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Introduction

Group living refers to individuals of the same species 
closely interacting for a period or their whole life (Wil-
son 1975). Proximity results in aggregations ranging from 
few to swarms of individuals (Wilson 1975; Brown 1982). 
The number of group members may be limited by resource 
availability, constantly balancing between intra-specific 
competition and cooperation (Brown 1982; Sheppard et 
al. 2021). Group living positively reflects on the survival 
rate of adults and juveniles because of enhanced protec-
tion, mating opportunities, and reinforced interspecific 
competitiveness (Ritz 1997; Krause and Ruxton 2002; 
Nowak 2006; Fitzgerald and Ives 2017), often allowing to 
overcome competition among group-members (Krause and 
Ruxton 2002). Group foraging, also referred to as social 
foraging (Giraldeau and Pyke 2019), is a further advantage 
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Abstract
Group living is widespread and beneficial to metazoans. It improves protection and survival opportunities, reinforcing 
interspecific competitiveness. Benthic cnidarians often colonize large surfaces. Evidence of collective capture and exploi-
tation of large prey by small, clumped polyps suggests that aggregation is functional to access food resources hardly 
achievable by isolated individuals. In turn, the chance to catch large prey may represents a driver of aggregation in 
polyps, whether beneficial to their fitness. Here, the effects of group foraging on aggregation, asexual reproduction, and 
growth rates of Aurelia coerulea von Lendenfeld 1884 polyps were experimentally tested by providing them with either 
small or large prey, or a mix of both to simulate the co-occurrence of preys at sea. As expected, some polyps were not 
able to reach the large prey. Hence, the population was a posteriori divided into group-foragers and solitary-feeders. In 
general, the large prey diet resulted in higher population fitness and when simultaneously supplied with the small prey 
represented an energetic booster resulting beneficial for all group-members. The decrease of interindividual distances was 
reported among group-foragers, that converged towards each other. Cnidarians are basal in metazoan evolution, and the 
comprehension of their collective foraging behavior, as well as the processes leading to the selective feature driving them 
to forage in group or not, may be essential to better understand the evolution and spread of social foraging in animals. 
Moreover, the access to large prey by sessile polyps of Aurelia coerulea could be pivotal in determining the increase in 
abundance of adult bloom-forming medusae.
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of living closely to conspecifics. It is widespread in mam-
mals (Silk 2007), fish (Schmitt and Strand 1982; Polyakov 
et al. 2022), birds (Hutto 1988; Fernández-Juricic et al. 
2004), amphibians (Hoff et al. 1999), social insects (Qui-
jano and Passino 2010; Frank and Linsenmair 2017) and 
spiders (Uetz 1992), flatworms (Cash et al. 1995), bacteria 
(Liu and Passino 2002), and marine invertebrates includ-
ing gastropods (Brown and Alexander 1994) and hermit 
crabs (Kurta 1982; Laidre 2013). Group foraging reduces 
predation risk, improves information sharing (e.g., location 
of food patches) (Ritz 1997), and allows predation upon 
large prey hardly accessible to solitary individuals by shar-
ing the capture efforts (Clark and Mangel 1986; Ritz 1997; 
De Waal 2005; Nowak 2006). Furthermore, the presence of 
multiple close individuals results in a network that reduces 
the chances of the prey to escape (Nowak 2006), increas-
ing the individual predation success (Uetz 1988; Sutton et 
al. 2015). Individuals may differ in foraging abilities due 
to morphological (phenotypic) or physical constraints (e.g., 
position, energy reserves) limiting them to take part in the 
capture (Lendvai et al. 2004; Phillips et al. 2018).

Group-living is frequent in benthic Cnidaria that can 
create vast aggregations (Bo et al. 2015; Montseny et al. 
2020), also contributing to the three-dimensional structures 
of marine animal forests (Rossi et al. 2017; Di Camillo et 
al. 2017). Benthic cnidarians encompass all Anthozoa spe-
cies and sessile stages of Medusozoa. Generally, meduso-
zoan’s life cycle is determined by a sessile phase (the polyp) 
that develops from the settlement and metamorphosis of 
a free-swimming larva born by the sexual reproduction of 
adult medusae once it finds a suitable substrate. In scypho-
zoans, polyps (or scyphistomae) experience several asexu-
ally reproductive pathways (Schiariti et al. 2014) and can 
form juvenile gonochoric medusae (ephyrae) through stro-
bilation (Ruppert et al. 2004). The class Scyphozoa encom-
passes the most common and numerous bloom-forming 
species of jellyfish with a worldwide distribution (Syazwan 
et al. 2020; Marambio et al. 2021; Riyas et al. 2021). Pol-
yps often create dense aggregates (Miyake et al. 2002; Di 
Camillo et al. 2010) due to the contiguous settlement of 
planula larvae (Boero 1984; Gröndahl 1989), the produc-
tion of clones through asexual reproduction (Ishii and Kat-
sukoshi 2010), especially in food-rich sites (Duineveld et al. 
2007; Houlbrèque and Ferrier-Pagès 2009). Warm seawater 
temperatures and the food abundance positively reflect on 
the survival rate of the ephyrae and increase their chances 
to reach the medusa stage (Lucas et al. 2012; Goldstein et 
al. 2017; Purcell 2019). In favourable conditions, one polyp 
can produce up to 20–30 ephyrae per strobilation cycle 
(Arai 1997). When food is abundant, the polyp population 
increases by asexual reproduction, thus multiplying the 
number of potentially strobilating individuals (2007). The 

dynamics of adult medusae are strongly influenced by their 
sessile phase, and the control of polyp population assumes 
a pivotal role in the management of jellyfish mass-occur-
rences (Boero et al. 2008; Schiariti et al. 2014; Marques et 
al. 2021). The synergistic effects of anthropic disturbances 
(eutrophication, overfishing, increase in seawater tempera-
ture, construction of submersed structures, etc.) has led to an 
increase in density and frequency of jellyfish blooms (Lican-
dro et al. 2010; Lucas et al. 2012). During these events, the 
jellyfish density could reach from ten to hundreds of indi-
viduals per cubic meter (Licandro et al. 2010). Especially in 
coastal areas, the gelatinous mass has deleterious effects on 
several human sea-based activities, e.g., on tourism, fishing, 
and electricity industries (Purcell et al. 2007). Species of 
the genus Aurelia (Scyphozoa, Semaeostomeae) are among 
the most responsible for blooms worldwide (Schiariti et al. 
2015; Dong 2019), and produce small polyps (ca. 0.5–1 mm 
in diameter) with a strong gregarious habit (up to 88 indi-
viduals per square centimetre; Miyake et al. 2002).

Collective feeding was observed in the wild when pol-
yps display high degree of proximity. It occurs when small-
sized polyps act simultaneously to capture and ingest prey 
much larger than any individual polyp, thus not catchable 
trough solitary actions (Musco et al. 2018; Gregorin et al. 
2022, 2024a). Musco et al. (2018) reported multiple pol-
yps of the coral Astroides calycularis (Pallas 1766) (Hexa-
corallia, Scleractinia) capturing the mauve stinger Pelagia 
noctiluca (Forskål 1775). The same behaviour was later 
documented by Ter Horst and Hoeksema (2021) and Gre-
gorin et al. (2022) in other colonial corals while feeding on 
large gelatinous zooplankton specimens. Similarly, multiple 
hydrants of the hydroid species Perarella schenideri (Motz-
Kossowska 1905) fed collectively on large polychaetes, 
sharing the capture effort and gains (Bavestrello et al. 2000; 
Cerrano et al. 2000). This collective action has been referred 
to as protocooperation (sensu Skelton 1979), namely a non-
cognitive process allowing individuals to obtain reciprocal 
benefit from proximity. When applied to food provision and 
feeding behaviour (e.g., Herbert-Read et al. 2016; Musco 
et al. 2018; Gregorin et al. 2022), protocooperation may 
represent an additional advantage of group living for ben-
thic cnidarians. Furthermore, similarly to group foraging, it 
could further promote polyps’ gregariousness by reducing 
their intra-specific competition.

To the best of our knowledge, the above mentioned pro-
tocooperation in prey capture and feeding has never been 
referred to as group foraging in benthic Cnidarians. It is 
worth mentioning that the benefits deriving from collective 
feeding on large prey could influence the population dynam-
ics of sessile species, since handling large prey requires con-
siderable energetic costs, but it may also provide important 
energetic gains. Among scyphozoans with benthic stages, 
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this feeding behaviour may reflect on the populations of 
their planktonic stages, influencing the dynamics of jelly-
fish blooms.

The present work aims at describing the effects of group 
foraging upon large prey on the fitness of Aurelia coerulea 
von Lendenfeld 1884 (Scyphozoa, Semaeostomeae) polyps 
and its influence on their aggregation level. Polyps were fed 
with a prey much larger than the individual polyp size and 
their interindividual distances, growth, and asexual repro-
duction rates were measured as response variables of the 
whole population, i.e., as the average response of the experi-
mental groups. Moreover, the size of the large prey and the 
density of polyps were intentionally selected to prevent 
some individuals of the experimental group to capture of 
the large prey. Therefore, the capture of the large prey deter-
mined an a posteriori subdivision of the original population 
in two sub-groups: the polyps that captured the large prey 
and those excluded from the capture. All polyps exposed to 
the large-prey diet were assigned to one of these two sub-
groups. This subdivision allowed to perform the second 
type of analyses, dealing with the “individual” level, i.e., the 
analysis polyps response based on the food item that they 
ingested. The interindividual distances, growth, and asexual 
reproduction were thus measured both within the original 
population (i.e., the population level, a priori hypothesis) 
and within the two sub-groups defined a posteriori (i.e., 
the individual level). We hypothesized that: (1) the chance 
to catch large prey promotes the overall aggregation of the 
population; (2) the collective capture of large prey enhances 
the average fitness of the experimental population; (3) pol-
yps of the sub-group capturing the large prey show greater 
fitness and aggregation level.

Materials and methods

Polyps of Aurelia coerula were obtained from the Cattolica 
Aquarium (Italy), transferred to the laboratory in a thermo-
static container and maintained in Filtered Sea Water (FSW; 
0.22 μm Millipore filter membrane), renewed three times per 
week. Rearing stable conditions were set at 18.0 ± 0.5 °C, 
16 h–8 h light-dark photoperiod, 38.0 ± 1.5 salinity. Two 
specimens of A. coerula were analysed through molecu-
lar analysis for the correct identification of the species and 
the haplotype characterization; the molecular analysis was 
performed at the Zoology Laboratory of the University of 
Salento (see Supplementary material “S1” for molecular 
identification methods and results). Aurelia coerula was 
selected as a suitable model species since it reproduces rap-
idly through asexual reproduction, leading to new clones 
surrounding the parent polyp (Sukhoputova et al. 2019). 

Polyps were fed twice a week with newly hatched nauplii of 
the brine shrimp Artemia salina (Linnaeus, 1758).

Experimental design

Differences in the aggregation level of polyps fed with either 
large or small prey, were tested considering the experimen-
tal factor “Prey type” (P), fixed, with three levels represent-
ing the experimental groups: Large Prey (LP), Small Prey 
(SP), and a mixture of both (MIX), this last simulating the 
co-occurrence of both small and large prey at sea. The SP 
experimental group served as control. Per each level of the 
factor P, three independent experimental units were consid-
ered, for a total of nine. The experimental unit consisted in a 
200-mL glass bowl filled with 140 mL of FSW and includ-
ing a Petri dish (6 cm diameter) as horizontal substrate for 
the settlement of polyps. Each experimental unit contained 
eight A. coerulea polyps randomly selected among fully 
developed individuals, without swelling tissue or budding 
indicating ongoing asexual reproduction. The polyps were 
left to settle inside a square area (4 cm2) drawn on a Petri 
dish (Fig. 1a, b). The large prey supplied to the LP experi-
mental group was the polychaete Syllis prolifera Krohn 
1852 (Annelida, Syllidae), presenting the size ratio of ca. 
1:10 with respect to oral diameters of polyps, and palatable 
for cnidarian polyps (Bavestrello et al. 2000; Maggioni et 
al. 2017). Polychaetes were gathered from shallow rocky 
bottoms by scraping-off macroalgae, sorted and reared fol-
lowing Massa-Gallucci and Gambi (2014). The polychaetes 
were administrated randomly to polyps by dropping them 
ca. 20 cm above the experimental unit, to simulate the 
casual dislodging of the benthic vagile fauna from the sub-
strate that may cause the prey to get in contact with polyps 
(Sebens 1981; Sun et al. 2022; Gregorin et al. 2024b). As 
soon as it touched the water surface, the polychaete started 
to move and swim, further randomizing its provision to the 
polyps. The SP experimental group was fed with 2-day-old 
A. salina nauplii, similar in size range and morphology to 
marine copepods, which dominate mesozooplankton assem-
blages in several ecosystems (Siokou-Frangou et al. 2010; 
Kiørboe 2011).

The amount of food provided was standardized based on 
the dry weights (d.w.) of the preys. Six polychaetes mea-
suring [mean ± Standard error, SE] = 10.55 ± 1.10 mm long 
were selected to calculate the average d.w. After drying for 
72 h at 60 °C, the mean d.w. was 0.22 ± 0.03 mg. Simi-
larly, 5 different aliquots of an overcrowded culture (OC) 
of A. salina 2-days-old nauplii were haphazardly selected 
and dried. The OC was obtained by hydrating and hatching 
0.31 mg dry cysts in 600 mL of FSW. Nauplii were col-
lected 48 h later using a spot-light source for five minutes to 
concentrate them. The mean d.w. of the average polychaete 
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per week were conceived to better check the fluctuations of 
response variables.

A priori analyses Effects of prey type on the 
aggregation and fitness of polyps at population 
level

The interindividual distances among polyps, their growth 
and asexual reproduction rates were considered as response 
variables. Polyp interindividual distances were measured 
from the photos by using the software ImageJ (Rasband 
2012), following the Nearest Neighbour method (Clark and 
Evans 1954). Due to the spatial arrangement of polyps in 
such scarce population, the method was modified starting 
from a random polyp at t0 (i) and measuring the distance 
between its nearest neighbour (i-ii, ii-iii, iii-iv, …) to avoid 
the repetition of already measured distances. In this case, 
the distance between the last and the first polyp (viii-i) was 
not considered, thus resulting in seven distances (d) in each 
experimental unit (d = n – 1). Distances were measured 
between the polyps belonging to the original population, not 
considering the position of the clones eventually produced 
during the experiment.

Growth of polyps was estimated by measuring the mouth 
disc diameter (MDD) (Gambill and Jarms 2014) by the soft-
ware ImageJ (Rasband 2012). Differences in polyps’ MDD 
across groups were checked at the beginning of the experi-
ment, to avoid any size bias.

corresponded to 35 µL of OC of A. salina 2-days-old nau-
plii. The three experimental groups were fed as follows: 
LP, two polychaetes of 10.55 ± 1.1 mm in length; SP, 70 
µL of OC culture of nauplii; and MIX, one polychaete 
10.55 ± 1.1 mm long plus 35 µL of OC culture of nauplii. 
The presence of unfed nauplii guaranteed that polyps were 
fed ad libitum. Unfed nauplii were removed at the following 
water renewal. Polyps were starved for 72 h before the start 
of the experiment.

Data collection and analyses

The experiment lasted for 36 days. Preliminary tests 
allowed for each prey to evaluate the digestion times 
required by polyps to return in a fasting condition (i.e., with 
empty gastric cavity) after the feeding event. Polyps of the 
three experimental groups were fed once per week with the 
respective diets, for a total of 6 feeding events. Photographs 
were taken from a fixed position twice per week, for a total 
of 11 sampling times (from t0 at the start to t10). After the 
feeding event, it was possible to know which food was 
ingested by each polyp thanks to the whitish-transparent 
colour of the column, which allows to see the gastric con-
tent. Photographs were processed with Adobe Photoshop 
CC 2019 to label polyps with Roman numbers from i to 
viii, allowing to follow each polyp individually throughout 
the trial (Fig. 1b). Given the long digestion times, one feed-
ing event per week was considered enough to stimulate the 
growth and reproduction of polyps, and two sampling times 

Fig. 1 Experimental units: Square area of the 4 cm2 (white arrow) on the Petri dish, in which polyps settled at the beginning of the experiment (t0); 
b) the 8 polyps were tagged with roman numbers and tracked throughout the experiment

 

1 3

  196  Page 4 of 15



Marine Biology         (2024) 171:196 

to as LP-Eat / LP-Excluded and MIX-Eat / MIX-Excluded 
based on their original experimental group (Fig. 2). Polyps 
recorded to have fed upon the large prey for most of the 
sampling times (≥ 6) were considered “Eat” polyps, while 
those eating the large prey occasionally (≤ 5) or never, were 
considered “Excluded”. SP polyps did not receive the large 
prey and did not split in two sub-groups, thus remained 
referred to as SP.

The response variables were measured as described in 
the previous paragraph on the “Eat” sub-groups and com-
pared with the SP group, to test the hypothesis that the 
sub-group capturing the large prey show greater fitness and 
aggregation level. The distances (deat and dexcluded) between 
individuals were measured as previously described (deat = 
neat – 1; dexcluded = nexcluded – 1) through the modified Nearest 
Neighbour method.

The individual RR referring to the sub-groups was cal-
culated using formula 1b. This calculation considers only 

Asexual reproduction rate (population RR) was mea-
sured as the total number of clones produced at t10 and was 
assessed by using the formula 1a.

Population RR (%) =
Clones (t10)

Population (n = 8)
*100 (1a)

A posteriori analyses: Effects of prey type on 
aggregation and fitness at individual level

Since the polychaete prey was not accessible to all the pol-
yps, after the feeding event (i.e., a posteriori) it was possible 
to discern the polyps that fed upon the polychaete and those 
that were excluded. This discrimination was possible thanks 
to their gastric content visible through the column. On this 
base, polyps in each experimental unit were divided into 
the sub-groups named “Eat” and “Excluded” and referred 

Fig. 2 Scheme of the experimental groups at population level (SP, LP, 
MIX) and sub-groups at individual level (LP-Eat, LP-Excl., MIX-Eat, 
MIX-Excl.). The black circles including polyps represent the experi-

mental units. SP = Small Prey; LP = Large Prey; MIX = Both preys; 
Excl. = Excluded from the capture of the large prey; Eat = Involved in 
the capture of the large prey
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Results

Effects of prey type on the aggregation and fitness 
of polyps at population level

Polyps within all the experimental units (n = 8) eventually 
moved on the substratum changing their position. The inter-
individual distances among polyps increased from t0 to t10 
by [mean ± standard error, SE, d = n – 1 = 7 / experimental 
unit]: 3.17 ± 0.86 mm in SP, and 2.87 ± 1.5 mm in LP and 
3.26 ± 4.19 mm in MIX, respectively (Fig. 3a; Table 1). In 
MIX groups, 30% of the cumulative number of measured 
distances showed a decreasing trend, as well as the 42.9% in 
the LP group and 19% in the SP group. The Pillai’s test did 
not highlight any significant effect of time (Pillai, H = 0.268, 
P = 0.073), neither a combined effect of Time × Group (Pil-
lai, H = 0.108, P = 0.998). Interindividual distance error 
around the mean increased over time, indicating a progres-
sively more dispersed distribution of the population (Perm-
disp, F (10,682), P = 0.029).

The MDD of polyps at t0 were similar among diets 
([mean ± SE, n = 8] SP: 0.87 ± 0.04 mm., LP: 0.81 ± 0.04 mm, 
MIX: 0.80 ± 0.04 mm; ANOVA, F (2,69) = 0.796; P = 0.455). 
During time, polyps MMD increased by 0.22 ± 0.06 mm in 
the SP group, 0.37 ± 0.05 mm in LP, and 0.37 ± 0.05 mm in 
MIX (Fig. 3b; Table 1). The 37.5%of the cumulative num-
ber of MDDs decreased in SP, while in both LP and MIX 
the percentage of reduced MDDs over time were 4.2%. The 
Pillai’s test highlighted the significant effect of Time (Pillai, 
H = 0.616, P < 0.001), while the interaction Time ⋅ Group 
(Pillai, H = 0.337, P = 0.237) was not significant. The size of 
polyps started to diverge in the second period of the experi-
ment, from t5 to t10 (Fig. 3b). The comparisons between the 
first versus the second time sub-sets (t0-t4versus t6-t10) high-
lighted significant difference in growth rates of SP polyps 
compared to those of MIX polyps (Welch’s test, W211.12= 
− 2.01, P = 0.046).

The population RRs were [mean ± SE, n = number of 
experimental units = 3] 62.5 ± 12.5% for SP, 54.2 ± 18.2% 
for LP, and 100 ± 12.5% for MIX, respectively (Fig. 3c; 
Table 1). The Huyhn-Feldt test revealed the significant effect 
of Time (F(8,48) = 26.70, P < 0.001) and no significant 
interaction of Time ⋅ Group (F(16,48) = 1.34, P = 0.214). 
However, from the profile analysis (Fig. 3c) polyps belong-
ing to the MIX group showed a more pronounced increase 
in RR from t7 to t10, compared with SP and LP (Fig. 3c). 
In this time sub-set, Welch’s tests highlighted significant 
differences in RR between MIX and SP (W 16 = − 4.165, 
P = 0.001), and between MIX and LP (W 13.26 = − 3.726, 
P = 0.003).

the polyps that reproduced and the number of their clones. 
It is worth mentioning that the “LP-Excluded” polyps were 
starving for the whole experimental period while the “MIX-
Excluded” ones fed upon the small prey.

Individual RR (%) =
Clones (t10)

Effective parents
∗ 100 (1b)

Statistical analysis

The experimental a priori hypotheses were tested through 
one-way Analysis of Variance (ANOVA) and Repeated 
Measures (RM) ANOVAs after checking compliance with 
the underlying assumptions. The Shapiro-Wilk’s test (Shap-
iro and Wilk 1965) was used to check for normality of dis-
tribution, while the Cochran’s C test (Cochran 1941) was 
applied to verify the homogeneity of variances. In the con-
text of RM-ANOVA, tests of between-subject effects were 
corrected for departures from the assumption of symme-
try of the variance-covariance matrix, as measured by the 
epsilon statistics. The Huynd-Feldt (Huynh and Feldt 1970, 
1976) correction was applied for ɛ ≥ 0.75 or above, while 
the Greenhouse–Geisser (Greenhouse and Geisser 1959) 
was preferred for ɛ < 0.75. The multivariate Pillai-Barlett 
trace (Pillai 1965) was also used to test for between-sub-
ject effects because particularly robust to deviations from 
sphericity, checked through Mauchly’s test (Mauchly 1940). 
Specific comparisons among experimental groups were per-
formed via t-test. As a result of the a posteriori reallocation 
of polyps into the two sub-groups based on their ingested 
food (See Fig. 2 “Individuals”), the sample sizes were dif-
ferent, hence group variances were suspected to be hetero-
geneous. In this case, the conservative Welch’s test was then 
used instead of the usual t-test, to maintain the probability 
of Type I error (alpha) at the nominal 5% level (Welch 1938, 
1947). The selected response variables (growth, reproduc-
tion, and aggregation level) changed slowly during the 
experimental period. For this reason, in some cases specific 
comparisons referring to different sub-set of times were 
analysed. Analysis of dispersions (Anderson 2006) was run 
when the profile analysis indicated high variance around the 
centroids of the response variables, followed by pairwise 
Tukey’s Honestly Significant Difference tests.

Statistical analyses were made using the software Sta-
tistica and the R software environment 4.2.2. Ink (R Core 
Team 2022) with the packages car (Fox and Weisberg 2019) 
and ggpubr (Kassambara 2023). PERMDISP was carried 
out with the package vegan (Oksanen 2012) with the func-
tions adonis2 and betadisper (Anderson 2006).
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Effects of prey type on the aggregation and fitness 
of polyps at individual level

The sub-group that fed upon the large prey for more than 
6 times (“Eat”) was formed by 2, 4 and 3 polyps in the LP 
experimental units and by 3 polyps in each MIX experimen-
tal unit. The comparison of these sub-groups showed no dif-
ferences (t-test, T 4 = 0, P = 1).

The interindividual distances within both LP-Eat and 
MIX-Eat differed from SP (Fig. 4a, b). At t0, distances of 
all polyps were homogeneous (Welch, SP vs. LP: W 38.96 
= − 0.9161, P = 0.366; SP vs. MIX: W 39.64 = − 0.5754, 
P = 0.578) (Fig. 4a). The 76% of the cumulative number of 
distances among SP polyps increased showing an overall 
average of 3.17 ± 0.86 mm from t0 to t10. Among LP-Eat and 
MIX-Eat polyps, distances increased by 1.47 ± 2.85 mm 
and 2.27 ± 1.7 mm, respectively (Table 1). There were no 

Table 1 Summary of increments/decrements (t10 – t0) of distances 
(n = 21), Mouth Disc Diameters (MDD, n = 24), Population Reproduc-
tion Rate (pop. RR, n = 3) and Individual Reproduction Rate (Ind. RR, 
n = 3). Mean values ± SE are reported
Experi-
mental 
Groups

DISTANCE 
(mm)

MDD (mm) Pop. RR 
(%)

Ind. RR (%)

SP + 3.17 ± 0.86 + 0.22 ± 0.06 62.5 ± 12.5 133.5 ± 16.67
LP + 2.87 ± 1.50 + 0.37 ± 0.05 54.2 ± 18.2 /
MIX + 3.26 ± 4.19 + 0.37 ± 0.05 100 ± 12.5 /
LP- Eat + 1.47 ± 2.85 + 0.38 ± 0.12 / 144.4 ± 44.4
LP- 
Excl.

+ 4.53 ± 1.91 + 0.15 ± 0.06 / 0

MIX- 
Eat

+ 2.27 ± 1.7 + 0.24 ± 0.06 / 183.33 ± 16.7

MIX- 
Excl.

+ 3.59 ± 2.55 + 0.21 ± 0.16 / 55.6 ± 29.4

Fig. 3 Line charts showing population (n = 8) trends, from t0 to t10. (a) 
Interindividual distances among polyps (mm); (b) Mouth disc diam-
eter (MDD) of polyps, (mm). Analyses were performed on the two 
sub-sets (t0-t4 vs. t6-t10) to test the differences of MDD of SP versus LP 
and MIX polyps; (c) Reproduction rate in percentage. Statistical analy-

ses were performed to compare the groups in the last three sampling 
times (t8-t10), corresponding to the steep trajectory of the MIX line. 
SP, orange line; LP, green line; MIX, blue line. Error bars represent 
Standard Error (SE). ns = not significant; * = P ≤ 0.05; ** = P ≤ 0.01; 
*** = P ≤ 0.001
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no difference with SP (SP vs. MIX-Excl.: Welch at t10, W 
31.87 = 1.653, P = 0.108).

The number of SP parent polyps (Fig. 6a, b) were 4, 3 
and 4, producing respectively 6, 3 and 6 clones. The aver-
age RR of SP polyps was 133.3 ± 16.67%, and the number 
of producers was on average 45.8 ± 4.2% of the starting 
population. The number of LP-Eat polyps that reproduced 
were 3, 4 and 3 in the three LP experimental units (Fig. 6a). 
These polyps produced 3, 4 and 7 clones, respectively 
(RR = 144.4 ± 44.4%, varying within a range between 
100% and 233.3%). The percentage of reproductive pol-
yps with respect to the initial population was 41.7 ± 4.2%, 
slightly lower than SP polyps, but it is noteworthy that the 
reproducers were exclusively LP-Eat polyps (the LP-Excl. 
polyps never reproduced). The RR of MIX-Eat polyps 
was 183.33 ± 16.7%. The number of MIX-Eat producers 
were 4, 3, and 3 in each experimental unit (Fig. 6b) and 
produced 6 clones each. The percentage of producers in 
the initial population was 41.7 ± 4.2%. In this case, the 

significant differences in distances between SP versus LP-
Eat (Fig. 4a; Table 2), while the comparison between SP 
versus MIX-Eat was significant in some sampling times 
(Fig. 4b; Table 2). LP-Excluded and MIX-excluded pol-
yps increased their distances by 4.53 ± 1.91 mm and by 
3.56 ± 2.56 mm, respectively (Table 1). In both cases, 
excluded polyps diverged more than those capturing the 
large prey (+ 68% for LP group and + 34% for MIX group, 
see example in Fig. 7).

The type of prey influenced the growth of polyps. LP-
Eat (Fig. 5a) and MIX-Eat (Fig. 5b) grew on average by 
+ 0.38 ± 0.12 mm and + 0.24 ± 0.16 mm, respectively 
(Table 1). The SP polyps also showed a growing trend 
(Fig. 5a, b), but the increment was lower (+ 0.23 ± 0.05 mm, 
Table 1). The LP-Eat polyps were significantly larger than 
SP polyps in all sampling times, as well as MIX-Eat pol-
yps except for t1, t4 and t10 (Table 2). LP-excluded polyps 
increased their MDD by 0.15 ± 0.06 mm, while the MIX-
Excluded increased by 0.21 ± 0.06 mm (Table 1), with 

Table 2 Welch’s test (two-tailed) for comparisons between SP, LP-Eat and MIX-Eat polyps, from t1 to t10. P–- values are reported, considered 
significant when ≤ 0.05, written in bold. For tests results and number of samples, see supplementary materials, Table S1
Comparison t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

DISTANCE
SP vs. LP-Eat 0.48 0.973 0.675 0.415 0.536 0.256 0.131 0.934 0.929 0.988
SP vs. MIX-Eat 0.389 0.156 0.125 0.023 0.039 0.011 0.0119 0.021 0.063 0.248
MDD
SP vs. LP-Eat 0.009 < 0.0001 0.002 0.0006 0.0001 0.004 0.001 < 0.0001 0.0005 0.0043
SP vs. MIX-Eat 0.126 0.012 0.032 0.058 0.049 0.014 0.012 0.002 0.0125 0.1191
% RR
SP vs. LP-Eat 0.524 0.102 0.698 0.698 0.698 0.674 0.674 0.925 0.925 0.834
SP vs. MIX-Eat 0.230 0.352 0.930 0.930 0.930 0.442 0.442 0.262 0.262 0.102

Fig. 4 Interindividual distances measured between group-foragers LP-Eat (a) and MIX-Eat (b), compared with SP (orange line). Vertical 
bars = standard error; * = P ≤ 0.05; ** = P ≤ 0.01; *** = P ≤ 0.001
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Fig. 7 MIX experimental group, experimental unit No. 3. t0: polyps in 
red circle fed upon A. salina, becoming MIX-Excluded; Polyps in the 
orange circle captured the polychaete and ingested A. salina, becom-
ing MIX-Eat. t5: MIX-Eat are much closer and bigger than MIX- Excl, 

getting dispersed instead. t10: MIX-Excl. are more dispersed; Blue 
arrows indicate clones produced by MIX-Eat, pink arrows indicate 
clones produced by MIX-Excl; White arrow indicates a polyp pro-
duced by a newborn, excluded from the analyses
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A summary of statistic results for distances, MDDs and 
RRs for comparison of Eat and Excluded sub-groups are 
reported in Supplementary materials S2.

Discussion

Benthic Cnidarians colonize substrates from the surface 
to the deep sea-bottom, where they contribute to the struc-
tural architecture of marine animal forests, create ecosys-
tems representing biodiversity hotspots and perform several 

MIX-Excluded polyps also reproduced, possibly because 
they were not starved. However, they did to a lesser extent, 
with a RR of 55.6 ± 29.4% (MIX-Eat vs. MIX-Excl.: Welch, 
W 3.17 = 3.781, P = 0.03). The total number of reproduced 
polyps in the MIX group accounted for 66.7 ± 8.3% of the 
initial population. One clone produced a polyp of second 
generation. There were no significant differences between 
the groups SP versus LP-Eat parents, as well as between SP 
versus MIX-Eat parents (Table 2).

Fig. 6 Individual reproduction rate (RR, %) of SP polyps compared with that of LP-Eat (a) and MIX-Eat (b); Error bars = Standard Error

 

Fig. 5 Mouth Disc Diameter (mm) of LP-Eat (a) and MIX-Eat (b), compared with SP (a and b). Vertical bars = standard error; * = P ≤ 0.05; ** = 
P ≤ 0.01; *** = P ≤ 0.001
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interactions for large prey capture, while solitary-feeders 
were rather influenced by intraspecific competition and 
relied on themselves for feeding (upon small prey). The 
number of group-foragers was similar in the two experi-
mental groups LP and MIX, indicating an optimal group 
size probably determined by the morphology and size of the 
prey. Selectivity based on prey characteristics (also includ-
ing behavior, escape ability and detectability) is common 
among predators in relation to their feeding strategy, since it 
enhances the foraging efficiency (Greene 1986). Prey selec-
tivity is well reported in cnidarians at all developmental 
stages from adult scyphozoan medusae (Zeman et al. 2016), 
ephyrae (Sullivan et al. 1997) and polyps (e.g., Kamiyama 
2011) but also among other classes (e.g., Purcell et al. 2012; 
Rivera-De La Parra et al. 2016).

In the present study, group-foragers and solitary-feeders 
clearly differed in size, the first becoming larger probably 
due to the higher amount of food availability for each polyp. 
However, the number of polyps that effectively reproduced 
(asexually) was similar irrespective of their diet, apart from 
starving ones, indicating that the amount of food provided 
was sufficient to allow reproduction. The reproduction rates 
of Aurelia sp. polyps are strongly affected by the quantity of 
provided food, and the absence of reproduction during star-
vation was previously reported (Schiariti et al. 2014; Purcell 
et al. 2019).

Group-foragers also tended to converge, achieving a 
slightly higher level of aggregation in respect to t0, whilst 
solitary-feeders doubled their interindividual distances. 
This trend was significant in MIX diet but absent in LP diet 
and requires further investigation. Nonetheless, the ten-
dency to converge in group-foragers fed with both preys 
was possibly determined by the amelioration of competition 
for food towards conspecifics. Their ability to access prey 
much larger than those affordable by solitary polyps appears 
as an emerging property of the group resulting from a com-
bination of spatial proximity and individual size of polyps. 
Smaller polyps, even if close enough to fit the large prey, did 
not engage in collective predation probably because their 
size was too small to counteract the escape of the large prey. 
Hence, the different sizes of the individuals both as effect 
of the diet and intrinsic population variability, and their dis-
tance from the location of the capture, determined unequal 
foraging abilities, driving polyps to be group-foragers or 
not. Such “decision” reflected on the individual and the 
population fitness. In a population of several organisms, the 
formation of clusters is more likely to occur among cooper-
ating individuals, while those not actively taking part in the 
action are spatially excluded (Nowak 2006). In this case, 
the benefits received by neighbouring polyps were primarily 
driven to phenotypic characteristics of polyps (the optimal 
size and location).

ecological roles (Bo et al. 2015; Rossi et al. 2017). The pop-
ulation dynamics of sessile stages of Scyphozoa are thought 
to profoundly influence the variation of abundance of their 
planktonic counterparts (i.e., the medusae populations), with 
consequent effects on plankton ecology and several human 
maritime activities (Purcell et al. 2007). Studying the fac-
tors that regulate the abundance, growth and reproduction of 
sessile polyps may be crucial for the proper management of 
jellyfish blooms and the prevention of the impact they may 
cause (Arai 2009).

Our outcomes highlighted different response in polyps of 
Aurelia coerulea exposed to three different diets i.e., large 
prey, small prey and both prey types. At population level, 
the simultaneous provision of large prey and small prey 
(MIX diet) led to higher growth and asexual reproduction 
rates, being beneficial to the population. Polyps accessing 
two preys could have benefited from complementarity of 
nutrients brought by each prey type. However, no differ-
ences were reported in any response variable between polyp 
populations eating only large or only small prey. Regard-
ing distances, in all experimental populations the interindi-
vidual distances between polyps increased. It is noteworthy 
that polyps feeding upon small prey got more dispersed 
compared to those feeding upon the large prey. These results 
could have been influenced by the spatial arrangement of 
excluded polyps. Indeed, by not considering excluded pol-
yps and analysing “Eat” polyps only, the outcomes high-
lighted clear differences. .

Many predators acting together on the same prey were 
beneficial to the population. Polyps seized the large prey 
simultaneously, hindering its escape ability and succeeding 
in its capture. Uetz (1988) described higher individual pre-
dation rates in group-foraging spiders building their webs 
in proximity to each other. By creating a net, spiders were 
able to capture larger prey that bounced multiple times on 
different webs (Uetz 1988). Similarly, overlapped tentacles 
belonging to neighbour individuals resemble the spiders’ 
strategy with same intent and outcome. Cnidarians are vora-
cious “sit-and-wait” predators (Kaliszewicz 2013). The web 
of tentacles formed by polyp aggregations could enhance 
the speed of paralysis in large prey due to larger number of 
nematocysts involved. Moreover, the surface available for 
large prey capture increases proportionally with the level of 
aggregation, as well as the number of possible capture sites 
(Tardent 1995; Corrales-Ugalde et al. 2017).

The experimental set-up allowed to distinguish two 
sub-groups in the same populations based on the feeding 
behavior, with individuals capturing the large prey (sub-
group “Eat”) and others that were excluded from the action 
(sub-group “Excluded”). We hereafter refer to the former 
as group-foragers, and to the latter as solitary-feeders. 
Group-foragers depended on protocooperative intraspecific 
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