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are ecologically relevant in the ecosystem because of their 
great functional and species diversity. This makes them 
excellent candidates as environmental and complexity indi-
cators of the ecosystem (Goddard and Pearse 2011). Species 
of nudibranchs have highly specific diets, consequently, a 
high diversity of nudibranchs in an ecosystem indicates a 
high variety of food sources and, thus, great biodiversity. 
The order Nudibranchia contains an estimated 3,000 species 
distributed in marine ecosystems worldwide, but its exist-
ing biodiversity has been underestimated (e.g., Korshunova 
et al. 2019; Araujo et al. 2022; Moles et al. 2021). Current 
phylogenetic studies show that there are many gaps in their 
systematics, and the description of new genera and species 
(e.g., Korshunova et al. 2020; Knutson and Gosliner 2022), 
resurrection, and synonymization (e.g., Moles and Riesgo 
2019; Fernández-Vilert et al. 2021) has steadily increased 
our knowledge of systematics and diversity.

Vayssierea (Risbec, 1928) is the only nudibranch genus 
that belongs to the family Okadaiidae Baba, 1930 (Baba 
1931). This family pertains to the infraorder Doridoidei; 
however, its systematic placement remains controversial. 
Okadaiidae is known as the senior synonym of Vayssiere-
idae Thiele, 1931 but the first prevails (see Bouchet et al. 
2017). Recently, Okadaiidae was found to nest within the 

Introduction

Studying marine ecosystem biodiversity is fundamental 
for conservation, particularly for a better understanding of 
the evolutionary history and role of species in the ecosys-
tem. Biological diversity is defined as the variety of living 
organisms present within an ecosystem (Waldman and She-
vah 2000). Mollusca is the second-most diverse existing 
phylum, just behind arthropods, and contains morphologi-
cally disparate classes such as bivalves, cephalopods, and 
gastropods. Nudibranch gastropods belong to the subclass 
Heterobranchia (commonly known as opisthobranchs) and 
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Abstract
Vayssierea is an understudied nudibranch genus characterized by its orange colouration and small size (up to 5 mm in 
length). To date, there are four described species, distributed in the Indo-Pacific Ocean. Here, individuals of Vayssierea 
were recorded for the first time in the North Atlantic Ocean on the Canary Islands (Spain). This study aims to evaluate the 
systematic and taxonomic status and distribution of the genus through multilocus phylogenetic, morphological, and radular 
analyses. Phylogenetic results show the monophyly of Vayssierea and evidence indicating that the genus is included in 
the new subfamily Okadaiinae stat. nov. within Polyceridae. According to species delimitation tests, four different species 
have been sequenced from Russia to Australia, in addition to our new records in the Atlantic Ocean, but more information 
is needed to identify the species. Nevertheless, our specimens from the Canary Islands belong to two different species, one 
of which is identical to the Australian species. Bearing in mind that they lack a planktonic larval stage; we hypothesize that 
they arrived by shipping transportation or aquarium releases, becoming a non-indigenous species of the Atlantic Ocean.
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family Polyceridae (Korshunova et al. 2020), although the 
authors still considered it a valid family based on the mor-
phological uniqueness of its species. The genus currently 
includes four species that are distributed mostly through-
out the Indo-Pacific, reaching South Africa. The type spe-
cies V. caledonica Risbec, 1928 was described from New 
Caledonia (Burn, 2006). Baba (1930) described the species 
Okadaia elegans Baba, 1930 from Akkeshi Bay, Japan, 
which was subsequently transferred to Vayssierea (Kantor 
and Sysoev 2006). Vayssierea cinnabarea (Ralph 1944) 
was described from Island Bay, Wellington (New Zealand) 
(Ralph, 1944) as Pellibranchus cinnabareus, and was trans-
ferred to Vayssierea. A fourth species, V. felis (Collingwood, 
1881), from the South China Sea was described as Treve-
lyana felis (Collingwood, 1881). The most recent species 
described is V. tecticardia (Slavoshevskaya, 1971) from the 
Sea of Japan, which is likely to be a junior synonym of V. 
elegans (Martynov 2000).

The external morphological characteristics of Vayssierea 
species are very similar, making them difficult to diagnose. 
Although morphologically identical, some authors have 
revealed molecular diversity in this species complex (Gos-
liner et al. 2008). The descriptions of the four species are 
consistent with orange colouration, limaciform body, small 
size (approximately 5 mm), and reduced external features. 
They have two smooth rhinophores, lack gills and tentacles, 
and their anus opens dorsally halfway down the body (Rud-
man et al. 1998). In addition to this taxonomic conundrum, 
only V. cinnabarea and V. caledonica have detailed morpho-
logical descriptions. The only difference between V. cinnab-
area and the rest of the species is that its rhinophores and the 
distal part of the foot have a paler vermilion colour (Ralph 
1944). The developmental mode of all species appears to 
be intracapsular (Ralph 1944). All described species of this 
genus live in the intertidal zone, where they feed on serpulid 
annelids, generally Salmacina Claparède, 1870 and Spiror-
bis Daudin, 1800 (Burn 2006; Gosliner et al. 2008). Overall, 
accurate comparative descriptions are crude; thus, under-
standing genus diversity and establishing species boundar-
ies remains fundamental.

The term ‘bioinvasion’, as defined by Carlton (2001), 
refers to species range expansions resulting from anthropo-
genic landscape alterations, human-assisted introductions, 
or unassisted secondary dispersal events. Introduced or 
non-indigenous species (NIS) may have significant impacts 
and are a major cause of biodiversity loss worldwide (Cour-
champ et al. 2017), thus becoming invasive. NIS have 
repeatedly altered species ranges throughout history (Ver-
meij and Sax 2005), but modern vectors have increased the 
frequency of such events (Carlton 2001). In this scenario, 
NIS dispersion could be facilitated by the intensification of 
human activity, such as ballast water (Bailey 2015), canal 

construction (Gollasch et al. 2006), aquaculture (Naylor et 
al. 2005), and maritime traffic (Castro et al. 2020), coupled 
with ongoing climate change (Pyšek et al. 2020; Bennett et 
al. 2021). In that sense, the early detection of the tempo and 
mode of NIS will aid in the monitoring and control of alien 
populations.

Several populations of Vayssierea were collected from 
the Canary Islands in the North Atlantic Ocean, very far 
away from the native distribution area of the genus. This 
study includes these specimens in a larger phylogenetic 
context, including samples from Australia, Japan, and addi-
tional material found in Spanish aquarium tanks (origin: 
Indo-Pacific). The main objectives are to: (1) evaluate the 
species diversity and systematic status of the genus Vays-
sierea in a broad phylogenetic context, and (2) provide an 
answer on how these specimens reached the Canary Islands, 
in the middle of the Atlantic Ocean, bearing in mind their 
limited dispersal ability due to their reproductive mode. 
Thus, whether these specimens belong to a NIS or represent 
undiscovered diversity.

Materials and methods

Sampling strategy

Samples were collected from Gran Canaria (Canary Islands) 
during August 2022, specifically, 18 individuals in tide 
pools in El Faro and 24 in El Confital, the North and the 
South of the island (Fig. 1). Specimens were fixed in 95% 
EtOH and kept at -20ºC for later analysis. Two specimens 
from each location were used for molecular analyses. Two 
additional specimens were sent from the Museum of Com-
parative Zoology (MCZ, Harvard University), one from 
Moffatt Beach (Queensland, Australia), collected from 
0 to 6 m depth (https://mczbase.mcz.harvard.edu/guid/
MCZ:Mala:385477), and the second from tide pools in 
Bisezaki Kaigan (Okinawa, Japan), (https://mczbase.mcz.
harvard.edu/guid/MCZ:Mala:386352). Three more speci-
mens were sent from the Murcia Aquarium (Spain), which 
were obtained from a tank containing Tridacna species 
belonging to the Indo-Pacific Ocean. All specimens were 
deposited at the MCZ and the sequences were uploaded to 
GenBank (Table S1).

Two additional sightings from La Palma and one 
from Lanzarote are recorded here (Fig. S2); however, 

Fig. 1 (A) Vayssierea sp. (VayGC1N) from El Confital, North of 
Gran Canaria; (B) Vayssierea sp. (VayGC1S) from El Faro, South 
of Gran Canaria; (C) Vayssierea sp. (MCZ 385477) from Moffatt 
Beach, Queensland, Australia; (D) Vayssierea sp. (MCZ 386352) from 
Bisezaki Kaigan, Okinawa, Japan; (E) Vayssierea sp. from La Palma 
(sequenced); (F) Vayssierea sp. from Lanzarote (sequenced)
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Analyses were carried out for both single-gene align-
ments and concatenated genes. The CIPRES Science Gate-
way (Miller et al. 2010) was used for phylogenetic analysis. 
The maximum likelihood (ML) approach was performed 
using IQ-TREE v. 2.1.2 (Nguyen et al. 2015), accounting 
for partitions and codon positions. ModelFinder (Kaly-
aanamoorthy et al. 2017) was used to automatically select 
the best partition scheme and the corresponding evolution-
ary model using TESTMERGE with an edge-unlinked par-
tition model to reduce overparameterization and increase 
model fit. Branch support was estimated using ultrafast 
bootstrap (bs) with 1500 replicates (Hoang et al. 2018).

Bayesian phylogenetic inference (BI) was performed 
using MrBayes 3.2.7a (Ronquist et al. 2012). The nucleo-
tide substitution model selected for each partition was 
GTR + I + G (Tavaré 1986). The Markov chain Monte Carlo 
(MCMC) simulation technique was used to approximate the 
probability of a tree based on the observations and find the 
posterior probability (pp) distribution of trees. Four parallel 
runs of four coupled MCMC chains were run for 20 million 
generations with sampling and check frequencies of 1000 
and 20,000 generations, respectively, discarding the first 
25% of trees as burn-in. Trees were visualized with FigTree 
v. 1.4.4 (Rambaut 2010) and edited in Adobe Illustrator and 
Photoshop.

Species Delimitation Tests (SDT) were conducted on 
the COI and 16S alignments of the genus Vayssierea. The 
Assemble Species by Automatic Partitioning analysis 
(ASAP; Puillandre et al. 2021) was run using the web inter-
face at https://bioinfo.mnhn.fr/abi/public/asap/asapweb.
html with default parameters and Jukes-Cantor (JK69) as 
a substitution model to compute the distances. The Poisson 
Tree Processes (PTP, Zhang et al. 2013) was conducted only 
on the COI alignment of the genus Vayssierea using the web 
server https://species.h-its.org/, with 100,000 generations 
and a 10% burn-in. The Automatic Barcode Gap Discovery 
(ABGD, Puillandre et al. 2012) was also conducted only on 
the COI alignment of the genus Vayssierea using the web 
server https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.
html, to create a matrix of p-distances between species.

Radular analyses

To extract the radula of specimens from Gran Canaria, North 
(Fig. 1A) and South (Fig. 1B), three individuals from each 
species were immersed in a KaOH 10% solution for approx-
imately 4 h followed by three rinses with distilled water, and 
a final rinse with 96% EtOH. Radulae were extracted with 
thin forceps using a stereomicroscope and photographed 
under an optical microscope (Figs. 2A and 3A). Poste-
rior analyses of the radular teeth were performed using a 
Field Emission Scanning Electron Microscope JSM-7100 F 

phylogenetic analyses were performed a posteriori, so 
only COI is analysed in species delimitation tests. The first 
record from La Palma was found under the rocks in a tide 
pool near the airport on the east coast of the island, and the 
second was found in Tazacorte’s harbour, on the west coast. 
A record from Lanzarote was found in the harbour of Puerto 
del Carmen, on the east coast of the island.

DNA extraction, amplification, and sequencing

Genomic DNA was extracted from tissue clips using the 
E.Z.N.A.® Mollusc DNA Kit (Omega Bio-Tek, USA) and 
following the manufacturer’s protocols. Five markers were 
amplified: the mitochondrial cytochrome c oxidase subunit 
I (COI) and the 16S rRNA (16S), the nuclear histone 3 (H3), 
28S rRNA (28S), and 18S rRNA (18S). The specific primers 
and polymerase chain reaction (PCR) conditions are listed 
in Table S2. Amplifications were carried out in PCRs of 10 
µL volume, with 3 µL Red DNA Polymerase REDExtract-
N-AmpTMPCR ReadyMix (Sigma Aldrich, St. Louis, MO, 
USA), 0.3 µL of each primer, and 5.1 µL of purified water. 
Successful amplifications were sequenced by Macrogen, 
Inc. (Madrid, Spain) after purification with ExoSAP-IT™ 
Express PCR Product Cleanup Reagent.

Phylogenetic analyses

The BLAST algorithm (Altschul et al. 1997) from the Gen-
Bank nucleotide database (Benson et al. 2000) was used 
to check for contamination of the amplifications. All the 
sequences obtained were visualized, edited, and assembled 
using Geneious Pro v. 8.1.8. Additional sequences from 
GenBank and BOLD Systems (Ratnasingham et al. 2007) 
were downloaded for alignment. Sequences were aligned 
with MAFFT (Katoh et al. 2002) implemented in Geneious, 
using the G-INS-I algorithm for COI and H3, genes with 
global homology, and the L-INS-i algorithm for 16S, 28S, 
and 18S markers, which contain long gaps and conserved 
domains. Furthermore, the coding genes COI and H3 were 
translated into amino acids to check for possible sequencing 
errors.

The final dataset consisted of a total of 77 specimens that 
were included in the phylogenetic analysis (Table S1), all of 
them from the infraorder Doridoidei, particularly focusing 
on the families Gymnodorididae, Polyceridae, Chromodo-
rididae, Cadlinellidae, Showajidaiidae, Hexabranchiidae, 
Phyllididae, Dendrodorididae, and Cadlinidae according to 
the latest trees by Korshunova and collaborators (2020) and 
Knutson and Gosliner (2022); including all available sub-
families from Polyceridae (i.e. Polycerinae, Nembrothinae, 
Triophinae, and Kalinginae) and families Phyllidiidae, Den-
drodorididae, and Cadlinidae as outgroups.
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as sister to Gymnorididae (pp = 0.99) or sister to Polyceri-
nae + Gymnodorididae (bs = 100).

The subfamily Triophinae embraces the following gen-
era: Limacia O. F. Müller, 1781 (bs = 91, pp = 0.97), Tri-
opha Bergh, 1880 (bs = 100, pp = 1), Kaloplocamus Bergh, 
1880 (bs = 100, pp = 1), Plocamopherus Rüppell & Leuck-
art, 1828 (bs = 90, pp = 1), and Kalinga Alder & Hancock, 
1864. This last one should not be included in this subfamily, 
as it forms another subfamily by itself called Kalinginae. 
The subfamily Nembrothinae includes the genera Nembro-
tha Bergh, 1877 (bs = 100, pp = 1) and Tambja Burn, 1962 
(bs = 97, pp = 0.97). Despite this, the individual Kalinga 
ornata CASMBNB 001 from India was included within the 
genus Nembrotha (bs = 100, pp = 1). Maybe the individual 
is not well identified in the genus Kalinga, and it could 
belong to the species Nembrotha cristata Bergh, 1877, as 
stated in both trees (Figs. 4 and 5) using the same voucher 
number but changing the species. In the subfamily Polyc-
erinae, there are some discrepancies between both analy-
ses. In ML, it appears to include the genera Thecacera J. 
Fleming, 1828 (bs = 100), Lecithophorus Macnae, 1958 
(bs = 95), Gymnodoris W. Stimpson, 1855 (bs = 100), 
Palio Gray, 1857 (bs = 67), Polycerella A. E. Verrill, 1880 
(bs = 100), and Polycera Cuvier, 1816 (bs = 97), most of 
them with high node support (Fig. 6). In the BI analysis, the 
subfamily Polycerinae only includes the genera Thecacera, 
Palio, Polycerella, and Polycera, while Lecithophorus and 
Gymnodoris (Gymnodorididae) appeared to be included as 
the sister group Okadaiidae. Despite this, an unidentified 
individual of Thecacera CASIZ 182906 from the Philip-
pines clustered with the genus Polycera with the highest 
branch support (bs = 100, pp = 1), another possible case of 
misidentification.

Regarding Okadaiidae, since it appears consistently 
deeply nested within the family Polyceridae with high 
branch support (bs = 88, pp = 0.96), we suggest the new sta-
tus Okadaiinae stat. nov. At the species level, we seem to 
have four species of Vayssierea. The individual from Rus-
sia (ZSM Mol20071333) appeared to be the sister group 
to the rest of the species (bs = 100, pp = 1). The individ-
ual from the north of Gran Canaria (VayGC1N) appears 
to be the sister group to the individual from Japan (MCZ 
386352) (bs = 100, pp = 1), which, at the same time, seems 
to be the sister group to the rest of the individuals (bs = 95, 
pp = 0.99). The latter group is composed of specimens from 
Australia (MCZ 385477 and CASIZ 190731), the South of 
Gran Canaria (VayGC1S), and the one from the Aquarium 
belonging to the Indo-Pacific region (ML6), which appear 
to be monophyletic species (bs = 100, pp = 0.99).

The SDT (Fig. S1) results from the ASAP, PTP, ABGD, 
and our previous data from the phylogenetic trees suggest 
that we have four species of Vayssierea (considering both 

(SEM). All the plates, including the photographs of the 
specimens, live, optic microscope, and SEM, were edited in 
Adobe Photoshop 2020.

Results

Systematics

The final dataset included 77 specimens and 4,516 base 
pairs (bp), i.e. 658 bp for COI (Fig. S1), 507 characters for 
16S (Fig. S2), 328 bp for H3 (Fig. S3), 1,082 characters 
for 28S (Fig. S4), and 1,941 characters for 18S (Fig. S5). 
The substitution models selected according to ModelFinder 
were GTR + F + I + G4 (Tavaré, 1986), for the partitions 
and genes except for the 3rd codon position of H3, which 
was GTR + F. Both ML and BI analyses of the concatenated 
alignment yielded similar results (Figs. 4 and 5). The family 
Chromodorididae included the genus Tyrinna Bergh, 1898 
(bs = 100, pp = 1), Mexichromis Bertsch, 1977 (bs = 92, 
pp = 0.99), Felimare Ev. Marcus & Er. Marcus, 1967 
(bs = 100, pp = 1), Felimida Ev. Marcus, 1971 (bs = 100, 
pp = 0.98), Chromodoris Alder & Hancock, 1855 (bs = 100, 
pp = 1), Ardeadoris Rudman, 1984 (bs = 100, pp = 1), and 
Doriprismatica d’Orbigny, 1839 (bs = 100, pp = 1), most of 
them with full branch support. Despite this, the individual 
Chromodoris ambiguus SAMD 19260 from Australia is 
clustered with the genus Mexichromis with high branch 
support (bs = 90, pp = 0.87), which indicates a possible mis-
identification or a misplacement of the species, as Chromo-
doris ambiguous is deviating from other species of the genus 
(Johnson and Gosliner, 2012; Wilson and Healy, 2006).

The family Polyceridae Alder & Hancock, 1845 was 
found to be monophyletic (bs = 97, pp = 0.96). Triophinae 
Odhner 1941 (bs = 100, pp = 1) included Kalinga ornata 
ZMMU Op-83 (Kalinginae Pruvot-Fol, 1956) in the ML, 
while it appears to be a sister group to Polycerinae with 
low support in the BI. Nembrothinae Burn, 1967 (bs = 97, 
pp = 0.97) included a likely misidentification of K. ornata 
CASMBNB001 as sister to Nembrotha cristata. Polyceri-
nae Alder & Hancock, 1845 was recovered as monophy-
letic in the BI (bs = 88, pp = 0.99), while Gymnodorididae 
(Lecithophorus and Gymnodoris) was included in the ML 
(bs = 88). Gymnodorididae was sister to Okadaiidae in 
the BI (pp = 0.99). Okadaiidae Baba 1930 was found to 
be monophyletic with maximum support in both analyses 

Fig. 2 Radular teeth of Vayssierea sp. (VayGC1N) from El Confital, 
North of Gran Canaria. (A) General view under the optical Micro-
scope. (B) General view under the Scanning Electron Microscope 
(SEM). (C) Close-up of the central part of the radula. (D) Close-up of 
the lateral and marginal teeth. (E) Close-up of the outer lateral tooth. 
F: Close-up of the inner lateral tooth
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phylogenetic context. Our concatenated dataset included 75 
specimens, 41 of which belonged to the family Polyceridae, 
and eight of them from the genus Vayssierea. Our molecular 
data suggest several systematic and taxonomic rearrange-
ments within the family Polyceridae that will need to be 
revisited taxonomically in later studies. Nevertheless, we 
suggest suppressing the family Okadaiidae and incorporat-
ing the subfamily Okadaiinae stat. nov. within Polyceridae, 
which included the genus Vayssierea.

The systematics of the genus Vayssierea have been con-
founding since its inception. This confusion primarily arises 
from the scarcity of studies, many of which lack a systemat-
ics perspective (Ralph 1944; Mikhlina et al. 2019). Most 
of the studies where Vayssierea appears are checklists and 
biodiversity guides (Gosliner 1987; Burn 2006; Héros et al. 
2007). The existing phylogenies of the family Polyceridae 
incorporated morphological and genetic data for only a few 
genera (Pola et al. 2007; Harris 2011; Palomar et al. 2014), 
and only Korshunova and collaborators (2020) included 
the genus Vayssierea. Through increased taxon sampling, 
expanded geographical range (see Fig. 3), and a higher 
number of sequenced genes, we provide evidence support-
ing the placement of the genus Vayssierea within the family 
Polyceridae, a proposition hinted by some authors based on 
morphological similarities (Baba 1930) and recently cor-
roborated in a phylogenetic tree (Korshunova et al. 2020). 
Despite conflicting with molecular findings, the latter 
authors advocated for maintaining the family Okadaiidae 
due to its distinctive morphological features, such as the 
complete reduction of the rhinophoral sheath, notal margin, 
gills, and gill cavity. These characters may have arisen from 
paedomorphosis (Martynov and Korshunova 2011). None-
theless, the reduction in external features likely reflects the 
miniaturization of the body plan to accommodate a specific 
diet. Consequently, the family should be reclassified as the 
subfamily Okadaiinae stat. nov., closely related to Polyceri-
nae. The long branch observed in Vayssierea in both anal-
yses indicated rapidly evolving lineages (Bergsten 2005), 
suggesting that it has undergone numerous mutations in a 
short period compared to its sister groups. Shifts in habitat 
towards highly specialized ecotopes and diets may have led 
to the reduction of external features to accommodate into the 
prey’s calcareous tube, consequently driving increased gene 
evolutionary rates. Interestingly, a similar trend is observed 
in the genus Gymnodoris within the other Polyceridae sub-
families, as both genera are active carnivorous predators. 
Indeed, some species of Gymnodoris exhibit radulae resem-
bling those of Vayssierea species (Martynov 2000).

The taxonomy of the genus Gymnodoris has also been 
controversial in recent studies (Palomar et al. 2014). Some 
older studies included them in Polyceridae (e.g., Eliot 
1903; Macnae 1958) due to minor differences in internal 

COI and 16 S data). The second-best asap-score threshold 
distance for COI is coherent with significant differentiation 
in nucleotide position between species of about 5–10% and 
agrees with the PTP results.

Intra- and interspecific distances were given by the 
ABGD analyses. The intraspecific distance of Vayssierea 
between specimens from Australia, Southern Gran Canaria 
and the Indo-Pacific region ranges 0.3–1.6%; while the 
intraspecific distance between specimens from Northern 
Gran Canaria, La Palma and Lanzarote is 0–1.2%. The 
interspecific distance between species from Australia-
Southern Gran Canaria-Indo-Pacific region and Northern 
Gran Canaria-La Palma-Lanzarote ranges 11.4–12.7%; 
while the interspecific distance between species from Aus-
tralia-Southern Gran Canaria-Indo-Pacific region and Japan 
is 11.8–12.5%. Finally, the interspecific distance between 
species from Northern Gran Canaria-La Palma-Lanzarote 
and Japan is 13.3%.

Morphological analyses

The individuals from northern Gran Canaria (Fig. 1A) have 
a strong, homogeneous red-orange colouration, which is 
different from the other described species. Individuals from 
southern Gran Canaria are bright orange coloured and have 
a paler rhinophoral tip, with a whitish spot on the anterior 
dorsal part (Fig. 1B). Recently reported specimens from La 
Palma and Lanzarote (Fig. 1E and F) show the same exter-
nal features as the southern ones.

The radular formula of the northern specimens is 
39 × 1.2.1.2.1 (Fig. 2). The radular formula of the southern 
ones is 45 × 1.2.1.2.1 (Fig. 3). There are no noticeable differ-
ences in the shape of the teeth, but the southern specimens 
have more rows. However, Baba (1937) reported from 35 
to 44 rows in the species V. elegans, and this is between the 
range of our two dissected species. The rachidian tooth is a 
subtle thickening of the cuticle and, therefore, likely vesti-
gial. The inner lateral tooth bears two pairs of hook-shaped 
acute cusps, two long ones along the tooth and two smaller 
ones in the apex. The outer lateral tooth is hook-shaped, 
acute, and longer than the first inner tooth, extending almost 
double the total length. The marginal tooth is stick-shaped 
and presents a wide base.

Discussion

The phylogenetic position of Vayssierea

In this study, we sequenced five molecular markers from ten 
specimens representing three different species of the genus 
Vayssierea and placed them within a broader multilocus 
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Radulae analyses reveal similarities among species from 
Gran Canaria, but notable differences arise when compar-
ing with other genera within the family Polyceridae. Various 
studies examining radulae of specimens of the subfamilies 
Nembrothinae, Polycerinae, and Triophinae (Pola et al. 
2008, 2014; Jung et al. 2020; respectively) show flattened 
teeth with a rectangular shape, featuring numerous outer lat-
eral teeth per row. However, when comparing our specimens 
with those of the genus Gymnodoris (Knutson and Gosliner 
2022), more similarities emerge, including hook-shaped 
teeth and fewer lateral teeth per row. This discrepancy can 
be attributed to nutritional specialization. Subfamilies Tri-
ophinae, Nembrothinae, and Polycerinae primarily feed on 
sessile animals such as bryozoans and tunicates, employing 
their teeth to scrape them off (Pola et al. 2014). In contrast, 
Gymnodoris species actively prey on sea slugs, utilizing 
their hooked teeth to capture their prey. This specialization 
in feeding behaviour may also extend to the teeth of Vays-
sierea, adapted for a drilling feeding mode and subsequent 
extraction of tube worms (Mikhlina et al. 2019). These sim-
ilarities suggest a close relationship between Gymnodoris 
and Vayssierea, as supported by our BI analysis.

Speciation and distribution of Vayssierea

Regarding the STD analyses, we have molecular data for 
four species of Vayssierea; however, the identities of these 
species remain unknown. The species to which individuals 
from Australia, southern Gran Canaria, and the ones from 
the Indo-Pacific could be either V. caledonica or V. cinnaba-
rea, based on their geographical proximity. The type locality 
of the latter species is New Caledonia and New Zealand, 
respectively. Examining external morphology, V. cinnaba-
rea appears to be a more suitable candidate, as specimens 
from southern Gran Canaria (Fig. 1B) exhibit a lighter rhi-
nophoral tip and a paler colouration (Fig. 1C). The second 
species encompasses the individual from Japan (Fig. 1D), 
which may pertain to either V. elegans or V. felis, with type 
localities in the Yellow and South China seas, respectively. 
The third species includes the individual from northern Gran 
Canaria, La Palma, and Lanzarote, different from all other 
species. Their origin is uncertain, but they likely originated 
from the Indian or Pacific oceans as its sympatric counter-
part. Finally, the fourth species includes the individual from 
Russia, which may also belong to V. elegans or V. felis based 
on its locality.

Our radular analyses yield results similar to those of 
Young’s (1969) pioneering study, the first examination of 
feeding mechanisms in the genus Vayssierea. However, our 
findings also diverge from another study on Vayssierea cf. 
elegans (Mikhlina et al. 2019), which demonstrates a distinct 
tooth shape (the outer lateral exhibiting two spikes instead 

morphology, primarily the radula and buccal apparatus, 
which are characters susceptible to change with dietary 
shifts. Other studies supported Gymnodoridiidae Odhner 
1941 (e.g., Korshunova et al. 2020), although it is cur-
rently recognized as a synonym of Polycerinae (Bouchet 
et al. 2017). The placement of the family Gymnodorididae 
in phylogenetic trees also varies, with our ML (Fig. 4) tree 
placing it within Polycerinae, consistent with some recent 
studies (e.g., Palomar et al. 2014), while our BI (Fig. 5) tree 
suggests it as a sister group to Okadaiinae stat. nov., albeit 
without support. Nevertheless, similar to Vayssierea, we 
found consensus regarding the inclusion of both Gymnodo-
ris and Lecithophorus within Polyceridae. Therefore, we 
support the incorporation of Gymnodorididae within Polyc-
eridae (Bouchet et al. 2017), although whether they belong 
to Polycerinae or constitute their own subfamily requires 
additional taxon sampling or genomic data for confirmation 
(JM work in progress), mirroring the situation with Oka-
daiinae stat. nov.

Currently, the family Polyceridae encompasses the sub-
families Triophinae, Nembrothinae, Polycerinae, Kalingi-
nae, Kankelibranchinae Ortea, Espinosa & Caballer, 2005, 
and the newly proposed subfamily Okadaiinae stat. nov. The 
latter is diagnosed by a small limaciform body, approxi-
mately 5 mm in length, orange colouration, two short and 
smooth rhinophores, the absence of a notal margin, and a 
lack of gills and a gill pocket. A comparison of Okadaiinae 
stat. nov. with other Polyceridae subfamilies reveals few 
shared characters; unlike other subfamilies, Okadaiinae 
stat. nov. lacks external gills, oral tentacles, lamellate rhi-
nophores, and exhibits a different colouration pattern (e.g., 
Gosliner and Vallès 2006; Pola et al. 2014; Palomar et al. 
2014). The only genus with fewer differences is Gymnodo-
ris, characterized by a limaciform body and the absence of 
external tentacles and papillae. As suggested here, the spe-
cies within the genus Vayssierea may have adapted to an 
unusual intertidal habitat due to their unique dietary source, 
serpulid worms (Burn 2006; Gosliner et al. 2008). Conse-
quently, their external characters may have undergone sig-
nificant modification and differentiation from other family 
members, leading to their previous classification within 
the family Okadaiidae (Odhner 1941; Bouchet et al. 2017; 
Knutson and Gosliner 2022). Martynov and Korshunova 
(2011) hypothesize Okadaiidae may have evolved from 
Gymnodorididae by paedomorphosis, which may explain 
the simplification of body features.

Fig. 3 Radular teeth of Vayssierea sp. (VayGC1S) from El Faro, South 
of Gran Canaria. (A) General view under the optical Microscope. (B) 
General view under the Scanning Electron Microscope (SEM). (C) 
Close-up of the central part of the radula. (D) Close-up of the inner 
lateral tooth. (E) Close-up of the outer lateral and marginal teeth. (F) 
Close-up of the inner lateral tooth from another point of view
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four already described species. Nonetheless, it is plausible 
that numerous species remain to be described.

Considering the available information on the distribution 
of this species and the findings of our study, it is possible to 
elucidate the global distribution of the genus Vayssierea and 
the geographical localization of its various species (Fig. 6). 

of one). Without further taxon sampling from the type 
localities, species identification within the studied material 
remains challenging. External morphology, characterized 
by few distinguishing features, and radular shape alone are 
insufficient for species differentiation, especially given the 
limited knowledge regarding the radular morphology of the 

Fig. 4 Maximum likelihood phylogenetic tree of the nudibranch 
families Cadlinidae, Hexabranchidae, Cadlinellidae, Showajidiidae, 
Chromodorididae, and Polyceridae (including subfamilies Triophinae, 
Nembrothinae, Okadaiinae stat. nov., and Polycerinae) differentially 
colored, based on the concatenated alignment of COI, 16S, H3, 28S, 

and 18S markers. The outgroups used to root the tree were the families 
Dendrodorididae and Phyllidiidae. Red dots indicate nodes with 100% 
bootstrap support value. Stars indicate type species. Specimens in blue 
were sequenced in this study. Bootstrap support values are shown in 
the branches. The scalebar indicates substitutions per site
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Islands has been subject to intensive study in recent years, 
and it appears that only now is the widespread presence of 
Vayssierea across the archipelago becoming apparent, with 
increasing records reported by local divers.

As illustrated, populations in Gran Canaria are significantly 
distant from the known distribution of this genus across the 
Indo-Pacific Ocean. Based on these observations, we pro-
pose that the genus Vayssierea represents a new NIS in the 
Atlantic Ocean, with the presence of not one but (at least) 
two distinct species. The malacofauna from the Canary 

Fig. 5 Bayesian phylogenetic tree of the nudibranch families Cadlini-
dae, Hexabranchidae, Cadlinellidae, Showajidiidae, Chromodorididae, 
and Polyceridae (including subfamilies Triophinae, Nembrothinae, 
Okadaiinae stat. nov., and Polycerinae) differentially colored, based 
on the concatenated alignment of COI, 16S, H3, 28S and 18S markers. 

The outgroups used to root the tree were the families Dendrodorididae 
and Phyllidiidae. Red dots indicate nodes with posterior probabilities 
of 1. Stars indicate type species. Specimens in blue were sequenced 
in this study. Posterior probability support values are shown in the 
branches. The scalebar indicates substitutions per site
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broad distribution by ballast waters through the Black and 
Azov Seas (Bailey 2015). Toxic dinoflagellates belonging 
to the genus Alexandrium were transported in ballast tanks 
from Japan and Korea to Australia (Hallegraeff and Bolch 
1992). Additionally, the butterflyfish Chaetodon sanctaehel-
enae Günther, 1868, native from St. Helena and Ascension 
Island, is now found in the Canary Islands due to shipping 
transportation (Brito et al. 2005).

Furthermore, the economy of the Canary Islands, heavily 
reliant on tourism, is deeply intertwined with sea transport. 
Given that accessibility and connectivity are crucial factors 
in international transport, harbours in the Canary Islands, 
particularly those in Gran Canaria and Tenerife, experience 
the highest influx of ships from various oceans (Tovar et 
al. 2015). Consequently, the likelihood of biological intro-
ductions of NIS via shipping transportation is elevated. As 

A tiny introduction

These diminutive species have traversed from the Indo-
Pacific Ocean to the Canary Islands situated in the middle of 
the Atlantic. Given that Vayssierea species undergo ‘direct’ 
(intracapsular) development (Ralph 1944; Burn 2006; Gos-
liner et al. 2008), larval dispersion appears improbable as a 
means of transportation. Instead, a potential driver for dis-
persion could be shipping transportation facilitated by adult 
individuals or egg masses being attached to hulls or being 
transported in ballast waters. This mode of introduction has 
been extensively studied worldwide due to its significant 
impacts and consequences on ecosystems. For instance, 
the ctenophore Mnemiopsis leidyi A. Agassiz, 1865, origi-
nating from coastal waters of the temperate and subtropi-
cal regions of North and South America, has now achieved 

Fig. 6 Distribution map of the genus Vayssierea including the locality 
of all sequenced individuals represented in the phylogenetic tree. Dots 
indicate individuals and colors indicate different species according 
to the ASAP analysis: green for specimens from Australia and South 
Gran Canaria, blue for specimens from Japan, orange for North Gran 

Canaria, La Palma and Lanzarote; and red for Russia.. Type species 
location represented with yellow stars (1) Vayssierea caledonica, (2) 
Vayssierea cinnabarea, (3) Vayssierea elegans, (4) Vayssierea felis. 
Generated with https://www.simplemappr.net and edited in Adobe 
Photoshop.
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with similar characteristics and origins, thus supporting our 
primary hypothesis of the genus Vayssierea as a NIS in the 
Canary Islands.

Conclusions

Novel specimens and molecular markers were acquired 
from the genus Vayssierea to elucidate its systematics by 
situating them in a broader phylogenetic framework. Within 
the family Polyceridae, four subfamilies are recognized: 
Triophinae, Nembrothinae, Polycerinae, and the newly 
proposed Okadaiinae stat. nov. Owing to the diminished 
morphological characters, the latter taxon was originally 
classified as a distinct family without a definitive system-
atic position within the superfamily Doridoidei. The newly 
established subfamily Okadaiinae stat. nov. encompasses 
the aberrant genus Vayssierea, characterized by a rapid evo-
lutionary rate that may account for the marked differences in 
external morphology observed in comparison to other poly-
cerids. While the available molecular data for four species 
of Vayssierea help highlight discrete differences in external 
and radular characteristics, further investigation into inter-
nal anatomy is imperative to facilitate species identification.

The genus Vayssierea exhibits a distribution spanning 
the Indo-Pacific region, ranging from Japan to Australia, the 
Chinese Sea, and South Africa. Due to their limited disper-
sal, recent discoveries of individuals in the Canary Islands 
may have travelled long distances by attaching to ships’ 
hulls or escaping from aquaria. Among the two recognized 
non-indigenous species in the Atlantic Ocean, one belongs 
to a species present in Australia, while the other has not been 
previously sequenced. Therefore, it is paramount to inten-
sify sampling efforts across a broader geographic range in 
the Indo-Pacific to elucidate their origin and identity. Ana-
tomical analyses are required to differentiate between Vays-
sierea species, as comparative studies are hindered by the 
lack of precise descriptions. Recent expeditions in La Palma 
and Lanzarote have uncovered additional individuals of 
Vayssierea (Fig. 1E and F), exhibiting molecular similarities 
to those from northern Gran Canaria. This finding suggests 
a broader distribution of the species within the archipelago.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00227-
024-04505-3.
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Vayssierea’s prey may attach to ships’ hulls, slugs could 
travel with them as well, possibly sheltered inside the anne-
lid’s calcareous tube. The southern population of Gran 
Canaria is confirmed as an NIS introduced from Australia 
based on molecular identity. Yet, the origin of the most 
widespread species, from northern Gran Canaria, La Palma, 
and Lanzarote, remains uncertain, but it is plausible they too 
are an introduced species, given its absence from previous 
records. This suggests that an introduction with origins and 
characteristics akin to our Vayssierea populations is con-
ceivable. Interestingly, sequenced populations from Gran 
Canaria and Lanzarote were discovered naturalized in the 
intertidal habitat, with numerous Spirorbis sp. specimens 
present. Only the recently found specimens from La Palma 
were observed in harbour or related intertidal pools. In sum-
mary, our observations validate the presence of Vayssierea 
across the Macaronesian archipelago.

Another plausible scenario to consider is the accidental 
escape from aquariums, as evidenced by genetically iden-
tical specimens from the Aquarium of Murcia (located 
south of the Iberian Peninsula) to those from Australia and 
southern Gran Canaria. These specimens were discovered 
alongside Tridacna giant clams from an unknown region in 
the Indo-Pacific. Unfortunately, such unwanted individuals 
have the potential to escape from aquariums and thrive in 
different seas if they encounter optimum habitats and condi-
tions, as found in the Canary Islands. Studies of this mode of 
invasion (Padilla and Williams 2004) have focused on vari-
ous aquarium organisms, including fishes in Florida (Sem-
mens et al. 2004) and India (Krishnakumar et al. 2009), as 
well as anthozoans, scyphozoans, crustaceans, and molluscs 
(Lin et al. 2006), such as the flame scallop Ctenoides scaber 
(Born, 1778). More notably, there are documented cases of 
aquarium release invasions in the Canary Islands, such as 
the marine angelfish Pomacanthus maculosus (Forsskål, 
1775) from the Red Sea and the Indian Ocean, which was 
discovered in Tenerife’s harbour (Brito et al. 2005). This 
underscores the potential for accidental introduction of NIS 
through this vector, which can subsequently become inva-
sive. Instances of Indo-Pacific invasive species in the Atlan-
tic Ocean further support this notion, such as the lionfish 
Pterois volitans (Linnaeus, 1758) (Whitfield et al. 2007), 
originating from the Red Sea but introduced to the Medi-
terranean Sea and the Atlantic Ocean through aquarium 
releases or ballast waters in shipping transportation (Whit-
field et al. 2002). An analogous example of a gastropod with 
similar characteristics to Vayssierea is the muricid Bedeva 
paivae (Crosse, 1864). Originally restricted to New Zea-
land and southern Australia, this species has been acciden-
tally introduced by shipping transport (Gofas et al. 2017) 
to South Africa, Madeira, and the Canary Islands (Barco et 
al. 2015). This reinforces the possibility of an introduction 
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