies than would have been expected if
sampling dates were similar. It is di�cult to predict what
e�ect such temporal disparity might have had on the
present study. However, since Landsat TM was the
oldest data source and was still found to be the most
accurate, it seems unlikely to have a�ected our conclu-
sions markedly. It is possible that greater accuracies may
have been obtained for Landsat TM if more recent
satellite data had been available. We attempted to
ameliorate such e�ects wherever possible by avoiding
habitat boundaries when sampling.

Representativeness of results

The results presented here should be representative of
most Caribbean reef systems with banks and fringing

reefs (e.g. the Bahamas, Belize, Lesser Antilles, etc.). In
more general terms, the Caribbean has a higher propor-
tion of deep reef to reef ¯at than the Indo-Paci®c (Done
1983), and the transferability of results to such areas is
unclear. However, because there is less light attenuation
at shallower depths, all forms of optical remote sensing
would logically be favoured in the Indo-Paci®c.

Turbid waters are possibly the greatest constraint to
any coastal habitat-mapping programme utilising opti-
cal remote-sensing methods. Where coral reefs occur in
waters of high suspended sediment concentration (e.g.
Hong Kong), light transmittance through water is in-
adequate for describing the coverage of reef habitats.
Even where su�cient light penetration exists, compen-
sation for the e�ects of variable depth becomes more
complex as turbidity increases. Lyzenga's depth-invari-
ant model requires clear water, and high water-turbidity
exerts a major (though currently not quanti®ed) e�ect
on the applicability of the model (but see Spitzer and
Dirks 1987). Horizontal Secchi distance at a depth of
0.5 m in the Turks and Caicos Islands was of the order
of 30 to 50 m and PAR (photosynthetically active ra-
diation) attenuation coe�cients were 0.108 and 0.065 for
the upper 5.5 m and lower 4.5 m of the top 10 m of the
water column, respectively (AJE and CDC unpublished
results). At present it is not possible to give a threshold
turbidity at which satellite imagery will be ine�ective. In
the absence of such information, we point out that Tassan
(1996) has described a depth-invariant model for water of
greater turbidity than that required by Lyzenga (1981).

Conclusions

Whilst some of the results presented here were expected
(e.g. the superiority of CASI over satellite imagery), at
least three of the conclusions were surprising. First,
given the disparity in spatial resolution, we did not ex-
pect satellite imagery to compare so favourably against
aerial photography. Second, although CASI imagery
was expected to map benthic habitats with greater ac-
curacy than satellites (and to some extent, aerial pho-
tography), it was surprising that CASI was capable of
mapping a comprehensive range of benthic habitats with
such high accuracy (72 to 93%). Third, merging the
spectral qualities of Landsat TM with the spatial reso-
lution of SPOT Pan was expected to provide an opti-
mum satellite-based approach to habitat mapping. This
was not the case, and may re¯ect the di�culty of
merging satellite data sources and the overall limitation
of satellite imagery for benthic habitat-mapping. It is
hoped that the conclusions presented above will help
practitioners match their coastal habitat-mapping ob-
jectives to the most appropriate sensor(s).
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