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Abstract
Mass bleaching events are growing in duration and intensity. Besides causing extensive mortality, the progressively shorter 
time between events disrupts the ability of reefs to recover. The unique reefs of the Southwestern Atlantic are often considered 
climate refugia as they have suffered less bleaching-related mortality when compared to Indo–Pacific and Caribbean reefs. 
However, their recovery capacity still requires investigation. In 2019, an unprecedented heatwave triggered the most severe 
bleaching episode recorded for Southwestern Atlantic reefs. Therefore, this study aimed to (i) document the bleaching inci-
dence and mortality during the heatwave, and (ii) assess coral recovery over 3 years. We measured bleaching incidence and 
monitored coral cover through surveys in three Southern Bahia (central Brazilian coast) reefs before, during and after thermal 
stress. Our findings show that coral assemblages were exposed to a 5-month-long thermal anomaly, experiencing thermal 
stress peaking at 14.1 ºC-weeks. Roughly 70% of the coral cover was bleached, resulting in a decline of ~ 40%. Millepora 
alcicornis, Mussismilia braziliensis, and Mussismilia harttii were among species that mortality exceeded 50%. After 3 years, 
corals showed no increase in cover neither at assemblage nor species levels. This constrained recovery capacity may indicate 
the breakdown of the refugium, and also trade-off for resistance. Typical features of the region, such as high turbidity and 
the dominance of massive corals, provide these reefs with bleaching resistance, but likely also limit their recovery. With the 
anticipated effects of the 2023–24 El Niño–Southern Oscillation in the southern hemisphere, still unrecovered Southwestern 
Atlantic reefs face a substantial challenge.
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Introduction

The emission of greenhouse gases has raised the atmos-
pheric CO2 concentration by approximately 140 ppm since 
the Industrial Revolution, resulting in an increase of more 
than 1 °C in average ocean sea surface temperatures (IPCC 
2021). Acute and sustained ocean warming triggers coral 
bleaching, as these organisms usually develop close to 
their upper thermal threshold (Hoegh-Gudlberg 1999; Fitt 
et al. 2001). Bleaching results from the disruption of the 

coral–dinoflagellate symbiosis and is defined by the loss of 
symbiotic dinoflagellates (family Symbiodiniaceae) and/or 
photosynthetic pigments by the coral host (Glynn 1993). 
Under thermal stress, the symbiotic dinoflagellates living 
within the cells of their coral hosts produce cytotoxic reac-
tive oxygen species (Lesser 2006; Weis 2008; Krueger et al. 
2015). Consequently, the coral releases its symbionts and 
the white calcareous skeleton becomes visible under a trans-
lucent living tissue layer. Depending on the duration and 
intensity of the thermal stress, the loss of symbionts and the 
build-up of reactive oxygen species may produce elevated 
coral mortality (Glynn 1993; Douglas 2003; Lesser 2006; 
Jones 2008; but see Schlotheuber et al. 2024).

Global Mass-Bleaching Events (GMBEs) refer to epi-
sodes in which extensive reef areas in the Atlantic, Indian, 
and Pacific oceans undergo bleaching roughly over the 
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same period. In recent decades, three GMBEs have been 
confirmed in 1997–98, 2009–10, and 2014–17, all closely 
related to the El Niño–Southern Oscillation (ENSO) warm 
phase (Eakin et al. 2016; Hughes et al. 2018; Oliver et al. 
2018). The duration and intensity of the ENSO warm phase 
have increased over time, exacerbating coral bleaching and 
mortality globally (Hughes et al. 2018; Oliver et al. 2018; 
Skirving et al. 2019). Consequently, important reef areas 
such as the Great Barrier Reef and the Caribbean under-
went severe coral mortality episodes (Eakin et al. 2010; 
De’ath et al. 2012; Jackson et al. 2014; Dietzel et al. 2020), 
and global estimates show that approximately 50% of coral 
benthic cover has been lost since the first GMBE (Tebbett 
et al. 2023). This has produced several reported episodes 
of regime shifts (sensu DeYoung et al. 2008) where oppor-
tunistic turf algae outcompete corals, making it challeng-
ing to revert to the original coral-dominated scenario due 
to hysteresis (Done et al. 1992; Hughes et al. 2007; Steneck 
et al. 2019).

The extent and speed of coral recovery after a mortal-
ity episode is a metric often used to determine how well 
a reef might handle subsequent bleaching events. When a 
reef recovers more quickly and effectively, the corals may 
acclimatize and exhibit enhanced resilience during future 
disturbances (Connell et al. 1997; West and Salm 2003; Roff 
and Mumby 2012; Mcleod et al. 2019). This has been well 
documented for reefs in the Western Indian Ocean, where 
swift coral recovery translated into increased resistance 
(McClanahan et al. 2007). The effectiveness of the recov-
ery process, however, is a consequence of multiple intrinsic 
biological and oceanographic factors (McClanahan 2000; 
Graham et al. 2011), including coral morphology, functional 
diversity of fish assemblages, nutrient concentration, reef 
depth and physiological plasticity (Marshall and Baird 2000; 
Graham et al. 2015; Ortiz et al. 2018). This highlights the 
importance of monitoring the reef recovery process to better 
understand the impacts of upcoming disturbances.

Although bleaching recovery processes have been inves-
tigated in coral reefs from the Indo–Pacific and Caribbean 
(Mumby et al. 2007; Roth et al. 2018; McManus et al. 2021), 
they remain largely unaddressed in the Southwestern Atlan-
tic. The unique reefs in this area, mainly restricted to Brazil-
ian waters, are known for their reduced diversity and high 
degree of endemism (Leão et al. 2016; Pinheiro et al. 2018). 
This is primarily a consequence of the discharge of several 
large rivers into the South American Atlantic continental 
shelf, including the Amazon–Orinoco plume, which serves 
as a major biogeographic filter between the Caribbean and 
Southwestern Atlantic (Castro and Pires 2001; Leão et al. 
2003; Floeter et al. 2008; Moura et al. 2016). Bleaching 
investigations in the region started only in 1994 (Castro and 
Pires 1999), and mass bleaching was not detected until 1998, 
during the first GMBE, with incidence below 50% (Leão 

et al. 2010; Kelmo and Attrill 2013). At that time, wide-
spread mass mortality was not observed (Leão et al. 2010), 
but significant coral mortality was described in northern 
Bahia State (Kelmo and Attrill 2013). The second GMBE 
produced little bleaching and minimal mortality for Brazil-
ian reefs (Ferreira et al. 2013; Miranda et al. 2013). How-
ever, during the third GMBE, extensive bleaching occurred 
with several species experiencing over 75% bleaching but 
little to no mortality (Teixeira et al. 2019). Compared to the 
Caribbean and Indo–Pacific, this positive bleaching record 
prompted the Southwestern Atlantic to be identified as a 
relevant climate refugium (Mies et al. 2020). However, the 
recovery process was not assessed at any given point, despite 
lengthy periods between GMBEs.

In 2019, a regional-scale heatwave, unconnected to the 
ENSO, was caused by the blocking of advancing cold fronts 
by the South Atlantic Subtropical Anticyclone (Cheng et al. 
2020; Vieira and Cupolilo 2021). This blocking induced an 
intense atmospheric subsidence, resulting in low humidity 
and high temperatures. This heatwave caused the strongest 
observed bleaching episode to date for several Southwestern 
Atlantic reef sites (Banha et al. 2020; Duarte et al. 2020; 
Ferreira et al. 2021; Gaspar et al. 2021; Braz et al. 2022; 
Pereira et al. 2022). In this context, for reefs in Southern 
Bahia (Brazil), the present study aimed to (i) document 
the incidence of bleaching and mortality during the 2019 
bleaching event, and (ii) describe the coral cover recovery 
process over the period of 3 years. Considering the typi-
cally slow growth rates of most Brazilian corals (Suggett 
et al. 2012), we aimed to assess whether post-bleaching coral 
recovery is also slow.

Investigating the response of Southwestern Atlantic mar-
ginal coral reefs to bleaching is critical because they offer 
ecosystem services to millions of people along more than 
5000 km of coastline (Elliff and Kikuchi 2017; Waechter 
et al. 2023). In addition, because of the expected arrival of 
a massive 2023–24 ENSO heatwave in the Southwestern 
Atlantic (see Lian et al. 2023; Ludescher et al. 2023), it is 
critical to understand how these unique reef systems may 
respond in longer terms.

Materials and methods

Study area

The reefs selected for investigation are situated in Southern 
Bahia State (eastern coast of Brazil, ~ 16oS). This region 
hosts the most extensive, diverse and representative coral 
reefs of the Southwestern Atlantic, harboring nearly all pho-
tosymbiotic scleractinian coral species found in the South 
Atlantic (Francini-Filho et  al. 2013; Leão et  al. 2016). 
Three reefs from this region were assessed (Fig. 1): Araripe 
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(located at the Coroa Alta Municipal Marine Park, − 16.22
5517, − 38.956702); Mucugê (− 16.491478, − 39.066782); 
and Recife de Fora (located at the Recife de Fora Municipal 
Marine Park, − 16.402901, − 38.982132). These reefs may 
be considered representative of the South Atlantic because 
of their historically high coral cover and presence of all the 
coral species found in the Southern Bahia area, which har-
bors the richest reef formations in the South Atlantic Ocean 
(Castro and Pires 2001; Leão et al. 2016). Furthermore, 
these reefs are considered model reefs that have been sub-
ject to multiple investigations and monitoring since 1997 
(M. Mies et al., in prep.).

Thermal stress data

To determine cumulative heat stress to which reefs were 
exposed, the monthly mean and maximum Degree Heating 
Week (DHW) for the specific region (5 × 5 km) encompass-
ing the three reefs were calculated using remote sensing 
data provided by the National Oceanic and Atmospheric 
Administration (NOAA Coral Reef Watch version 3.1; 
NOAA, 2018). DHW is a measure that accumulates ther-
mal anomalies relative to the maximum monthly average 
sea surface temperature over 12 weeks (Liu et al. 2014). 
Values above 4 ºC-weeks typically trigger mass bleaching, 
and those above 8 ºC-weeks usually result in widespread 
coral mortality (Kayanne 2017). These thresholds are con-
sistent with the bleaching trends witnessed in Brazil during 
2019–20 (Duarte et al. 2020; Ferreira et al. 2021; Braz et al. 
2022; Pereira et al. 2022; but see DeCarlo 2020). The DHW 

data were gathered for the period between August 2018 and 
November 2022.

Field assessments and data processing

The coral assemblages (comprised of scleractinian, octoc-
oral, zoantharian and milleporid species) from each of the 
three reefs were evaluated approximately every 2 months. 
The evaluation period was divided into four different stages: 
before thermal stress (September 2018 to February 2019), 
during thermal stress (March 2019 to August 2019), dur-
ing the first year of recovery (September 2019 to August 
2020), and a final single assessment after 3 years of recov-
ery (between October and November 2022). Underwater 
photographic surveys were taken to assess the health status 
of the coral assemblages in the region. The studied reefs 
are located between 3 and 7 m in depth, and three fixed 
areas of 2.25 m2 were selected haphazardly and sampled for 
each analyzed reef. Each fixed area was photographed in its 
entirety using a 50 × 50 cm PVC frame attached to a GoPro 
Hero 7 digital camera.

To assess the incidence of bleaching and estimate the 
bleached area of each reef, the following approaches were 
employed based on the photos collected in  situ: (i) the 
establishment of three categories indicating hue (adjusted 
through normalization of brightness and hue patterns 
according to recommendations in Mantiuk et al. 2009) of 
the corals—“healthy” for colonies where discoloration was 
not evident; “mildly bleached” for colonies with noticeable 
color changes; and “severely bleached” for colonies with 

Fig. 1   The three reef sites of 
Araripe, Mucugê and Recife 
de Fora (Southern Bahia State, 
Brazil, Southwestern Atlan-
tic—red rectangle in the inner 
picture, expanded in the outer 
picture) where bleaching, 
mortality and recovery were 
recorded before, during and 
after the 2019 thermal stress 
episode
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significant color loss and predominantly pale white; and (ii) 
the evaluation of the percentage of bleached coral cover rela-
tive to the total living coral cover, using the photoQuad soft-
ware and calculating the perimeter of live coral cover (Try-
gonis and Sini 2012). Mortality was assessed by calculating 
the loss of coral cover, which is the percentage area occupied 
by live corals relative to the total sampled area, also using 
photoQuad to calculate absolute and relative covers.

Statistical analyses

Coral cover data from four distinct time points were used, to 
specifically examine the process of recovery in comparison 
to the observed mortality: (i) pre-thermal stress, (January/
February 2019, depending on the reef’s sampling month), 
served as the baseline for assessing coral health just before 
the onset of thermal stress; (ii) post-thermal stress (Octo-
ber/November 2019), indicating coral mortality immedi-
ately after the end of the thermal stress period; (iii) 1 year 
post-thermal stress (August/October 2020), representing 
the short-term recovery; and (iv) 3 years post-thermal stress 
(October/November 2022), indicative of medium-term 
recovery. Repeated measures one-way analyses of vari-
ance (ANOVA) using Geissner–Greenhouse correction (for 
adjustments of lack of sphericity) were conducted to test 
differences in coral cover considering the periods as a fixed 
factor. The nine fixed areas (three sites for each of the three 
reefs) were used as replicates, to get a regional characteri-
zation of bleaching and recovery across the Southern Bahia 
area. Time points in (i–iv) served as the independent vari-
able (factor) and live coral cover as the response variable. 
Post-hoc Tukey’s HSD tests were conducted for ANOVA 

significant results. All data were previously checked for 
normality and homoscedasticity using Shapiro–Wilk and 
Levene’s tests, respectively. Given the normal and homo-
scedastic nature of the data, we kept the parametric approach 
without transformations. Lastly, a Spearman correlation 
analysis was performed between the log data of coral cover 
loss and coral recovery after 1-year and 3-year post-thermal 
events to test for the existence of a trade-off between toler-
ance to acute thermal stress and growth capacity. Statistical 
significance was considered at p < 0.05.

Results

Thermal stress and bleaching incidence

The 2019 thermal stress episode in Southern Bahia intensi-
fied in March when DHW values first exceeded 4 ºC-weeks. 
This degree of stress or higher persisted for 5 consecutive 
months, with DHW values remaining above 4 ºC-weeks until 
July 2019 (Fig. 2). During this period, the coral assemblages 
endured DHW values exceeding 8 ºC-weeks for 3 consecu-
tive months—April, May, and June, peaking in May 2019 
(14.1 ºC-weeks). Thermal stress beyond 4 ºC-weeks was not 
recorded again until March–June of 2022, in the third year 
of recovery. In this instance, a less intense thermal anomaly 
was recorded with monthly mean DHW values not surpass-
ing 8 ºC-weeks at any moment (Fig. 2).

At the assemblage level, corals in the three Southern 
Bahia reefs experienced less than 8% bleaching incidence 
before thermal stress based on visual assessment. By the 
peak of thermal stress in April–July 2019, 69% of the 

Fig. 2   Monthly maximum and mean Degree Heating Week (DHW) 
values for the Southern Bahia area encompassing the Araripe, 
Mucugê and Recife de Fora reefs (Brazil, Southwestern Atlantic) dur-
ing the 2019 thermal stress episode and subsequent 3-year recovery 

period. Dotted lines account for 4 and 8  ºC-weeks, which represent 
thresholds for mass bleaching and mass mortality of corals, respec-
tively (see Kayanne 2017). The thermal stress period is defined by the 
time interval when DHW values intensified and surpassed 4 ºC-weeks
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coral cover showed signs of bleaching (Table 1). Indi-
vidually, reefs of Araripe, Mucugê and Recife de Fora 
displayed bleached cover levels of 58.7, 74.4 and 54.5%, 
respectively (Supplementary Information Table S1). One 
year after the thermal stress, bleaching incidence reduced 
to less than 1% and increased to 4.6% in 2022 during the 
second and smaller thermal anomaly (Table 1). During 
the second heatwave, bleaching primarily affected Favia 
gravida, a small-sized coral species, leading to a reduced 
bleached coral cover.

Fourteen different species (nine scleractinians–Agari-
cia humilis, Favia gravida, Mu. braziliensis, Mu. hart-
tii, Mu. hispida, Mu. leptophylla, Porites astreoides, 
Po. branneri, and Siderastrea sp.; a milleporid hydro-
coral–Mi. alcicornis; three octocorals–Muriceopsis sul-
phurea, Phyllogorgia dilatata, and Plexaurella grandi-
flora; and a zoantharian–Palythoa caribaeorum) were 
found in the reef areas assessed. All species but Pl. 
grandiflora and Po. branneri experienced some degree 
of visual bleaching during the first thermal stress epi-
sode (Table 1). However, for both species, bleaching may 
have gone undetected as they are light brown to white in 
coloration and usually display a lower density of Sym-
biodiniaceae cells in their tissues (B. M. Corazza et al., 
in prep.). Several species experienced bleaching in more 
than 50% of their cover, including A. humilis, F. gravida, 
Mi. alcicornis, Mu. braziliensis, Mu. harttii and Mu. his-
pida. Remarkably, between 2019 and 2020, some colonies 
of the most abundant Mussismilia species (Mu. brazilien-
sis, Mu. harttii and Mu. hispida) remained fully bleached 
for a period of 13 months, before recovering to a healthy 
coloration.

Coral cover loss and recovery

During the 2019 thermal stress episode, total live coral 
cover on Southern Bahia reefs declined considerably, from 
16.9 to 10.6% (Fig. 3; Tables 2 and 3). Cover was further 
reduced after the end of the thermal stress, since bleaching 
took 6–8 months to fade and colonies of several species were 
still in poor health and died during the first year of recovery. 
Coral cover declined for all three reefs investigated, mainly 
between April and August of 2019. During the thermal stress 
period, Araripe, Mucugê and Recife de Fora reefs underwent 
a loss of coral cover of 47.0, 76.0 and 25.7%, respectively 
(Supplementary Information Table S2). Araripe and Recife 
de Fora suffered less coral cover loss during thermal stress, 
but suffered coral mortality after thermal stress had ceased. 
Recife de Fora lost an additional 22.4% of coral cover dur-
ing the first 6 months after the end of the thermal stress. 
Mucugê, however, underwent the most severe loss but suf-
fered no relevant mortality after thermal stress had ended.

Species that underwent most coral cover reduction post-
thermal stress were Mi. alcicornis (93%), Po. astreoides 
(64%) and Mu. harttii (65%) (Tables 2 and 3). In the case of 
Mu. braziliensis there was a significant reduction in cover 
detected between post-thermal stress and 1 year post-thermal 
stress (Tables 2 and 3). For Mi. alcicornis, dead colonies 
underwent significant erosion, and tumbled branches fell 
to the reef bottom (Fig. 4). The same erosive process was 
also detected for dead Mu. harttii. In 2022, during the ther-
mal anomaly in the third year of recovery, while bleaching 
occurred, there was no significant change in coral cover for 
any species (Tables 1 and 2).

No significant recovery was detected for the overall 
coral assemblages in Southern Bahia reefs at both the 

Table 1   Bleaching incidence 
(mean ± standard error) 
detected for coral species 
in nine fixed sites in three 
Southern Bahia reefs before 
(pre-thermal stress), during 
(highest bleaching incidence 
detected between april and july 
2019), and one and 3 years 
after the 2019 thermal stress 
episode. Bleaching incidence 
is expressed as the proportion 
of bleached coral cover to the 
overall live coral cover

Coral species Pre-thermal stress Highest bleaching 
incidence

1 year post-
thermal stress

3 years post-
thermal stress

Agaricia humilis 27.10 ± 0.22 87.35 ± 12.66 0.99 ± 0.01 0.00 ± 0.00
Favia gravida 16.20 ± 0.07 53.51 ± 14.02 0.20 ± 0.00 17.97 ± 0.16
Millepora alcicornis 12.44 ± 0.06 79.62 ± 10.77 0.00 ± 0.00 3.73 ± 0.02
Muriceopsis sulphurea 18.73 ± 0.12 29.00 ± 15.53 0.00 ± 0.00 7.28 ± 0.03
Mussismilia braziliensis 7.91 ± 0.08 57.89 ± 5.44 1.98 ± 0.01 1.20 ± 0.01
Mussismilia harttii 15.11 ± 0.13 74.82 ± 16.78 0.00 ± 0.00 7.36 ± 0.02
Mussismilia hispida 4.18 ± 0.03 53.75 ± 20.42 0.00 ± 0.00 9.68 ± 0.10
Mussismilia leptophylla 0.00 ± 0.00 2.83 ± 2.83 0.00 ± 0.00 3.30 ± 0.00
Palythoa caribaeorum 0.00 ± 0.00 33.33 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Phyllogorgia dilatata 5.98 ± 0.06 36.42 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Plexaurella grandiflora 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Porites astreoides 0.00 ± 0.00 38.21 ± 14.41 0.00 ± 0.00 0.00 ± 0.00
Porites branneri 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Siderastrea sp. 6.40 ± 0.03 31.65 ± 7.94 0.01 ± 0.00 3.52 ± 0.01
Overall coral assemblage 7.81 ± 0.06 69.09 ± 9.81 0.44 ± 0.01 4.60 ± 0.41
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1-year and 3-year marks following the end of the 2019 
thermal stress episode (Tables 2 and 3). In fact, some 
decrease in cover was still detected 1-year after the ther-
mal stress, as indicated by the ANOVA results (Table 3). 
In addition, a negative Spearman correlation was detected 
between mortality (coral cover loss) and coral recovery 

(− 0.58 ≤ R ≤  − 0.56; 0.03 ≤ P ≤ 0.04) for both 1 and 
3 years after the first thermal anomaly (Fig. 5). At the 
individual reef level, no relevant coral recovery was 
detected for the three studied reefs (Supplementary Infor-
mation Table S2). At the species level, again, no species 
displayed significant recovery after 3 years since the end 

Fig. 3   Change in coral cover for Southern Bahia reefs (thick black 
line) during the 2019 thermal stress episode and subsequent 3-year 
recovery period. Trends for individual reefs (Araripe, Mucugê and 
Recife de Fora) are presented in thin dotted lines. The thermal stress 

period is defined by the time interval when DHW values intensified 
and surpassed 4  ºC-weeks. Error bars indicate standard error and 
were removed from individual reefs data for proper visualization

Table 2   Relative benthic cover (mean ± standard error) for coral spe-
cies in Southern Bahia reefs before (pre-thermal stress), immediately 
after (post-thermal stress), and one and 3 years after the 2019 thermal 
stress episode. Statistically significant coral cover reductions (after 

thermal stress) and cover gains (after 3 years of recovery, compared 
to post-thermal stress) are displayed. Refer to Table  3 for statistical 
analyses results

Coral species Pre-thermal stress Post-thermal stress Significant rela-
tive cover loss

1 year post-
thermal stress

3 years post-
thermal stress

Significant rela-
tive cover gain in 
3 years

Agaricia humilis 0.56 ± 0.37 0.36 ± 0.24 – 0.19 ± 0.11 0.09 ± 0.06 –
Favia gravida 0.18 ± 0.05 0.21 ± 0.04 – 0.10 ± 0.05 0.24 ± 0.12 –
Millepora alcicornis 3.90 ± 1.10 0.27 ± 0.18  − 93% 0.38 ± 0.27 0.72 ± 0.54 –
Muriceopsis sulphurea 1.25 ± 0.46 1.08 ± 0.42 – 0.99 ± 0.31 1.55 ± 0.73 –
Mussismilia braziliensis 1.82 ± 0.54 1.64 ± 0.49 – 0.69 ± 0.26 0.63 ± 0.30 –
Mussismilia harttii 2.17 ± 0.69 0.76 ± 0.24  − 65% 0.50 ± 0.13 0.87 ± 0.26 –
Mussismilia hispida 0.33 ± 0.09 0.21 ± 0.06 – 0.27 ± 0.04 0.40 ± 0.31 –
Mussismilia leptophylla 0.72 ± 0.63 0.67 ± 0.57 – 0.33 ± 0.29 0.47 ± 0.47 –
Palythoa caribaeorum 0.21 ± 0.21 0.15 ± 0.15 – 0.01 ± 0.01 0.01 ± 0.01 –
Phyllogorgia dilatata 2.15 ± 1.20 1.83 ± 1.30 – 1.52 ± 0.79 1.07 ± 0.43 –
Plexaurella grandiflora 0.10 ± 0.05 0.14 ± 0.07 – 0.08 ± 0.02 0.13 ± 0.08 –
Porites astreoides 1.10 ± 0.28 0.39 ± 0.27  − 64% 0.32 ± 0.09 0.55 ± 0.31 –
Porites branneri 0.04 ± 0.02 0.02 ± 0.01 – 0.01 ± 0.00 0.01 ± 0.00 –
Siderastrea sp. 4.96 ± 1.31 4.64 ± 1.60 – 3.69 ± 0.68 4.64 ± 1.13 –
Overall coral assemblage 16.87 ± 2.05 10.62 ± 2.42  − 37% 6.39 ± 1.05 7.89 ± 1.85 –
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of the 2019 thermal stress episode (Table 3). In the case 
of Mi. alcicornis, the only branching species, we visually 
observed in the field an early recovery process that, while 

not statistically significant, merits acknowledgment due 
to its upward trend (0.27 to 0.72% in relative cover) and 
ecological relevance of this species.

Table 3   Statistical results from repeated measures one-way analy-
ses of variance (ANOVA) for differences between periods (pre- and 
post-thermal stress, pre- and 1 year post-thermal stress, and pre- and 

3 years post-thermal stress, df = 3), for each coral species and for the 
entire coral assemblage in Southern Bahia reefs during the 2019 ther-
mal stress episode and subsequent 3 years of recovery

(*) indicates statistically significant results

Species F p Tukey’s HSD Trend

Agaricia humilis 1.454 0.263 n/a –
Favia gravida 0.704 0.446 n/a –
Millepora alcicornis 8.758 0.013* 0.027 (pre- and post-thermal stress) ↓
Muriceopsis sulphurea 3.786 0.077 n/a –
Mussismilia braziliensis 7.609 0.004* 0.045 (pre- and 1 year post-thermal stress) ↓
Mussismilia harttii 5.070 0.043* 0.020 (pre- and post-thermal stress) ↓
Mussismilia hispida 0.684 0.443 n/a –
Mussismilia leptophylla 1.341 0.283 n/a –
Phyllogorgia dilatata 1.452 0.266 n/a –
Plexaurella grandiflora 0.483 0.596 n/a –
Porites astreoides 3.826 0.035* 0.019 (pre- and post-thermal stress) ↓
Porites branneri 2.273 0.169 n/a –
Siderastrea sp. 4.811 0.221 n/a –
Overall coral assemblage 25.38  < 0.0001* 0.003 (pre- and post-thermal stress), 0.040 (pre- and 1 year post-ther-

mal stress), and 0.036 (pre- and 3 years post-thermal stress)
↓, ↓, ↓

Fig. 4   Bleaching and mortality process of a Mi. alcicornis colony at 
araripe reef (Southern Bahia, Brazil, Southwestern Atlantic) during 
the 2019 thermal stress episode. A healthy colony in October 2018; 
B mildly bleached colony in March 2019; C severely bleached colony 
in April 2019; D dead colony covered in turf and crustose coralline 

algae (purple and brownish sections, respectively) in October 2019; 
E dead and partially eroded colony covered in turf algae in October 
2020; and F dead and eroded colony in October 2022–note fallen 
branching fragments in the bottom left corner
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Discussion

In 2019, a strong heatwave caused widespread coral bleach-
ing in the Southwestern Atlantic, impacting the entire spec-
trum of tropical and subtropical reef communities (Banha 
et al. 2020; Duarte et al. 2020; Ferreira et al. 2021; Gaspar 
et al. 2021; Braz et al. 2022; Pereira et al. 2022). Our find-
ings show that almost every species in Southern Bahia reefs 
experienced both intense bleaching and cover loss, includ-
ing endemic and threatened species like Mu. braziliensis 
and Mu. harttii. Three years after the event, there has been 
no coral cover gain for the local coral assemblage or any 
individual species. However, a high increase in algal cover 
has been observed in the area after the 2019 thermal stress 
episode (C.F.B. Santarém, in prep.).

Prior to thermal stress, Southern Bahia coral assemblages 
displayed background bleaching levels of ~ 7%, which is typ-
ical for the area (Coral Vivo Institute, unpubl. data). How-
ever, during thermal stress, bleaching incidence rose to 69% 
of the coral cover, similar to the elevated levels of 60–80% 
documented along other segments of the Brazilian coast dur-
ing the 2019 bleaching event (Banha et al. 2020; Duarte 
et al. 2020; Ferreira et al. 2021; Gaspar et al. 2021; Braz 
et al. 2022). Mortality, on the other hand, was notably higher 
in Southern Bahia reefs compared to the overall trend along 
the Brazilian coast. In other areas, elevated mortality rates 
(> 15%) were observed exclusively for Mi. alcicornis and 
Mu. harttii, with the other coral species displaying reduced 
mortality rates despite experiencing maximum DHW val-
ues between 13.0 and 20.5 °C-weeks (Banha et al. 2020; 
Duarte et al. 2020; Pereira et al. 2022). This lower mor-
tality under high thermal stress suggests that Southwestern 
Atlantic reefs and their unique coral fauna have many traits 

that confer higher resilience. These include high turbidity, 
predominance of massive species, increased heterotrophic 
capacity, flexible symbiotic associations, and higher aerobic 
capacity, among others (Mies et al. 2018; 2020; Marangoni 
et al. 2019; Fonseca et al. 2021; Godoy et al. 2021; Angon-
ese et al. 2022; Garrido et al. 2023; Lucas et al. 2023; San-
tana et al. 2023). These traits, together with a history of low 
mortality during past GMBEs have led to the proposition 
that the Southwestern Atlantic province has acted as a major 
climate refugium (sensu Morelli et al. 2020), in the sense 
that they have suffered much less global warming impacts 
compared to Indo–Pacific and Caribbean reefs (Mies et al. 
2020). Our findings, however, show that overall coral cover 
decreased by nearly 40%, and also that four coral species, 
including some of the main reef-builders, underwent more 
than 50% loss in Southern Bahia during the 2019 bleaching 
episode. Thus, at least in this specific case and area, reefs 
may not have served as refugia and, therefore, it is likely that 
the Southwestern Atlantic may not be refugia as a whole; 
rather, some sites within this province may serve as refugia 
and some may not. For example, subtropical rocky reefs in 
the Southwestern Atlantic experienced less than 2% coral 
mortality under extreme DHW values > 20 ºC-weeks (Banha 
et al. 2020). Another potential scenario is that the intensity 
of the heatwave surpassed the tolerance threshold of that 
specific site. It is crucial to emphasize that even refugia sites, 
such as the Southwestern Atlantic, are vulnerable to high 
mortality events linked to severe heatwaves and are unlikely 
to survive unless decisive measures are taken to halt global 
warming (Oliveira et al. 2019; Bleuel et al. 2021; Príncipe 
et al. 2021). Regardless, there is a need for more detailed 
and localized investigations to determine the specific reef 
sites in the Southwestern Atlantic that are most sensitive and 

Fig. 5   Relationship between 
coral cover recovery and coral 
cover loss across 14 photosym-
biotic cnidarian species. The 
logged data for percentage of 
cover recovery and cover loss 
after 1 and 3 years of the 2019 
Southwestern Atlantic thermal 
stress episode is provided in 
comparison to pre-thermal 
stress levels
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those that are more tolerant, with emphasis on their specific 
environmental conditions.

An additional concern regarding mortality is that the most 
significant contributors to reef habitat complexity in the 
Southwestern Atlantic–Mi. alcicornis and Mu. harttii–were 
the species that most experienced cover loss. Branching scle-
ractinians are traditionally the main structural complexity 
engineers (Graham and Nash 2013; Darling et al. 2017), but 
are absent in the Southwestern Atlantic. Mi. alcicornis, a 
branching and calcifying hydrozoan, takes up this ecological 
niche in the region (Coni et al. 2013; Luza et al. 2022). How-
ever, like branching scleractinians, milleporids are sensitive 
to thermal stress, suffer high mortality during intense heat-
waves (Loya et al. 2001; Ferreira et al. 2021), and become 
more susceptible to benthic competition under thermal stress 
(Lonzetti et al. 2022). Mu. harttii, with its phacelloid mor-
phology, features wide spaces between corallites and thus 
provides shelter for a diverse array of crustaceans, mollusks, 
and other invertebrates (Nogueira et al. 2015; 2021). How-
ever, it may also be a thermally-sensitive species (see Braz 
et al. 2022; Pereira et al. 2022) and, even after the end of 
thermal stress, mortality rates were elevated due to colonies 
remaining bleached and in poor health over several months.

Most surviving bleached colonies returned to their origi-
nal healthy color approximately 6 months after the end of 
the thermal stress endured during the 2019 bleaching epi-
sode. This agrees with the findings of Ferreira et al. (2021), 
which show that colonies of Mi. alcicornis and Mu. brazil-
iensis required a similar amount of time to fully regain their 
symbionts. However, the scenario is quite different for coral 
recovery. The term “coral recovery” has a broad range of 
definitions and, therefore, can be defined and interpreted 
in several different ways. While some more stringent inter-
pretations equate recovery to the restoration of the original 
coral cover levels prior to stress, others perceive a return to 
at least 50% of the initial levels as sufficient for confirming 
recovery (Connell 1997; Gilmour et al. 2013; Johns et al. 
2014). Even if recovery is merely considered as any statisti-
cally significant gain in coral cover after suffering mortality, 
the investigated reefs underwent no significant recovery after 
3 years. Although a full return to original coral cover levels 
is known to take several years to decades (Gardner et al. 
2005; Adjeroud et al. 2009; Gouezo et al. 2019), an absence 
of recovery in 3 years is alarming. Significant recovery has 
been observed in several cases during the first 3–5 years 
following mass mortality (Gilmour et al. 2013; González-
Barrios et al. 2021; Abesamis et al. 2023; Speelman et al. 
2023), but this does not seem to be the case for Southwestern 
Atlantic reefs. Our findings show clear dynamics: severe 
heatwaves induce acute coral mortality, succeeded by more 
gradual and less intense mortality after the heatwave sub-
sides, and 3 years after thermal stress, coral assemblages 
still display no palpable signs of recovery. These insights 

underscore the imperative need for continuous, long-term 
monitoring of coral cover in Southwestern Atlantic reefs.

The reasons for the absent or slow recovery are possi-
bly the same as those associated with increased resilience. 
Southwestern Atlantic reefs are widely dominated by mas-
sive coral species (Leão et  al. 2003; Mies et  al. 2020). 
Although these species are generally thermally tolerant, they 
are also notoriously slow-growing, which greatly diminishes 
the recovery capacity of local reefs–full recovery for mas-
sive corals may require decades (Gates and Edmunds 1999; 
Lough and Barnes 2000; Loya et al. 2001; Edmunds and 
Elahi 2007). Similarly, the elevated turbidity in Southwest-
ern Atlantic reefs (Santana et al. 2023) increases resilience 
by sheltering corals from heat and photoinhibition (see 
Cacciapaglia and van Woesik 2016; Skirving et al. 2017), 
but also hinders growth rates and recovery because of the 
reduced photosynthetic efficiency (Anthony and Fabricius 
2000; Hennige et al. 2008; Bessell-Browne et al. 2017). 
Thus, a trade-off arises when comparing the biogeographic 
regions of the Indo–Pacific, Caribbean, and South Atlan-
tic concerning bleaching tolerance and coral recovery. In 
reefs of the Southwestern Atlantic, coral mortality is notably 
lower compared to the Indo–Pacific and Caribbean (Mies 
et al. 2020). Even when specifically considering South-
western Atlantic coral species, the negative correlation 
between recovery and cover loss suggests a functional con-
flict between tolerance and growth. The argument posits that 
tolerance to acute thermal stress trades off growth capacity, 
possibly via shifts in physiological functions associated with 
oxidative status, constraining the amount of energy available 
for other physiological functions and impacting fitness costs 
(e.g., Barley et al. 2021).

The occurrence of a smaller-scale thermal anomaly 
towards the third year after the first thermal stress episode in 
2019 may have further impaired recovery. The second ther-
mal anomaly was notably milder than the first, as indicated 
by its shorter duration, mean DHW values never exceeding 
8 ºC-weeks, and the absence of detectable coral cover loss 
during that period. It is also possible that corals may have 
exhibited increased resistance after enduring the previous 
instance of thermal stress (see DeCarlo et al. 2019). Regard-
less, it is a stressful event that likely hindered recovery. In 
addition, Brazilian reefs suffer from several local impacts 
such as nutrification and overfishing (Costa Jr et al. 2008; 
Francini-Filho and Moura 2008), which may slow or impede 
coral recovery after severe disturbances (Gove et al. 2023).

In the current context, a lack of significant coral recovery 
is particularly worrisome because a GMBE is expected in 
2023–24 in association with a new and unprecedently strong 
ENSO cycle (see Lian et al. 2023; Ludescher et al. 2023). 
As GMBEs and regional-scale heatwaves become more fre-
quent, intense and longer-lasting (Hughes et al. 2018), so 
do bleaching episodes. If reefs face new bleaching episodes 
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before adequately recuperating from a prior event, not only 
are recovery processes stopped, but corals become more vul-
nerable to suffering a higher degree of mortality because of 
their fragile state (Baker et al. 2008; Schoepf et al. 2015; 
Brown and Barott 2022). A case in point is the Great Barrier 
Reef, which grappled with consecutive bleaching episodes in 
2016 and 2017, severely hampering its recovery, recruitment 
and overall health (Dietzel et al. 2020; Mumby et al. 2021). 
This highlights the causes for concern regarding the state 
of Mi. alcicornis and Mu. harttii populations, which faced 
severe reductions in the Southwestern Atlantic in 2019–20 
and may endure additional declines that are likely to further 
compromise their conservation status. On the other hand, 
thermal anomalies and resulting bleaching also act as selec-
tive filters, most probably decreasing the genetic diversity 
of affected species. However, those genotypes that survive 
might further tolerate thermal stress. Although Southwestern 
Atlantic reefs may be considered large-scale refugia for now 
(Mies et al. 2020), it is critically important not to misinter-
pret the concept of refugium and regard them as immune to 
bleaching (see Pereira et al. 2022). Proper investigations on 
bleaching dynamics in refugia are relevant as they are con-
sidered conservation priorities against local scale stressors, 
thanks to their ability to partially buffer the effects of climate 
change (Keppel et al. 2012). Therefore, enhancing local con-
servation policies and providing protection against pollution, 
overfishing and tourism is critical to increase their resilience 
to bleaching (Knowlton and Jackson 2008; MacNeil et al. 
2019; Nunes et al. 2023).

The present work shows that Southern Bahia reefs dis-
played high bleaching incidence, elevated mortality and, 
most alarmingly, the absence of any significant coral recov-
ery during the 3 years following the 2019 bleaching epi-
sode. The limited recovery capacity may indicate the initial 
breakdown of the refugium, and is likely also a trade-off for 
resistance. Typical characteristics common in the region, 
such as high turbidity and the prevalence of massive corals, 
render these reefs less susceptible to bleaching. However, 
these same factors could be responsible for diminishing 
growth and recovery rates. Therefore, given the impending 
arrival of the 2023–24 ENSO, Southwestern Atlantic reefs 
face a major challenge for their persistence.
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